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Abstract

In the present thesis, the concepts of OrnaMagic, a module for the gener-
ation and application of musical grid structures, which is part of the mu-
sic composition software presto (Atari ST), are generalized, abstracted and
adapted for modern functorial mathematical music theory. Furthermore,
an new implementation for the present day composition software Rubato
Composer (Java) is provided.
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Chapter 1

Introduction

The use of computers for music composition became more and more im-
portant by the end of last century. First of all, there are many commer-
cial software products such as sequencing software [Logic] [Cubase], which
are indispensable for the production of modern popular music, or nota-
tion software [Sibelius] [Finale]. However, already in 1991, Karlheinz Essl,
one of today’s leading computer music composers, said that for entering
unknown musical territory, the widespread commercial products are not
suitable [Essl91]. For such uses, since the early days of computer music,
composers like Max Mathews, Gottfried Michael Koenig and Iannis Xenakis
used to write their own software and this has not changed since then.

Around the same time when Essl made this comment, an innovative software
product named presto has been released. The goal of this software was
to offer the reusability of a flexible and mature software product without
limiting the creativity of the composer using it. It was based on cutting-
edge mathematical music theory, formulated by Guerino Mazzola [Mazz90]
and provided numerous functions for composing and manipulating music
geometrically.

Described as one of the most powerful music composition tools to date
[Mazz89], a module in presto, namely the OrnaMagic module, allows to
generate and use periodic grid constructions in an abstract way never seen
since. Many other software products incorporate similar functions, which
are in fact special cases of OrnaMagic applications, namely quantizing or
tonal alteration.

Today, the Atari ST is outdated and modern mathematical music theory
has made many steps forward [Mazz02] and now uses more abstract and
versatile data types and operations. A new software product has been cre-
ated according to these new theoretical foundations, namely Rubato Com-

1



2 CHAPTER 1. INTRODUCTION

poser [Milm06a] [RubatoC]. It is a platform independent Java 1.5 applica-
tion, featuring an extended mathematical framework as well as a modular
design.

1.1 Problem Statement

Since presto, musical grid structures and their different application possibil-
ities have never been implemented at the same level, not to mention devel-
oped further. This leads us to the research question of this thesis:

Research Question:

How can the concepts of OrnaMagic be adapted to modern func-
torial mathematical music theory and how can they be imple-
mented for Rubato Composer?

1.2 Contributions

The contributions of this thesis are:

• Analysis of OrnaMagic’s musical grid structures named ornaments, as
well as their application possibilities.

• Generalization of these concepts for functorial mathematical music
theory. Definition of two major mathematical constructs, namely wall-
papers and alteration.

• Definition of necessary additional constructs for practical usage of the
major constructs, namely melodies, rhythms and scales.

• Implementation of the formalized constructs in form of five rubettes,
i.e. plugins for Rubato Composer, namely the Wallpaper, Alter-
ation, Melody, Rhythmize and Scale rubettes.

• Composition of different examples showing the uses of the implemented
rubettes.

1.3 Related Work

Speaking of related works, it is important to also illuminate the historical
background from music composition. Musical grid structures have been a
common composition tool in Western music for centuries. Here are some
examples:
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• Real imitation in counterpoint [Fux65]. A melodic line is imitated
note by note, where note values and intervals stay the same. This
pattern was used for example by Josquin Desprez (1457/58 - 1521)
in his polyphonic music and later refined by Johann Sebastian Bach
(1685 - 1750) for the composition of his great fugues.

• Arnold Schönberg (1874 - 1951) tiled melodic patterns and their trans-
formations, e.g. the retrogrades or inversions, in his twelve-tone tech-
nique.

• In his works ‘Harawi’ or ‘Visions de l’Amen’ for example, Olivier Mes-
siaen (1908 - 1992) used a special technique called rhythmic canon
[Andr02], where just rhythms are imitated by different voices.

• Conlon Nancarrow (1912 - 1997) experimented with melodic motifs
and mathematical rhythmic patterns in his work ‘Studies for the Player
Piano’.

• Steve Reich (*1936), one of the pioneers of Minimal Music, composed
music based on temporally shifted tiled patterns, for example in his
‘Piano Phase’.

More generally, rhythm patterns and loopings in many musical styles from
around the world can be seen as repetitive grid structures.

Besides the previously mentioned presto, just a few attempts have been
made to provide a computer program for building such grid structures. All
examples stated here have a clearly distinct goal from the contributions of
this thesis:

• Moreno Andreatta et al. [Andr01] [Andr02] implemented Olivier Mes-
siaen’s rhythmic canons for the platform independent composition soft-
ware OpenMusic [Bres05].

• Karlheinz Essl provided several related functions in his Real-Time
Composition Library for Max/MSP [Essl96].

• Several applications of Cellular Automata for MIDI composition have
been realized, most commonly producing two-dimensional grid struc-
tures for the time-pitch plane [Burr04].

• In the tutorial for jMusic, a music composition framework for Java,
Steve Reich’s ‘Piano Phase’ was reconstructed, a typical musical grid
structure [JMusic]. Many musical programming languages, such as
Common Music [Taub91] or Haskore [Huda96], can be used to produce
similar patterns, but not on the sophisticated and complex mathemat-
ical level of Rubato Composer.
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• The concept of looping is widespread in music software and we inves-
tigated it in our collaborative music generation software Jam Tomor-
row [Thal06].

1.4 Thesis Outline

Chapter 2 (p.5) gives a brief overview of modern mathematical music
theory and the two related music composition applications presto and
Rubato Composer.

Chapter 3 (p.21) presents the concepts of presto’s OrnaMagic module and
gives some common examples for its application.

Chapter 4 (p.27) identifies the limitations of OrnaMagic, proposes a struc-
ture for a new implementation and generalizes and formalizes concepts
for functorial mathematical music theory.

Chapter 5 (p.45) describes how the mathematical formalizations are im-
plemented for Rubato Composer and gives an overview of the im-
plementation design.

Chapter 6 (p.53) discusses how our new implementation can be used to
produce meaningful compositions and gives some examples for inspi-
ration.

Chapter 7 (p.63) looks back and compares the new implementation with
its predecessor. Furthermore, it provides an outlook on its future uses
and further work.

Appendix A (p.67) is an addition to the Rubato Composer man-
ual [Milm06b] and serves as a reference to the software implemented
for this thesis.



Chapter 2

Mathematical Music Theory
and Applications

Mathematical music theory has become an indispensable basis for music
informatics and computational musicology. It has been developed by mathe-
maticians or composers like Leonard Euler [Eule39], Milton Babbitt [Babb92]
or David Lewin [Lewi87][Lewi93]. The most recent advancement has been
made by Guerino Mazzola in his work The Topos of Music [Mazz02]. His the-
orical achievements have been applied in several software products on differ-
ent platforms, namely [Presto], [RubatoN], [RubatoX] and [RubatoC].

Two of these software products, presto and Rubato Composer, facilitate
music composition by providing composers with convenient mathematical
tools. We describe both of them in this chapter, including their underlying
theories. presto uses a geometrical representation of music, whereas Ru-
bato Composer, its present-day descendant, is based on modern functorial
mathematical music theory.

2.1 Music Notation

Before we attend to mathematical music theory, we provide a short introduc-
tion to the different visual representations of music, used in this thesis.

In the standard western score notation [Ston80], note symbols are placed on
the staff comprising five lines. Depending on their position on the staff, note
symbols represent notes of a different pitch (the higher symbol, the higher
the pitch). Duration is symbolized by different note values and additional
symbols like dots and ties, whereas loudness (i.e. dynamics) is often specified
below the staff. Figure 2.1 (a) shows an example for a piano score, the lower

5



6 CHAPTER 2. THEORY AND APPLICATIONS

staff representing the player’s left hand and the upper staff the right hand.
The examples in this thesis have been typeset using the open source music
engraving software LilyPond [Nien03]. 
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Figure 2.1: Arnold Schönberg’s piano piece Op. 19, No. 3, (a) the first four
bars in western score notation and (b) the whole piece in piano roll notation.

In modern music software, the piano roll notation system established it-
self, due to its flexibility, abstractness and simplicity. It is inspired by the
medium used to operate mechanical player pianos, hence the name. Notes
are represented by horizontal bars in a two-dimensional coordinate system,
where the horizontal axis represents time and the vertical axis pitch. The
length of such a note bar describes the duration and its opacity often the
loudness of the represented note (see Figure 2.1 (b) for an example). Dif-
ferent voices are mostly visualized using different colors. The piano roll
notation is very useful for showing complex musical structures, but unsuit-
able for precise applications, such as sight reading by musicians. However,
it is used in Rubato Composer and therefore many of the examples in
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Figure 2.2: The main view of the presto software for Atari ST.

this thesis are visualized in this way.

2.2 Geometry of Notes: presto

It is interesting to note that the close affiliation of music and geometry
has existed for centuries. The western score notation, for example, and its
predecessor, the neumatic signs, can be seen as a grid, where notes are drawn
as points and melodies as curves. This representation has been abstracted
at the end of the last century and this is indispensable for music to be
represented and processed by computers.

Some of the major abstractions in this field were made by Guerino Maz-
zola by the end of the 1980s and described in his book Geometrie der
Töne [Mazz90]. The theoretical foundations were subsequently implemented
in the music composition software presto, described in this section.

presto [Mazz89] [Presto] was published in 1989 for Atari ST computers. It
provides a very elaborate interface (shown in Figure 2.2) to compose and
manipulate music and also supports reading from and saving to standard
MIDI files [MIDI96], recording music using a MIDI interface, drawing music
using the mouse or printing the composed music.

These features are all wide spread among music software products, but what
mainly distinguishes presto from other applications is its ability to generate
and modify music by performing a variety of geometrical operations on it.
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Its unique tools are based on a geometrical representation of music, which
we describe now.

In presto, notes are defined as points in a four-dimensional geometrical space
spanned by the following coordinates:

• onset, the time when a note is played,

• pitch on the chromatic scale,

• duration in time and

• loudness.

All four coordinates have discrete values, where onset is between 1 and 11360
and the other three between 1 and 71. Additionally, one of 16 instruments
can be chosen for every note in order to orchestrate a composition. However,
this parameter is not included in the geometrical space and therefore not
relevant with regard to the future explanations.

For the manipulation of such note points, two of the four coordinates can be
chosen to be displayed in the score view (Figure 2.2). There, any number
of notes can be selected and modified by any specified geometrical trans-
formation or set operation. These modifications act on the selected two-
dimensional level and include for example transformations like inversion,
retrograde or parameter exchange, or set operations like union or inter-
section. An example for such a transformation in presto is shown in Fig-
ure 2.3. According to theorem 53 in Appendix E, Section 3.6 in [Mazz02],
by combining such two-dimensional operations, any transformation in the
four-dimensional musical space can be realized.

The second version of presto (1993) involves an interesting module called
OrnaMagic, from which the conceptual basics for this thesis are taken. These
concepts will be described in Chapter 3. In this chapter we focus on decribing
the issues of mathematical music theory.

2.3 Functorial Mathematical Music Theory

About a decade later, Mazzola developed further the theoretical base of
presto. The achievements are described in The Topos of Music [Mazz02]
and are based on category theory [Pier91] and topos theory [Gold84], used to
formalize, manipulate and analyze musical objects. These theoretical foun-
dations have again been implemented. The corresponding software product
is called Rubato Composer and is described later.

This section gives a brief introduction to the data format of functorial math-
ematical music theory and the different ways of its manipulation, just as



2.3. FUNCTORIAL MATHEMATICAL MUSIC THEORY 9

Figure 2.3: The presto transformation score.

much as suffices for understanding the later explanations. To understand
it fully, a founded mathematical background is required. We refer to Part
XVI of [Mazz02] or Chapter 4 of [Milm06a], which both give a straightfor-
ward introduction to the mathematical foundations. For the readers who
are not familiar enough with the underlying mathematics, we draw analogies
to concepts of computer science.

2.3.1 Forms and Denotators

The data format of forms and denotators has many parallels to the concept
of object-oriented programming (OOP) in computer science. Denotators can
be seen as points in a specified form-space, as shown in Figure 2.4. In OOP,
one would speak of an object being a point in the space spanned by the
attributes of its class. Alternatively, expressed in common OOP language,
denotators are instances of forms.

Complex forms are constructed recursively from the primitive Simple forms,
like in a programming language complex data types are built based on prim-
itive data types like integer numbers or strings. The recursive structure of
a form F is defined as follows:

NameF : IdF .TypeF (DiaF ).

The form’s name NameF is a a denotator (definition below), its identifier
IdF is a monomorphism IdF : SpaceF → FrameF of presheaves, which are



10 CHAPTER 2. THEORY AND APPLICATIONS

Figure 2.4: A schematic representation of a denotator (left), its form (mid-
dle) and the represented object (right).

contravariant functors P : Mod → Sets from the category of modules Mod
to the category of sets Sets. TypeF is one of four form types: Simple,
Limit, Colimit or Power, and DiaF is a diagram of forms, defined as
follows depending on the specified type:

• Simple: DiaF is a module M with FrameF = Hom(−,M) = @M .
As previously stated, Simple is the basic type and it is comparable
to the primitive data types in a programming language. However,
the category of modules includes number rings such as Z, Zn, Q, C
as well as word monoids 〈Unicode〉 or polynomial rings R[X] among
others, which facilitate the construction of more complex mathematical
structures than in a programming language.

• Limit: the frame space FrameF is the limit lim(DiaF ) of the form
spaces of the given diagram. If the DiaF is discrete (i.e. no arrows),
FrameF is the cartesian product, which is a conjunction of attributes.
In OOP, the corresponding construction would be a class with several
attributes.

• Colimit: here, FrameF is the colimit colim(DiaF ) of the given di-
agram’s form spaces. In case DiaF is discrete, we have the disjoint
union of a list of cofactors. To realize such a disjunction for a set of
classes in OOP, a superclass can be defined for them.

• Power: DiaF has a single vertex form G and no arrow. FrameF =
ΩSpaceG , Ω being the subobject classifier (see [Mazz02] Appendix G,
Section 3.1). This corresponds to an collection of instances of the
specified form G. For this, we normally have predefined set classes in
OOP.

Starting with Simple types and using the other (compound) types, more
complex forms can be created. Here are, for example, the definitions of some
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Simple

Onset

Q

Simple
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Z
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Figure 2.5: The tree representation of the Note form.

of the most common forms related to music:

Score : Id .Power(Note)
Note : Id .Limit(Onset ,Pitch,Loudness,Duration,Voice)

Onset : Id .Simple(R)
Pitch : Id .Simple(Q)

Loudness : Id .Simple(Z)
Duration : Id .Simple(R)

Voice : Id .Simple(Z)

Such compound forms have a tree structure, where the contained Simple
forms are leaves and all other forms are nodes. They can be visualized as
shown in Figure 2.5. In the next section, we discuss some singularities of
such trees.

A denotator D is an instance of such a space and it is defined as fol-
lows:

NameD : AddD@FormD(CoordD),

where NameD is again a denotator, the address AddD is a module A, FormD

is a form F and the coordinate CoordD is an element of the evaluation
A@SpaceF of F ’s form space SpaceF .

As an example, let us create a denotator of the previously defined Score
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form:

o1 : 0@Onset(1.0)
o2 : 0@Onset(1.5)
o3 : 0@Onset(2)

p1 : 0@Pitch(60
1 )

p2 : 0@Pitch(66
1 )

p3 : 0@Pitch(58
1 )

l : 0@Loudness(120)
d : 0@Duration(1)
v : 0@Voice(0)

n1 : 0@Note(o1, p1, l, d, v)
n2 : 0@Note(o2, p2, l, d, v)
n3 : 0@Note(o3, p3, l, d, v)
s : 0@Score(n1, n2, n3)

Before discussing the possibilities to modify such a denotator, we analyze
their structure more precisely.

2.3.2 Paths

As we have seen before, compound forms have a tree structure. This is
also the case for compound denotators. However, depending on which form
types they include, there can be some significant differences between them.
Precisely, in a form tree, a form of type Power has one branch, whereas in a
denotator tree, a denotator of the same form can have an arbitrary number
of branches. Also, a form of type Colimit in a tree has a branch for each
of its coordinators, whereas its denotators only have one branch.

Now to denote a specific form or denotator in such a tree, we use paths. A
path is defined as a sequence of integers i. = (i0, . . . im), where each ik is the
index of the branch to follow from the current to the next node, starting at
the root. Normally, we use the form paths for a form and its denotators,
but because of the above described singularities, we have to deal with two
problems.

If the path traverses a Power form in the form tree, we take the set
of n paths in the denotator tree, one path for each of the corresponding
Power denotator’s elements. Therefore, if a transformation (see next sec-
tion) is to be applied to a denotator of the form denoted by such a form
path, it is applied to all elements of the Power denotator lying in between.
See [Milm06a] Chapter 11, Section 4.2 for more about this.
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A form path traversing a Colimit form indicates which of its m coordinators
should be reached. If it is not present in the corresponding denotator tree,
we obtain an erroneous path. If a transformation involves such a non-present
denotator, it is simply not performed. A more precise discussion of these
problems in respect of our application field will be given in Chapters 4
and 5.

2.3.3 Denotator Transformations and Set Operations

The functorial approach defines three possible operations for the manipula-
tion of denotators, namely space transformations, set-theoretic constructions
and address changes, as concisely described in [Mazz06]. In this section, the
first two of them are presented, as we make frequent use of them in Chap-
ter 4. The third is presented in the next section.

Given a denotator d : A@F (c) with the coordinate c ∈ A@SpaceF and a
form morphism f : F → G, we define the mapping (space transformation)
of d by f as follows:

f(d) = d′ : A@G(fc),

where d′ is a new denotator with the mapped coordinate fc = A@f(c). For
example, we define a projection morphism pd : Note → Duration, which
projects a note denotator on its duration. Applying this morphism pd to
the above defined note n2, we obtain:

pd(n2) = n′2 : 0@Duration(1)

The second operation just concerns denotators of forms of type Power, but
since most constructions in music are based on Power forms (sets of notes),
we will often use it. We speak of set-theoretic operations d∪e, d∩e and d−e
for two Power denotators, which share the same address A. For example,
if d : 0@Score(n1, n2) and e : 0@Score(n2, n3), we obtain:

d ∪ e : 0@Score(n1, n2, n3) and d ∩ e : 0@Score(n2).

2.3.4 Non-Zero-Addressed Denotators

The third operation in our functorial approach is the address change. For a
given denotator d : A@F (c) and an address change g : B → A, we obtain a
new denotator d′ : B@F (c ◦ g), where c ◦ g is the image of c under the map
g@SpaceF .

Note that the above defined denotators are all zero-addressed. To give an
typical example for an application of address change, we redefine the same
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score s as a Z2-addressed denotator:

o : Z2@Onset(mo) with mo : Z2 → R and mo(z1, z2) = 0.5z1 + z2 + 1

p : Z2@Pitch(mp) with mp : Z2 → Q and mp(z1, z2) = 6
1z1 − 2

1z2 + 60
1

n : Z2@Note(o, p, l, d, v)

ŝ : Z2@Score(n)

To obtain a denotator equal to the above defined s, we have to evaluate ŝ at
specific elements of its address Z2. Precisely, we defined its coordinates so
that these elements are the basis vectors e1 = (1, 0) and e2 = (0, 1) as well
as the zero vector e0 = (0, 0) of Z2. To address such an element, we need
to define the constant map gei : 0 → Z2 with gei(0) = ei. We hereby obtain
the denotators:

sei : 0@Score(nei)
nei : 0@Note(oei , pei , l, d, v)
oei : 0@Onset(mo ◦ gei) and
pei : 0@Pitch(mp ◦ gei)

for 0 ≤ i ≤ 1. Uniting these denotators, we obtain ŝ′ = se0 ∪ se1 ∪ se2 which
is equal to s.

For more precise information about forms, denotators and their operations,
see [Mazz02]. We now go on to an introduction to Rubato Composer, the
current software product implementing the theories just presented.

2.4 Rubato Composer

Rubato Composer [Milm06a] is an open source Java 1.5 application and
a framework for music composition, that is being developed by Gérard
Milmeister. It follows the classical Rubato architecture [Mazz94] and con-
sists of a main application and a number of plugin modules, named rubettes.
In a graphical user interface (GUI), the rubettes can be connected to form
a data exchange network, which can then be run by pressing a button. Ini-
tially, we delineate the GUI possibilities and the rubette concept, we take a
closer look at the mathematical framework of Rubato Composer and the
data types currently used.

2.4.1 User Interface

The Rubato Composer GUI is divided in three areas (see Figure 2.6).
The main area is a tabbed panel in the center, each of the tabs representing
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Figure 2.6: The main window of the Rubato Composer GUI showing a
network of three rubettes.

a network of rubettes. To build such a network, rubettes can be dragged
from the area at the right border of the window, where there is a list of
all present rubettes. The lower area is used to display messages generated
during construction or execution of a network.

By pressing on the icons in the bar above these areas, several dialog windows
can be opened for the definition of morphisms, forms or denotators. To read
more about these functions, see [Milm06b].

2.4.2 Rubettes

A rubette is a Rubato software module, represented by a box with input
or output connectors or both to receive and send data (Figure 2.6). The
data format used for communication between rubettes is the denotator for-
mat described in Section 2.3. So, a rubette can either receive a number
of input denotators to be manipulated or generate denotators itself. Then,
denotators can be sent on to other rubettes.
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(a)

(b)

Figure 2.7: The Stat rubette’s properties window (a) and the Display ru-
bette’s view window (b).

A rubette may need specific user parameters to define the characteristics of
its task. These are provided by an optional properties window (Figure 2.7
(a)), appearing when the properties button is pressed. Furthermore, a view
window may be generated for each rubette, to show results or data repre-
sentation, i.e. text, graphs or images (Figure 2.7 (b)).

Rubettes are easy to implement and they can manipulate denotators in any
way a programmer can imagine. To create a rubette, the class
AbstractRubette is subclassed and its abstract methods have to be im-
plemented (details about this are given in Chapter 5). Then, the compiled
rubette, packed in a Java archive, has to be put in a specific directory where
it is automatically recognized by the main application on the next startup.

2.4.3 Mathematical Framework

Apart from classes for rubette generation and reusable GUI components,
the Rubato Composer framework provides all necessary classes for de-
notator generation and manipulation. They are located in the package
org.rubato.math. Here, we take a brief look at the most important classes
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in this package.

Forms and denotators are both represented by objects generated at runtime,
instantiated from specific subclasses of the classes Form and Denotator, e.g.
LimitForm or PowerDenotator, depending on their type. As described in
Section 2.3.1, there are two major kinds of forms and denotators: simple
and compound. First we talk about creating simples.

Following the theoretical model, to generate a Simple form F (class
SimpleForm), we specify a Module M as a constructor argument. This
module defines the range of the possible values of F . There are many differ-
ent kinds of modules defined in Rubato Composer. Besides the common
Z, Q, R, C and Zn, we also have for example product rings, string rings or
polynomial rings. It is one of the major difficulties when programming flex-
ible denotator manipulation processes for Rubato, to always consider all
possible modules. We describe this problem later.

A denotator (an instance of SimpleDenotator) of the same Simple form F
is generated by specifying F itself and a ModuleMorphism with codomain M .
For zero-addressed denotators, one can also simply specify a ModuleElement
m ∈ M , which then induces the generation of a ConstantMorphism (subclass
of ModuleMorphism) f with f : 0 → M and f(0) = m.

Starting from the generated simples, more complex compound forms or de-
notators can be built. For this, their coordinators or coordinates, respec-
tively, need to be defined. To instantiate class ColimitForm, for example,
we have to specify a List<Form> of forms as coordinators, whereas for a
ColimitDenotator, the coordinate is just one denotator being of one of the
coordinator forms.

For denotator manipulation, we mainly perform transformations using in-
stances of subclasses of the class ModuleMorphism. To transform a deno-
tator, its value (a module morphism) is combined with other module mor-
phisms using operator methods like sum(), compose() and difference().
This can be also done by calling the map(ModuleMorphism m) method of
SimpleDenotator. For example, assume we have a denotator d of form F
for module M . If we wish to realize a translation of d by m ∈ M , we create
a translation morphism t with TranslationMorphism.make(M, m) and
then perform d.map(t).

To realize more complex transformations we often map some of a denotators
morphisms into a more-dimensional space using injection morphisms, trans-
form them in this space and finally map the back into the individual spaces
using projection morphisms. This procedure is described mathematically
in more detail in Chapter 4. A method often used in this context, is the
cast() method of the classes Module and ModuleElement.
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2.4.4 Common Musical Forms in Rubato Composer

In Rubato Composer, there are no restrictions to data types, as long
they are expressed in the denotator format. Users can freely extend the
form library at runtime. The application may even be used for generating
and processing data types other than musical. Nevertheless, for musical
applications, it is advantageous to use uniform data types. In this section,
we would like to present the forms currently used in Rubato Composer,
which are inspired by mathematical music theory.

Most of the current basic musical forms were already defined above, in Sec-
tion 2.3.1. They are namely Score,Note,Onset ,Pitch,Loudness,Duration
and Voice. These forms are already sufficient to represent a simple musi-
cal piece, e.g. one taken from a MIDI file without controller information.
However, for building more complex musical structures, it is inevitable to
extend these definitions.

One extension that is very useful in combination with the work of this thesis,
is the MacroScore form, first described in [Mazz02]. The rubettes for han-
dling macro scores have been implemented by Karim Morsy [Mors]. We will
give the definition of MacroScores here and briefly discuss their use.

MacroScores

A music score may contain hierarchical structures, for example notes em-
bellished with a trill. We can see such a trill as a set of satellite notes
defined relatively and hierarchically subordinated to a parent note. Now let
us imagine the parent note is transformed mathematically, say rotated by
90◦. If the same rotation is applied to the satellite notes, they result in two
chords and lose their functionality. With the macro score concept, we apply
transformations just on the top level of a hierarchical structure. Like this,
every subordinated trill note in our example maintains its relative position
in time after its base note. Here is the definition of the recursive MacroScore
form:

MacroScore : Id .Power(Node)
Node : Id .Limit(Note,MacroScore)

With this recursive definition, it is possible to define structures with any
hierarchical depth, i.e. trill notes can be embellished with trills themselves
and so on. To describe the transformation of macro scores, given a mor-
phism f : Note → Note and a denotator d : A@MacroScore(c1, . . . cn)
with coordinates ci : A@Node(Noteci ,Mci), we define a morphism Macrof :
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MacroScore → MacroScore as follows:

Macrof (d) = {(f(Noteci),Mci) | ci ∈ d},

The morphism f is just applied to the top level notes Noteci of the
MacroScore, leaving their satellites in Mci unchanged. If we wish to trans-
form satellites on a specific level, we simply apply Macrof to the MacroScore
of their direct parent note.

To process macro scores further, such as playing the music they contain,
it is often necessary to convert them into a Score denotator. Related to
this, a special method called flattening is used. It creates a MacroScore
denotator from another one by collapsing a number of hierarchical levels.
For example, if we perform a one-level flattening, the second level satellite
notes are integrated into the top-level MacroScore denotator, which leads
to a hierarchy with one level less.

The conversion from MacroScore to Score is then executed as a lossy conver-
sion, where a Score denotator is created just containing the top-level notes,
i.e. cutting off all satellites.

Rubato Composer features rubettes for converting scores to macro scores
and vice versa, for selecting macro substructures and for flattening struc-
tures. For more information about the conversion methods and the macro
score rubettes, we refer the reader to the work of [Mors].

All of the musical examples (see Chapter 6) in this thesis are realized with
scores or macro scores. However, in the near future Rubato Composer’s
musical form library will certainly be extended over and over and it is one of
the major tasks for programmers to design their rubettes in such a way that
they are able to handle denotators of preferably any possible forms.
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Chapter 3

The Concepts of
presto OrnaMagic

presto provides the facility to build grid constructions of musical elements
and to use them in different application contexts, which is the subject of
this thesis. However, presto’s musical operations are restricted to two-
dimensional geometry, as we will see in the next chapter. The module
performing these tasks is called OrnaMagic. Here, we will describe its un-
derlying concepts.

3.1 Ornaments

The functionality of the OrnaMagic module is based on the creation and
application of ornaments. An ornament is defined to be a periodic musi-
cal construction, as shown in Figure 3.1. It is characterized by three at-
tributes:

• a motif, the recurring set of notes,

• a grid of parallelogram-shaped cells, defined by two vectors v, w in the
score view plane

• and a range, defined by two integer intervals rv and rw, one for each
of the two vectors, where ri = [ai, bi] ⊂ Z and ai ≤ bi.

Given the range, we obtain a set of displacement vectors V used to build
the ornament as follows:

V = {nv · v + nw · w | av ≤ nv ≤ bv, aw ≤ nw ≤ bw}

We then create the ornament by gathering all the copies of the motif gen-
erated by displacing the motif along the translation vectors in V . The

21
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950 CHAPTER 49. THE PARADIGMATIC DISCOURSE ON PRESTO!

of the well-known variational technique, in particular of the alteration of pitch sets (scales,
chords, motives, etc.).

– Σ –

Figure 49.5: An ornament is defined by a motif, together with a translation grid and a range
in each direction of the defining grid vectors. The grid cell is the parallelogram spanned by the
generating vectors.

The software’s module for ornaments is termed OrnaMagic. The idea is this: The user first
defines a motif M , either a small one on the local score, or an arbitrary large one on the score.
M is just a local composition on the four-dimensional EHLD space of the software. Next, two
(usually linearly independent) translation vectors gh, gv define the grid, i.e., the group 〈egh , egv 〉.
This group operates on the motif M and yields a translated motif Mi,j = ei.gh+j.gv .M for each
integer pair (i, j), see figure 49.5.

The user defines a two-dimensional ornament of a special ornament window, the grid score,
see figure 49.6. This gives us a ‘grid of translations’

⋃
a≤i≤b,c≤j≤d Mi,j . A second method allows

the user to define also larger grid vectors on the score level, but the principle is the same.
In the composition “Synthesis” to be described in the subsequent chapter 50, we recognize

a number of superimposed ornaments of drum sounds; here in the second movement, see figure
49.7. The compositional principles will be described in section 50.3.

Apart from this explicit usage of ornaments, there is a second truly paradigmatic, more
precisely: topological usage by two-dimensional alterations. Here is the general procedure. We

Figure 3.1: A presto ornament with ranges [0, 1] and [0, 2].

ornament therefore contains (bv − av + 1) · (bw − aw + 1) copies of the motif.

In OrnaMagic, ornaments can be defined for the notes in a local score view,
which is a selection of notes in the global score. The onset coordinate is given
to be one of the two visible dimensions, so ornaments can be created for the
coordinate pairs onset/pitch, onset/duration or onset/loudness.

3.2 Applications of Ornaments

After the creation of an ornament using OrnaMagic, it has to be applied to
the global score. For this, there are three different ways. The first two are
inspired by set theory. If union is selected, the ornaments’ notes are added
entirely to the global score. With intersection, all notes that are not present
in the ornament are removed from the global score. The third way, alteration
is a bit more sophisticated and will be described in the next section.

3.2.1 Alteration

Alteration (also tonal alteration) is a common expression in music, used to
describe a small change in a notes’ pitch ([, ]). However, in presto it is
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Points of the Composition

Ornament Points

Spiral

Figure 3.2: presto OrnaMagic’s nearest neighbor algorithm.

used in a more general way, describing a two-dimensional process. During
alteration, the notes in the global score are altered towards the notes of a
specified ornament, like in a force field. In fact, each note of the composition
is attracted or repulsed by its nearest neighbor in the ornament.

The algorithm used to detect this nearest neighbor works as shown in Fig-
ure 3.2. It starts at the position of the compositions note and iterates in a
spiral movement around it, until an ornament note is found. If no neighbor
is found after 32 rotations, the compositions’ note remains unchanged. Oth-
erwise, it is moved towards the neighbor by a specified percentage of their
difference. The starting direction of the spiral can be chosen and therefore
the direction in which notes move if there are several neighbors at minimal
distance.

If the percentage of the difference is 100%, the note is moved exactly to the
position of its nearest neighbor. If it is negative, the note is moved in the
opposite direction. Additionally, different percentages can be defined for
the beginning and the end of the global score. For every position in time
inbetween, it is then interpolated linearly. So virtually, the strength of the
alteration field may change continuously. For example, if it is chosen to be
45% to −65%, it will be −10% in the middle of the area.

There is also the possibility to define a rail to control the direction in which
notes move: vertically, horizontally or diagonally. A rail is a straight line
that passes through the original note. As soon as the moved note is deter-
mined, it is projected on this rail. If for example we decide to perform an
alteration on the onset/pitch plane and just the pitch of the notes should
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be changed, we use the vertical rail.

3.3 Examples

The OrnaMagic module can be used in many interesting ways. The ex-
amples we present in this section, were altogether featured by a simplified
presto module named Easy Ornaments, which made the rather complex use
of ornaments accessible in a easy way. For simplicity, for all examples we
select the onset/pitch plane.

3.3.1 Looping

Our first example is very simple and does not use alteration. We define a
motif with length l in time and define v = (l, 0), w = (0, 0), rv = [0, 4] and
rw = [0, 0]. Then, we execute the ornament in union mode and obtain five
copies of the ornament aligned successively in time. This is equal to looping
the given motif five times.

3.3.2 Tonal Alteration

As previously mentioned, OrnaMagic’s alteration concept is a generalization
of tonal alteration. Of course, it is also possible to use the module simply
for that. Assume we would like to transform a melody with length l in C
major to a melody in C melodic minor. For this, the ornament has to be
defined as follows:

We take one octave of the C melodic minor scale as the motif. The grid’s
vectors are v = (1, 0) and w = (0, 12), to cover all onsets and octaves. We
finally define the ranges: rv = [0, l] to reach all possible onsets of the motif
and rw = [−6, 6] to reach all possible octaves in presto. Figure 3.3 shows
how the created ornament looks.

Then, we apply the ornament to the melody using alteration of 100%. Here,
it makes a difference, which initial direction of the spiral algorithm is se-
lected, because the distances between the ornaments’ notes are very short.
We have to select ‘down’ to cause all notes to move downwards to the next
note in the minor scale (in fact, just the third, which would eventually be
moved the fourth, otherwise). It is also important to use the vertical rail,
so that the melody’s onsets are not changed.
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Figure 3.3: An ornament with the C melodic minor scale as a motif.

3.3.3 Quantizing

The third example is very well known in music production. When for exam-
ple imprecisely recorded MIDI notes are aligned in a raster of note values,
e.g. quarter triplets, one speaks of quantizing. Music software products like
Logic [Logic] or Cubase [Cubase] offer such quantize functions. However,
with OrnaMagic, quantizing can be customized more precisely.

Our raster can be any ornament, for example a grid of sixteenth notes. For
this, we define one single note with onset 1 and duration 1

16 (actually, this
may be 2 or 4 in presto values) as our motif. Also the ornament’s grid vectors
are then given the length of 1

16 , thus v = ( 1
16 , 0) and w = (0, 1

16). The ranges
are chosen to be as large as necessary to build an ornament with the size of
the composition in the global score that has to be quantized.

Finally, we execute the ornament with alteration using the horizontal rail,
for the pitch must not be modified. If we choose a smaller percentage than
100% for alteration, this causes our composition’s notes to be more precise,
but still not exactly in the raster. For a negative percentage, the notes get
even more imprecise.
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Chapter 4

Generalization of
OrnaMagic’s Concepts

Before the concepts of OrnaMagic can be implemented in Rubato Com-
poser, they need to be formalized for functorial mathematical music theory,
i.e. described in the form/denotator representation. Due to the higher level
of abstraction associated with this new theoretical background, they must
also be generalized. The advantages of this generalization will be a broader
field of application, i.e. more complex musical objects or even non-musical
ones.

In this chapter, we first identify the limitations of OrnaMagic and outline
the improvements, that our new implementation offers. Subsequently, we
provide mathematical definitions of the generalized concepts and function-
ality.

4.1 OrnaMagic’s Limitations

The possibilities of presto and OrnaMagic are limited in several aspects.
First of all, OrnaMagic is a module combining several independent opera-
tions. Alteration for example, is a self-contained function, which does not
have to be applied in combination with ornaments, as in OrnaMagic. With
Rubato Composer we are able to split up these functional entities into
different rubettes, which we do in the next section.

Second, in presto everything is restricted to two-dimensional geometry. As
mentioned before, every thinkable higher-dimensional transformation or or-
nament can be represented as combination of such operations, but in practice
it can be very complicated to think in such two-dimensional factor transfor-

27
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mations and factor ornaments. However, for our Rubato Composer im-
plementation, we will have to define the OrnaMagic operations to work with
any higher-dimensional transformations, which will simplify the definition
of complex actions and allow non-geometrical uses.

A third limitation of presto is the use of integer numbers to define a note’s
value, that is for example, users have to do without microtonality, since
pitch only can have integer values. In Rubato Composer, data types are
not fixed, they can be changed even by runtime. Furthermore, their values
can be elements of any possible module, such as R or Q.

The last important restriction is that for the definition of the grid of an Or-
naMagic ornament, only translation vectors can be used, i.e. a motif cannot
appear rotated or sheared within an ornament. Our new definition, named
‘wallpaper’ to avoid confounding with ornaments as musical embellishments,
will feature grids of any number of arbitrary transformations.

In these premises, we now first analyze OrnaMagic’s functionality and de-
fine a number of rubettes taking on the identified tasks and then give the
necessary mathematical definitions for the new Rubato Composer imple-
mentation.

4.2 New Distribution of Tasks

The first step in our generalization process is the identification of indepen-
dent subtasks in the overall functionality of the OrnaMagic module and the
distribution of the corresponding responsibilities on a number of new mod-
ules. First of all, it is indisputable that the creation of ornaments and their
application can be performed by different modules. With a separation of
these tasks, the application possibilities can as well be used separately and
in other contexts and ornaments can be produced without needing to be
applied to a score immediately.

With this abstraction, we obtain four tasks, one for ornament generation
and three for the different application tasks, namely union, intersection and
alteration. In Rubato Composer, a convenient module named Set rubette
has already been implemented, which is able to perform all kinds of set
operations on Power denotators. Thus, the responsibilities of union and
intersection can be delegated to this rubette.

The remaining two tasks of ornament generation and alteration are both self-
contained and not yet implemented. They are assigned to two new rubettes,
the Wallpaper rubette and the Alteration rubette, the main contribution of
this thesis.
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Additionally, for the recreation of the OrnaMagic examples described in
section 3.3, three simple auxiliary rubettes have been defined, namely the
Melody rubette, the Rhythmize rubette and the Scale rubette. They com-
plement the functionality of the Wallpaper and Alteration rubettes in such
a way that creating compositions similar to the ones that can be created
using OrnaMagic becomes possible. Their mathematical background is also
described in this chapter.

4.3 Wallpapers

A wallpaper is a general structure similar to OrnaMagic’s musical structure
of an ornament described in Chapter 3, Section 3.1. In music, wallpapers
are usually built from Score and MacroScore forms (see Chapter 2, Sec-
tion 2.4.4). However, as we will see in the examples of Chapter 6, it makes
sense to define a wallpaper for any form of type Power.

First, we provide a definition for MacroScore wallpapers, which we already
described in our previous work [Mazz06]. Then after defining some prerequi-
sites, its generalization for Power forms is presented in Section 4.3.4.

4.3.1 MacroScore Wallpapers

A MacroScore wallpaper is characterized by:

• a motif d : A@MacroScore(c1, . . . cn) with n Node coordinates c1, . . . cn,

• a grid spanned by m morphisms f. = f1, . . . fm : Note → Note on the
Note form,

• and a sequence r. of ranges ri = [ai, bi] ⊂ Z, ai ≤ bi, for i = 1, . . . m.

We then define the corresponding wallpaper as

ŵ(d, f., r.) =
⋃

ki∈ri

Macro
f

k1
1 ◦...fkm

m
(d). (4.1)

A wallpaper according to this definition is more general than a presto orna-
ment in several points and fulfills many of the expectations described in the
previous section:

1. the involved denotators can have general adresses,

2. the grid is composed of functions instead of translations,

3. these functions can transform any of the Note coordinates, not just
Onset and a second,
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Figure 4.1: Two simple musical wallpapers generated from the two-note
motif c′-f ′, by commuting two morphisms f1 and f2, r1 = [0, 2], r2 = [0, 2].
(a) f ·1 ◦ f ·2 (b) f ·2 ◦ f ·1. (k1, k2) with ki ∈ ri are the grid coordinates of the
marked note groups.

4. any number of functions can be used for the grid, not just two.

Now note that it is important to be aware of the order in which the mor-
phisms f1 . . . fn are composed, since their commutations generally result in
different wallpapers. Figure 4.1 shows an example of two musical wallpa-
pers generated from the same motif with the same pair of affine morphisms
f1, f2 : Note → Note, where f1 adds the double of onset to pitch and adds 4
to onset and f2 halves onset and duration, subtracts the eight-fold duration
from pitch and finally adds 2.5 to onset.

For each of the wallpapers, the two morphisms were composed in a differ-
ent order for each, that is Macrof ·1◦f ·2 was used for the top wallpaper and
Macrof ·2◦f ·1 for the bottom wallpaper. A schematic representation of the
two diagrams corresponding to these two wallpapers is shown in Figure 4.2.
They are grid diagrams on the Note space, spanned by the arrows f1, f2.

Before generalizing wallpapers for Power forms, we describe in detail two
problems arising when denotators of arbitrary Power forms are mapped
and present our solutions to these very problems.
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Figure 4.2: The grid diagrams for the musical wallpapers in Figure 4.1

4.3.2 Dealing with Multiply Positioned Forms

The first problem is, that denotators of a composite form F may contain
several denotators of a specific Simple form S in their structural tree. In
this case, we name S multiply positioned in F , or else well-positioned. The
forms having multiply positioned subforms form a superset of the recursive
forms. For example, a denotator of the recursive form MacroScore contains
an Onset denotator on each recursion level and therefore Onset is multiply
positioned in MacroScore. It is essential to define for a morphism, which
denotators of a multiply positioned Simple form it processes.

In the above definition of a wallpaper (Equation 4.1), the morphism Macrof

is used, so that the morphism f : Note → Note just transforms the notes at
top recursion level of a MacroScore denotator (the Note denotators in the
first level Nodes). In our generalization, the morphism f is be more flexible:
it virtually maps from one arbitrary product of Simple forms to another
(described in next section). It is now necessary to find a morphism similar
to Macrof but more general, which transforms MacroScores as defined, but
also Scores and denotators of all other Power forms, containing multiply
positioned forms or not, in a useful way.

The idea is to create a morphism Firstf : F → F for a form F , which uses
a search algorithm to determine the Simple denotators to be mapped by
morphism f . This morphism makes sure, that for every Simple form in the
domain or codomain of f , the top form (with the shortest path) of this type
found in the structural tree of the form F is comprised in the transformation.
For the realization of this morphism, we first define the set of Simple sub-
forms SF of F , which contains all Simple forms present in F ’s structural
tree, e.g. for F = Score, SF = {Onset ,Pitch,Loudness,Duration,Voice}.

Next, we define a function SA(S, d) = t, which outputs a denotator t of
Simple form S ∈ SF for denotator d : A@F . Note that such a function is
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difficult to realize, since we have no guarantee that a denotator of the spec-
ified of form S is indeed contained by d, as already described in Chapter 2,
Section 2.3.2. For example, in the case where F contains a Colimit subform.
However, the method we chose works for many possible form structures and
will certainly be improved in the future.

More precisely, SA(S, d) searches the form tree of F for the top level form
of type S and returns the first denotator found at this position in the tree
of d, i.e. if a Power denotator is passed, the path along its first branch is
travelled. In practice, if no denotator is present at this position (this may
happen when a Colimit denotator is passed), SA returns nothing. If at
least one Simple denotator expected by f is not present in d’s subtree, d is
simply not mapped. This is described more precisely in Chapter 5.

For now, let us assume a t is always found. This is the case for MacroScore
and Score forms, which is what is at least required. For a MacroScore, the
function ensures that the same Simple denotators are transformed as by
Macrof . Score coordinates just contain one denotator of every Simple form,
which are therefore the top ones to be found.

For simplicity we will later use SA(S, d) in two ways, sometimes to de-
nominate the denotator t itself, but sometimes also directly for the value
morphism of t. Before Firstf can be defined, we need to describe the way
we treat the more flexible morphism f mentioned above, which we will do
in the next section.

4.3.3 Mapping Denotators by Arbitrary Morphisms

Another interesting problem is to find a way to map a Power denotator d by
any arbitrary morphism f . Also if for instance the codomain modules of d’s
Simple denotator value morphisms do not match f ’s domain modules. A
rubette dealing with this problem offers great flexibility and security, since
users can use a specific morphism for different purposes and cannot misap-
ply it in any way.
In order to solve this problem, casting morphisms can be used to convert
the Simple denotator’s values so that they can be composed with the mor-
phism. In this section we explain this procedure for a morphism f : V → W
and a denotator d : A@P(c1, . . . cn) of Power form P . The morphism’s
domain V = V1 × . . . Vs and codomain W = W1 × . . .Wt are assumed to be
products of arbitrary modules.
We define two sequences of Simple forms G. = (G1, . . . Gs),H. = (H1, . . . Ht)
with the elements Gj ,Hk ∈ SP to specify, which denotators in c1, . . . cn ∈ d
are transformed by f . Moreover, we need three kinds of auxiliary mor-
phisms:
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• the injection morphisms i1, . . . is, ij : Vj → V with ij(v) = v′ =
(0, . . . v, . . . 0), where v is at the j-th position of v′,

• the projection morphisms p1, . . . pt, pk : W → Wk with pk(w) = wk for
w = (w1, . . . wt) and

• the casting morphisms g1, . . . gs, gj : Gj → Vj and h1, . . . ht, hk : Wk →
Hk.

In practice, a casting morphism is usually an embedding, if its domain mod-
ule is contained by its codomain module. Otherwise, it is a rounding mor-
phism. The previously defined morphisms are composed in the following
way, to map denotator ci ∈ d by morphism f :

φf (ci, (Gj)) = f(i1 ◦ g1 ◦ SA(G1, ci) + . . . is ◦ gs ◦ SA(Gs, ci)).

Finally, considering the Simple forms G., H., we are able to define our
general mapping morphism Firstf : P → P for Power form P :

Firstf (d) is a copy of d, where every SA(Hk, ci) is replaced
by hk ◦ pk ◦ φf (ci, (Gj)) for 1 ≤ k ≤ t and every ci ∈ d.

4.3.4 General Wallpapers

Using the definition of Firstf , we are now able to describe a wallpaper for
arbitrary Power forms. It is composed of

• a motif d : A@P(c1, . . . cn) with n coordinates c1, . . . cn of form C, P
being any form of type Power,

• a grid spanned by the morphisms f. = (f1, . . . fm), fi : V i → W i,
V i = V i

1 × . . . V i
s and W i = W i

1 × . . .W i
t being products of arbitrary

modules,

• and the corresponding ranges r. = (r1, . . . rm) = [ai, bi] ⊂ Z, where
ai ≤ bi

To be able to use the function First, we take one configuration of Simple
forms G.,H. as described above, but this time all from SP . The general
wallpaper is then defined as follows:

w(d, f., r.) =
⋃

ki∈ri

First
f

k1
1
◦ . . . F irst

fkm
m

(d).

Note that First is not a functor and therefore cannot be applied to a product
of f ’s. In the next section, we give an example to illustrate the above
definitions.
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4.3.5 Example for Denotator Mapping and Wallpapers

Assume we would like to transform a Score denotator m by a morphism
f : R2 → R2 with f(q, r) = ( 1

10qr, 2r). Additionally, we specify G1 =
Onset , G2 = Pitch,H1 = Onset and H2 = Loudness. The necessary auxil-
iary morphisms are:

g1 : R → R,

g2 : Q → R,

i1 : R → R2 with i(r) = (r, 0),

i2 : R → R2 with i(r) = (0, r),

p1 : R2 → R with p(q, r) = q,

p2 : R2 → R with p(q, r) = r,

h1 : R → R and
h2 : R → Z.

g1 and h1 are identity morphisms, since G1 and H1 have the same module
as f ’s domain and codomain factors. Then, we define the following Score
denotator m. For simplicity, we just specify Onset and Pitch denotators,
for they are the only Simple denotators needed for transformation.

m : A@Score({n1, n2, n3})
n1 : A@Note(o1, p1, l1, d1, v1)
n2 : A@Note(o2, p2, l2, d2, v2)
n3 : A@Note(o3, p3, l3, d3, v3)
o1 : A@Onset(1.0), p1 : A@Pitch(63)
o2 : A@Onset(2.0), p2 : A@Pitch(60)
o3 : A@Onset(2.5), p3 : A@Pitch(56).

For the note ni, the function SA returns the following Simple denota-
tors:

SA(G1, ni) = oi

SA(G2, ni) = pi

SA(H1, ni) = oi

SA(H2, ni) = li.

We obtain:

φf (ni) = f(i1 ◦ g1 ◦ SA(G1, ni) + i2 ◦ g2 ◦ SA(G2, ni))
= f(i1 ◦ g1 ◦ oi + i2 ◦ g2 ◦ pi) and

Firstf (m){SA(Hk, ni) = hk ◦ pj ◦ φf (ni) | 1 ≤ k ≤ t, ni ∈ m}
= {oi = h1 ◦ p1 ◦ φf (ni) ∪ li = h2 ◦ p2 ◦ φf (ni) | ni ∈ m}.
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Here is the diagram of the composed function:

R
g1 // R

i1

  A
AA

AA
AA

R
h1 // R

R2
f // R2

p1

>>}}}}}}}

p2

��@
@@

@@
@@

@

Q
g2 // R

i2
??~~~~~~~~

R
h2 // Z

We then obtain the following transformed Score m′ = Firstf (m):

m′ : A@Score({n′1, n′2, n′3})
n′1 : A@Note(o′1, p1, l

′
1, d1, v1)

n′2 : A@Note(o′2, p2, l
′
2, d2, v2)

n′3 : A@Note(o′3, p3, l
′
3, d3, v3)

o′1 : A@Onset(6.3), l′1 : A@Loudness(126)
o′2 : A@Onset(12.0), l′2 : A@Loudness(120)
o′3 : A@Onset(14.0), l′3 : A@Loudness(112).

If we go one step further and map the resulting denotator, i.e. calculate
m′′ = Firstf (m′) = Firstf2(m), we get the following result:

m′′ : A@Score({n′′1, n′′2, n′′3})
n′′1 : A@Note(o′′1, p1, l

′′
1 , d1, v1)

n′′2 : A@Note(o′′2, p2, l
′′
2 , d2, v2)

n′′3 : A@Note(o′′3, p3, l
′′
3 , d3, v3)

o′′1 : A@Onset(39.69), l′′1 : A@Loudness(126)
o′′2 : A@Onset(72.0), l′′2 : A@Loudness(120)
o′′3 : A@Onset(78.4), l′′3 : A@Loudness(112).

Now let us create a 1-dimensional wallpaper with range r = [0, 2]:

w(m, f, r) =
⋃

0≤k≤2

Firstfk(m)

= Firstf0(m) ∪ Firstf1(m) ∪ Firstf2(m)
= m ∪m′ ∪m′′.

We finally get a wallpaper with 9 notes:

w : A@Score({n1, n2, n3, n
′
1, n

′
2, n

′
3, n

′′
1, n

′′
2, n

′′
3})
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4.4 Alteration

The second main rubette, the Alteration rubette, provides the functional-
ity for altering one composition to another. In this section, we generalize
presto OrnaMagic’s alteration concepts (see Chapter 3, Section 3.2.1) for
Power denotators. After the definition of alteration, we reconstruct some
of the presto examples for better comprehension.

4.4.1 Definition of Alteration

For alteration we need:

• two compositions d1 : A@P(c11, . . . c1m) and d2 : A@P(c21, . . . c2n), cij

being of form C, P being any form of type Power,

• d alteration dimensions with:

– S. = (S1, . . . Sd) altered Simple forms, Si ∈ SP and Si 6= Sj for
i 6= j and 0 ≤ i, j ≤ d,

– (a1, b1), . . . (ad, bd), ai, bi ∈ R pairs of marginal alteration degrees
and

– R. = (R1, . . . Rd) Simple forms, according to which the local
alteration degree is calculated, Ri ∈ SP and embedded in R,
therefore linearly ordered,

• a distance function (a metric) δ(c1, c2) for denotators c1, c2 of form C

• and a nearest neighbor function NN (c, d) = n, for d : A@P(c1, . . . ck)
and c of form C so that n = ci, if δ(c, ci) ≤ δ(c, cj) for j 6= i, 1 ≤ i, j ≤
k.

Now let us describe formally, how alteration works. If we alter compo-
sition d1 towards d2, we obtain a composition alt : A@P(e1, . . . em) of
form P with |alt | = |d1|. Its elements e1, . . . em are transformed versions
of c11, . . . c1m.

Which Simple denotators’ values are altered is specified by the d Simple
forms Si, each of them standing for an alteration dimension. As with general
wallpapers, we need to accept any Power form as input composition, also
forms, the elements of which may contain several denotators of form Si in
their structural tree. Therefore also here we need to use the function SA
(introduced in Section 4.3.2), so that for every Si and every c ∈ d1, just one
denotator value is altered, namely SA(Si, c).

The amount by which a coordinate c is altered, is indicated by its local
alteration degree. For its calculation, first the position of c within the com-
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position d1 according to Ri is determined. Ri is another Simple form, which
is often the same as Si and which defines the scale on which the position
of c is measured. The position positioni ∈ [0, 1] of c is calculated using the
function

positioni(c) =
SA(Ri, c)−minRi

maxRi −minRi

,

where maxRi = max({SA(Ri, c) | c ∈ d1}) and minRi = min({SA(Ri, c) |
c ∈ d1}) are the highest and lowest elements of Ri denotators in d1. These
elements can just be calculated if Ri is embedded in R, which has been
assumed above.

Then, the local alteration degree is calculated depending on the marginal
alteration degrees (ai, bi). These degrees indicate, how much d1 is altered
at its lowest and highest values on the Ri scale, whereby ai defines how
much maxRi is altered and bi how much minRi . For ai, bi = 0, d1 remains
unchanged and for ai, bi = 1, every element of d1 obtains the value in d2

with the smallest distance to it in dimension i, as we will see in the later
definitions. If for example we choose d1 : A@Score, Ri = Onset , ai = 0 and
bi = 1 the first Note of d1 in time is not changed at all, whereas the last
note obtains a new onset, taken from the note in d2 that shows the least
distance from it. For each note in between, the local alteration degree is
calculated using linear interpolation, according to its position in time. We
define the function for ck’s the local alteration degree degreei(SA(Ri, ck)) as
follows:

degreei(m) = ai + (ai − bi)positioni(m).

The alteration function for dimension i then uses this degree to alterate a
morphism m1 towards another m2:

Alterationi(m1,m2) = m1 + degreei(m1)(m2 −m1).

We have now made the necessary preparations and are ready to define the
altered composition alt , which we already mentioned above:

alt(d1, d2) = {Alteration(ck,NN (ck, d2)) | ck ∈ d1}.

In this definition, we use the morphism Alteration : C × C → C, where
Alteration(c1, c2) returns a copy of c1, in which the value of the Simple de-
notator SA(Si, c1) is replaced by the altered morphism
Alterationi(SA(Si, c1),SA(Si, c2)) for every 1 ≤ i ≤ d.

4.4.2 Nearest Neighbor Search

As described in the previous section, to identify the target for alteration, a
nearest neighbor function NN is used. In presto, nearest neighbor search
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(NNS) is realized using the two-dimensional spiral search algorithm (see
Chapter 3, Section 3.2.1). This is possible as presto deals with discrete
values, i.e. the number of coordinate points visited and checked during
nearest neighbor search is always finite. However, this is not the case in
our actual Rubato Composer implementation, since Simple denotators
accept values from continuous modules. We therefore chose to use a common
method for NNS, the kd-tree method [Bent75].

The kd-tree is a multidimensional binary search tree, which organizes points
of a k-dimensional space in a way that allows NNS within a time complexity
of O(log n). Points can be added and removed and from these points, the one
with the smallest distance from an arbitrary input point can be determined.
The distance function δ normally used for space-partitioning in kd-trees is
the Euclidean distance δ(A,B) =

√∑n
i=0 (ai − bi)2 for A = (a1, . . . an), B =

(b1, . . . bn).

To build a preferably efficient kd-tree for the elements of an arbitrary Power
denotator, we decided to cast the value of each relevant Simple denotator
in their structural tree to the module of real numbers R. To achieve this,
we again use casting morphisms, as introduced in Section 4.3.3. We define
a point xk = (xk1, . . . xkd) ∈ Rd for every ck ∈ d2, with xki = gi(SA(Si, ck)),
using the casting morphism gi : Si → R and add all xk to the kd-tree. This
is possible due to the assumption in the previous section, that the Ri are em-
bedded in R. During NNS, the Euclidean distance δ can then be calculated
within Rd. Note that this NNS just considers the values of the denotators
SA(Si, ck). If values of other denotators should be respected in NNS but no
morphing should take place in their direction, it is recommended to define
a dimension h with (ah, bh) = (0, 0). A few special cases of alteration (some
of them using this method) and a thorough example will be discussed in the
next sections. More details about the implementation of NNS will be given
in Chapter 5.

4.4.3 Imitation of the OrnaMagic rails

In presto, the direction of alteration can be limited by selecting one of four
different rails, as described in Chapter 3, Section 3.2.1. With our definition
of alteration, two of these rails can be imitated. We assume a common two-
dimensional presto alteration space of Onset × Pitch and therefore define
two alteration dimensions with S1 = Onset , S2 = Pitch, R1 = Onset and
R2 = Onset . For the two rails we need the following restrictions:

• horizontal rail: (a2, b2) = (0, 0)

• vertical rail: (a1, b1) = (0, 0)
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There is no way to simulate the two diagonal rails with our present defini-
tions. They would have to be extended for this.

4.4.4 Alteration Examples

We give two examples for alteration, both of them inspired by presto’s Easy
Ornaments module described in Chapter 3, Section 3.3. For tonal alter-
ation increasing in time, we choose d1 to be a composition and d2 to be
a musical scale, the generation of which we describe later, and perform a
one-dimensional alteration with:

S1 = Pitch,

(a1, b1) = (0, 1) and
R1 = Onset .

For quantizing decreasing in time, we need composition d2 to be a rhyth-
mical grid of the same length in time as d1. Such a grid can be created
using a wallpaper. Furthermore, we define the following one-dimensional
alteration:

S1 = Onset ,
(a1, b1) = (1, 0) and

R1 = Onset .

4.5 Melodies, Rhythms and Scales

All three auxiliary rubettes written for this thesis, output basic musical ele-
ments such as motifs and scales in form of Score denotators. If MacroScores
are needed, the rubettes can easily be combined with the ScoreToMacro ru-
bette (see [Mors]). Most of the examples in this thesis (see Chapter 6) have
been created utilizing these rubettes.

4.5.1 Melody Rubette

The Melody rubette is used to generate simple random melodies fulfilling
specific criteria. The generation procedure is similar to Karlheinz Essl’s
random generator ‘brownian’ [Essl96], although some additional restrictions
can be defined. A random melody can for example be used as a motif for
the Wallpaper rubette and consists of n notes on a scale with step size s ∈ Q
and starting pitch pstart ∈ Q. In Rubato Composer, pitch is commonly
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interpreted as MIDI pitch within a range of 0 to 127, where every integer
represents a semitone. So for example the current ScorePlay rubette plays
only notes on the chromatic scale. However, the Melody rubette has micro-
tonal capabilities, e.g. for s = 1

2 , in MIDI, the steps consist of quarter
tones.

During creation of a melody, the following boundaries are respected:

• p = (pmin, pmax) ∈ Q2, pmin ≤ pmax, the pitch boundaries,

• u = (umin, umax) ∈ N2, 0 ≤ umin ≤ umax, the interval up boundaries
and

• d = (dmin, dmax) ∈ N2, 0 ≤ dmin ≤ dmax, the interval down bound-
aries,

where the interval boundaries are expressed in number of steps of size s.
From these values, a melody m : 0@Score(c1, . . . , cn) is generated based on
the following pitch sequence:

p1 = pstart

pk+1 = pk + ik,

where ik ∈ Z is an interval randomly selected from the subsequence â. of
a. = −dmax, . . . − dmin, umin, . . . umax, which contains only the elements aj

with pmin ≤ pk + aj ≤ pmax . The random selections from â. are equally
distributed.

The k-th note ck of the melody is then defined as follows:

ck : 0@Note(0@Onset(k), 0@Pitch(pk), . . .).

The remaining three coordinates obtain standard values: loudness is set to
120, duration to 1.0 and voice to 0.

The interval boundaries are very useful to obtain melodies of a certain lin-
earity. Furthermore, they can be used to build melodies of specific patterns,
e.g. a melody with s = 1, u = (7, 7), d = (5, 5) travels the circle of fifths
while moving up and down randomly (see Figure 4.3 (a)) or s = 1, p =
(60, 72), u = (12, 12), d = (1, 1) builds a melody with a sawtooth-wave-
like [Puck07] structure (Figure 4.3 (b)). Figure 4.3 (c) shows an example of
a random melody generated with n = 10, p = (0, 127), u = (3, 6), d = (1, 5).

4.5.2 Rhythmize Rubette

It is much easier to recognize melodic motifs in a composition acoustically,
when these motifs have conspicuous rhythmical characteristics. So the task
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(a)

(b)

(c)

Figure 4.3: Three example melodies generated by the Melody rubette.
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of the second helper rubette, the Rhythmize rubette is to provide a com-
position with a new rhythm, while respecting a global meter. According
to [Coop60], rhythm is defined as “the way in which one or more unaccented
beats are grouped in relation to an accented one” and meter as “the number
of pulses between the more or less regularly recurring accents”. Inspired by
these definitions, the Rhythmize rubette primarily changes onset and du-
ration of the input composition’s notes and optionally their loudness, if a
meter or emphasizing period is specified.

The output of the Rhythmize rubette is monophonic, i.e. one note at a
time, and therefore it can best be used to rhythmize monophonic mate-
rial, e.g. melodies generated by the Melody rubette. The rubette generates
a sequence of notes s′ : 0@Score, where all notes of the input composi-
tion s : 0@Score(c1, . . . , cm) are aligned according to their playing order
(see [Mazz02], Section 6.8 for more about the ordering of denotators), where
every subsequent note starts, when its preceding note stopped. Their dura-
tions are calculated based on very simple rules, which we explain here.

In music, note values (durations) are often multiples of each other, e.g. a
sixteenth note has half the value of an eighth note. We therefore define
a base b ∈ R, on which the different possible note values are calculated
exponentially. To restrict the possible note values, we specify the number of
exponents n and a maximum exponent value x ∈ Z. We then get e1, . . . en,
the sequence of possible exponents, where ej = x− j + 1 and the sequence
of note values v1, . . . vn with vj = bej . For example, we assume b = 2, n = 4
and x = 0 and we get v1 = 1, v2 = 1

2 , v3 = 1
4 , v4 = 1

8 , the most common note
values in music, from the whole note to the eighth note.

For each note ck of the input composition s, a duration dk is randomly
selected from the possible note values vj with equal selection probability
for each value. The onset ok of the same note is then calculated with the
following sequence:

o1 = 0
ok+1 = ok + dk,

Furthermore, as described above, some of the notes can be emphasized. For
this, we specify a meter m ∈ R,m ≥ 0, an accented loudness la ∈ Z and an
unaccented loudness lu ∈ Z. If m > 0, a mechanism is used for guaranteeing,
that for each meter point, i.e. every non-negative integer multiple am of m,
where a ∈ N0, there is a note c′ ∈ s′ with onset am. We therefore define an
adjusted duration d̂k:

d̂k =

{
am− ok, if ∃a ∈ N0 with ok < am < ok + dk

dk, otherwise.
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Figure 4.4: The example melody of Figure 4.3 (a) processed by the Rhyth-
mize rubette.

If we use d̂k instead of dk for calculating ok+1, whenever the first case of d̂k’s
definition occurs, the next onset will be ok+1 = ok + d̂k = ok +am−ok = am,
which is what we wanted.

Finally, we define the loudness lk of the k-th note in s′:

lk =

{
la, if ∃a ∈ N0 with ôk = am

lu, otherwise,

which means that the notes on the meter points am are emphasized. We
obtain the new note c′k

c′k :


0@Note(0@Onset(ok), . . . 0@Duration(dk), . . .), if m = 0
0@Note(0@Onset(ok), . . . 0@Loudness(lk), 0@Duration(d̂k), . . .),

otherwise.

Figure 4.4 shows an example for the rhythmization of the melody shown in
Figure 4.3 (a). The specified parameters are b = 2, n = 4, x = 1,m = 4, la =
120 and lu = 80.

4.5.3 Scale Rubette

Above, we mentioned the example of tonal alteration, which can be real-
ized using the Alteration rubette. For this purpose, we need to specify a
scale, towards which we would like to alterate tonally. Such a scale can be
generated using the Scale rubette.

In his renowned work, Thesaurus of Scales and Melodic Patterns [Slon47],
Nicolas Slonimsky defines a musical scale as “a progression, either diatonic
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Figure 4.5: An excerpt showing four scales (ionian, whole tone, diminished
and minor pentatonic) individually displaced using the ModuleMap rubette
and united using the Set rubette.

or chromatic, that proceeds uniformly in one direction, ascending or de-
scending, until the termination point is reached”. In our context, the or-
der of progression is not relevant, i.e. the onset of the involved notes can
be ignored. We define a scale in a more abstract way as a sequence of n
positive intervals i. = i1, . . . in ∈ R+, where the value of 1 is commonly in-
terpreted as a semitone, as described above. Furthermore, we define a pair
(pmin , pmax ) ∈ Q2, which denotes the pitch range of the output scale, and
proot ∈ Q with pmin ≤ proot ≤ pmax , the root note to which the intervals are
seen relatively.

We then generate the pitches for the coordinates cj of the output denotator
s : 0@Score(c1, . . . , cm) as follows:

p0 = proot

pk+1 = pk + i(k mod n)+1

pk−1 = pk − i(n−k−1) mod n,

where the pk+1 are calculated as long they do not exceed pmax , whereas the
pk−1 are calculated as long as they are not smaller than pmin . For each pl

generated like this, we then define a note 0@Note with pitch 0@Pitch(pl)
and add it to the output scale s. Again, the other coordinates of the hereby
defined notes, are standard values, i.e. onset is set to 0, loudness to 120,
duration to 1.0 and voice to 0. Figure 4.5 shows a score with some example
scales, displaced in time. The intervals for the whole minor pentatonic scale,
for example, are i. = 3, 2, 2, 3, 2. The Scale rubette is designed in such a way
that a list of scales can be predefined so that its elements can be selected by
runtime as well as any scale can be defined spontaneously in the rubettes
properties (see Appendix A, Section A.1). Furthermore, for simplicity, the
above specified (pmin , pmax ) are currently not changeable by the user.



Chapter 5

Design and Implementation
for Rubato Composer

The generalized concepts of our work have now been formalized to the point
where their implementation can proceed in a straightforward way. As de-
scribed in Chapter 2, Section 2.4.3, the Rubato Composer framework pro-
vides all necessary classes and methods for modeling mathematical issues.
In this chapter, we give an example for this direct translation from formulas
to code and explain how such code is wrapped in a Rubato Composer ru-
bette. Apart from this, we discuss the overall implementation structure as
well as some selected reusable utility classes which we implemented within
the scope of this thesis.

5.1 Programming a Rubette

Initially we briefly describe how mathematical definitions like those in the
previous chapter can be translated to rubette code. There are four rules
that have been respected for the rubettes in this thesis:

• Given denotators become rubette inputs. The number of inputs can be
defined using the setInCount(int n) method. To get the input de-
notators in the run() method, the getInput(int i) method is used.

• All other given data become rubette properties. They are implemented
as a javax.swing.JComponent returned by the rubette’s method
getProperties(), so that users can define them at runtime. Addi-
tionally, the methods applyProperties() and revertProperties()
have to be implemented. They are used to save and load the properties
in the component to and from the rubette’s instance variables, which
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are read when the rubette is run.

• The calculations are initialed in the rubette’s run() method.

• The final definition or result becomes the rubette output. This can be
specified using the methods setOutCount(int n) and setOutput(int
i, Denotator d).

All methods mentioned here, are methods of the class AbstractRubette.
There could also be other translation procedures, for example some of the
properties data (point 2) could be wrapped in denotators and instead be
defined as an input denotator. This would lead to more flexibility for
building networks, but it would probably also require new denotator def-
initions.

Here is a code excerpt from the Alteration rubette, as a short example for
the aplication of these rules.

Listing 5.1: AlterationRubette.java
...

public class AlterationRubette extends AbstractRubette

implements ActionListener , FocusListener {

...

private JPanel propertiesPanel;

public AlterationRubette () {

this.setInCount (2); // input compositions d_1 and d_2

this.setOutCount (1); // altered composition alt(d_1 , d_2)

...

}

...

public void run(RunInfo arg0) {

PowerDenotator input0 = (PowerDenotator) this.getInput (0);

PowerDenotator input1 = (PowerDenotator) this.getInput (1);

if (this.inputFormAndDenotatorsValid(input0 , input1 )) {

try {

PowerDenotator output = this.getAlteration(input0 , input1 );

this.setOutput (0, output );

} catch (RubatoException e) {

e.printStackTrace ();

this.addError("Error during rubette execution.");

}

}

}

...

public JComponent getProperties () {

if (this.propertiesPanel == null) {

this.propertiesPanel = new JPanel ();

... // add all necessary components

}

return this.propertiesPanel;

}

public boolean applyProperties () {...}

public void revertProperties () {...}

...

}
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Now here is an example for a translated mathematical expression. It is a
method used in the Wallpaper rubette that first creates a casting morphism,
as described in Chapter 4, Section 4.3.3, from the codomain oldC of the given
morphism m to the given codomain newC , i.e. the morphism c : oldC →
newC . Then, it returns the composition of the two morphisms c ◦m.

Listing 5.2: WallpaperRubette.java
...

/*

* composes the input morphism with a casting morphism for the

* specified codomain. example: m:Q->Q, c:R, then return m:Q->R

*/

private ModuleMorphism getCastedMorphism(ModuleMorphism m,

Module newC) throws CompositionException {

Module oldC = m.getCodomain ();

if (!newC.equals(oldC)) {

ModuleMorphism castingM = CanonicalMorphism.make(oldC , newC);

m = castingM.compose(m);

}

return m;

}

...

During the development of the rubettes for this thesis, an even simpler
implementation possibility for rubettes has been proposed and created by
Gérard Milmeister. The class SimpleAbstractRubette needs less specifica-
tions (abstract methods to be implemented) and provides the functionality
of automatic generation of the properties component and apply/revert func-
tionality. This possibility has been tried out on two of the new rubettes, the
Melody and the Rhythmize rubettes, as they have just a few basic proper-
ties. The problem that appeared during these adaptations, is that there is
no way to define relations between properties. However, this will be soon
implemented.

5.2 Package Structure and Classes

As outlined in the previous chapter, the contribution of this thesis are five
plugin software modules called rubettes. Each of these rubettes has a cor-
responding class extending the class AbstractRubette, namely Wallpaper-
Rubette, AlterationRubette, MelodyRubette, RhythmizeRubette and
ScaleRubette. As shown below, these classes have been been organized
in three packages, separating the rubettes processing or generating Score
denotators from the Power denotator rubettes.

org.rubato.rubettes.wallpaper Wallpaper rubette classes and tests
org.rubato.rubettes.alteration Alteration rubette classes and tests
org.rubato.rubettes.score Additional rubettes and tests
org.rubato.util Shared classes and superclasses
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org.rubato.base.
AbstractRubette

WallpaperRubetteAlterationRubette ScaleRubette

org.rubato.base.Simple
AbstractRubette

MelodyRubette RhythmizeRubette

JPropertiesTable

JWallpaperDimensionsTable

JAlterationDimensionsTable

SimpleFormFinder
NoteGenerator

ScaleMap

MorphismCellEditor

javax.swing.JTable

java.util.HashMap

javax.swing.AbstractCellEditor

SimpleFormsCellEditor

JWallpaperViewJWallpaperViewPanel

JSelectSimpleForms

org.rubato.composer.dialogs.
morphisms.JGeometryView

javax.swing.JDialog

edu.wlu.cs.levy
.CG.KDTree

Figure 5.1: A simplified UML diagram without the testing classes.

The fourth package contains classes shared by classes in different packages.
Some of them are described in a detailed way in Section 5.4.

5.3 The Rubette Classes

Here is a short overview of every package’s contents. The simplified UML
diagram in Figure 5.1 visualizes their relationships.

org.rubato.rubettes.wallpaper:

WallpaperRubette Main rubette class
JWallpaperDimensionsTable Table in the rubette’s properties
MorphismCellEditor Editor for the table’s morphism column
SimpleFormsCellEditor Editor for the table’s Simple forms column
JSelectSimpleForms Dialog opened by SimpleFormsCellEditor
JWallpaperView Wallpaper visualization
JWallpaperViewPanel The Wallpaper rubette’s view
WallpaperRubetteTest Tests for all the classes in this package

org.rubato.rubettes.alteration:
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AlterationRubette Main rubette class
JAlterationDimensionsTable Table in the rubette’s properties
AlterationRubetteTest Tests for all the classes in this package

org.rubato.rubettes.score:

MelodyRubette Melody rubette class
RhythmizeRubette Rhythmize rubette class
ScaleRubette Scale rubette class
MelodyRubetteTest Tests for the Melody rubette
RhythmizeRubetteTest Tests for the Rhythmize rubette
ScaleRubetteTest Tests for the Scale rubette

org.rubato.util:

JPropertiesTable Superclass for the W./A. rubette’s tables
SimpleFormFinder Finds all forms of type Simple in a form tree
SimpleFormFinderTest Tests for SimpleFormFinder
NoteGenerator Easily creates Note and Score denotators
ScaleMap Holds a number of predefined musical scales
PerformanceCheck Used for rubette performance tests

5.4 Shared and External Classes

In this section, we present some of the classes shared by different rubettes.
At the time, they have to be added to the plugin jar file of every rubette using
them, so in fact different copies of them are used at the same time. But they
may be developed further and added to the Rubato Composer framework
someday.

5.4.1 SimpleFormFinder

The most important of the shared classes is SimpleFormFinder, which is
used by both the Wallpaper rubette and the Alteration rubette. It refers to
the function SA and to the set SF defined in Chapter 2, Section 4.3.2. It
is used to search the form tree of a specified form F to find the set SF of
present Simple forms and for each S ∈ SF the shortest path to the root. It
features the following public methods among others:

public SimpleFormFinder(Form parentForm) {...}
public void setMaxRecursion(int maxRecursion) {...}
public List<SimpleForm> getSimpleForms() {...}
public List<List<Integer>> getSimpleFormPaths() {...}
...
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SimpleFormFinder’s constructor takes a Form as an argument, which is
the form the tree of which has to be searched for SimpleForms. Further-
more, a maximum recursion level can be defined using the the method
setMaxRecursion(...). This defines the depth of the search, which is nec-
essary to define, since else for recursive forms like MacroScore, the search
would never stop.

As soon as one of these parameters changes, the algorithm searches the
whole tree up to the specified depth to find all Simple forms present. For
every found form, the shortest path to reach it from the root is remem-
bered. These forms and paths can then be fetched by calling the methods
getSimpleForms() and getSimpleFormPaths().

The found forms can be directly used in the properties windows of the
concerning rubettes, where users have to specify one of the subtree forms.
With the help of SimpleFormFinder, users can be given a list containing
just the present forms and therefore cannot make a wrong selection.

The method used for implementation produces the same results as breadth-
first search, due to the fact that the first and shortest path found for every
denotator is kept.

5.4.2 NoteGenerator

NoteGenerator is a useful class for generating simple notes melodies and is
used by the Melody and the Scale rubette. It provides the following public
methods among others:

public Denotator createNoteDenotator(double onset,
double pitch, int loudness, double duration) {...}
public PowerDenotator createSimpleMelody(double noteDistance,
double... pitches) {...}
...

The first of them is a simple way for generating a zero-addressed denotator
of form Note. The returned note holds the specified values as well as voice
0.

The second creates a zero-addressed Score denotator containing an arbitrary
number of notes. As parameters, we need to specify a note distance d and
a sequence of pitches p0, . . . pm. Every note ni of the returned score is
defined by onset id and pitch pi, for 0 ≤ i ≤ m. The other three coordinate
denotators Loudness, Duration and Voice are set to the standard values 120,
1 and 0.

If a melody needs to be created iteratively in a generative process, the
following three methods can be used:



5.4. SHARED AND EXTERNAL CLASSES 51

public void startNewMelody(double noteDistance) {...}
public void addNoteToMelody(double pitch) {...}
public PowerDenotator createScoreWithMelody() {...}
...

The first method starts a new melody for a specified note distance (as above),
the second is used to add notes to the melody and the third method can
anytime be called to return a Score denotator containing the notes defined
so far.

5.4.3 ScaleMap

The ScaleMap class is a special java.util.HashMap, holding a number of
predefined musical scales for the use in Rubato Composer. It is cur-
rently used by the Scale rubette. In its constructor ScaleMap(), scales
can be defined as java.lang.Object[] records, holding the scale name
and an array of halftone steps, for example: {"ionian", new double[]
{2,2,1,2,2,2,1}}. The map is then filled with these records, the names
becoming the keys and the steps the values.

ScaleMap provides one additional public method to the original HashMap
methods:

public Object[] getScaleNames(int numberOfNotes) {...}.

This method is used to get the scale names (keys) for a specified number of
notes. To get all keys or a corresponding value, the usual HashMap methods
keySet() or get() can be used.

5.4.4 KDTree

Some early experiments were made with a nearest neighbor search imple-
mentation using a standard algorithm which calculated the distance to each
neighbor and selected the shortest (time complexity O(n2)). We quickly
noticed that already for n = 1000 (two scores with a thousand notes each),
alteration took too long (16 seconds, approximately) and we decided to use
a common nearest neighbor algorithm, the kd-tree (O(n log n)). The alter-
ation time for n = 1000 could be reduced to two seconds.

In our implementation, we reused kd-tree java package programmed by
Prof. Simon D. Levy of Washington and Lee University, Lexington, Vir-
ginia [KDTree], released under the GNU General Public License [GnuGPL].
It consists of the three classes
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edu.wlu.cs.levy.CG.KDTree
edu.wlu.cs.levy.CG.KeyDuplicateException
edu.wlu.cs.levy.CG.KeySizeException

and exactly covers the needs described in Chapter 4, Section 4.4.2. One
problem that appeared with the use of kd-trees, is that one functionality
that was taken over from presto cannot be implemented fully anymore. It is
the possibility to define in which direction a denotator should altered, if there
are several nearest neighbors (described in Chapter 3, Section 3.2.1).



Chapter 6

Practical Examples for
Wallpapers and
Alterations

In the previous chapters we already showed some outputs of single rubettes
like the Melody, Rhythmize or Scale rubette (mostly in piano roll notation).
In this chapter we present a few musical and non-musical examples showing
the application possibilities of the rubettes generated for this thesis. We
would like to focus on designing reasonable rubette networks using the new
rubettes in combination with Rubato Composer’s built-in rubettes.

6.1 Wallpapers

We start with some examples using the Wallpaper rubette. The first one
shows how the two simpler application functions of OrnaMagic, namely
union and intersection, can be simulated with Rubato Composer. The
second one shows how non-musical denotators can be processed by the Wall-
paper rubette. Finally, the latter two are more complex musical examples
that we created in the context of this thesis and presented at two conferences
in 2006.

6.1.1 Union and Intersection

Two of the three applications of ornaments in OrnaMagic have not been
adapted to Rubato Composer for their emulation is possible using two
built-in rubettes. Figure 6.1 shows an example of a network, where first
an excerpt is selected from an input MIDI file using the Select2D rubette,
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Figure 6.1: The network setup for an emulation of the intersection applica-
tion.

analogous to a presto local score. From this excerpt coming out of the left
outlet of the Select2D rubette, a wallpaper is generated and finally, using
the Set rubette the intersection of the original score and the wallpaper is
created and finally passed on to the ScorePlay rubette.

The union application can be realized with the same network, just by se-
lecting the Set rubette’s ‘Union’ option.

6.1.2 Non-Musical Wallpapers

Since the Wallpaper rubette accepts denotators of any form of type Power,
there are many interesting applications if suitable forms are defined, e.g.
for numeric calculations or graphical uses. Here, we give a very simple
example using the form RealSet, which is predefined in Rubato Composer.
Figure 6.2 shows its network consisting of four rubettes.

The Source rubette feeds a RealSet denotator named reals with two Real
coordinates with values 2 and 5 into the network. This denotator is then
processed by the Wallpaper rubette and finally visualized using the Display
rubette (right part of the picture). For comparison, the original denotator
coming from the source is shown using another Display rubette.

The wallpaper’s grid is f. = f1 : R → R, f2 : R → R, with f1(r) = 2r − 1
and f2(r) = 1

2r + 1 and the corresponding ranges r1 = [0, 1] and r2 =
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Figure 6.2: An example for a non-musical application of the Wallpaper
rubette.

[0, 1]. Note that the wallpaper just contains 6 instead of 8 elements. This is
because f0

1 ◦ f1
2 (2) = 2 and f1

1 ◦ f0
2 (2) = f1

1 ◦ f1
2 (2) = 3 and the wallpaper

therefore should contain two copies of the Real denotator with value 2 and
two copies with value 3. However, these would be equal and therefore, the
Power denotator reals just accepts a single copy of each of them.

6.1.3 Polyphonics

The next example, we presented at the Digital Art Weeks Conference 2006
in Zürich. It demonstrates Rubato Composer’s polyphonic possibilities
by building a wallpaper from several voices. These are imported from midi
files and finally exported again, e.g. to be played played by synthesizers in
a sequencing software.

Figure 6.3 (a) shows the network for the example. The top four rubettes
are the MidiFileIn rubettes, by means of which the four original MIDI files
are imported and converted to the denotator format. Above each of them,
a piano roll representation of the their output denotator is shown. The two
leftmost denotators are then given separate voices (1 and 2) using Mod-
uleMap rubettes, whereas the two other denotators keep the voice 0.

The latter two are converted to MacroScores by ScoreToMacro rubettes and
combined using a MacroPredicateSelect rubette, which is set to embellish
all notes with pitch 38 in the left input denotator (‘drums’) by the right
input denotator (‘roll’). In this procedure, the notes of the ‘roll’ denotator
are automatically compressed in time to fit the duration of the said ‘drums’
notes and added to them as satellite notes. This causes all snare drum
notes (pitch 38, here) to be played as a roll. Because of the multi-level
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(a)

(b)

Figure 6.3: A polyphonic example: its network (a) and the ScorePlay rubette
view (b).
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structure of the resulting MacroScore denotator, we have to flatten using
the Flatten rubette it before converting it back to a Score denotator. The
embellished ‘drums’ denotator is shown graphically below the MacroToScore
rubette.

The three denotators with different voices generated so far are then united
using the Set rubette (the corresponding score is shown on the right hand
side of the Set rubette) and passed on to the Wallpaper rubette. The wall-
paper used in this example is slightly more complex than the previous ones.
We have a grid of two affine morphisms f1 : R → R and f2 : R3 → R3 with
f1(c) = −c + 46.9 and

f2(c) =

0.85 0 0
0 1.12 0
0 0 0.85

 c +

 4
−4.8

0


as well as the ranges r1 = [0, 1] and r2 = [0, 12]. The coefficients in
f2’s matrix and shift are the result of experimentation with the purpose
of obtaining an auditory satisfying result. f2 compresses onset and du-
ration by a factor of 0.85 and stretches pitch by a factor of 1.12 (G. =
(Onset ,Pitch,Duration),H. = (Onset ,Pitch,Duration)). Additionally, it
translates the motif by 4 in time, which is the original length of the motif,
i.e. the translated motif starts directly after its predecessor. By doing this
twelve times in a row (for the whole range r2), we obtain the left half of the
wallpaper shown in Figure 6.3 (b). Its right half is created by the second
morphism, which reflects the onsets (G. = (Onset),H. = (Onset)) of the left
half at point 0 and translates it by 46.9, which is twice its length. We hereby
obtain a final wallpaper, where the first half is followed by its retrograde.
This wallpaper is then handed on to the ScorePlay rubette and exported by
the MidiFileOut rubette.

6.1.4 Functorial Dodecaphonics

Rubato Composer has a functorial background and therefore our last
example for the Wallpaper rubette shows how the theory of functors can
be used to easily produce a small composition from a dodecaphonic series,
which is taken from Olivier Messiaen’s Mode de valeurs et d’intensités. It
is the same series Pierre Boulez processed in his composition Structures Ia.
We presented this example at the International Computer Music Conference
2006.

We use two Wallpaper rubettes here, one in combination with MacroScores
and one for functorial denotators. The network for the composition is shown
in Figure 6.4 (a). The Source rubette in the top right corner holds a Z11-
addressed denotator m : Z11@Score that contains just one note Z11@Note,
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(a)

(b)

Figure 6.4: The network (a) of a functorial example and an excerpt of its
piano roll representation (b).

which represents the whole twelve-tone series. m is then processed by three
ModuleMap denotators to adapt onset, pitch and duration for the later
needs. In the network’s left part, m is evaluated at the basis vectors of the
address space Z11 by an AddressEval rubette (see [Mazz06] for more infor-
mation about this). We obtain a Score of twelve notes which is passed on
to a network of MacroScore rubettes, where a bass line is built by replacing
several notes of it by the whole score itself (a fractal construction). Within
this subnetwork, the bass line is translated several times (range [1,3]) by a
Wallpaper rubette.

However, what’s interesting in the context of this thesis, is the right part
of the network. There, the original Z11-addressed m is passed on to the
Wallpaper rubette, where we generate a wallpaper, which in this case will be
a score of 12 Z11-addressed notes. We use a grid of four morphisms f1, . . . f4,
the precise definitions of which will not be given here. Nevertheless, we
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quickly explain their function (in reverse order, because this is their order
of application):

• f4 : R3 → R3 halves onset and duration of the series and translates the
series up in pitch and onset, so that it sounds higher and ends exactly
at the same time as the original series. The corresponding range is
r4 = [1, 1], so the original series is not included in the wallpaper.

• f3 : R4 → R4 again halves onset and duration of the single series
obtained after the transformation using f4 and again translates it in
the same way. Furthermore, its loudness is decreased. This time, we
use a range r3 = [0, 1], so the result is a wallpaper with two series.

• f2 : R2 → R2 creates an inversion of the wallpaper created so far, so
that the inversion of the compressed series takes the place in pitch
of the original, and the inversion of the original takes the place of
the compressed. The inversions are also translated to the end of the
wallpaper generated so far and both of them are kept (r2 = [0, 1]).

• f1 : R2 → R2 finally creates two copies of the four-series wallpaper also
displaced in time and slightly down in pitch (r1 = [0, 1]), so that the
returned wallpaper includes twelve transformed copies of the original.

The resulting score is then evaluated at the basis vectors of the address
space Z11 and finally merged with the original series and the bass line in a
Set rubette. An excerpt of the resulting Score is shown in Figure 6.4 (b).
The middle and top voices show the beginning of what the second wallpaper
created, whereas the lower voice is part of the result from the MacroScore
subnetwork.

6.2 Alterations

Next, we present two examples for alteration. They are the two most com-
mon in musical applications, namely tonal alteration and quantizing.

6.2.1 Tonal Alteration

Tonal Alteration, as explained in the context of presto in Section 3.3.2, can
be easily reproduced in Rubato Composer. Figure 6.5 shows the minmal
network settings. The Scale rubette is ideal to provide a scale towards which
the notes of the composition are altered. In the Alteration rubette preference
window, the necessary specifications for an alteration gradually increasing
in time can be seen (low degree 0, high degree 1).
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Figure 6.5: The settings for performing tonal alteration on a given compo-
sition.

6.2.2 Quantizing

To perform quantizing on a given composition, we need to define a rhythmi-
cal grid. This can be done using the Rhythmize rubette. We first configure
a Melody rubette to create a simple melody, each of its note having the
same pitch (this does not matter, since do not alter pitch). Then, we pass
the melody on to a Rhythmize rubette, which outputs the rhythmic motif
for our grid. We set the Rhythmize rubette’s properties so that this motif’s
length is exactly one bar (here, 2.0 time units).

The grid is then produced using a Wallpaper rubette, which just loops the
motif, i.e. uses one morphism displacing the motif’s onsets by 2.0. It is
important to make sure here, that the obtained wallpaper exceeds the length
in time of the composition to be quantized. The quantizing itself is finally
managed by an Alteration rubette, where we define one alteration dimension
for onset.

Figure 6.6 shows a composed network for quantizing the starting pattern of
Steve Reich’s Piano Phase (a typical wallpaper, by the way) with a grad-
ually increasing degree (low 0, high 1). Part (b) of the same figure shows
the resulting score. Even though visually the differences are minimal, they
are clearly audible. The originally even rhythm is disturbed and virtually
absorbed by the rhythm produced by the Rhythmize rubette.
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(a)

(b)

Figure 6.6: An example for quantizing. The network (a) and the resulting
score (b).
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Chapter 7

Conclusion

In this chapter we evaluate the software written for this thesis by contrasting
its features with those of its predecessor. Subsequently, we present the diffi-
culties we encountered during implementation and the limitations of our new
product. Finally, we outline future and other possible projects either using
the new Rubato Composer modules or developing them further.

7.1 Evaluation

The new implementation for grid structure generation and application is
more flexible in many ways, as shown in Table 7.1. We summarize and
discuss the improvements.

Due to its extendable structure and the rubette concept, Rubato Com-
poser promotes a modular way of thinking, where many functional parts
act together in every conceivable way. To maximize the flexibility of use,
the functionality of the OrnaMagic module has been separated in two main
and three additional modules. The combination of these modules leads to
new ways of using grid structures for composition.

Furthermore, the two main modules, the Wallpaper and the Alteration ru-
bette can be used for processing any arbitrary structures, not just musical
ones, since they accept any denotators of type Power as inputs.

All note coordinate values in presto are positive integers. Pitch, loudness
and duration are moreover restricted to a maximal value of 72. In Rubato
Composer, the processed structures can have elements of many different
modules as values. Our present implementation of wallpapers and alteration
includes the modules Z, Q, R and Zn.
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presto OrnaMagic Rubato Composer

design serial modular
input set of notes any Power denotator
values discrete integer values Z, Q, R or Zn values
space onset×pitch/loudness/duration any arbitrary space
grid vectors 2-dim translations n-dim morphisms

Table 7.1: Differences between the two implementations.

The space for grid structure generation and application is two-dimensional
in presto and consisting of onset and a second coordinate. The new imple-
mentation allows the selection of any conceivable n-dimensional space.

This difference also applies to the grid vectors. In presto, these were in the
two-dimensional and additionally restricted to simple translations. Our new
implementation features affine and other morphisms of any dimension.

7.2 Open Issues

Despite the benefits of our new implementation, there are some open issues
that have not been implemented yet:

• In presto, users can make the decision which neighbour should prefer-
ably be chosen as an alteration goal, in case there are multiple nearest
neighbors. In our early implementation, we found a solution for in-
tegrating this issue in Rubato Composer. However, since we use a
kd-tree now for nearest neighbor search this is not possible anymore.

• The diagonal rails that could be selected to restrict alteration direction
in presto could not be adapted to Rubato Composer. For their real-
ization, the mathematical definition of alteration has to be extended.

• The present implementation is restricted to process denotators of
Simple forms that are embedded in R. Forms of other modules like
string rings or polynomial rings are not yet supported

7.3 Future Work

There are many possibilities for future uses and further developments of the
contributions of this thesis. Just a few of them are stated here:

• At the first international conference of the Society for Mathematics
and Computation in Music, a demonstration of the possibilities of
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wallpapers and alteration will be presented [Mazzar].

• In a composition project with Guerino Mazzola’s research group, Pierre
Boulez’ Structures Ia is reconstructed and altered with Rubato Com-
poser. In this context, the Wallpaper rubette has to be developed
further to be able to generate wallpapers made of multiple motifs.

• Using special denotators defining a function, the alteration degrees
could be defined more precisely than just by two boundary values.
For the generation of such functions, a rubette could be created where
users can draw functions by hand or select a preset function.

• The concepts of alteration can easily be extended for creating musi-
cal morphings, analogous to visual morphing in the domain of image
processing. A so-called morph of two compositions d1 and d2 can
be defined as a selection of elements of the two altered compositions
alt(d1, d2) and alt(d2, d1). This leads to a more complete implementa-
tion of musical morphings than for example described in [Oppe95].

• A further extension could be to produce morphings between an arbi-
trary number of compositions d1, . . . dn using multidimensional degree
functions.
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Appendix A

Manuals

This appendix includes the extensions to the Rubato Composer User’s
Manual [Milm06b], which is available on [RubatoC]. The rubettes created
for this thesis are described using the schema proposed in Section 4 of the
manual.

A.1 Score Rubettes

Melody

Group: Score

Summary: Generates a random melody.

Outputs: #1: A denotator of form Score.

Description: The generated melody consists of a specified number of sub-
sequent notes of duration 1.0, loudness 120 and voice 0. The
first note is at the initial pitch. Every subsequent note’s pitch
is calculated randomly, where the distance to its previous note
never exceeds the indicated interval boundaries, which are in-
terpreted in steps, e.g. step size 1 stands for halftones, 1

2
for quartertones. Furthermore, the stated lowest and highest
pitch are never exceeded.

Properties: The number of notes must be specified, as well as the highest,
lowest and initial pitches. Furthermore, the step size and the
minimum and maximum intervals up and down in steps have
to be indicated (see Figure A.1).
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Figure A.1: The properties window of the Melody rubette.

Rhythmize

Group: Score

Summary: Provides the input denotator with a new rhythm.

Inputs: #1: A denotator of form Score.

Outputs: #1: A denotator of form Score.

Description: A new score is created taking the notes from the input deno-
tator in their order of appearance and giving them new onsets
and durations. The resulting score is monophonic (one note at
a time) and its durations are randomly taken from the expo-
nentially calculated values bx, bx−1, . . . bx−n+1, where b is the
specified base, x is the specified exponent and n is the speci-
fied number of values.
If the specified metric period is greater than 0, it is made sure
that there is a note at every meter point (multiple of the met-
ric period). These notes obtain the accented loudness, whereas
all other notes obtain the unaccented one.

Properties: The number of different notes values and the value base and
maximum exponent have to be specified. Additionally, a meter
period can be specified. If it is greater than 0, the loudnesses
of accented and unaccented notes must be indicated, else it is
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Figure A.2: The Rhythmize rubette’s properties window.

ignored. The properties dialog is shown in Figure A.2.

Scale

Group: Score

Summary: Generates a musical scale.

Outputs: #1: A denotator of form Score.

Description: Either a predefined scale or a custom scale is generated, the
pitches of its notes ranging from 0 to 127 (MIDI pitches).
Onset is set to 0, loudness to 120, duration to 1 and voice
to 0 for every note in the scale. Starting at the specified root
note pitch, the defined sequence of intervals is stepped through
repeatedly, until the above mentioned boundaries are reached.
For each pitch reached this way, a note is added to the output
denotator.

Properties: The number of notes has to be specified using the slider (see
Figure A.3). Then, the pitch of the root note has to be indi-
cated and using the combo box, either one of the predefined
scales or ‘custom’ has to be selected. If ‘custom’ is selected, the
desired intervals between subsequent notes have to be specified
in the interval text fields.
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Figure A.3: The properties window of the Scale rubette.

A.2 Core Rubettes

Wallpaper

Summary: Generates a wallpaper from an input motif.

Inputs: #1: A denotator of type Power.

Outputs: #1: A denotator of the same form as input #1.

Description: All elements of the input denotator are mapped repeatedly us-
ing the specified morphisms and finally, part of the mappings
are united in a new denotator of the input form and returned.
The first morphism to map is the one of the wallpaper dimen-
sion lowest in the table, then the next higher and so on.
The indicated range defines for a dimension, which mappings
are added to the result Power denotator. [2, 5] for example,
means that from the denotators after the second mapping to
the ones after the fifth mapping, all denotators are added to
the result. The last column of the table defines the forms of
the Simple denotators mapped in each element.

Properties: First, the Power form of the input denotator has to be speci-
fied using the standard form entry. Then, using the ‘Add’ but-
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Figure A.4: The Wallpaper rubette properties window.

ton, any number of wallpaper grid dimensions can be added
(see Figure A.4). These are shown in the table below the but-
ton row. When the ‘Remove’, ‘Up’ or ‘down’ button is pressed,
the dimensions selected in the table are removed, moved one
position up or one down in the table.
For every dimension, a module morphism has to be specified
in the dialog that opens, when a field in the leftmost column
of the table is double-clicked. In the two middle columns,
the dimension’s range has to be defined. Finally, by double-
clicking a field of the rightmost column, the Simple forms to
be transformed by the morphism indicated above, have to be
specified. The appearing dialog is shown in Figure A.5 (a).
For every module of the morphism’s domain and codomain, a
Simple form needs to be selected using the combo boxes.

View: The wallpaper rubette provides a view (see Figure A.5 (b)),
which is similar to the graphical representation of geometrical
morphisms in the ‘Edit module morphism dialog’. It simulates
the creation of a wallpaper from a square at (0, 0) visually. The
coordinates shown can be selected using the two combo boxes.

Alteration

Summary: Alters a first composition towards a second.

Inputs: #1: The denotator of type Power to be altered.

#2: The denotator towards which the alteration takes place.
Of the same form as input #1.
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(a) (b)

Figure A.5: The Simple forms dialog (a) and the Wallpaper rubette view
(b).

Outputs: #1: The altered denotator of the same form as input #1.

Description: The Alteration rubette moves each element of the first input
denotator towards its nearest neighbor of the second composi-
tion. For each dimension and element, the Simple denotator
affected by the alteration is of the form specified in the leftmost
column of the dimensions table and it happens to be the first
one of that form found in the element’s tree. Furthermore, for
each dimension and element, a local alteration degree is cal-
culated according to its position relative to all other elements,
which is calculated from the two indicated alteration degrees
and the value of the first denotator found of the form specified
in the fourth column of the table.

Properties: First, using the standard form entry, the Power form of the
input denotator has to be specified (see Figure A.6). Using
the buttons ‘Add’, ‘Remove’, ‘Up’ and ‘Down’, alteration di-
mensions can be added to removed from or moved in the di-
mensions table, in the same way as in the Wallpaper rubette’s
table.
In the first column of the table, the altered form has to be
specified for each dimension. The next two columns hold the
alteration degrees, the second is the degree for the lowest value
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Figure A.6: The Alteration rubette properties window.

and the third the one for the highest value. In the last column,
the form has to be specified, relative to the values of which the
local alteration degrees are calculated.
If the alteration degrees are meant to be the same for all di-
mensions, the ‘Global degree’ checkbox can be selected. All
degrees will then be set to the values in the two text fields at
the right hand side of the checkbox.
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