
Management and Security of
Collaborative Web Environments

Diplomarbeit

der Philosophisch-naturwissenschaftlichen Fakultät
der Universiẗat Bern

vorgelegt von

David Vogel

2004

Leiter der Arbeit:

Prof. Dr. St́ephane Ducasse
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik

Further information about this work and anonlineversion of this document can be
found at:
http://www.iam.unibe.ch/˜scg/smallwiki/

The address of the author:

David Vogel
Huberstrasse 2
CH-3008 Bern

or

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubr̈uckstrasse 10
CH-3012 Bern
vogel@iam.unibe.ch

http://www.iam.unibe.ch/~scg/smallwiki/
mailto:vogel@iam.unibe.ch

Abstract

A Wiki is a collaboratively-written website, also known as a Wiki space driven by
Wiki server software implemented with any programming language. Wiki sup-
ports hyperlinks and has a simple text syntax for creating new pages and crosslinks
between internal pages on the fly. Itsopen editing conceptallows users to freely
create and edit web page content using any web browser.

Like many simple concepts,open editinghas profound and subtle effects on Wiki
usage. Anybody can add, edit, and maybe delete pages of the Wiki. That is why
a vandal is able to damage or abuse a Wiki by deleting parts of the Wiki site,
defacing a page or uploading files in order to use the Wiki as an interim storage.
The management of a Wiki gets clumsy if there is just one administrator who has
to adjust the damage in the entire Wiki space. The assessment of these problems
depends on the Wiki application area.

This diploma gives an general overview ofcollaboration modelsand of theWiki
concept, in particular of theSmallWikiimplementation and its design. We intro-
duce the SmallWiki Default Security Model and its enhancement - the SmallWiki
Extended Security Model- in order to solve the problems ofvandalismand ofcen-
tral management. This fine-grained security model is explained and it is shown
how aWiki administratorcan manage the permissions for SmallWiki users at any
point in the Wiki site, and how the pattern ofsave delegationis applied.

The characteristics of the new model are also described on a formal level. Addi-
tionally the security user interface of SmallWiki is depicted in detail.

This solution is validated by describing in detail common scenarios.

i

Acknowledgments

First I wish to thank my supervisor Prof. Dr. Stéphane Ducasse for his guidance,
and the head of the group Prof. Dr. Oscar Nierstrasz for giving the opportunity to
work in his group. Thanks also to all other group members for providing a pleasant
working atmosphere.

I also want to thank all those people who have contributed to whatever knowledge
I have of object-oriented thinking and Smalltalk programming. Many people have
contributed to my education, including the authors of various books.

In particular, I’d like to thank some friends from university for special contribu-
tions: Tobias Aebi for the philosophy and information he imparted when he came
in as a voluntary consultant to review the design and strategy of my work. To-
gether we have drawn many Wiki trees. Michele Lanza for providing the patience,
wisdom, and time to review my work; for always brightening up the life at the uni-
versity, for having the perfect timing for recreative coffee breaks, and for being a
friend. Calogero Butera for not letting me suffer alone and for sharing the worries
of a diploma student; he understood well. Daniele Talerico, Frank Buchli, Tom
Bühler, and all other students from the pool for the good times we shared at the
perfect air-conditioned attic.

I want to thank my boss Dr. Igor Metz for his support and for giving me the
opportunity to work at flexible time at Glue S.E. AG.

Most of all, I want to acknowledge and thank the people beyond university, whose
lives were most affected by this work: my parents and my brothers for the support
and the encouragement they gave to me, and my love and bride-to-be, Kerstin, to
whom I offer the greatest thanks. On top of her own busy life she took on many
additional duties as I spent long hours at the computer, and she always gave me the
continuous support I needed. Thanks, I couldnt have done it without you!

David Vogel
May 2004

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1

1.1 Wiki, a web-based Collaboration Tool. 1

1.2 Problems . 2

1.3 Solutions . 2

1.4 Organization of the Document. 3

2 Wiki, a web-based Collaboration Model 5

2.1 Collaboration . 5

2.1.1 Computer-served Collaboration Models. 5

2.1.2 Requirements of Web-Collaborations. 9

2.1.3 Features of Web-Collaborations. 10

2.2 Wiki: a web-based Collaboration Tool. 10

2.2.1 Wiki Concept. 10

3 SmallWiki Relevant Design Aspect 13

3.1 Server . 14

3.2 SecurityInformation. 17

3.3 Permission. 17

3.4 Role . 17

3.5 User . 18

3.6 Structure. 18

3.7 Document. 20

iii

iv CONTENTS

3.8 Action . 21

3.9 Template . 24

3.10 Storage . 26

3.11 HTML and Callbacks. 26

4 Security in Open Collaborations 28

4.1 Risk, Threat and Vulnerability. 28

4.2 User Authentication and Authorization. 29

4.3 SmallWiki Security Model . 30

4.4 Authorization in the SmallWiki Default Security Model. 32

4.4.1 Inheritance. A Simple Mechanism for Updating Roles.. . 34

4.4.2 Redefinition. Modification of Roles by Redefinition.. . . 36

4.4.3 Problems. Redefining the Roles of Administrators.. . . . 38

5 SmallWiki Extended Security Model 40

5.1 Authorization in the SmallWiki Extended Security Model. 40

5.1.1 Acquisition. A Mechanism for Updating Roles by Acqui-
sition. 42

5.1.2 Acquisition. Curtailing Roles with the Barrier role.. . . . 44

5.1.3 Acquisition. Updating the Roles of an Administrator.. . . 46

5.1.4 Delegation. Providing Safe Delegation throughSecurity
Rules. 48

5.1.5 Summary.. 52

6 Security Scenarios for the Extended Security Model 54

6.1 Scenario 1: Open Editing.. 56

6.2 Scenario 2: Newspaper with Editors and Readers.. 58

6.3 Scenario 3: Managing Common and Private Resources.. 60

6.4 Scenario 4: Delegating Control to Sector Administrators.. 63

7 Formal Description of SmallWiki Extended Security Model 69

7.1 ContextC . 69

7.2 StructuresSxn . 70

7.2.1 Characteristics. 72

7.2.2 In the context of the implementation. 72

CONTENTS v

7.3 PermissionsP . 72

7.3.1 Characteristics and example. 73

7.3.2 In the context of the implementation. 73

7.3.3 Admin PermissionsAP 74

7.4 Meta RolesM . 74

7.4.1 Characteristics. 74

7.4.2 In the context of the implementation. 75

7.4.3 Computing. Creation and modification of Meta Roles. . . 75

7.5 UserUx and its set of RolesR(Ux) 75

7.5.1 Roles of a UserR(Ux) 75

7.5.2 Permissions of a UserP (Ux) 76

7.5.3 Admin UsersAU . 76

7.5.4 Characteristics. 76

7.5.5 In the context of the implementation. 76

7.6 Barrier RoleB . 76

7.6.1 Characteristics. 77

7.6.2 Computing . 77

7.7 Computing Roles of a User. 80

7.7.1 Computing the Roles of a User. 80

7.7.2 Example for Computing the Roles of a User. 81

8 Conclusion 84

8.1 Summary . 84

8.2 Future Work. 84

A Glossary 86

B SmallWiki in a Nutshell 91

B.1 Loading Into the Image. 91

B.2 Running the Tests. 91

B.3 Starting a Server . 92

B.4 Accessing the Admin Account. 92

B.5 Accessing the Admin Advanced Interface. 92

B.6 Stylesheets, Images and Javascript. 93

vi CONTENTS

B.6.1 Adding the Stylesheets. 93

B.6.2 Adding the Images. 94

B.6.3 Adding the Javascript. 94

B.7 Editing a Page. 94

C SmallWiki Management User Interface 97

C.1 Management of Roles. 97

C.2 Management of Users. 104

D SmallWiki Relevant Design Aspect in Detail 108

D.1 Server .108

D.2 SecurityInformation. 113

D.3 Permission. .114

D.4 Role .114

D.4.1 AdminRole . 115

D.4.2 BasicRole. 115

D.4.3 BarrierRole. 116

D.5 User .117

D.6 Structure. .119

D.6.1 Resource. 125

D.6.2 Page. .126

D.6.3 Folder. .126

D.7 Document. .128

D.8 Action .129

D.8.1 Advanced. 132

D.8.2 Security. 134

D.8.3 UsersEditor. 135

D.8.4 RolesEditor. 138

D.8.5 TreeEditor . 143

D.9 Template .144

D.9.1 TemplateHead.. 146

D.9.2 TemplateBody.. 146

D.10 Storage .149

CONTENTS vii

D.10.1 Snapshot Storage. 149

D.11 HTML and Callbacks. 150

viii CONTENTS

Chapter 1

Introduction

1.1 Wiki, a web-based Collaboration Tool

Interactive web page access occurs when the members of a group cancollectively
collaborate(view and edit) the content of a web site through a comfortable user
interface. Usually the HTTP protocol is used for data transfer. The original idea
of the web implied that anyone could be bothreaderandwriter, but the technical
complexity of editing and uploading HTML pages makes the publishing part of
the web inaccessible to many users. The problem becomes even more complicated
when a team of technically unskilled writers want to publish content, all without
getting in each other’s way or accidentally destroying the site’s framework.

Content Management System (CMS) is an umbrella term for many different types
of collaboration systems. Most systems have a method of revision control. Some
allow only the publication of news, others provide the administrator with many dif-
ferent categories of content; some have no real concept of security other thancan
write andcannot write, others allow fine-grained classification of all users.Wikis
are a type of content management system, working by an access-control free phi-
losophy but nevertheless greatly simplifying the process of editing and maintaining
pages. Wikis do not work with copies of the shared material; the original document
is available at all times, always in its latest version.

Wiki Wikimeanssuper fastin the Hawaiian language, and it is the speed of creating
and updating pages that is one of the defining aspects of Wiki technology. Gen-
erally, there is no prior review before modifications are accepted, and most Wikis
areopento the general public or at least to all persons who also have access to the
Wiki server. In fact, even registration of a user account is often not required.

Many implementations have been made using different programming languages.
This work focuses onSmallWiki[1], a Wiki implementation written inVisualWorks
Smalltalk[2].

1

2 CHAPTER 1. INTRODUCTION

1.2 Problems

There exist problems for many Wiki implementations. Some are to be taken seri-
ously, whereas others might not be very important. The assessment of this impor-
tance depends on the Wiki application area. In this section, we list major problems:

1. Vandalism. As a consequence of the mostly usedopen editingconcept, any
Wiki user is allowed toadd, edit, and maybe todeletepages of the Wiki.
Therefore avandalis able to damage intentionally a Wiki: delete large parts
of the Wiki space, deface a page or abuse the Wiki server as a file archive
(e.g., MP3-archive). It is cumbersome to fix the damage over and over, since
it might be difficult to detect the changes a vandal has made to the Wiki site.

2. Web space for a Closed Groups.There is the need to setup a Wiki space
for an enclosed group of users. Thus only the members of that group should
have access to the Wiki site.E.g.,a class of users are only able to read, others
are allowed to edit the content of the site.

3. Central Management with One Administrator. The idea of havingone
administrator for the entire sitemight be acceptable for small Wiki sites with
portions that do not have to be maintained perfectly. But the maintenance
gets clumsy if we run a large Wiki site with just one administrator who has
to adjust the damage and manage the security settings in the entire Wiki
space.

1.3 Solutions

In this work, we offer solutions to the listed problems:

1. Vandalism. Most public Wikis avoid mandatory registration procedures.
Nevertheless, many of the major Wiki engines (including MediaWiki, [3]
MoinMoin [4], UseModWiki [5] and TWiki [6] already provide ways to
limit write access. For small Wiki sites, a common defense against a per-
sistentvandalis to simply let them deface as many pages as he wants to, and
to then quickly revert the pages after the vandal has left. As an emergency
measure, some Wikis allow switching the database to read-only mode, or
letting only users registered up to a cutoff date continue editing. Generally
speaking, however, any damage that is done by avandal can be reverted
rather quickly. More problematic are subtle errors inserted into pages which
go undetected, for example changing of dates on an online agenda in a Wiki.
To solve the problem ofvandalism, we introduce SmallWiki, a Wiki imple-
mentation written in VisualWorks Smalltalk. ItsSmallWiki Default Security
Model provides a security management approach where we can adjust the

1.4. ORGANIZATION OF THE DOCUMENT 3

privileges for different classes of users for any resources in the Wiki space
via a comfortable user interface.

2. Web space for a Closed Groups.With this security model, we can also
easily setup a web space for a closed group of users.

3. Central Management with One Administrator. In order to make the man-
agement of the Wiki space more flexible, the site administrator should be
able todelegatecertain fields of responsibility to other administrators. This
pattern of delegationdescribed in Section5.1.4is very central to theSmall-
Wiki Extended Security Model. This model is an enhancement of theSmall-
Wiki Default Security Model. It encourages us to collect resources in folders
and in their sub-folders together and then to design responsible adminis-
trators to manage their contents. It is the assigned responsibility of these
administrators to manage the user privileges on their part of the Wiki site.

1.4 Organization of the Document

• In Chapter 2 we give a general overview of different web-based collabora-
tion models. We introduce Wiki as a web-based collaboration in multiuser
context, in addition to being a tool to collect and cross-reference information,
and we explain the Wiki concept.

• Chapter 3 provides documentation of the SmallWiki implementation with
UML-diagrams about the most important classes, their responsibilities, and
their use. The basis of this chapter is the official documentation of SmallWiki
[1].

• In Chapter 4 we discuss about security terms such as risk, threat, vulner-
ability, user authentication and authorization. It is shown how security is
guaranteed in SmallWiki. Therefore we explain the SmallWiki Default Se-
curity Model- an easy and powerful system.

• In Chapter 5 we provide the new modelSmallWiki Extended Security Model
that fulfils the pattern of safe delegation with several local sector administra-
tors.

• Chapter 6 focuses more closely on administering users, building roles, map-
ping roles to permissions, and creating security policies with one or several
administrators for a Wiki site. We build several security scenarios in order
to validate the reliability of the new model.

• In Chapter 7 we give a formal description to the SmallWiki Extended Secu-
rity Model.

• Appendix A lists the terms used in this document.

4 CHAPTER 1. INTRODUCTION

• In Appendix B we give all the needed information to download, configurate
and run SmallWiki with the security extension. The basis of this chapter is
the official documentation of SmallWiki [1].

• In Appendix C we provide explanations related to the user graphical inter-
face.

Chapter 2

Wiki, a web-based Collaboration
Model

This chapter gives a general overview of different web-basedcollaboration models,
such ase-mail exchange, shared access, andinteractive pages. We illustrate their
characteristics and differences. Requirements and features of web-based collabo-
rations are shown. We introduceWiki as a web-based collaboration in multiuser
context, in addition to being a tool to collect and cross-reference information, and
we explain the Wikiconcept.

2.1 Collaboration

A collaboration is the act of combining the efforts of several parties. These may
include systems used for programming, writing to each other.

Collaboration brings consensus allowing people to work towards the same objec-
tives. When information flows through successful communication between people,
the collaborative effort enables possibilities for the sharing of knowledge and better
education.

The internet allows people to collaborate without physical proximity, risk of in-
fection, and without the use of polluting fossil fuels for personal transport. Such
computer-based collaborations make it possible to share know-how very quickly
among people from different countries - independently of their social standing.

2.1.1 Computer-served Collaboration Models

[7] There exists different kinds of computer-based collaborations, such as:

E-Mail. E-Mail exchangeprovides direct exchanges between the members of a

5

6 CHAPTER 2. WIKI, A WEB-BASED COLLABORATION MODEL

collaborative group. This is very simple and requires only that members
have e-mail capability. Either all members receive copies of the message
or the messages are being broadcasted as a mailing list. This technology is
purepush, and it is up to the recipient to sort, archive, and make order of the
e-mail flow. A public form of e-mail is theInternet newsgroup, where post-
ings are broadcasted to all participating newsgroup servers and kept there for
access. The newsgroups readers can browse message headers on the news-
group server and load selected messages to their local system to read. Unfor-
tunately, the postings can not be edited or easily cross-linked in any way use-
ful to the group unless they are collected with extra information/annotation
into a central archive (see Figure2.1).

Figure 2.1: Model of e-mail exchange and of a mailing list.

Shared Files. Shared accessmeans that members can directly access the same
files - or a copy of them - of a repository on a server, basically via FTP
(File Transfer Protocol) or SSH (Secure Shell). The files can be of any type.
This might be the most common model for corporate network collaboration.
Shared access is almost always combined with some form ofaccess control:
different members or different groups of members have different permissions
on certain parts of the shared file-system. This is achieved by creating dif-
ferent kinds of roles, such as administrator, contributor, reviewer and reader
(see Figure2.2).

Figure 2.2: Model of shared shared files,e.g., a database.

2.1. COLLABORATION 7

Peer-to-Peer (P2P) file sharing. Peer-to-peer computingconnects together a large
number of different computers, thereby pooling their resources. It provides
a very efficient way of storing and accessing large amounts of data.E.g.,
individual people store files that they want to share on their hard disks and
share them directly with other people. The users run a piece of software
that makes this sharing possible. Each user machine becomes a mini server.
However, the wayP2P networks are currently organised means that when
the network involves a very large amount of machines, searching becomes
very slow. This can be solved by using centralised servers to take care of
key tasks, but this means the whole network crashes if those machines fail,
unless a client becomes a server (supernode)dynamicallyfor a certain time
(see Figure2.3and Figure2.4).

Figure 2.3:Model of decentralised Peer-to-Peer file sharing.The clientA broad-
casts the request to all other nodes, gets answers from all nodes, and chooses the
one with best transfer rate.

8 CHAPTER 2. WIKI, A WEB-BASED COLLABORATION MODEL

Figure 2.4: Model of centralised Peer-to-Peer file sharing with a supernode.
The clientA sends keywords to search with to the supernode, the supernode returns
a list of hosts -< ip address, portnum >, the client pings these nodes in order
to find out their transfer rates, and sends the request to the hostC with the best
transfer rate.

Shared Web Server Pages, Content Management Systems (e.g.,Wiki). Interactive
page access occurs when the members of a group cancollectively collabo-
rate(view and edit) the content of a site through a comfortable user interface.
Usually the HTTP protocol is used for the data transfer. The original idea of
the web implied that anyone could both bereaderandwriter, but the techni-
cal complexity of editing and uploading HTML pages made the publishing
part of the web inaccessible to many users. The problem becomes more
complicated when a team of technically unskilled writers wants to publish
content, without getting in each others way or accidentally destroying the
site’s framework.

Content Management System (CMS) is an umbrella term for many differ-
ent types of collaboration systems. Most systems have a method of revision
control. Some allow only the publication of news, others provide the admin-
istrator with many different categories of content; some have no real concept
of security other thancan writeandcannot write, others allow fine-grained
classification of all users. EvenWikisare a type of content management sys-
tem, working by an access-control free philosophy but nevertheless greatly
simplifying the process of editing and maintaining pages. Wikis do not work
with copies of the shared material; the original document is available at all
times, always in its latest version.

A few server models, such asZope[8] go even further by making the entire
server infrastructure accessible to the users. They can modify not just con-
tent but also server behavior by editing actual components/scripts. Security

2.1. COLLABORATION 9

mechanisms are needed to manage the permissions, such as for accessing a
server component (see Figure2.5).

Figure 2.5: Interactive server model with collaborative content. The members of a
group can collectively collaborate on the content of a site.

2.1.2 Requirements of Web-Collaborations

In order to implement a web based collaboration, the following requirements must
be fulfilled:

Session management.A session is a group of application instances currently work-
ing together in a collaborative mode. All applications belonging to the same
session exchange information and share behavior. A collaboration server
may manage more than one session simultaneously.

User authentication and authorization. Most collaboration systems provide means
for userauthenticationandauthorization. All user data is kept in a database
and is used by the main server, which acts as a router of all control and appli-
cation messages. It is desirable to associate certain application functionality
with certain level ofprivileges.

Event logging. One of the important system capabilities is the recording of system
activities. Since all system and application messages must go through the
main server, all of them can be recorded in a database. This data can be
then retrieved later and the whole session activity can be asynchronously
reviewed.

Simplicity. A successful collaboration server must be easy for its participants to
use and provide all basic functions. All other potential power features should
be optional, especially if they require extra software to be installed.

10 CHAPTER 2. WIKI, A WEB-BASED COLLABORATION MODEL

2.1.3 Features of Web-Collaborations

Web based collaborations have great qualities:

Free and easy Access.Th only required thing is only a connection to the internet
and a web client such as the Mozilla [9] web-browser in order to access
the resources from anywhere. The level of free accessibility depends on the
security policy.

Up-to-date versions.With centrally updated or interactive pages, always the lat-
est version is available.

Hyperlinking. The shared material can exist in a rich set of links (to collaborators,
to resources, to comments, to older versions, and so on). This requires some
sort of maintenance: links should always be up to date.

Content markup. Content markup makes content machine-searchable and more
easily to be converted to other media.

2.2 Wiki: a web-based Collaboration Tool

The characteristics of Wiki server software are listed:

Open source solution.Wiki is a open-source technology within the context of
existing servers, clients, protocols and standards.

Many implementations. Since the basic concept is simple, there are many imple-
mentations in different languages.

Easy to use.The basic Wiki interactivity consists of people dropping by, browsing
and reading, editing and adding content.

Easy to set up.Usually Wiki server software is easy to configure and to integrate
with other server tools.

Light solution. Compared to the size of its code, a Wiki server contains a surpris-
ing amount of functionality and is easy to extend.

2.2.1 Wiki Concept

A WikiWikiWebenables documents to be authored collectively in a simple markup
language using a web browser. Because most Wikis are web-based, the termWiki
is usually sufficient. A single page in a Wiki is referred to as aWiki page, while the
entire body of pages, which are usually highly interconnected, is calledthe Wiki.

2.2. WIKI: A WEB-BASED COLLABORATION TOOL 11

Wiki Wikimeanssuper fastin the Hawaiian language, and it is the speed of creating
and updating pages that is one of the defining aspects of Wiki technology. Gen-
erally, there is no prior review before modifications are accepted, and most Wikis
areopento the general public or at least to all persons who also have access to the
Wiki server. In fact, even registration of a user account is seldom required.

Pages and editing. In traditional Wikis, every page has two representations: the
form in which it is displayed (usually HTML which is rendered by a web browser)
and the form in which it is edited (a simplified markup language, the style and
syntax of which varies from Wiki to Wiki).

The reasoning behind this design is that HTML, with its large library of nested
tags, is too complicated to allow fast-paced editing, and distracts from the actual
content of the pages. It is also viewed as beneficial that users cannot use all the
functionality that HTML allows, such asJavaScriptandCascading Style Sheets,
because of the consistency in look and feel that is thereby enforced.

Nevertheless, some recent Wiki engines provide WYSIWYG (What You See Is
What You Get) editing, usually requiringActiveX controlsor pluginsthat translate
graphically entered formatting instructions likebold and italics into HTML tags
that are then transparently submitted to the server. In these cases, users who do not
have the necessary plugin can only edit the page in its HTML source.

Theformatting instructionsallowed by a Wiki vary considerably depending on the
Wiki implementation that is used. Simple Wikis only allow basic text formatting,
whereas more complex ones have support for tables, images, formulas, or even
interactive elements like games. Because of that, there is now an effort trying to
define aWiki markup standard[10].

Linking and creating pages. Wikis are a true hypertext medium, with non-linear
navigational structures. Each page typically contains a large number of links to
other pages; hierarchical navigation pages often exist in larger Wikis, but do not
have to be used. Links are created using a specific syntax, the so-calledlink pattern.
Originally, most Wikis useCamelCaseas a link pattern, produced by capitalizing
words in a phrase and removing the spaces between them (the wordCamelCase
is itself an example of CamelCase). While CamelCase makes linking very easy,
it also leads to links which are written in a form that deviates from the standard
spelling. CamelCase-based Wikis are instantly recognizable from the large number
of links with names such asTableOfContentsand EseTutorial. CamelCase has
many critics, and Wiki developers looked for alternative solutions. The first Wiki
that introduced so calledfree linkswasCliki [11]. Various Wiki engines usesingle
brackets, curly brackets, underscores, slashes, asterisk(e.g., SmallWiki) or other
characters as a link pattern. Links across different Wiki communities are possible
using a special link pattern calledInterWiki - the idea of having one unified Wiki
system distributed across many servers.

12 CHAPTER 2. WIKI, A WEB-BASED COLLABORATION MODEL

Creating a new page in a Wiki is usually done strictly through the same process as
linking to it: a link is created on a topically related page; if the link does not exist,
it is in some way emphasized as abroken link. Following that link opens an editor
window, which then allows the user to enter the title and text for the new page.
This mechanism ensures thatorphanpages (which have no links pointing to them)
are rarely created, and a generally high level of connectivity is retained.

Recent changes, RSS feeds, and revision history.Wikis generally follow a phi-
losophy of making it easy to fix mistakes instead of making it hard to make them.
Thus, while Wikis are very open, they also provide various means to verify the
validity of recent additions to the body of pages.

The most prominent one on almost every Wiki is therecent changespage. It is
simply a list of either a specific number ofrecent editsor a list ofall editsthat have
been made within a given timeframe. Some Wikis allow filtering the list to exclude
edits that have been markedminor or which were made by automatic importing
scripts (bots).

Some Wikis like SmallWiki provide Rich Site Summary (RSS) files, which are
based on the Extensible Markup Language (XML). RSS is a format for syndicat-
ing news and the content of news-like sites. Anything that can be broken down
into discrete items can be syndicated via RSS: a changelog of CVS checkins, the
revision history of a book and actually therecent changespage of a wiki. Once
information about each item is in RSS format, an RSS-aware program can check
the feed for changes and react to the changes in an appropriate way.

From thechange log, two other functions are accessible in most Wikis: therevision
history, which shows previous versions of the page, and thediff feature, which can
highlight the changes between two revisions. Therevisionhistory allows opening
and saving a previous version of the page and thereby restoring the original content.
Thediff feature can be used to decide whether this is necessary or not: A regular
user of the Wiki can view thediff of a change listed on therecent changespage
and, eventually load the history to restore a previous revision.

In case unacceptable edits are missed on theRecent changes page, some Wikis
provide additional control over content.Tavi [12] by Scott Moonen introduced
subscribed changes, a form of internal bookmarking that is used to generate a list
of recent changes to a set of specific pages only.

In extreme cases, many Wikis allowprotectingpages from being edited. Protected
pages on SmallWiki, for example, can only be edited byauthorisedusers, which
own a special set of privileges. This is generally considered to violate the basic
philosophy of WikiWiki and therefore is mostly avoided.

Chapter 3

SmallWiki Relevant Design
Aspect

This chapter describes the most important classes of the SmallWiki implementa-
tion. The class descriptions are accompanied by UML (Unified Modeling Lan-
guage) [14] diagrams. We describe also the classes of the SmallWiki Extended
Security Model, that is introduced in Chapter5. These classes are marked with
footnotes.

The most widely used design patterns used in SmallWiki are the Composite [15]
and the Visitor [15] patterns.

Figure 3.1: The Core Design. MVC paradigm: the subclasses ofWikiItem
represent themodel, the rendering (view) is done within different visitors, and the
controller is represented by the hierarchy below theAction class.

All the classes seen in Figure3.1 are abstract. Their concrete subclasses will be
discussed in the following subsections. The subclasses ofWikiItem represent the
model in the MVC (Model View Controller) paradigm and might be visited using
subclasses of theVisitor hierarchy. As all the rendering is done within different
visitors, this part can be seen as theview. At last we have the controller, represented
by the hierarchy below theAction class. Actions are used to do modifications on
the model and to start the different visitors to generate the appropriate views.

13

14 CHAPTER 3. SMALLWIKI RELEVANT DESIGN ASPECT

3.1 Server

The basic serving is done with the chain-of-responsibilities design pattern [15] in
the serving protocol. Incoming requests are passed to the first possible candidate
that is able to handle it. The request is analysed and processed within this structure
and if necessary processed or passed to one of its children (see Figure3.4).

Figure 3.2: Server Setup

The server class has been designed to be subclassed and to provide a common in-
terface to different server implementations (see Figure3.2). A server might get
started using the messages#start, #startOn:, #startOn:host:ip:
or by simply instantiating using the message#new, configuring and starting man-
ually. The server is not a singleton, so there might be multiple instances running
within the same image.

server := SwazooServer startOn:8080.

The instance variableroot represents the root-entity of the Wiki tree, which is
usually a folder. When starting a new server, a default configuration will be created.
The write-accessor for the root on a running Wiki should not be called accidentally,
as all the subentries will be destroyed immediately without the possibility of going
back. In order to have a look at the model of the Wiki, the following expression
can be evaluated:

server root inspect.

The default server has no automatic storage mechanism assigned; this is basically
useful when developing for SmallWiki and saving the image manually. When us-

3.1. SERVER 15

ing the Wiki in a production environment, a working storage-strategy should be
assigned and tests should be done extensively1.

• server storage:ImageStorage new
fast and secure persistence.

• server storage:nil
no persistence.

The responsibility to pass the request to the root node of the Wiki is taken by the
server. The exceptions are caught and displayed as a stack-dump on the client
side (see Figure3.3). The link Open Debuggercan be used to open the debugger
in VisualWorks within the context that caused the error and thus investigate the
problem further.

Figure 3.3: Stack Dump in the Web-Browser. The exceptions are caught and
displayed as a stack-dump on the client side.

1If someone develops other storage strategies, he should let us know as we are interested to
integrate them into the main-distribution.

16 CHAPTER 3. SMALLWIKI RELEVANT DESIGN ASPECT

Figure 3.4:Chain of Responsibility. Content serving after the user sent the request
http://www.smallwiki.org/folder/page?action=EditPage.

In order to edit the pagepagecontained in the folderfolder a user enters an URL
such as

http://www.smallwiki.org/folder/page?action=EditPage

Then the following steps, as seen in the collaboration diagram in Figure3.4, are
taken:

1. The web-server gets the request emitted by the client and starts the look up
process by delegating it to the root folder.

2. Because the target is not the root structure itself, the request is delegated to
the folder calledfolder.

3. As in the previous step, in this folder the request is delegated to the page
calledpage.

4. There is no one else that could be interested in this request, it is therefore pro-
cessed by extracting the parameters and determining the action that should
be executed. In this example the classPageEdit will be instantiated, ini-
tialised, and the message#execute will be sent.

5. The action first checks the permissions of the user and evaluates the call-
backs. See Section3.8for further information.

6. The action asks all the template components to emit their HTML-header and
their HTML-body. See Section3.9for further information.

3.2. SECURITYINFORMATION 17

3.2 SecurityInformation

The abstract classSecurityInformation represents the security-information
in the system (see Figure3.5). Its responsibility is to check if the current user has a
certain permission. There is also the possibility to assert the presence of a Permis-
sion in the current session. If no such permission is present, anUnauthorizedError
is thrown and an error page will be rendered instead of the one of the current action.

Figure 3.5:The Security Hierarchy. A role is a container of a set of permissions.
A role can be assigned to a user and also to a structure.

3.3 Permission

A permission represents a privilege in the system and is the basic entity for the
permission management. A permission will be granted if it is equal to the given
permission. For a list of the permissions available in SmallWiki we refer to Ta-
ble4.1.

A permission will be usually used in conjunction with
User >>hasPermission:aPermission orUser >>assertPermission .

3.4 Role

Multiple permissions might get assigned to any role. A role can be assigned to a
user and can be attached to a structure. The roles on the structures are important
in order to change/update the roles of a user that is visiting this structure. A role
grants a certain permission if this permission is present in the set of the permission
of the role. For a list of the roles available in SmallWiki we refer to Table4.2.

18 CHAPTER 3. SMALLWIKI RELEVANT DESIGN ASPECT

AdminRole. The AdminRole is used in conjunction with the administrator named
adminand grants any permission in the system: the message
Role >>hasPermission:aPermission always returns true.

BasicRole. This role is relevant for all users except for the site administrator
namedadmin. A role grants a certain permission if this permission is present in the
set of the permission of the role.

BarrierRole. TheBarrierRole2 is used to stop adopting permissions from parent
structures - this does not apply to any roles of a user, who owns anadmin permis-
sion, e.g.,if the BarrierRole owns thepermissions x, then none of the roles on the
same structure will adopt thispermissions xfrom their parents’ structure roles (see
Section5.1.2).

3.5 User

Multiple roles might be assigned to any user. A certain permission is granted if any
of the roles grants this permission.

3.6 Structure

The structure is the basic entity of SmallWiki, representing the model of a single
page. A structure is identified by exactly one URL and is usually included in a
composite-tree of other structures (see Figure3.6). The three concrete subclasses
of Structure are: Page andResource as components and theFolder as
composite. In factStructure should not only be the subclass ofWikiItem ,
but also ofModel . As the visiting aspect, however, is far more important, the
messages provided in Model have been copied from this system class.

A structure provides basic navigational accessors to its parents, children and sib-
lings in the Wiki tree. The basic serving is done with the chain-of-responsibilities
design-pattern in the serving protocol. The resolving protocol provides messages
to look up other structure items using their name.

All the structures have a title, a back-reference to their parent, and might con-
tain user-defined properties,i.e., something like a dictionary containing symbols
as keys and any other objects as values. Structures are versioned automatically
using a reference pointing to the previous version of the same page. The mes-
sage#postCopy should be overridden to make it work correctly, since some
subclasses ofStructure have a dictionary with objects whereas others do not.

2used only in the SmallWiki Extended Security Model

3.6. STRUCTURE 19

Figure 3.6: Structure Composite

Resource. A resource might contain any data, like images, videos, sounds, pdf
or zip files. In fact it can be anything that someone wants to include with the pages,
or wants to provide as a possibility to download.

The MIME-TYPE (Multipurpose Internet Mail Extensions Type, a specification
for formatting non-ASCII data so that it can be sent over the Internet) of the data
is used to determine how the given resource should be rendered. As an example
images and videos should be displayed inside the html document, whereas zip-files
are only references as a link to allow the user to download the file.

Page. A page is the most important and probably the most used class of the Struc-
ture hierarchy. As a sole entity it contains a composite of documents modeling the
contents of the page that the user entered using the Wiki syntax. When initializing
the instance a default document will be created to make the user aware of the newly
created page.

Folder. The folder groups a number of children.Folder is a subclass ofPage,
therefore it also contains a document that might be used to describe the contents.

20 CHAPTER 3. SMALLWIKI RELEVANT DESIGN ASPECT

3.7 Document

The document hierarchy describes the content of a Wiki page. It includes all the
basic elements to represent a text such as paragraph, table, list, links,etc. (see
Figure3.7).

Figure 3.7: The Document Hierarchy

General notes.

• All the subclasses ofDocumentComponent must overwrite the message
postCopy to make a deep copy of all its content.

• All concrete subclasses ofDocumentComponent should override the mes-
sageaccept:aVisitor to visit this instance.

Remarks concerning Links.

• MailToLink holds a string with the e-mail address.

• ExternalLink holds a string with the URL. External links are also able to
point to internal resources, but they do not update when the target is renamed
or moved.

• InternalLink holds a reference to a structure and updates automatically
title and reference when the target is renamed or moved. An internal link
might point to a non existing structure and will be created automatically
when being accessed.

When the user enters a text using the Wiki syntax, the text is parsed usingSmaCC
[16] and the abstract syntax tree is stored within the page.

3.8. ACTION 21

As shown on TableB.1, the syntax of SmallWiki is similar toSqueakWiki[17] or
WikiWorks[18]. Changing the grammar of the parser is no big deal, if somebody
is more familiar with a different one and wants to support that. However, as for
all other parsers, it is difficult to write extensions that can be added and removed
independently in order to parse new document entities.

3.8 Action

Actions are instantiated by a structure and they are initialized with that structure
and the current request using the constructor method#request:structure: .
Actions have basically two tasks: first to perform the action itself, and second to
initiate or to render the GUI. Actions represent also the context in which a page
is rendered as they know about their structure, the request, the response, and the
security status (see Figure3.8).

Figure 3.8: The Action Hierarchy

TheActionand theRenderingprotocols are described as follows:

• Action Protocol. This part of the action is used to handle the requests. The
message#execute is called by the structure after initializing the required

22 CHAPTER 3. SMALLWIKI RELEVANT DESIGN ASPECT

instance variables. It checks the security permissions of the current user,
evaluates the callbacks and starts the rendering by calling#render on it-
self. The running action might use the accessors to manipulate and mediate
with the current environment. It is usually not necessary to override the mes-
sage#execute , the callback mechanism described in Section3.11can be
used instead.

• Rendering Protocol. The rendering process is started from the message
#render at the end of#execute . The message#render fetches the
collection of templates of the associated structure and starts generating the
XHTML output. Therefore the document is parsed (see Figure3.9). It asks
each template to render the content they want to emit into the<head> ...
</head> part of the output. Afterwards the body part<body>...</body>
is generated and again every template might contribute its content into that
part. As explained in Section3.9, there is always an instance of the class
TemplateBodyContent available calling the message#renderContent
of the action: by overriding this message the user-interface is rendered by the
new action. The state of any component inside the rendering protocol should
not be changed, as an action is unable to know when and how many times it
is actually called.

Figure 3.9: Parsing a Wiki Document

Advanced. The classAdvanced 3 is a subclass of theAdmin class. It provides
the basic methods for the graphical user interface of thesecurity management(see
class description in Paragraph3.8, FigureC.1and FigureC.9) and of thetree man-
agement(see class description in Paragraph3.8).

3used only in the SmallWiki Extended Security Model

3.8. ACTION 23

Security. The classSecurity 4 is a subclass of theAdvanced class. It is the
superclass ofRolesEditor class andUsersEditor class. It provides meth-
ods for rendering form buttons and methods for creating strings with information
about roles details. These strings will be used to render the details of the roles via
Javascript as popup or as html layer.

UsersEditor. The classUsersEditor 5 is a subclass of the classSecurity
and is responsible for rendering the user administrating interface and rendering
the overview of all users and their updated roles on a certain structure. It is also
responsible to execute the corresponding actions.

TherenderFormand therenderInformationprotocols are described as follows:

• renderForm. In this protocol, there are methods that decide on which users
the currentadministratorcan execute admin methods,e.g.,an administrator
is only allowed to manage the users that it has created himself, unless it is the
main administratorthat can manage any user. The methodrenderForm
will generate three forms:

1. Policy form. Form where one or several roles can be assigned to the
users.

2. Creation form. Form to create a new user or to change the password
of a user.

3. Deletion form. Form to delete a user by selecting the corresponding
checkbox.

• renderInformation. This protocol contains the methods that are responsi-
ble for rendering the overview of all users and their updated roles with the
permissions on a certain structure.

RolesEditor. The classRolesEditor 6 is also a subclass of the classSecurity
and is responsible for rendering the roles administrating interface and for executing
the corresponding actions.

TherenderFormand therenderInformationprotocols are described as follows:

• renderForm. As in the classUsersEditor , the methods in this protocol
decide on which roles the currentadministratorcan execute admin methods,
e.g.,an administrator is only allowed to manage the roles and permissions
that it has created itself or owns itself, unless it is thesite administratorthat
can manage any role and permission.

4used only in the SmallWiki Extended Security Model
5used only in the SmallWiki Extended Security Model
6used only in the SmallWiki Extended Security Model

24 CHAPTER 3. SMALLWIKI RELEVANT DESIGN ASPECT

• renderInformation. The methods of this protocol are responsible for ren-
dering the updating roles according to the structure on which the roles ap-
pear. The permissions of the roles are accessible via Javascript by clicking
on either thepopup iconor on thelayer icon that appear next to the role
name.

TreeEditor. The classTreeEditor 7 provides methods tocut, copy, anddelete
nodes out of the Wiki tree. It still lacks the support of re-arranging the links when
a structure has been moved to another place. Also the roles are still copied with
the structure. In a future release, the roles should be deleted before a structure is
copied. The cut, copy, and delete functions are only provided for thesite admin-
istrator namedadmin. All other administrators can only use thetreeEditor to
browse the Wiki tree.

3.9 Template

Templates are used to render common parts of Wiki pages. They are defined
within a collection held in the root of the Wiki and in combination with a selected
Stylesheet (see Figure3.10), they provide the look-and-feel of the Wiki. As the
templates are held in the property manager of the structure, they are shared within
all children of a folder unless there is a new definition.

Figure 3.10: The Template Hierarchy

7used only in the SmallWiki Extended Security Model

3.9. TEMPLATE 25

TemplateHead. The classTemplateHead is a subclass ofTemplate . It
should be used for templates rendering the header of the output-file. If someone
wants to render to the head and to the body, he should useTemplateBody as a
superclass instead.

TemplateBody. The classTemplateBody is a subclass ofTemplate . It
should be subclassed in most of the cases to create a new template component.
The message#title on the class-side should be implemented in order to return
a string describing this subclass. The title is also used by default to identify the as-
sociated CSS-id and to render it into the body part. The messages#defaultId
and#defaultTitle might be used to change this behavior. The user is always
able to edit the id and title from within the template-editor (see Figure3.11) in the
web-browser to customize the template to his needs and to the applied stylesheet.
Other adjustments can be made via the property-editor (see Figure3.12).

Figure 3.11: The Template Editor

Figure 3.12: The Property Editor

26 CHAPTER 3. SMALLWIKI RELEVANT DESIGN ASPECT

3.10 Storage

The abstract storage class provides a protocol to all kinds of storage mechanism
implementing persistence in a Wiki. It takes care of the notification of changes.
Subclasses should implement either the message#changed or #changed: to
make the given structure persistent.

SnapshotStorage. The classSnapshotStorage provides an interface to make
snapshots of Wikis on a regular bases. With the implementation of theImageStorage
as a concrete implementation this is the most secure and most widely used storage
mechanism (see Figure3.13).

Figure 3.13: The Snapshot Hierarchy

3.11 HTML and Callbacks

Creating valid XHTML is an error prone task when using string concatenation.
SmallWiki follows the design of Seaside [19] and implements the class
HtmlWriteStream . This class subclassesWriteStream and provides a lot of
additional messages to append text and XHTML elements to the document being
rendered.

The following example could be part of the message#renderContent within
the Action hierarchy to render a simple user-interface:

html heading:’Title’ level:1.
html paragraph:[

html text:’Click ’.
html

anchor:’here’
to:self url
callback:[:action | action doSomething]]

The code produces the following output:

3.11. HTML AND CALLBACKS 27

<h1>Title<h1>
<p>

Click

here

</p>

The first message#heading:level: produces a simple section heading of
level 1. The message#paragraph: is similar to the one of the heading, but
in this example instead of passing a string we pass a block: everything done within
that block will be put inside the paragraph tags. This mechanism assures that all
tags are closed properly and that always valid XHTML is generated. The message
#text: escapes the given string to make sure the code can be displayed correctly
within the web-browser.

The message#anchor:to:callback: is used to generate an anchor with an
assigned callback block. Theanchor: argument obviously renders the things
that should be rendered as the content of the link. Theto: argument specifies the
place where the callback should be handled: usually this is within the same action,
but occasionally someone might need to specify something else. Thecallback:
argument is evaluated when clicking the link. As an argument the block receives
the action that is executing the callbacks, note that this is not necessarily the same
action that rendered the link and that is referenced using the keywordself .

HtmlWriteStream does not emit any unnecessary spaces into the output stream,
which makes investigation in the HTML code somehow difficult. For this purpose,
there is the possibility to enable the included pretty-printer with the method

HtmlWriteStream prettyPrint:true

The pretty-printer slows down the rendering process and might have unwanted
effects on the output in the web-browser.

More advanced examples about html-rendering and callbacks can be seen in the
Action-classCallbackDemo , that is part of the examples-bundle (see SectionB.1).
The user interface of this class is accessible by the url
http://localhost:8080/?action=CallbackDemo .

Chapter 4

Security in Open Collaborations

In this chapter we discuss risk, threat, and vulnerability of a web collaboration.
User authentication and authorization are explained, and it is shown how security
is guaranteed inSmallWiki. Therefore we present theSmallWiki Default Security
Model - an easy and powerful system. There is the lack of reliability for sites with
several administrators that partially manage common parts of the Wiki site (see
Section4.4.3).

Web-based collaboration securityrefers to efforts to create a secure collaboration
platform, designed so that users are not able to perform actions that they are not
allowed to perform, but can perform the actions that they are allowed to. This
involves specifying and implementing asecurity policy.

4.1 Risk, Threat and Vulnerability

This section presents a general overview of the risk and the threat of a web col-
laboration. This is the basis for analysing the collaboration vulnerability and for
improving the security of the web-based business environment [20]. We point out
that a security system is only as strong as its weakest link.

Risk. The risk is that an intruder may be successful in attempting to access the
resources of a collaboration that should not be accessible. There are many possible
effects of such an occurrence. In general, the possibility exists for someone to:

• Read access.Read or copy information.

• Write access.Write, attack, or destroy data.

• Denial of service.Deny normal use of a web resources by consuming all of
its bandwidth, CPU power, or memory.

28

4.2. USER AUTHENTICATION AND AUTHORIZATION 29

Threat. Thethreat is anyone with the motivation to attempt to gain unauthorized
access to the resources or anyone with authorized access. Therefore it is possible
that the threat can be anyone. Thevulnerability to the threat depends on several
factors such as:

• Motivation. How useful access to or destruction of resources might be to
someone.

• Trust. How well we can trust the authorized users and/or how well trained
are these users to understand what is an acceptable use of the resources.

Vulnerability. Vulnerability is essentially a definition of how well protected the
web-collaboration is from someone outside of the collaboration that attempts to
gain access to it, and how well protected the resources are from a user within the
collaboration intentionally or accidentally giving away access or otherwise dam-
aging the resources. Most of the Wiki web-collaborations givefree accessto their
resources. Mostly it is relatively easy to fix the damage made by an intruder when
some sort of history/backup tools are provided by the web-based system. However
this takes a lot of time and it is very annoying. Therefore it is useful to guarantee
restricted access to certain resources.

4.2 User Authentication and Authorization

When a web-server gets a request, it first has to find out which user is interacting
with it. After that, the server is able to decide if the user is allowed to perform a
certain action. This is calleduser authenticationanduser authorization.

Authentication. Authenticationanswers the question:who is that user? It en-
sures that a valid user is logged in, based on an ID and password provided by the
user. This requires some sort of user database on the server site, where at least the
user names and their corresponding passwords are stored.

There is no correspondence between user names and passwords of specific oper-
ating systems (e.g.,unix systems with /etc/passwd file) and user names and pass-
words in the authentication schemes we are discussing for use in the Wikis. Web-
based authentication can use similar password files, but a user never needs to have
an actual account on a given operating system in order to be validated for access
to the resources being served from that system and protected with HTTP-based
authentication.

Authorization. Authorizationanswers the question:is that user allowed to do
this or that? It is the process of determining whether a user is allowed to perform

30 CHAPTER 4. SECURITY IN OPEN COLLABORATIONS

a requested action.

After username and password are authenticated, the authorization is based on the
user’s privileges. Many systems assign one or several roles to a user. A role is
a collection of privileges that dictate the type of system access the user has. If
the user is not authorized for a certain action, the related item or button (e.g.,a
button in order toedit content) on the user interface should be hidden or disabled
at optimal behavior.

To recapitulate we can say thatauthenticationopens the front door,authorization
then tells the user what rooms they can go into once they get inside.

4.3 SmallWiki Security Model

The security system of SmallWiki is based onusers, roles andpermissions. The
server is responsible forauthenticatingthe user and for deciding whether the user
is allowed to perform a certain action. To understand this authorization process, we
explain the default permissions and roles and show how the server gets the relevant
set of permissions of the user who sends the request to the Wiki server. For this
the server has to update the roles of the user, since they might change through the
Wiki site.

Secure Transmission. The authentication process of SmallWiki passes login in-
formation over the wire in an easily decryptable way. The user names and pass-
words are stored in plaintext incookiesthat are always sent with the requests of
the users. To prevent that someone issnoopingthe username/password combina-
tions or to manage the site more securely, there is the possibility to use a Secured
Sockets Layer (SSL) [22] connection. We can useSSLjust to manage the site when
logging in as thesite administratorthat always owns all permissions, or useSSL
for the complete traffic. The easiest way to put this into effect is to useApache[21]
or another webserver which comes with SSL support and put it in between the user
and the SmallWiki server. Another way to improve the security is by implement-
ing an encryption mechanism for the username/password pair being stored in the
cookie.

Permissions. A SmallWiki structure is either aFolder, aPageor aResource. A
structure has permissions which describe what can be done with it such asview,
edit or add. These permissions are named according to the kind of structure the
permissions are applied to. Therefore they are calledFolder View, Folder Edit or
Folder Add. The permissionsFolder Admin, Page AdminandResource Adminare
admin permissions. Permissions can be also assigned to users via roles. These
permissions are the individual actions a user is allowed to perform in the system.
As default, there are SmallWiki permissions, as described in Table4.1.

4.3. SMALLWIKI SECURITY MODEL 31

Privilege Type Description
Add Create and add a child to this item.

(child=[Page|Folder|Resource])
Admin Administrate the current structure.

(administrate the properties, templates, components,
stylesheets, and security of the current structure)

Code Write and evaluate smalltalk code on current structure.
(very critical,e.g.,can theoretically add all permissions!)

Copy Copy any child of the current structure.
Edit Edit the current structure.
History View the history of current structure.
Move Move the children of current structure.
Remove Delete any child of the current structure.
Template Modify the template.
View Read. Can view the current structure.

Table 4.1: The set of SmallWiki default permissions.

Roles. A role is a container of the permissions. One or several roles can be
assigned to a Wiki user. That is how a user gets a set of permissions. Roles can
also be attached to a Wiki structure. The roles on the structures are important in
order to change/update the roles of a user that is visiting this structure. At the first
occurrence in the Wiki tree - starting at the root - a role is calledtop role. A child
role is a role that is already defined at a higher level in the Wiki tree. A role that
owns an admin permission is called anadmin role. As default, there are two roles
defined in SmallWiki, as described in Table4.2.

Default Roles Description
administrator Can do anything (admin, view, edit, delete etc.).
anonymous Can view, edit and add pages (view, edit, add).

Table 4.2: The set of SmallWiki default roles.

SmallWiki Authentication. When a user first sends a request to the Wiki server,
the Wiki server considers him as the defaultanonymoususer. Theanonymous
user additionally possesses theanonymousrole. If it tries to access aprotected
resource - a resource where the anonymous user lacks the permission to perform the
requested action - the Wiki server denies the request and shows anaccess denied
page(see Figure4.1). On the next screen the server asks the user to log in by
presenting anauthentication form(see Figure4.2). Once this form has been filled
out and submitted, the Wiki server looks for the user account in order to perform
the userauthentication.

32 CHAPTER 4. SECURITY IN OPEN COLLABORATIONS

Figure 4.1: The access denied page.

Figure 4.2: The login screen.

4.4 Authorization in the SmallWiki Default Security Model

After the server hasauthenticatedthe username and password, theauthorization
is based on the privileges that a user has. These permissions are stored in roles. A
Wiki user usually owns one or several roles. If he does not own any role he does
not have any permissions at all. A role does not have to be static, since its set of
permissions may change through the Wiki site,e.g.,a role has the permission set
p1on foldera, and has a different permission setp2on folderb.

We explain in context of the SmallWiki Default Security Model how the server gets
the actual set of permissions that a user owns at a specific structure in the Wiki site.

To illustrate this mechanism we use three simple examples as follows:

1. Inheritance. A simple mechanism for updating roles. We show in this
example how the roles are inherited through the Wiki tree.

2. Redefinition. Modification of roles by redefinition. We explain how the
mechanism of inheritance is combined with redefinition of roles.

3. Problems. Redefining the roles of administrators.Problems that appear
in context with several administrators for the same Wiki part are illustrated.

4.4. AUTHORIZATION IN THE SMALLWIKI DEFAULT SECURITY MODEL33

These examples are structured as follows:

• Intention. We explain the purpose of the example.

• Setup.We illustrate the setup of the Wiki tree, the roles, and of the users.

• Activities after the setup1. We describe the actions of an administrator.

• Result. The consequences of the scenario are described. We might also
focus on the problems.

The users, permissions, folders, and roles of these examples are always created by
the site administrator. The labeling is done as follows:

• Users are labeledducasseandsally.

• Permissions are labeled withFolder Add, Folder View, Page View, etc..

• Folders are labeled witha andb.

• Roles are labeledr1, teacher, andsecretary.

The blue colored permissions in the Figures used in these examples indicate roles
that are defined locally, the yellow color marks roles that receive their permissions
by inheritance. These color settings depend on the included style-sheet file (see
SectionB.6.1). That is why there are also icons used to illustrate this characteristic:

• Icon ’+’. This icon indicate roles that are defined locally.

• Icon ’||’. This icon marks roles that receive their permissions by inheritance.

1used only for the last example.

34 CHAPTER 4. SECURITY IN OPEN COLLABORATIONS

4.4.1 Inheritance. A Simple Mechanism for Updating Roles.

Intention. Security policies are set up by the site administrator in the root of the
Wiki tree, and they are valid through the entire Wiki site since the policies are
inherited to the children of the root structure. We illustrate in this example the
inheritance mechanism for roles in its simplest way.

Setup. Wiki site with two folders and one role (see Figure4.3):

1. Wiki site with foldersa andb. b is sub-folder ofa.

2. Roler1 is attached on foldera with permissionsFolder AddandFolder View.

3. The roler1 is assigned to a user.

Figure 4.3:Setup to illustrate inheritance of roles.Wiki tree with two foldersa
andb. The roler1 is attached on foldera with permissionsFolder AddandFolder
View.

Result. SmallWiki structures - and their attached roles -inherit their security
policies from their containers. That is why it makes a given security policy easier
to maintain.

• On the foldera the user with the roler1 owns the permissionsFolder Add
andFolder Viewof the roler1.

• On the folderb the user owns the same permissions as on foldera, since its
role r1 gets these permissions byinheritance(see Figure4.4).

4.4. AUTHORIZATION IN THE SMALLWIKI DEFAULT SECURITY MODEL35

Figure 4.4: Result to show inheritance of roles. The roles of subfolderb are
inherited from foldera. The blue colored permissions with the icon ’+’ indicate
roles that are defined locally, the yellow color and the icon ’||’ mark roles that
receive their permissions by inheritance.

36 CHAPTER 4. SECURITY IN OPEN COLLABORATIONS

4.4.2 Redefinition. Modification of Roles by Redefinition.

Intention. The roles defined in the root folder can be modified by the administra-
tor on a certain subfolder in order to adjust the security settings. The administrator
is able to redefine every role on a folder, and these settings are valid in its subfold-
ers as long as they are not modified again. To illustrate this, the previous example
(see Section4.4.1) is extended.

Setup. The folderc is added as a sub-folder of folderb. On the folderb the
role r1 is redefined with the permissionsPage Addand Page View. These new
permissions are colored blue and marked with the ’+’ icon.

This scenario is set up as follows (see Figure4.5):

1. Wiki site with three foldersa, b andc. c is sub-folder ofb, b is sub-folder of
a.

2. Roler1 is attached on foldera with permissionsFolder AddandFolder View.

3. Roler1 is attached on folderb with the permissionsPage AddandPage View.

4. User with the roler1.

Figure 4.5:Setup to illustrate redefinition of role r1. The roler1 is redefined on
folderb.

Result. As illustrated in Figure4.6, the user with the roler1 visiting folder a
owns the two permissionsFolder AddandFolder View. On folderb it owns the
permissionsPage AddandPage View, since its roler1 has been redefined. Finally
when the user is visiting folderc it still owns the permissionsPage AddandPage
View, because the roler1 on folderc inherit its permissions from the roler1 of
folder b. This mechanism makes it possible for the administrator to adjust the
security settings for any subtree of the Wiki.

4.4. AUTHORIZATION IN THE SMALLWIKI DEFAULT SECURITY MODEL37

Figure 4.6:Result to show the consequences of redefinition of the roler1. The
role r1 is redefined on folderb. Therefore the roler1 of folder c owns the permis-
sions form roler1 that is redefined on folderb.

38 CHAPTER 4. SECURITY IN OPEN COLLABORATIONS

4.4.3 Problems. Redefining the Roles of Administrators.

Intention. A Wiki site can contain more than one user with an admin role (see
Section4.3). The updating mechanism by inheritance applies to all roles, including
the roles that own anadmin permission(see Section4.3), and every administrator
can redefine all roles. This might have unwanted consequences for the administra-
tors,e.g.,they could be able to remove permissions from each other or could even
assign more permissions to themselves than they already own. This weakness of
the SmallWiki Default Security Model is illustrated in the following example.

Setup. The initial configuration is shown in Figure4.7.

• Wiki site with two foldersa andb. b is sub-folder ofa.

• The roleteacherwith the admin permissionsPage Admin, Folder Adminand
Resource Adminis added to the foldera.

• The rolesecretarywith the admin permissionsFolder AdminandPage Ad-
min is added to foldera.

• The userssallyandducasseare created.

• The roleteacheris assigned to the userducasse.

• The rolesecretaryis assigned to the usersally.

Figure 4.7:The setup of roles and users to illustrate unwanted side-effects.The
userssallyandducasseown admin permissions on foldera.

4.4. AUTHORIZATION IN THE SMALLWIKI DEFAULT SECURITY MODEL39

Activities after the setup. Redefinitions by user sally: since the user namedsally
owns the admin permissionFolder Adminalso on folderb, it is able to remove the
permissionsResource Admin, Folder AdminandPage Adminfrom the roleteacher.
It can even add new permissions such asFolder HistoryandFolder Codeto the role
secretary. This is done byredefinitionof these roles on folderb. The consequences
of the activities ofsallyare displayed in Figure4.8.

Figure 4.8:The consequences of themaliciousacts of the administrator sally.
On the folderb, the administratorsally removed all permissions from userducasse,
and gave itself additionally permissions.

Result and problem. When we analyse the permissions of the two users cur-
rently visiting folderb, we face the facts that the userducassewith the roleteacher
really lost all its privileges, whereas the usersally with the rolesecretarygained
the permissionsFolder HistoryandFolder Code. This scenario displays a weak
point of the SmallWiki Default Security Model: on the one hand the administra-
tors are too powerful, since they are able to extend their own privileges and curtail
roles of another administrator. On the other hand their roles are not guarded from
such malicious acts by other administrators. Additionally an administrator is even
allowed to delete a user. The SmallWiki Extended Security Model introduced in
Section5.1focuses on these drawbacks and provides a solution.

Chapter 5

SmallWiki Extended Security
Model

The SmallWiki Default Security Model described in Chapter4 is powerful enough
for Wiki sites that are run by only one administrator. If there is more than one ad-
ministrator, they are able to abuse their privileges as seen in Section4.4.3. There-
fore we introduce a model that fulfils the pattern of safe delegation (see Sec-
tion 5.1.4) with several sector administrators. This model is called SmallWiki
Extended Security Model.

The principles of the SmallWiki Extended Security Model are explained and illus-
trated in this chapter.

5.1 Authorization in the SmallWiki Extended Security Model

The default permissions, roles, and users are the same as in the SmallWiki Default
Security Model. There are alterations in the SmallWiki Extended Security Model:

• The security policies are distributed on the Wiki tree by acquisition (see
Section5.1.1) instead by inheritance.

• As described in Section5.1.4, the administrators are not able to:

– change their own roles.

– delete any user and any role they want to.

– manage permissions that they do not own.

We explain how the server gets the actual set of permissions that a user owns at a
specific structure in the Wiki site.

To illustrate this mechanism we use four examples as follows:

40

5.1. AUTHORIZATION IN THE SMALLWIKI EXTENDED SECURITY MODEL41

1. Acquisition. A mechanism for updating roles by acquisition. We show
how the security policies are distributed by acquisition on the Wiki site.

2. Acquisition. Curtailing roles with the Barrier role. This example illus-
trates how the Barrier role is used to stopacquisitionfor an indicated set of
permissions at a certain point on the Wiki site.

3. Acquisition. Updating the roles of an administrator. An important rule
concerning the Barrier role and the administrators is introduced here.

4. Delegation. Providing safe delegation throughsecurity rules. We show
in this example, that an sector administrator can not modify or delete any
roles and any users it wants to. Therefore are introduced rules that restrict
the power of the sector administrators.

The examples of this chapter are structured as follows:

1. Intention. We explain the purpose of the example.

2. Setup.We illustrate the setup of the Wiki tree, the roles, and of the users.

3. Result. Finally the consequences of the scenario are described.

4. Explanation. We give further helpful commentaries.

The blue colored permissions in the Figures used in these examples indicate per-
missions that are added by locally defined roles. The yellow color marks permis-
sions that are acquired from parent roles. The permissions of the Barrier role are
highlighted with red color. These color settings depend on the included style-sheet
file (see SectionB.6.1). That is why there are also icons used to illustrate this
characteristic:

• Icon ’+’. This icon indicates permissions that are added by a locally defined
role.

• Icon ’||’. This icon marks permissions that are acquired from parent roles.

• Icon ’−’. This icon highlights permissions of the Barrier role.

42 CHAPTER 5. SMALLWIKI EXTENDED SECURITY MODEL

5.1.1 Acquisition. A Mechanism for Updating Roles by Acquisition.

Intention. We show how the security settings are distributed by acquisition on
the subtrees of a Wiki site. Therefore three folders and a role on the root folder are
created.

Setup. Wiki three with three folders and one role (see Figure5.1). Everything is
created by the administrator.

1. Wiki site with three foldersa, b andc. c is sub-folder ofb, b is sub-folder of
a.

2. Roler1 is attached on foldera with permissionsFolder AddandFolder View.

3. Roler1 is also attached on folderb with the permissionsPage AddandPage
View.

4. The roler1 is assigned to a user.

Figure 5.1:Setup to illustrate the mechanism for acquisition. Wiki tree with
three foldersa, b, andc. The roler1 is defined on foldera, and also on subfolder
b.

Result. Instead of overriding the roler1, its permissions areaddedto the parent
role (see Figure5.2).

• On the foldera the user owns the permissionsFolder AddandFolder View
of the roler1.

• On the folderb, the user owns the permissions of roler1 from foldera and
the permissions of roler1 from folderb. So it owns the permissionsFolder
Add, Folder View, Page AddandPage View.

5.1. AUTHORIZATION IN THE SMALLWIKI EXTENDED SECURITY MODEL43

• On the folderc the user owns the same permissions as on folderb.

Figure 5.2:Result of acquisition. Instead of overriding the role, its permissions
areaddedto the previously defined one.

Explanation of acquisition. The roler1 on folderb does not just own the per-
missions that are defined there. It owns the permissions from the roler1 of folder
b and also the permissions of roler1 of foldera.

If we apply the SmallWiki Default Security Model to this Wiki setup, the roler1
on folderb would only own the permissions that are re-defined on the roler1 of the
folder b. This is the major difference in updating roles between the two security
models. This new mechanism for updating roles is calledacquisition. It is also a
kind of inheritance, but instead of overriding the top role, its properties are added
to the child role.

SmallWiki structures - and their attached roles -acquiretheir security policies from
their containers. That is why it makes a given security policy easier to maintain.

44 CHAPTER 5. SMALLWIKI EXTENDED SECURITY MODEL

5.1.2 Acquisition. Curtailing Roles with the Barrier role.

Intention. SmallWiki also uses a special kind of role, theBarrier role . This role
is used to stopacquisitionfor an indicated set of permissions at a certain point on
the Wiki site. If there would not be a mechanism for stopping acquisition, the set
of permissions of a role would only grow or stay unmodified and never scale down.

Setup. We extend the example seen in Section5.1.1(see Figure5.3):

• Setup as on previous example.

• The folderd is added as a sub-folder of folderc.

• TheBarrier role is used on the folderd in order to stop acquisition for the
permissionsFolder AddandPage Add.

Figure 5.3:Setup to illustrate the usage of the Barrier role.Wiki tree with four
foldersa, b, c, andd. The roler1 is defined on foldera, and also on subfolderb.
The Barrier role is defined on folderd.

Result. The Barrier role has blocked a set of permissions on folderd (see Fig-
ure5.4).

• The security settings on the foldera, b andc are the same as on the example
seen before (see Section5.1.1)

5.1. AUTHORIZATION IN THE SMALLWIKI EXTENDED SECURITY MODEL45

• The roler1 on folderd owns the permissionsFolder ViewandPage View,
and has actually lost the two permissionsFolder AddandPage Add. These
are the two permissions that the Barrier role owns.

Figure 5.4:Result of the usage of the Barrier role. The Barrier role defined
on folderd stops the acquisition mechanism for the roles on folderd by the set of
permissions that it owns.

Explanation. All the roles are updated as expected from the root of the Wiki tree
until the folderc. Without the Barrier role defined on folderd, all the acquired
permissions of roler1 on folderc would also be acquired to the roler1 on folder
d. The Barrier role will stop the acquisition mechanism for a certain set of permis-
sions. More precisely, the acquisition is stopped for that set of permissions that is
owned by the Barrier role, namelyFolder AddandPage Add.

46 CHAPTER 5. SMALLWIKI EXTENDED SECURITY MODEL

5.1.3 Acquisition. Updating the Roles of an Administrator.

Intention. An important rule concerning the Barrier role and the administrators is
introduced here. The Barrier role has an effect on all roles, except for the roles that
are assigned to anadministratorthat is currently visiting the relevant structure. In
other words, when a user visits a resource, the acquisition mechanism only removes
theBarrier permissionsfrom the set of privileges of the roles of the visitor, if that
user does not own anyadmin permissions.

Figure 5.5:The setup of roles and users to illustrate acquisition for an adminis-
trator. The rolesanonymousandteacherare added to foldera. Userducassewith
rolesteacherandanonymousis created. Userdavidwith rolesr1 andanonymous
is created.

Setup. To illustrate this, we extend the Example seen before in Section5.1.2with
new roles and users (see setup in Figure5.5). This is done by the site administrator.

• The roleteacherwith the admin permissionsPage Admin, Folder Adminand
Resource Adminis added to the foldera.

• The roleanonymouswith the admin permissionsPage Add, Page View, Folder
Add, Folder View, Resource AddandResource Viewis added to foldera.

• The usersdavidandducasseare created.

• The rolesanonymousandteacherare assigned to the userducasse.

• The rolesanonymousandr1 are assigned to the userdavid.

5.1. AUTHORIZATION IN THE SMALLWIKI EXTENDED SECURITY MODEL47

Result. By analysing the permissions of the two users ducasse and david cur-
rently visiting the folderd, it appears that the roles ofducasse- a user with admin
permissions - did not lose any privileges at all, in contrast to the userdavid that
lost the Barrier permissionsFolder AddandPage Add(see results in Figure5.6).

Figure 5.6:Result. Acquisition for an administrator compared to a common
user. The administrator ducasse did not lose any permissions. The common user
david lost the Barrier permissions.

Explanation. Since the Barrier role has no effect foradministrators, no permis-
sions at all will be blocked for them, and they get the normal set of permissions by
acquisition.

This security policy guarantees that the permissions of the administrators can never
be scaled down by a Barrier role. Therefore an administrator cannot remove any
permissions from another one using the Barrier role. This is necessary to fulfill the
needs ofsave delegationdescribed in Section5.1.4.

48 CHAPTER 5. SMALLWIKI EXTENDED SECURITY MODEL

5.1.4 Delegation. Providing Safe Delegation throughSecurity Rules.

Intention. Out of the box, a SmallWiki site has two different users: asite admin-
istrator and ananonymoususer. The initialsite administratoris a user with the
nameadminand the roleadministrator, which allows it to perform any duty that
can be performed within the site and to use all the functions of the management
interface (see FigureC.1and FigureC.9).

The site administratorcan create other administrators. Therefore it must assign
one or several of the admin permissionsPage Admin, Folder AdminandResource
Adminto those users. These administrators are calledsector administrators, since
they are usually responsible for a certain part of the Wiki site. Asector adminis-
trator is also able to create roles and users and to manage them. Since the Barrier
role does not effect the permissions of an administrator, a sector administrator is
not able to curtail the privileges of other administrators, even if they visitits part
of the Wiki.

In this example a sector administrator cannot modify or delete any roles and any
users it wants to. There are rules that restrict the power of the sector administrators.

Setup. This scenario illustrates a school site with a sector administrator named
ducasse, that is able to manage its students. Therefore it creates the rolestudent,
creates users and assigns the rolestudentto these users. There is also the need
of a code expert, that is responsible to code on the whole site. Nobody but the
site administrator should be able to remove the permissionsFolder CodeandPage
Codefrom the code expert.

Thesite administratorhas created (see Figure5.7):

• the rolesanonymous, codeExpertwith the permissionsFolder CodeandPage
Code, secretary, andteacher(teacher as anadmin rolewith the permissions
Page Admin, Folder AdminandResource Admin).

• the usersanonymous, fred with role codeExpert, sally with role secretary
andducassewith rolesteacherandanonymous.

5.1. AUTHORIZATION IN THE SMALLWIKI EXTENDED SECURITY MODEL49

Figure 5.7: The roles and users created by thesite admin.

Figure 5.8: The roles and users created by the sector administratorducasse.

Since the userducasseowns the admin roleteacher, it is able to create roles and
users as follows (see Figure5.8):

• the rolestudentwith the permissionsFolder View, Page ViewandResource
View.

• the usersbuteraandvogel, both with the rolestudent.

50 CHAPTER 5. SMALLWIKI EXTENDED SECURITY MODEL

In the next two paragraphs we explain some security rules concerning the sector
administrators. These rules do not apply to the site administrator. In the first para-
graph we refer to the management of roles, and in the second one we refer to the
management of users. Both paragraphs are accompanied by a screenshot of the rel-
evant user management interface. The usage of the interface is described in detail
in ChapterC.

Explanation. Security Rules in Context with Management of Roles. The fol-
lowing rules concerning the management ofrolesapply to the sector administrators
(e.g., ducasse). Some of these rules are displayed on the roles management user
interface shown in Figure5.9.

Thesector administratorcan:

• use the Barrier role in order to stop the acquisition mechanism (see Sec-
tion 5.1.1). It can only assign the permissions that it owns himself to the
Barrier role.

• create new roles. The name must not be in use before.

• only assign permissions that it owns himself to roles.

• only delete roles that it has created and anylocal child role(see Section4.3).

5.1. AUTHORIZATION IN THE SMALLWIKI EXTENDED SECURITY MODEL51

Figure 5.9: The user management interface forroles presented for the sector ad-
ministratorducasse. Some checkboxes are disabled since the sector administrators
are not allowed to manage permissions that they do not own themselves.

52 CHAPTER 5. SMALLWIKI EXTENDED SECURITY MODEL

Explanation. Security Rules in Context with Management of Users. The fol-
lowing rules concerning the management ofusersapply to the sector administra-
tors. Some of these security rules are displayed in Figure5.10.

Thesector administratorcan:

• create new users. The name must not be in use before.

• only assign roles that it has created or that it owns.

• only manage (add/remove roles form a user) users that it has created.

• only delete users that it has created.

• only change passwords of users that it has created.

Figure 5.10: The user management interface foruserspresented for the sector
administratorducasse. It can only manage users that it has created, and assign
roles that it owns or that it has created. The other users and roles are not listed.

If a sector administratoris deleted, also theusersand theroles that this adminis-
trator has created will be deleted as well.

5.1.5 Summary.

Since any role on any Wiki node can be managed by administrators, they are able to
create a fine-grained security policy. The special security rules seen before that are
applied to a sector administrator are very important. They make sure that a sector
administrator can not abuse its admin permissions,e.g.,remove a set permissions
from another sector administrator, delete a role/user that it did not create itself, add
a set of permissions to itselfetc.

SmallWiki provides with this extended security model the ability tosafely delegate
capabilitiesto roles defined within different parts of a Wiki site. This is one of
the important and differentiating security features of the SmallWiki Extended Se-
curity Model. It is possible to grantsector administratorsthe capability to safely
administer users and their roles via the user management interface (see FigureC.1
and FigureC.9). This is calledsafe delegationbecause it is relatively safe to grant

5.1. AUTHORIZATION IN THE SMALLWIKI EXTENDED SECURITY MODEL53

users these kinds of privileges within a particular portion of a Wiki site, as it does
not put at risk the operating system security nor the Wiki security in other portions
of the site.

Weakness of safe delegation still refers to resource exhaustion (it is not possible
yet to control a user’s resource consumption), but it is possible to delegate these
capabilities to semi-trusted sector administrators in order todecentralizecontrol
of a web site, allowing it to grow faster and require less overview from a central
source.

Chapter 6

Security Scenarios for the
Extended Security Model

In this chapter we illustrate the power of the SmallWiki Extended Security Model.
The validation of the SmallWiki Extended Security Model is done based on secu-
rity scenarios. For a detailed description on how to set up these scenarios with the
graphical user interface, we refer to SectionC.

The default settings of SmallWiki with thesite administratorand theanonymous
usermay be sufficient for many simple websites and applications, especiallypublic-
facing sites which have no requirement for users to log in or compose explicitly
their own content. We show on the scenarios how to set up security policies start-
ing with a simple scenario and then going on to more complex ones.

We use four scenarios as follows:

• Scenario 1: Open Editing. A scenario where everybody is able toview,
add, andedit content.

• Scenario 2: Newspaper with Editors and Readers.A site for a newspaper
with two classes of users.

• Scenario 3: Managing Common and Private Resources.In this scenario
there are resources that two classes of people need to manage in common.

• Scenario 4: Delegating Control to Sector Administrators.This scenario
contains several sector administrators, which are responsible for their Wiki
part.

These scenarios are structured as follows:

• Intention. We explain the purpose of the scenario.

• Setup.We illustrated the setup of the Wiki tree, the roles, and of the users.

54

55

• Result. We describe the consequences of the scenario. We might also focus
on problems.

The blue colored permissions in the Figures used in these scenarios indicate per-
missions that are added by locally defined roles. The yellow color marks permis-
sions that are acquired from parent roles. The permissions of the Barrier role are
highlighted with red color. There are also icons used to illustrate this characteristic:

• Icon ’+’. This icon indicates permissions that are added by a locally defined
role.

• Icon ’||’. This icon marks permissions that are acquired from parent roles.

• Icon ’−’. This icon highlights permissions of the Barrier role.

56CHAPTER 6. SECURITY SCENARIOS FOR THE EXTENDED SECURITY MODEL

6.1 Scenario 1: Open Editing.

Intention. A security policy is created for a simpleopen editingweb site. Any-
body should be able toview, addandedit content. There is no need to know who
has made the changes.

Setup. The roles and users are used as they come out of the box with the default
SmallWiki installation. (see Figure6.1).

• Roles:

– administrator . All permissions.

– anonymous. With permissionsPage View, Page Add, Page Edit, Folder
View, Folder Add, Folder Edit, Resource Add, Resource ViewandRe-
source Edit.

• Users:

– site administrator. With roleadministrator.

– anonymous. With roleanonymous.

Figure 6.1:Scenario 1. Open editing policy.Everybody can view, edit, and add
content.

Result. In this scenario, theanonymous userhas the privileges ofviewing, edit-
ing, andaddingcontent to the site, while thesite administratoris still privileged
to view the history, restore older versions, delete pages, manage roles and users
etc. This security policy is valid through the entire Wiki site since SmallWiki roles

6.1. SCENARIO 1: OPEN EDITING. 57

get their security policies from their parent roles by acquisition (see description in
Section5.1.1).

58CHAPTER 6. SECURITY SCENARIOS FOR THE EXTENDED SECURITY MODEL

6.2 Scenario 2: Newspaper with Editors and Readers.

Intention. A site for a newspaper is set up. Therefore two classes of users are
needed:

• Readers. These users are only allowed to view the content of the site.

• Editors. They are responsible for the content of the site.

Setup. The setup is illustrated on Figure6.2.

Figure 6.2:Scenario 2. Site with two classes of users.Readers - the anonymous
users - can only view content, and editors are responsible to edit and add content.

There areeditors, that are responsible for editing and adding content. Theanony-
mous user- the reader - is only allowed to view the content on the Wiki site. All
needed roles are created on the root folder of the Wiki tree by the site administrator.

• Roles:

– administrator : owns all permissions.

6.2. SCENARIO 2: NEWSPAPER WITH EDITORS AND READERS. 59

– editor: with permissionsPage View, Page Add, Page Edit, Folder View,
Folder Add, Folder Edit, Resource Add, Resource ViewandResource
Edit.

– anonymous: with permissionsPage View, Folder ViewandResource
View.

• Users:

– site administrator: with roleadministrator.

– editor: with roleseditor andanonymous.

– anonymous: with roleanonymous.

Result. As long as a Wiki user only requests toview the content of the site, the
Wiki server assigns the useranonymousto this visitor. When the user wants to
perform the actionedit, the server will deny to process the edit request. The server
asks the visitor to log-in in order to performauthentication. After successfully
logging in aseditor, the server assigns the roleeditor to it, performsuser autho-
rization and the visitor is able to edit the content of the site. Since the roles are
only defined at the root folder, the security policies are in effect on the entire Wiki
tree.

60CHAPTER 6. SECURITY SCENARIOS FOR THE EXTENDED SECURITY MODEL

6.3 Scenario 3: Managing Common and Private Resources.

Intention. A Wiki Site of a company with programmers and salespeople. This
scenario containsprogrammersandsalesmenand represents a Wiki site for a soft-
ware engineering company. There are two classes of users,programmersandsales-
menthat are able to view the content of the entire site. In general the programmers
and the salespeopleadd, admin, andedit the content of different web resources on
their own. However, there might be documents that both types of people need to
manage in common, such as advertisements that have to contain complex software
specifications. The permissions to manage the content on both resources cannot be
assigned to the two groups of users, because a programmer should not have free
access to all resources of the salesmen and vice versa. Therefore a new folder for
the shared resources is created. Both groups store the common resources in this
folder, and full access to this folder is given to both groups. To make it easier to
illustrate, we use only the permissions concerning theFolder (e.g., Folder View,
Folder Admin etc.) in this scenario.

Setup. The setup is illustrated on Figure6.3.

Figure 6.3:Scenario 3. Setup of a Wiki site, where resources have to be man-
aged in common by two classes of people.The permissions toadd, admin, and
edit are given on specific folders to the roles.

All roles and users are created by the site administrator. The root folder named
Company GeorgeComis created. The three folderssales resources, software re-
sourcesandcommon resourcesare appended as subfolders to the root folder. There
are several roles created on different folders:

6.3. SCENARIO 3: MANAGING COMMON AND PRIVATE RESOURCES. 61

• Roles on folderCompany GeorgeCom

– programmers. With permissionFolder View.

– salesmen. With permissionFolder View.

• Roles on foldersales resources

– salesmen. With permissionFolder AdminandFolder Edit.

• Roles on foldersoftware resources

– programmers. With permissionFolder AdminandFolder Edit.

• Roles on foldercommon resources

– programmers. With permissionFolder AdminandFolder Edit.

– salesmen. With permissionFolder AdminandFolder Edit.

Result. Both groups of users are responsible for their private resources on their
own: the salesmen for the foldersalesand the programmers for the foldersoft-
ware). They are additionally able to manage the common resources on foldercom-
mon. Both groups of users are able to view the content, since they received the
permissionFolder Viewfrom their role defined in the root folder (see Figure6.4).

Problem. There might still be problems when resources are being edited by dif-
ferent people at the same time: it is all too easy to overwrite each others’ changes
unless the editors are careful. Some editors, like GNU Emacs [23], try to make sure
that the same file is never modified by two people at the same time. Unfortunately,
the web browsers (e.g.,Mozilla) and the SmallWiki server do not support such a
safeguard. The changes are always accessible by the history tool of SmallWiki, so
that an administrator is able tomergethe changes if necessary.

62CHAPTER 6. SECURITY SCENARIOS FOR THE EXTENDED SECURITY MODEL

Figure 6.4:Scenario 3. Result. Wiki site where two groups of users are able to
manage common resources.Thesalesmenand theprogrammersare responsible
for their private resources on their own. Additionally both groups of users are able
to manage the shared resources in common.

6.4. SCENARIO 4: DELEGATING CONTROL TO SECTOR ADMINISTRATORS.63

6.4 Scenario 4: Delegating Control to Sector Administra-
tors.

Intention. Thepattern of delegationis central to the SmallWiki Extended Secu-
rity Model. We can collect resources in folders, and create roles in these folders in
order to manage their contents (see description of delegation on Section5.1.4). A
scenario with a Wiki site for a University is used to illustrate this. Thesite adminis-
trator creates asector administratornamedese administratorfor the ESE1 lectures
and delegates the management of those resources to it. Thisese administratorcre-
ates a sector administrator for every subfolder (group01, group02, group03) and
delegates the responsibility for those resources to them.

Setup of the Wiki tree. The folderUniversity of Bernis created as the root of
the Wiki site. TheLecturesfolder is added as a subfolder of it.ESEis a subfolder
of Lecturesand contains the three subfoldersgroup01, group02andgroup03(see
Figure6.5).

Figure 6.5:Scenario 4. Setup of the folders of a school site.Wiki tree with six
folders.

Setup of the roles and users. The management of theESEfolder in this Wiki
site is delegated over to anese administrator. Thisese administratorshould not be
able to change any structures which live outside theESEfolder, that is why theese
admin roleis not defined outside of theESEfolder.

Thesite administratorcreates:

• the roleese administratorwith the admin permissionsFolder Admin, Page
AdminandResource Adminand other permissions on the folderESE.

• a new user namedmicheleand assigns the rolesese administratorandanony-
mousto the usermichele.

1Evolution of Software Engineering.

64CHAPTER 6. SECURITY SCENARIOS FOR THE EXTENDED SECURITY MODEL

The usermicheleis able to createsector administratorsfor the differentesegroup
folders. Activities of the usermichele:

• It defines the rolegroup01 adminwith the admin permissions on folder
group01.

• It creates a useradmin01and assigns the rolegroup01 adminandanonymous
to this new user.

• It does the equivalent on the foldersgroup02andgroup03.

The usersadmin01, admin02and admin03are now able to create and manage
group members such as users with the rolestudent01, student02, andstudent03on
their folder:

• Useradmin01creates rolestudent01on foldergroup01and a user named
harry with the new rolestudent01and the roleanonymous.

• The equivalent happens on foldersgroup02andgroup03:

– sallywith rolestudent02on foldergroup02.

– kirk with rolestudent03on foldergroup03.

These roles settings are shown in Figure6.6and the users properties are illustrated
in Figure6.7.

6.4. SCENARIO 4: DELEGATING CONTROL TO SECTOR ADMINISTRATORS.65

Figure 6.6:Scenario 4. The setup of roles on a school site.The roles are created
in order that responsibilities are safely delegated tosector administrators.

Figure 6.7: Scenario 4. Overview of the users and their properties in this
school site.Thesite administrator. The non-administratorsharry, sally, andkirk.
Thesector administrators michele, admin01, admin02, andadmin03.

66CHAPTER 6. SECURITY SCENARIOS FOR THE EXTENDED SECURITY MODEL

Result. To illustrate the effects of these security settings, some of the folders
and the users with their updated roles for the current folders are analyzed. The site
administrator namedadminis listed just once, since it always owns all permissions.

Result on folderUniversity of Berne (see Figure6.8)

• The site administrator namedadminalways keeps its set of all possible per-
missions.

• Since the rolesese admin, admin01, admin02, admin03, student01, stu-
dent02andstudent03are not defined on this folder yet, the users with these
roles only own the permissions which they get from theanonymousrole
(Folder View, Page ViewandResource View).

Figure 6.8: Scenario 4. Users with their updated roles on the root folderUniversity
of Bern

Result on folderLectures. Since no roles were added or modified on this folder,
the security settings for all users stay the same like on the folderUniversity of Bern.

6.4. SCENARIO 4: DELEGATING CONTROL TO SECTOR ADMINISTRATORS.67

Result on folder ESE (see Figure6.9) On this folder, the roleese adminwas
added. That is why only the permissions for the usermichelechange.

Figure 6.9: Scenario 4. Usermichelewith its updated roles on folderESE. The role
ese adminthat is assigned to the user michele has been created on this folder. All
other users keep their security settings from the folderLectures.

Result on folder group01 (see Figure6.10) The usersadmin01andharry gain
a set of permissions, because their rolesgroup01 adminandstudent01were added
on the current folder. The permissions of the other users stay the same as on the
parent folderESE.

Figure 6.10: Scenario 4. Usersadmin01and harry with their updated roles on
folderGroup01

68CHAPTER 6. SECURITY SCENARIOS FOR THE EXTENDED SECURITY MODEL

Anybody with the roleanonymousis still allowed to view the content on the fold-
ers group01, group02and group03. If the useradmin01decides to restrict the
view-access for other users on his wiki-part, it has to make use of the Barrier role.
Therefore it adds a Barrier role with the permissionsFolder View, Page Viewand
Resource Viewto the foldergroup01(see Figure6.11).

Figure 6.11: Scenario 4. User admin01 restricts the view access for foreign users.
Therefore it adds the Barrier role with the view permissions on folder group01.
Thereby the view permissions of role anonymous are removed on folder group01.

Summary. This scenario with several sector administrators defined on different
folders illustrates how save delegation is achieved for a Wiki site. Each sector ad-
ministrator is responsible for its part of the Wiki tree. Thispattern of delegation
is central to the SmallWiki Extended Security Model. We can collect resources
in folders and in their sub-folders, and design sector administrators that are re-
sponsible to manage the contents and users of their Wiki part. It is the assigned
responsibility of these administrators to manage the user privileges on their part of
the Wiki site.

Chapter 7

Formal Description of SmallWiki
Extended Security Model

This chapter provides a formal description of the SmallWiki Extended Security
Model. The relevant elements of the model such as structure, permission, Meta
role, useretc.are introduced, and it is shown how the roles of a user are computed
in context of a certain node of the Wiki tree.

The sections of this chapter are structured as follows:

1. Intro and definition. A short description is given, and the formulas are
defined.

2. Characteristics. The attributes of the element are explained.

3. In the context of the implementation. The element is described, as it ap-
pears in the SmallWiki implementation. This description repeats some of the
characteristics.

4. Computing. Formulas for computing are defined and examples of how to
use these formulas are given.

7.1 ContextC

First a contextC is set up. It contains the basic elements of the formal description.

C = (S, P, U,M,R, B)

• S: Structure. The structure is the basic entity of SmallWiki. It is either a
Folder, aPage, or aResource(see Section7.2).

69

70CHAPTER 7. FORMAL DESCRIPTION OF SMALLWIKI EXTENDED SECURITY MODEL

• P: Permissions. These are the individual actions a user is allowed to perform
in the system (see Section7.3).

• M: Meta Roles. Meta roles are containers of a set of permissions. These
roles are attached to a structure (see Section7.4).

• U: Users. The users are visiting the Wiki tree (see Section7.5).

• R: User Roles. User roles are containers of a set of permissions. These roles
are assigned to a user (see Section7.5).

• B: Barrier Roles. Barrier roles are containers of a set of permissions. These
roles are attached to a structure. These roles are used in order to remove a
set of permissions from Meta roles (see Section7.6).

7.2 StructuresSxn

Wiki Structures are nodes of the Wiki tree. The Wiki tree is a data structure ac-
cessed beginning at the root node. Each node is either a leaf or an internal node.
An internal node has one or more child nodes, and is called the parent of its child
nodes. All the children of the same node are siblings. Contrary to a physical tree,
the root is depicted at the top of the tree, and the leaves are depicted at the bottom
(see Figure7.1).

Figure 7.1: A Wiki tree with root, parent, children and leafs.

General. Nomenclature of the nodes with numbers.

• The root is labeledS0.

• Its sub-nodes are labeledS00, S01, S02, S03 etc.

• The subnodes ofS00 are labeledS000, S001, S002, S003 etc.

7.2. STRUCTURES SXN 71

• The subnodes ofS01 are labeledS010, S011, S012, S013 etc.

• Abstract. The subnodes ofSxxxx are labeledSxxxxi ; x, i ∈ {0..9}.

The enumeration is illustrated in Figure7.2

Figure 7.2: Wiki tree made out of structure-nodes to illustrate the nomenclature.

Abstract. Nomenclature of the nodes with the set of unique one-digit symbols.
The previous example used only the set of one-digit numbers in order to differ one
sibling from another. But this limits the number of children to ten. To improve the
formal description we are using one-digit unique symbols. Therefore we introduce
the setA:

A = the set of one-digit unique symbols

and therefore

[a-z, A-Z, 0-9,α− ζ] ⊂ A

In order to describe any node in the Wiki tree, we say that

Sx · · ·x︸ ︷︷ ︸
n

= Sxn , n ∈ N, x ∈ A

E.g.,to refer to the nodeSxxxxu we write

Sxxxxu = Sx4u; x, u ∈ A

and the children ofSx4 are labeledSx4i ; x, i ∈ A.

72CHAPTER 7. FORMAL DESCRIPTION OF SMALLWIKI EXTENDED SECURITY MODEL

7.2.1 Characteristics

• A structure has a parent (exception: the root of the Wiki tree has no parent).

• A structureSxn can have childrenSxni for n ∈ N.

• A structureSxn can have siblingsSxn−1i for n ≥ 2.

• A structure can have Meta Role(s)Mi (see Section7.4).

7.2.2 In the context of the implementation

• The wiki site is set up as a Wiki tree. Its nodes are structures.

• A structure is either a folder, a page or a resource (see Section3.6).

• Only a folder can have children.

• A structure has a set of permissions, which describe what actions can be
performed on it.

7.3 PermissionsP

The permissions are the individual actions a user is allowed to perform in the sys-
tem.

First we define the total set of the permissionsTP as they occur in the implemen-
tation of SmallWiki. Then this set is pulled together with our formal description
and the total set of permissionsP used in this context is defined.

• Folder PermissionFP . There are permissions which are applied in context
of aFolder as follows:

FP = {Folder Add, Folder Admin, Folder Code, Folder Copy,
· · · Folder Edit, Folder History, Folder Move,
· · · Folder Remove, Folder Template, Folder V iew}

• Page PermissionPP . There are permissions which are applied in context
of aPageas follows:

PP = {Page Add, Page Admin, Page Code, Page Copy,
· · · Page Edit, Page History, Page Move, Page Remove,
· · · Page Template, Page V iew}

• Resource PermissionRP . There are permissions which are applied in con-
text of aResourceas follows:

7.3. PERMISSIONS P 73

RP = {Resource Add,Resource Admin,Resource Copy,
· · · Resource Edit, Resource History,Resource Move,
· · · Resource Remove,Resource V iew}

• Total set of permissionsTP .

TP = FP ∪ PP ∪RP

PermissionsP in the formal system.

The set of permissionsP in this formal system is defined as follows:

P = {px| ∀x ∈ TP : px ∈
B︷︸︸︷

[0, 1]}

I.e., the indexing of the elements ofP is done via the names of the permissions.

The value of a permission is either0 or 1. 0 meansfalse, and1 meanstrue. In this
formal description we are using the values0 and1, because it is more common to
calculate with these values in context with vectors.

7.3.1 Characteristics and example

A set of permissions is used to create Meta Roles (see Section7.4) and user roles
(see Section7.5.1). A permission is a boolean which describes if a certain privilege
exists.

E.g.,the permission

p(Folder V iew) = 1

means, that the permission with nameFolder Viewexists, whereas the permission

p(Folder History) = 0

does not exist.

7.3.2 In the context of the implementation

A permission represents a privilege in the system and is the basic entity for the
security management. The permissions are the individual actions a user is allowed
to perform in the system. The names of the permissions defined in the setTP are
also used in the SmallWiki implementation.

74CHAPTER 7. FORMAL DESCRIPTION OF SMALLWIKI EXTENDED SECURITY MODEL

7.3.3 Admin PermissionsAP

There are some admin permissionsAP that allow one to perform admin actions on
a Structure. The set of admin permissionsAP is defined as follows:

AP = {px|x ∈ [Folder Admin, Page Admin,Resource Admin]}

This set of admin permissionsAP will classify the users in the systems into two
groups:

1. Admin users. Users in the system that own an admin permission. They are
also calledadministrators, and are described in Section7.5.3.

2. Ordinary users. All other users.

7.4 Meta RolesM

Meta Roles are containers of permissions. Meta Roles are attached on the nodes of
the Wiki tree. They are used in order to compute the final set of roles of a user as
described in Section7.7. A Meta RoleMi is a vector1and is described as follows:

Mi = |mi| with elementsmix ∈ P andx ∈ TP

To describe that a Meta RoleMi is attached to a structureSxn we write

Mi ./ Sxn

Now we can describe the Meta Roles dependent on their container.I.e., if we want
to access the Meta RoleMi of structureSxn :

Mi(Sxn) = |mi| with elementsmix ∈ P, x ∈ TP andMi ./ Sxn (7.1)

7.4.1 Characteristics

• Meta Roles are defined on a elementSxn of the Wiki tree.

• A Meta Role is a vector. Its components are boolean values that define a
specific abstract permission.

1all vectors used in this chapter have the same length, and their elements are ordered in the same
way via index i∈ TP .

7.5. USER UX AND ITS SET OF ROLES R(UX) 75

7.4.2 In the context of the implementation

• A Meta Role is static through the Wiki tree until it is redefined by the admin-
istrator (see Section7.5.3), or modified by the Barrier role (see Section7.6).

• The Meta Roles are used in order to compute the roles of a user, that is
visiting a certain structure of the Wiki tree.

7.4.3 Computing. Creation and modification of Meta Roles

• Meta Role on structureSxn can be created and modified.

• The creation and modification rules of Meta roles are the same as for the
Barrier role described in Section7.6.2.

7.5 UserUx and its set of RolesR(Ux)

A user can visit the nodes of a Wiki tree and perform actions on these nodes.
Permissions can also be assigned to users via roles. These permissions are the
individual actions a user is allowed to take in the system. The set of UsersU is
described as follows:

U = {ux|x ∈ [0, · · · ,m],m ∈ N}

7.5.1 Roles of a UserR(Ux)

A role is - similar to a Meta Role - a vector made out of permissions. The com-
ponents of a role vector are boolean values. One or several roles are assigned to a
user. Thereby the user gets a set of permissions.

A single roleRi is described as follows:

Ri = |ri| with elementsrix ∈ P andx ∈ TP

A role Ri can be assigned to a userUx. To describe this, we write:

Ri ./ Ux

A UserUx owns one or several rolesR(Ux):

R(Ux) = {Ri|i ∈ [0, · · · ,m],m ∈ N, Ri ./ Ux} (7.2)

76CHAPTER 7. FORMAL DESCRIPTION OF SMALLWIKI EXTENDED SECURITY MODEL

7.5.2 Permissions of a UserP (Ux)

The set of permissionsP (Ux) that a UserUx owns are the permissionspi ∈ P
which boolean values are set to 1. This setP (Ux) is defined as follows:

P (Ux) = {pu|∀ |ur| ∈ R(Ux) with elementspu ∈ P : u ∈ TP andpu = 1}
(7.3)

7.5.3 Admin UsersAU

The admin users

AU = {ux|∃i ∈ TP : pi ∈ P (ux) andpi ∈ AP}

are allowed to perform admin actions on the system.

7.5.4 Characteristics

• A user can visit a node in the Wiki tree.

• A user has one or several role(s). The permissions of these roles may change
as the user travels through the nodes of the Wiki tree, since the roles are
dependent on the Meta roles of the Wiki tree (see Section7.7).

7.5.5 In the context of the implementation

• A user has one or several role(s). The set of the permissions contained in
these roles describes what actions this user can perform in the system.

• A role can be assigned to one or several users. That is how a set of permis-
sions is assigned to a user.

7.6 Barrier Role B

In this section we describe the Barrier role, how it is applied to Meta Roles, the
way an admin user can modify it, and how its value is set in context of a certain
user. The Barrier RoleB is used to set a certain set of permissions of Meta Roles
to zero.

A Barrier RoleB is a vector

B = |b| with elementsbx ∈ P andx ∈ TP

7.6. BARRIER ROLE B 77

with default value

B = |b| with elementsbx = 1 andx ∈ TP

7.6.1 Characteristics

• An admin user can modify it.

• A Barrier Role is attached on structuresSxn just like a Meta Role.

• There is exactly one Barrier Role on a structureSxn .

• The Barrier Role is used to set up a barrier for certain permissions of Meta
Roles. The barrier is set for those permissions of the Meta Roles, wherever
the values of the Barrier Role are set to zero.I.e., if we want to set up a
barrier for the permission with indexFolder View, we set the element with
that index on the Barrier role to zero.

7.6.2 Computing

Barrier role in context of the Wiki tree. A Barrier role is attached on a node of
the Wiki tree just like Meta Role. In order to access the Barrier role vector|b| of
structureSxn we write:

B(Sxn) = |b|, with |b| ./ Sxn

Barrier role in context of the Meta Roles. We describe how the Barrier role
can remove some permissions from a Meta Role. When we talk aboutremoving a
permissionpi from the Meta RoleMx, we mean that the elementpi of the Meta
Role vector is set to zero. The vector elementsbp of the Barrier role with value
zero are the ones that will be removed from the Meta Roles.

The functionf(b,Mi) applies the Barrier role|b| to one Meta RoleMi

f(b,Mi) = |b| ∧Mi (7.4)

Example.

• Barrier role with vector |b| = 〈1, 1, 0〉
• Meta role with vector |v| = 〈1, 0, 1〉

f(b,Mi) = |b| ∧ |v| =

1
1
0

 ∧

1
0
1

 =

 1
0
02

78CHAPTER 7. FORMAL DESCRIPTION OF SMALLWIKI EXTENDED SECURITY MODEL

The function g(b,Mi) applies the Barrier role |b| to a set of Meta Roles M

g(b,M) = |b| ∧

(
m∨

i=1

(Mi|Mi ∈ M, m ∈ N)

)

Barrier role in context of the User. Barrier Roles are not applied to an admin
user,i.e., a Barrier Role can not remove permissions of a admin user. Therefore
the default Barrier role will be used for the admin user.

B (U) (Sxn) =

1
1
...

1

 , U ∈ AU

B (Sxn) , U /∈ AU

(7.5)

Modification of a Barrier role using a modifier vector. An administrator is not
allowed to set up a Barrier role in the way it wants to. It can only modify those
permissions of the Barrier roles, that it owns itself via its roles. We define a rule
that describes how an administrator can edit the Barrier roleB. Therefore we
introduce the modifier vector. The administrator can only change a Barrier role via
this modifier vector.

• →
u : Permission vector of an administrator.

• →
vi: The administrator can set up a modifier vectorvi such that:

|u| =
m∨

i=1

vi, m ∈ N

•
→
b : Permission vector of Barrier.

• Activate (set vector elements in Barrier role to 0) a set of permissions
in Barrier role. If the admin user wants to set up a barrier for a certain
permissionspx, it sets the element in the modifier vector|vi| with indexx to
one, and the formula

B = ¬→vi ∧
→
b

is applied.

2set to zero by Barrier role

7.6. BARRIER ROLE B 79

• Deactivate (set vector elements in Barrier role to 1) a set of permissions
in Barrier role. If the admin user wants to remove a barrier for a certain
permissionspx, it sets the element in the modifier vector|vs| with indexx to
one, and the formula

B =
→
vs ∨

→
b with |u| =

m∨
i=1

vs, m ∈ N

is applied.

• Result. This rule describes how an admin user can edit the Barrier Role

B = (¬→vi ∧
→
b) ∨ (

→
vs ∨

→
b)

Example of a modification of Barrier role by an admin user.

• Permission vector of admin user on Structure Sxn is

1
0
1
0

• Permission vector of Barrier role on Structure Sxn is

1
1
0
0

 , the 0-flags have been set by

some other admin user.

1. Intention 1. Activate (set vector elements in Barrier role to 0) as many flags in the Barrier
role as possible. Therefore the admin user sets as many elements of the modifier vector vi to
one.

⇒ vi =

1
0
1
0

¬→vi ∧
→
b = ¬

1
0
1
0

 ∧

1
1
0
0

 =

0
1
0
1

 ∧

1
1
0
0

 =

0
13

0
0

2. Intention 2. Deactivate (set vector elements in Barrier role to 1) as many flags in the Barrier

role as possible. Therefore the admin user sets as many elements of the modifier vector vs to
one.

⇒ vi =

1
0
1
0

→
vs ∨

→
b = ¬

1
0
1
0

 ∨

1
1
0
0

 =

1
1
1
04

3admin user could not activate this flag, because it does not own that permission
4admin user could not deactivate this flag, because it does not own that permission

80CHAPTER 7. FORMAL DESCRIPTION OF SMALLWIKI EXTENDED SECURITY MODEL

7.7 Computing Roles of a User

Summary.

• StructureSxn has a set of Meta RolesM1(Sxn), · · · ,Mn(Sxn), see (7.1).

• UserUi has a set of rolesR1, · · · , Rm. This set of roles is described with
R(Ui), see (7.2).

• Barrier Role on structureSxn in context of the userUi is B(Ui)(Sxn), see
(7.5).

• Functionf(b,Mi) applies the Barrier role|b| to one Meta RoleMi, see
(7.4).

7.7.1 Computing the Roles of a User

Computing without Barrier role. The RolesR of a userUi are computed as
follows:

R1(Ui)(Sxn) =
∨n

i=1 M1(Sxi)
R2(Ui)(Sxn) =

∨n
i=1 M2(Sxi)

...

and therefore we get

Rm(Ui)(Sxn) =
n∨

i=1

Mm(Sxi) with n ∈ N (7.6)

The roles of the userUi are:R(Ui) (see (7.2)) and its set of permissions isP (Ui)
(see (7.3)).

Computing with Barrier role. The Barrier role will stop the acquisition mech-
anism for some permissions. We are using a recursion to calculate the roleRa of
the userUi on structureSxn .

Ra(Ui)(Sx) = Ma(Sx)
Ra(Ui)(Sx2) = Ma(Sx2) ∨ f(B(Ui)(Sx2),Ra(Ui)(Sx))
Ra(Ui)(Sx3) = Ma(Sx3) ∨ f(B(Ui)(Sx3),Ra(Ui)(Sx2))
...
Ra(Ui)(Sxn) = Ma(Sxn) ∨ f(B(Ui)(Sxn),Ra(Ui)(Sxn−1))

The roles of the userUi are:R(Ui) (see (7.2)) and its set of permissions isP (Ui)
(see (7.3)).

7.7. COMPUTING ROLES OF A USER 81

7.7.2 Example for Computing the Roles of a User

A simple Wiki tree is set up that contains some Meta roles. It is shown how the
roles of a user are computed on the Wiki nodeS000. The vectors used in this
example have a length of four and are ordered by the index sequence:Folder View,
Folder Edit, Folder HistoryandFolder Remove.

Setup. Wiki tree

• Wiki tree with rootS0.

• Subfolders ofS0 areS00 andS01.

• Subfolders ofS00 are labeledS000 andS001 .

Setup. Meta roles and Barrier role.

• M1(S0) = 〈1, 0, 0, 0〉

• M1(S00) = 〈0, 1, 1, 0〉

• M1(S000) = 〈1, 0, 0, 0〉

• M2(S0) = 〈0, 1, 0, 1〉

• M2(S00) = 〈1, 0, 0, 0〉

• M2(S000) = 〈0, 0, 1, 0〉

• B(S000) = 〈1, 0, 1, 1〉

Setup. User and its roles R.

• UserUi with RolesR1 R2.

Result. Computing the roles without the Barrier role. When calculating with-
out the Barrier role, the vectors are simply added as described on (7.6).

R1(Ui)(Sx3) =
3∨

i=1

M1(Sxi)

=

1
0
0
0

 ∨

0
1
1
0

 ∨

1
0
0
0

 =

1
1
1
0

82CHAPTER 7. FORMAL DESCRIPTION OF SMALLWIKI EXTENDED SECURITY MODEL

R2(Ui)(Sx3) =
3∨

i=1

M2(Sxi)

=

0
1
0
1

 ∨

1
0
0
0

 ∨

0
0
1
0

 =

1
1
1
1

and therefore the permissions that are set to one are:

P (Ui)(Sx3) = {px|x ∈ {Folder View, Folder Edit, Folder History, Folder Remove}}

Result. Computing the roles with the Barrier role. The Barrier role is always
considered in the computation. The roles are computed using the formula seen on
Paragraph7.7.1. The setup and the result is illustrated in Figure7.3.

Figure 7.3: Wiki tree with Meta roles, Barrier role and the computed user roles.

Computation for RoleR1(Ui)(S03):

7.7. COMPUTING ROLES OF A USER 83

R1(Ui)(S0) = M1(S0) = 〈1, 0, 0, 0〉
R1(Ui)(S02) = M1(S02) ∨ f(B(Ui)(S02),R1(Ui)(S0))

= 〈0, 1, 1, 0〉 ∨ f(〈1,1,1,1〉, 〈1,0,0,0〉)︸ ︷︷ ︸
〈1,0,0,0〉

= 〈0, 1, 1, 0〉 ∨ 〈1, 0, 0, 0〉 = 〈1, 1, 1, 0〉
R1(Ui)(S03) = M1(S03) ∨ f(B(Ui)(S03),R1(Ui)(S02))

= 〈1, 0, 0, 0〉 ∨ f(〈1,0,1,1〉, 〈1,1,1,0〉)︸ ︷︷ ︸
〈1,0,1,0〉

= 〈1, 0, 0, 0〉 ∨ 〈1, 0, 1, 0〉 = 〈1, 0, 1, 0〉

Computation for RoleR2(Ui)(S03):

R2(Ui)(S0) = M2(S0) = 〈0, 1, 0, 1〉
R2(Ui)(S02) = M2(S02) ∨ f(B(Ui)(S02),R2(Ui)(S0))

= 〈1, 0, 0, 0〉 ∨ f(〈1,1,1,1〉, 〈0,1,0,1〉)︸ ︷︷ ︸
〈0,1,0,1〉

= 〈1, 0, 0, 0〉 ∨ 〈0, 1, 0, 1〉 = 〈1, 1, 0, 1〉
R2(Ui)(S03) = M2(S03) ∨ f(B(Ui)(S03),R2(Ui)(S02))

= 〈0, 0, 1, 0〉 ∨ f(〈1,0,1,1〉, 〈1,1,0,1〉)︸ ︷︷ ︸
〈1,0,0,1〉

= 〈0, 0, 1, 0〉 ∨ 〈1, 0, 0, 1〉 = 〈1, 0, 1, 1〉

and therefore the permissions that are set to one are:

P (Ui)(Sx3) = {px|x ∈ {Folder View, Folder History, Folder Remove}}

Summary. This chapter provided a formal description of the SmallWiki Ex-
tended Security Model. We explained the most important elements of the Wiki
tree and its security components in a technical way. The rules of updating and
modifying roles were shown in a compact way.

The formulas being introduced in this chapter represent the model of SmallWiki
Extended Security Model. These formulas are not used in the Smallwiki imple-
mentation.E.g., in order to handle a set of permissions in the implementation we
usecollectionsinstead of vectors with a constant size.

Chapter 8

Conclusion

8.1 Summary

Security is an important issue for collaborative web environments. We introduced
Wiki with its open editing conceptand listed the problems such as vandalism. The
SmallWiki Default Security Model provided an easy and powerful system in order
to manage the users and their privileges. If there is more than one administrator,
they are likely to abuse their privileges as seen in Section4.4.3. Therefore we
introduced the SmallWiki Extended Security Model that fulfils the pattern of safe
delegation (see Section5.1.4) with several sector administrators. This approach
was validated by security scenarios.

Additionally we provided a formal description of the SmallWiki Extended Security
Model, a description of the user interface, relevant design aspects accompanied by
uml diagrams, and installation and configuration instructions for SmallWiki.

8.2 Future Work

In this Section we present some additional ideas and where possible extensions of
SmallWiki could lie.

IP banning to avoid Vandalism. Some Wiki engines allow banning individual
users from editing, which can be accomplished by banning their particular IP ad-
dress or their username, if they are using one. But many Internet Service Providers
assign a new IP address for each login, so that IP bans can often be circumvented
relatively easily.

To deal with the problem of changing IP addresses, we can use and extendedself-
expiring bansto all IP addresses in a particular range, thereby ensuring that the

84

8.2. FUTURE WORK 85

vandal cannot edit pages within a given timeframe, the underlying assumption be-
ing that this is often sufficient as a deterrent.

Accounting for Web Services. Most Wiki engines do not supply any logging
mechanism. Therefore it is not possible to provide the billing of web services.
To implement web services with cost, we need some sort of userauthentication,
authorization, andaccounting(AAA) [25]. This AAA technology fulfils the needs
for providing restricted access to the protected resources, and for billing the offered
services.

User authentication and authorization is already realised in the SmallWiki server.
But there is still the lack of supportinguser accounting.

Topic Maps. Topic maps [24] are a new ISO standard for describing knowledge
structures and associating them with information resources. Topic maps are also
destined to provide powerful new ways of navigating large and interconnected cor-
pora. They enable multiple, concurrent views of sets of information objects. The
structural nature of these views is unconstrained; they may reflect an object ori-
ented approach, or they may be relational, hierarchical, ordered, unordered, or any
combination of the foregoing. Moreover, an unlimited number of topic maps may
be overlaid on a given set of information resources.

Topic maps can be used:

• To qualify the content and/or data contained in information objects as top-
ics to enable navigational tools such as indexes, cross-references, citation
systems, or glossaries.

• To link topics together in such a way as to enable navigation between them.
This capability can be used for virtual document assembly, and for creating
thesaurus-like interfaces to corpora, knowledge bases, etc.

• To filter an information set to create views adapted to specific users or pur-
poses. For example, such filtering can aid in the management of multilin-
gual documents, management of access modes depending on security crite-
ria, delivery of partial views depending on user profiles and/ or knowledge
domains, etc.

• To structure unstructured information objects, or to facilitate the creation of
topic-oriented user interfaces that provide the effect of merging unstructured
information bases with structured ones. The overlay mechanism of topic
maps can be considered as a kind of external markup mechanism, in the sense
that an arbitrary structure is imposed on the information without altering its
original form.

Appendix A

Glossary

The list of the terms used in this diploma is given as follows:

• AAA. Authentication, authorization and accounting. A system in IP-based
networking to control what computer resources users have access to and to
keep track of the activity of users over a network.

• Accounting. The process of keeping track of a user’s activity while access-
ing the network resources, including the amount of time spent in the network,
the services accessed while there and the amount of data transferred during
the session. Accounting data is used for trend analysis, capacity planning,
billing, auditing and cost allocation.

• Admin permission. The permissionsFolder Admin, Page AdminandRe-
source Admin.

• Admin role. A role with an admin permission.

• Administrator. A user with an admin role.

• Anonymous role. A default role of SmallWiki with nameanonymousand
permissions toview, edit and toaddcontent.

• Anonymous user.A Wiki user with the roleanonymous.

• Apache.Apache is a freely available Web server that is distributed under an
open sourcelicense. Apache has been the most popular web server on the
Internet since April of 1996.

• Aquisition. Combination of inheritance and redefinition: the permissions
from the parent role are added to the child role. This mechanism is used in
the SmallWiki Extended Security Model.

86

87

• Authentication. The process of identifying an individual, usually based on
a username and password. Authentication merely ensures that the individual
is who he or she claims to be, but says nothing about the access rights of the
individual.

• Authorization. The process of granting or denying a user access to network
resources once the user has been authenticated through the username and
password. The amount of information and the amount of services the user
has access to depend on the user’s authorization level.

• CMS. Content Management System. Software that enables one to add and/or
manipulate content on a Web site.

• Collaboration. The act of combining the efforts of several parties. These
may include systems used for programming, writing among each others.

• Delegation. The act of delegating, or investing with authority to act for
another.

• Folder. A Folder is a node of the Wiki tree. The folder groups a number of
children,i.e., it can contain other structures.

• FTP. File Transfer Protocol. The protocol used on the Internet for exchang-
ing files. FTP works in the same way as HTTP for transferring Web pages
from a server to a user’s browser and SMTP for transferring electronic mail
across the Internet in that, like these technologies, FTP uses the Internet’s
TCP/IP protocols to enable data transfer.

• HTML. HyperText Markup Language. The authoring language used to cre-
ate documents on the World Wide Web. HTML is similar to SGML, although
it is not a strict subset.

• HTTP. HyperText Transfer Protocol. The underlying protocol used by the
World Wide Web. HTTP defines how messages are formatted and transmit-
ted, and what actions Web servers and browsers should take in response to
various commands. For example, when you enter a URL in your browser,
this actually sends an HTTP command to the Web server directing it to fetch
and transmit the requested Web page.

• Inheritance of a role. A role gets its set of permissions from a top role by
some sort of inheritance,i.e., a child role gets its permissions from the top
role.

• IP. Internet Protocol. IP specifies the format of packets, also called data-
grams, and the addressing scheme. Most networks combine IP with a higher-
level protocol called Transmission Control Protocol (TCP), which estab-
lishes a virtual connection between a destination and a source.

88 APPENDIX A. GLOSSARY

• ISO. International Organization for Standardization. A voluntary, nontreaty
organisation founded in 1946, responsible for creating international stan-
dards in many areas, including computers and communications. Its mem-
bers are the national standards organisations of 89 countries, including the
American National Standards Institute.

• Mime-type. Multipurpose Internet Mail Extensions. A specification for for-
matting non-ASCII messages so that they can be sent over the Internet. Many
e-mail clients now support MIME, which enables them to send and receive
graphics, audio, and video files via the Internet mail system. In addition,
MIME supports messages in character sets other than ASCII.

• MVC. Model View Controller. A way of partitioning the design of inter-
active software. Themodel is the internal workings of the program (the
algorithms), theview is how the user sees the state of the model and the
controller is how the user changes the state or provides input.

• Newsgroup.An on-line discussion group. On the Internet, there are literally
thousands of newsgroups covering every conceivable interest. To view and
post messages to a newsgroup, you need a news reader, a program that runs
on your computer and connects you to a news server on the Internet.

• P2P.Peer-to-peer architecture. Often referred to simply as peer-to-peer, or
abbreviated P2P, a type of network in which each workstation has equivalent
capabilities and responsibilities. This differs from client/server architectures,
in which some computers are dedicated to serving the others. Peer-to-peer
networks are generally simpler, but they usually do not offer the same per-
formance under heavy loads

• Page. A sole entity that contains a composite of documents modeling the
contents of the page that the user entered using the Wiki syntax. A Page is a
node of the Wiki tree.

• Permission.The individual action a user is allowed to perform in the system.

• Pull technology.The World Wide Web is based on a pull technology where
the client browser must request a Web page before it is sent.

• Push technology.In client/server applications, to send data to a client with-
out the client requesting it.

• Redefinition of a role. A role - that is already created at some higher level
in the Wiki tree - is created again.

• Resource.A Resource is a node of the Wiki tree. A resource might contain
any data, like images, videos, sounds, pdf or zip files. In fact it can be
anything that someone wants to include with the pages, or wants to provide
as a possibility to download.

89

• Role. Container of a set of permissions. A Role can be assigned to a user,
and can be attached on a structure of the Wiki tree.

• RSS.RDF Site Summary or Rich Site Summary. An XML format for syn-
dicating Web content. A Web site that wants to allow other sites to publish
some of its content creates an RSS document and registers the document
with an RSS publisher. A user that can read RSS-distributed content can use
the content on a different site. Syndicated content includes such data as news
feeds, events listings, news stories, headlines, project updates, excerpts from
discussion forums or even corporate information.

• Site administrator. The user with the nameadminand the roleadministra-
tor. It always owns all permissions in the Wiki site.

• SmallWiki. A Wiki implementation written in VisualWorks Smalltalk.

• SSH.Secure Shell. Developed by SSH Communications Security Ltd., Se-
cure Shell is a program to log into another computer over a network, to exe-
cute commands in a remote machine, and to move files from one machine to
another. It provides strong authentication and secure communications over
insecure channels. It is a replacement for rlogin, rsh, rcp, and rdist.

• SSL.Secure Sockets Layer. A protocol developed by Netscape for transmit-
ting private documents via the Internet. SSL works by using a private key
to encrypt data that’s transferred over the SSL connection. Both Netscape
Navigator and Internet Explorer support SSL, and many Web sites use the
protocol to obtain confidential user information, such as credit card num-
bers. By convention, URLs that require an SSL connection start with https:
instead of http:.

• Structure. The structure is the basic entity of SmallWiki. It is either a
Folder, aPage, or aResource.

• Updating a role. The mechanism of computing the role on a certain struc-
ture of the Wiki tree. This involves inheritance (on the SmallWiki Default
Security Model) or aquisition (on the SmallWiki Extended Security Model).

• Wiki tree. The Wiki tree is a data structure accessed beginning at the root
node. Each node is either a leaf or an internal node. An internal node has
one or more child nodes, and is called the parent of its child nodes. All the
children of the same node are siblings. Contrary to a physical tree, the root
is depicted at the top of the tree, and the leaves are depicted at the bottom.

• Wiki. A collaborative Web site comprised of the perpetual collective work
of many authors. A wiki allows anyone to edit, delete or modify content
that has been placed on the Web site using a browser interface, including the
work of previous authors. The term wiki refers to either the Web site or the
software used to create the site.

90 APPENDIX A. GLOSSARY

• WYSIWYG. What You See Is What You Get. relating to or being a word
processing system that prints the text exactly as it appears on the computer
screen

• XML. Extensible Markup Language. A specification developed by the W3C.
XML is a pared-down version of SGML, designed especially for Web doc-
uments. It allows designers to create their own customized tags, enabling
the definition, transmission, validation, and interpretation of data between
applications and between organizations.

• Zope. Z Object Publishing Environment. A free, open source Web applica-
tion platform used for building high-performance, dynamic Web sites.

Appendix B

SmallWiki in a Nutshell

SmallWiki has been implemented using VisualWorks 7, which can be downloaded
for free from the Cincom home-page [2]. To download the latest implementation of
SmallWiki itself use Cincom Public StORE or you can have a look at the goodies
directory within a current VisualWorks distribution.

B.1 Loading Into the Image

1. Load the bundle namedSmallWikifrom Cincom Public StORE or from the
goodies directory into your image. You will be asked to load additional
bundles like the Swazoo web-server [26] and the SmaCC parser generator
[16].

2. Load the package namedSmallwiki.Adminfrom Cincom Public StORE into
your image. This package is required if you want to use thesecurity ex-
tensionwith its security user interfacedescribed in sectionC and the fea-
tures ofsafe delegation(see Section5.1.4). Run the postload class method
SmallWiki.Structure migrateAction:SmallWiki.Advancedin order to register
theAdvancedmenu item into your Template. This postload method should
be executed automatically when loading the package, but if theAdvanced
menu item does not show up in theAdminmenu, re-run the method in the
workspace.

3. If you like to have example extensions available, also load the bundle called
SmallWiki Examples.

B.2 Running the Tests

1. Make sure you have the packageRBSUnitExtensionsinstalled.

91

92 APPENDIX B. SMALLWIKI IN A NUTSHELL

2. Locate the packageSmallWiki Tests, that contains all the SUnit tests of Small-
Wiki.

3. Select all the test-cases and click on run.

4. You should see a green bar, if all tests pass.

B.3 Starting a Server

1. While loading SmallWiki a workspace has opened automatically with useful
commands to run the web-server. Read through the whole text to see more
possibilities for configuration.

2. If you are in a hurry, just evaluate the first expression

server := SmallWiki.SwazooServer startOn: 8080

which starts the server on the port 8080.

3. Switch to your favorite web-browser and point it to

http://localhost:8080

4. Have a look at theInformation folderand read through those pages for im-
portant news published there.

B.4 Accessing the Admin Account

There are commands like changing the design, manage roles and users, removing
pages or modifying the history that require you to log-in. A default administrator
has been created during installation with the user-nameadminand the password
smallwiki. These default settings can be changed by using the provided workspace.
There is more advanced user-interface underway to manage all the security aspects
of SmallWiki.

B.5 Accessing the Admin Advanced Interface

When using the packageSmallWiki.Admin, theanonymous roledoes not have any
permissions and therefore the anonymous user is not allowed to access any re-
sources of the wiki site. To change this, you have to log-in asadminand access
the roles management interface by clicking on the links:Admin→ Advanced→
Security→ Roles Management(see FigureC.1). On this screen you can set the
permissions for the anonymous role (see sectionC.1).

B.6. STYLESHEETS, IMAGES AND JAVASCRIPT 93

B.6 Stylesheets, Images and Javascript

If you run SmallWiki on your own server, it is recommended that you download
some resources and customize your local SmallWiki settings. These adjustment
can be done by using the standard user interface and by using the VisualWorks
class browser. These resources should be downloaded to operate at full capacity,
since there is no guarantee that the development server is accessible at all times.
The style sheetsand thejavascript functionsare also stored as class comment of
SmallWiki.Memo.

B.6.1 Adding the Stylesheets

By default, SmallWiki is using a stylesheet namedstyle.css. So far, there are four
csstemplates available:

• standardblack/style.css

• standardblue/style.css

• standardgreen/style.css

• standardred/style.css

The packageSmallWiki.Adminwith its Advanceduser interface is using addition-
ally a separatestyle sheetfile namedstyleadmin.cssalso stored in these directories.

You can access and download all these needed files from the development server
www.iam.unibe.chby using a http browser. Therefore you can use the urls:

http://www.iam.unibe.ch/˜scg/smallwiki/standard_blue/style.css

and

http://www.iam.unibe.ch/˜scg/smallwiki/standard_blue/style_admin.css

After downloading and storing, you have to make these files accessible for your
web browser. For this you can use another web server likeapache. Another way is
to use theSmallWikisite. Therefore you have to add the style sheet files as attach-
ment to a structure in your site via the web interface (Contents→ add resource).

Thepathsto the style sheets can be set on the user interface by following the links:
Admin→ Stylesheets. To access this interface you have to log-in as useradmin.

At the end, the style sheet settings could look like this:

@import "http://myDomain/css/standard_blue/style.css";
@import "http://myDomain/css/standard_blue/style_admin.css";

94 APPENDIX B. SMALLWIKI IN A NUTSHELL

B.6.2 Adding the Images

The Advanced Interface is using a set oficons. There is azip file with all the nec-
essary images available that you can download with your web browser. Therefore
use the url:

http://www.iam.unibe.ch/˜scg/smallwiki/images/images.zip

Unzip and store these images on your web server and make them accessible in the
same way as the style sheets. Additionally you have to set the path to theimage
directorymanually with your Visualworks class browser.

e.g.,

SmallWiki.Advanced class >> pathToImageDirectory
ˆ’http://myDomain/images/’

B.6.3 Adding the Javascript

The Advanced user interface is using javascript for creating a collapsible Wiki tree
(see Figure5.2) and for showing the details of roles and users as pop window (see
Figure C.7) or in a separate html layer (see FigureC.8). To make use of these
features download and store the javascript file namedpopup.jsin the same way
you have done it with the style sheets and the images.

Download url:

http://www.iam.unibe.ch/˜scg/smallwiki/javascript/popup.js

Set the path to thejavascript filemanually with your Visualworks class browser.

SmallWiki.Security class >> popupScriptPath
ˆ’http://myDomain/javascript/popup.js’

B.7 Editing a Page

The syntax used to edit a SmallWiki page is simple and easy to remember.

Paragraphs. As carriage returns are preserved, simply add a newline to begin a
new paragraph.

Headers. A line starting with !s becomes a header line.

Horizontal Line. A line starting with (underscore) becomes a horizontal line. This
is often used to separate topics.

B.7. EDITING A PAGE 95

Lists. Using lines starting with #s and -s, creates a list: A block of lines, where
each line starts with - is transformed into a bulleted list, where each line is
an entry. A block of lines, where each line starts with # is transformed into
an ordered list, where each line is an entry.

Tables. To create a table, start off the lines with| and separate the elements with
|s. Each new line represents a new row of the table.

Pre-formatted. To create a pre-formatted section, begin each line with =. A pre-
formatted section uses equally spaced text so that spacing is preserved.

Links. To create a link, put it between two *. There are three different types of
links:

Internal Link. If the item exists in the SmallWiki (e.g.,*Title of Item*),
a link to that item shows up when the page is saved. In case the item
does not already exist, the link shows up with a create-button next to it;
click on it to create the new item.

External Link. If the link is a valid url (e.g.,*http://www.google.ch*), a
link to that external page shows up.

Mail Link. If the link is an e-mail address (e.g.,*self@mail.me.com*), a
link to mail that person shows up, but it is obfuscated to prevent robots
from collecting.

You can also alias all these links using>. So, you can create a link like
this: *Alias>Reference* . The link will show up as Alias, but link to
Reference. For images, the alias text will become the alternate text for
the image.

HTML. Use any HTML anywhere you want. Useful HTML tags are:

To make a string bold, surround it by and.

To make a string italic, surround it by<i> and</i>.

To underline a text, surround it by<u> and</u>.

The TableB.1 lists all the mark-up tags and compares them to the syntax ofSqueak-
Wiki [17] andWikiWorks[18].

96 APPENDIX B. SMALLWIKI IN A NUTSHELL

SmallWiki SqueakWiki WikiWorks
Heading !, !!, ... !, !!, ... !, !!, ...
Horizontal Rule - - -
Numbered List # # #
Bullet List - - *
Table | | {, |, }
Pre-formatted = = <pre>
Link *Reference* *Reference* [Reference]
Link Alias *Alias>Reference* *Alias>Reference* [Alias>Reference]
Smalltalk Code [Code] n/a n/a

Table B.1: SmallWiki Syntax compared to SqueakWiki and WikiWorks.

Appendix C

SmallWiki Management User
Interface

SmallWiki provides a user interface in order to set up the security policies. The
interface being described here refers to the SmallWiki Extended Security Model
(see Section5.1).

The security management is disposed in two major parts:

• Management of Roles. Roles can be created and deleted. Permissions can
be assigned to roles (see SectionC.1).

• Management of Users. This form is used to create new users and to change
passwords. Users can be deleted and roles can be assigned to users (see
SectionC.2).

From both of these management forms, anoverview screencan be visited by click-
ing on the linkgo to: overview. This overview provides a collapsible Wiki tree with
all updated roles that are attached on the nodes of the Wiki tree (see FigureC.8),
respectively lists all users with updated roles and their properties - a list of users
and roles that have been created by the current user (see FigureC.15).

C.1 Management of Roles

Roles can be attached to one or several structures. In order to create and manage
a role on the relevant structure, we have to make sure to visit the correct structure.
From there, we get theroles management interface(see FigureC.1) by follow-
ing the links: Admin→ Advanced→ Security→ Roles Management. Here the
following features are provided:

97

98 APPENDIX C. SMALLWIKI MANAGEMENT USER INTERFACE

Figure C.1: Roles management interface.

C.1. MANAGEMENT OF ROLES 99

Adding a Role (see FigureC.2).

• We enter the name of the role in the input field. The rolesadministratorand
barrier are reserved role names.

• To create the new role we click thecreate button.

Figure C.2: Adding roleanonymousto a structure.

The new role will appear on the policy overview table on the next screen (see
FigureC.3). This new role has no permissions assigned yet.

Figure C.3: Changing role properties.

100 APPENDIX C. SMALLWIKI MANAGEMENT USER INTERFACE

Changing Role Properties (see FigureC.3).

• We select or de-select the check boxes in the policy table in order to add
or remove certain permissions from a role. Roles are columns and permis-
sions are rows. Check boxes are used to indicate where roles are assigned to
permissions.

• We click thesave buttonto save the new settings.

The new settings will be visible on the next screen. We are only allowed to manage
permissions that we own ourselves.

Using a Barrier role (see FigureC.4).

• We select or de-select the check boxes on the very left in the policy table
in order to disable or enable acquisition (see description of delegation on
Section5.1.4) to all roles for the selected permissions. This column will not
show up in the root structure, since acquisition at the root top level does not
make sense.

• We click thesave buttonto save the settings.

Viewing Role Properties (see FigureC.3).

• By analysing the settings on the policy table we can figure out which priv-
ileges are assigned to the local roles. These settings are local and might
not match with the settings that the roles get by the dynamic mechanism of
acquisition (see Section5.1).

• To view the dynamically updated roles we click on the linkgo to: overview.
On the next screen we can see a collapsible Wiki tree with all the updated
roles for the corresponding nodes of the tree (see FigureC.8). The actual set
of permissions of a role might depend on the Barrier role and on the parent
role. SmallWiki has to update the role for a given node in the tree.

C.1. MANAGEMENT OF ROLES 101

Figure C.4: Using a Barrier role to enable and disable acquisition to all roles for
the selected permissions.

Deleting Roles (see FigureC.5).

• We click the check box of the roles to be deleted to select them.

• To delete the selected roles we click thedelete button.

Figure C.5: Deleting roles.

102 APPENDIX C. SMALLWIKI MANAGEMENT USER INTERFACE

We are only allowed to delete roles that we have created or any local child role - a
role that also exists in an upper node of the Wiki tree (see Section4.3). If we have
chosen a top role: this will also delete its child roles in the sub-structures.

Overview of All Updated Roles from the Current Structure on.

• We click on the linkgo to: overview.

• On the next screen, a collapsible Wiki tree with the current structure as
closed root folder appears. This closed structure folder is visible as click-
able icon (folder/page/resource).

• We click on the icon of the structure in order to list the updated roles of
that specific structure and to open the folder (see FigureC.6). By clicking
on the popup-icon next to the a role, a popup window with the permissions
of the role will appear (see FigureC.7). By clicking on the arrow-icon, the
permissions will be shown as a html layer (see FigureC.8). We have to make
sure to enable Javascript in our browser settings.

Figure C.6: Collapsible Wiki tree with nodes and updated appended roles.

C.1. MANAGEMENT OF ROLES 103

Figure C.7: View appended roles details as popup.

Figure C.8: View appended roles details as html layer.

104 APPENDIX C. SMALLWIKI MANAGEMENT USER INTERFACE

C.2 Management of Users

We are also allowed to create users. Users are valid through the entire WikiWeb.
In order to create a new user, we visit the relevantusers management interface
(see FigureC.9) by following the links:Admin→ Advanced→ Security→ Users
Management. Here the following features are provided:

Figure C.9: Users management interface.

Adding a User (see FigureC.10).

• We enter a username in the name field. The useradminis already defined and
can not be changed. The username can contain letters, spaces, and numbers
and it is case sensitive. We choose a password for the new user and we enter
it in the password and confirm fields.

• To create the new user we click thecreate button.

The new user will appear on the policy table (see FigureC.11) of the next screen
and has no roles assigned yet.

C.2. MANAGEMENT OF USERS 105

Figure C.10: Adding userSecretary.

Changing the Password of a User (see FigureC.10).

• We write the name and the password of the user into the corresponding form
fields.

• We click thecreate button.

We can only change the password of users that we have created ourselves, unless
we are thesite administratorthat has no restrictions.

Assigning Roles to Users (see FigureC.11).

• We select or de-select the check boxes in the policy table in order to add or
remove certain roles from a user.

• We click theSave buttonto save the new settings.

We can only assign roles that we have created or that we own ourselves. We can
give these roles only to users that we have created ourselves. We should also give
the roleanonymousto every user to make sure, that the users have at least the
permissions of a user that does not have an account at all.

Figure C.11: Assigning roles to users.

106 APPENDIX C. SMALLWIKI MANAGEMENT USER INTERFACE

Deleting Users (see FigureC.12).

• We click the check box to the right of the users to be deleted to select them.

• We click thedelete buttonto delete the selected users.

We are only allowed to delete users that we have created. When we delete a user,
also the users and the roles that we have created will be removed.

Figure C.12: Delete userSecretary.

Viewing User Properties and Updated Roles.

• We can view the roles that a user owns on the policy table (see FigureC.11).

• In order to view the updated roles of the users, we click on the linkgo to:
overview. On the next screen we can see the user details:

– Users and roles: a list of all users and their roles (see FigureC.13).

– We click on a role to view its updated permissions (see FigureC.14).

– We click on a user in order to view the details: (see FigureC.15).

∗ Roles created: a list with the roles that thisadministratorhas cre-
ated.

∗ Users created: a list with the users that thisadministratorhas cre-
ated so far.

C.2. MANAGEMENT OF USERS 107

Figure C.13: Overview over all users and their roles.

Figure C.14: View updated permissions of the roleanonymous.

Figure C.15: View users and roles that the site administrator namedadmin has
created.

Appendix D

SmallWiki Relevant Design
Aspect in Detail

This chapter is an extension of Chapter3, i.e.,we list the methods and provide each
with a short description.

The most widely used design patterns used in SmallWiki are the Composite [15]
and the Visitor [15] patterns.

Figure D.1: Core Design

All the classes seen in FigureD.1 are abstract. Their concrete subclasses will be
discussed in the following subsections. The subclasses ofWikiItem represent the
model in the MVC (Model View Controller) paradigm and might be visited using
subclasses of theVisitor hierarchy. As all the rendering is done within different
visitors, this part can be seen as theview. At last we have the controller, represented
by the hierarchy below theAction class. Actions are used to do modifications on
the model and to start the different visitors to generate the appropriate views.

D.1 Server

The basic serving is done with the chain-of-responsibilities design pattern [15] in
the serving protocol. Incoming requests are passed to the first possible candidate

108

D.1. SERVER 109

that is able to handle it. The request is analysed and processed within this structure
and if necessary processed or passed to one of its children (see FigureD.4).

Figure D.2: Server Setup

The server class has been designed to be subclassed and to provide a common in-
terface to different server implementations (see FigureD.2). A server might get
started using the messages#start, #startOn:, #startOn:host:ip:
or by simply instantiating using the message#new, configuring and starting man-
ually. The server is not a singleton, so there might be multiple instances running
within the same image.

server := SwazooServer startOn:8080.

The instance variableroot represents the root-entity of the Wiki tree, which is
usually a folder. When starting a new server, a default configuration will be created.
The write-accessor for the root on a running Wiki should not be called accidentally,
as all the subentries will be destroyed immediately without the possibility of going
back. In order to have a look at the model of the Wiki, the following expression
can be evaluated:

server root inspect.

The default server has no automatic storage mechanism assigned; this is basically
useful when developing for SmallWiki and saving the image manually. When us-
ing the Wiki in a production environment, a working storage-strategy should be
assigned and tests should be done extensively1.

1If someone develops other storage strategies, he should let us know as we are interested to
integrate them into the main-distribution.

110 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

• server storage:ImageStorage new

fast and secure persistence.

• server storage:nil

no persistence.

The responsibility to pass the request to the root node of the Wiki is taken by the
server. The exceptions are caught and displayed as a stack-dump on the client
side (see FigureD.3). The linkOpen Debuggercan be used to open the debugger
in VisualWorks within the context that caused the error and thus investigate the
problem further.

Figure D.3: Stack Dump in the Web-Browser

accessing-users

• Server >>userAdd:anUser

Add a new user to the receiver. Any user with the same user name will be
overridden.

• Server >>userAddAll:aUserCollection

Add a collection of new users to the receiver. Any user with the same user
name will be overridden.

D.1. SERVER 111

• Server >>userAt:aString

Return the user with aString as name, if there is no such user the default
anonymous user is returned.

• Server >>userAt:aString ifAbsent:anExceptionBlock

Return the user with aString as name, if there is no such user anException-
Block is evaluated.

• Server >>userAnonymous

Return the user with name anonymous.

• Server >>userIncludes:aString

Return true if the receiver has got a user with the given user name.

• Server >>userRemove:aString

Remove the user with the given user name from the receiver.

• Server >>users

Return a collection of all users.

• Server >>usersWithoutMainAdmin

Return a collection of users without the main administrator.

• Server >>roles

Return a set of roles of all the users.

configuration

• Server >>defaultRoot

Return the default Wiki that will be used when setting up a new server.

• Server >>defaultBasePath

Return the default base path used in the html page.

• Server >>defaultCallbackCache

Return the default callback cache.

serving

• Server >>isServing

Return true if the receivers web-server is up and running.

• Server >>restart

Restart the web-server of the receiver.

• Server >>start

Start the web-server of the receiver.

112 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

• Server >>stop

Stop the web-server of the receiver.

serving-private

• Server >>process:aRequest

Start the chain of responsibilities in the root of the Wiki. Any unhandled
exceptions thrown while processing the request will be displayed as a stack-
trace within the browser of the client.

• Server >>startUp

Start the server of the receiver if not already running.

Figure D.4: Chain of Responsibility: Content Serving

In order to edit the pagepagecontained in the folderfolder a user enters an URL
such as

http://www.smallwiki.org/folder/page?action=EditPage

Then the following steps, as seen in the collaboration diagram in FigureD.4, are
taken:

1. The web-server gets the request emitted by the client and starts the look-up
process by delegating it to the root folder.

2. Because the target is not the root chapter itself, the request is delegated to a
the folder calledfolder.

D.2. SECURITYINFORMATION 113

3. As in the previous step, in this folder the request is delegated at the page
calledpage.

4. There is no-one else that could be interested in this request, it is there-
fore processed by extracting the parameters and determining the action that
should be executed. In this example the classPageEdit will be instanti-
ated, initialised and the message#execute will be sent.

5. The action first checks the permissions of the user and evaluates the call-
backs, see page129for further information.

6. Then the action asks all the template-components to emit their html-header
and their html-body, see see page144for further information.

D.2 SecurityInformation

The abstract classSecurityInformation represents the security-information
in the system (see FigureD.5). Its responsibility is to check if the current user
has a certain permission. There is also the possibility to assert the presence of a
Permission in the current session. If no such permission is present, anUnautho-
rizedError is thrown and an error page will be rendered instead of the one of the
current action.

Figure D.5: The Security Hierarchy

testing

• SecurityInformation >>assertPermission:aPermission

Assert that aPermission is valid in the receiver, throws a UnauthorizedError
if the permission is missing.

114 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

D.3 Permission

A permission represents a privilege in the system and is the basic entity for the
permission management. A permission will be granted if it is equal to the given
permission. For a list of the permissions available in SmallWiki we refer to Ta-
ble4.1.

A permission will be usually used in conjunction with
User >>hasPermission:aPermission or User >>assertPermission .

accessing

• Permission >>name

Return the name of the receiver.

• Permission >>permissionListItemAsHtmlTextComparedWith:

oldPermissions fromBarrier:isBarrierRole

Return a html string with the receivers information (compare the receiver
with the permission of the oldPermissions collection and highlight the dif-
ference).

copying

• Permission >>copy

Return the receiver, because permissions should be unique.

• Permission >>shallowCopy

Also return the receiver, because permissions should be unique.

testing

• Permission >>hasPermission:aPermission

Return true if receiver equals aPermission.

• Permission >>isAdmin

Return true if receiver is an admin permission.

D.4 Role

Multiple permissions might get assigned to any role. A role can be assigned to a
user and can be attached to a structure. The roles on the structures are important
in order to change/update the roles of a user that is visiting this structure. A role
grants a certain permission if this permission is present in the set of the permission
of the role. For a list of the roles available in SmallWiki we refer to Table4.2.

D.4. ROLE 115

accessing-permissions

• Role >>permissionsAsAltText

Return the permissions of the receiver as proper alt text. unfortunately usable
only for IE.

• Role >>permissionsAsHtmlTextComparedWith:oldRole

Return a string with the permissions of the receiver compared with a certain
updated role (compare the permissions of the receiver with the old role and
highlight the difference, also add div admin, to make sure that css works in
popups)

testing

• Role >>hasPermissionAdmin

Return true if the receiver has an admin permission.

• Role >>isBarrier

Return true if the receiver is barrier role (used for stopping inheriting per-
missions from parent structure). Return false.

D.4.1 AdminRole

The AdminRole is used in conjuction with theMain Admin userand grants any per-
mission in the system: the messageRole >>hasPermission:aPermission
always returns true.

accessing

• AdminRole >>permissions

Return all permissions found in any structure.

• AdminRole >>name

Return stringadministrator.

testing

• AdminRole >>hasPermission:aPermission

Always return true, since this Role is the main admin role.

D.4.2 BasicRole

This role is relevant for all users but theMain Admin user. Permission will be
granted if any of the permission of the role grants the permission.

116 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

accessing-permissions

• BasicRole >>add:aPermission

Add aPermission to the receivers permission collection.

• BasicRole >>addAll:aCollection

Add a collection of permissions to the receivers permission collection.

• BasicRole >>do:aBlock

Evaluate aBlock on the receivers permissions.

• BasicRole >>remove:aPermission

Remove aPermission from the receivers permission collection.

• BasicRole >>removeAll:aSet

Remove a set of permission from the receivers permission collection.

copying

• BasicRole >>postCopy

Make sure to copy also the permissions of the receiver.

reflecting

• BasicRole >>title

ReturnAdmin Roleif the receiver has an admin permission, otherwise return
User Role.

D.4.3 BarrierRole

TheBarrierRole2 is used to stop adopting permissions from parent structures - this
does not apply to any roles of a user, who owns anadmin permission, e.g.,if the
BarrierRole owns thepermissions x, then none of the roles on the same structure
will adopt thispermissions xfrom their parents’ structure roles (see Section5.1.2).

reflecting

• BarrierRole >>title

ReturnBarrier Roleas title of the receiver.

2used only in the SmallWiki Extended Security Model

D.5. USER 117

testing

• BarrierRole >>isBarrier

Return true if the receiver is barrier role. Return true.

D.5 User

Multiple roles might be assigned to any user. Permission will be granted if any of
the roles grants the permission.

accessing

• User >>roles

Return the roles collection of the receiver.

• User >>username

Return the username of the receiver.

• User >>createdRoles

Return collection of createdRoles of the receiver.

• User >>createdUsers

Return collection of createdUsers of the receiver.

accessing-roles

• User >>add:aRole

Add aRole to the receiver. If a role with the same name is already in the
collection: replace it with the new one.

• User >>addAll:aCollection

Add a collection of roles to the receiver. If a role with the same name is
already in the collection: replace it with the new one.

• User >>remove:aRole

Remove aRole to the receiver.

• User >>do:aBlock

Evaluate aBlock on the receivers roles.

• User >>rolesDo:aBlock

Make sure that roles are not nil, then evaluate aBlock on the receivers roles.

118 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

accessing-createdRolesUsers

• User >>createdRolesAdd:aRole

Add aRole to the createdRoles collection of the receiver.

• User >>createdRolesRemove:aRole

Remove aRole from the createdRoles collection of the receiver.

• User >>createdRolesAsAltText

Return a string with proper alt text with the createdRoles collection.

• User >>createdRolesAsHtmlText

Return a string with proper html text with the createdRoles collection.

• User >>createdUsersAdd:aRole

Add aRole to the createdUsers collection of the receiver.

• User >>createdUsersRemove:aRole

Remove aRole from the createdUsers collection of the receiver.

• User >>createdUsersAsAltText

Return a string with proper alt text with the createdUsers collection.

• User >>createdUsersAsHtmlText

Return a string with proper html text with the createdUsers collection.

testing

• User >>hasPermission:aPermission

Return true if the receiver owns aPermission.

• User >>hasRole:aRole

Return true if the receiver owns aRole.

• User >>isAnonymous

Return true if the receiver is the anonymous user (username=anonymous).

• User >>validatePassword:aString

Return true if password of receivers equals aString.

• User >>rolesIncludes:aRole

Return true if aRole is contained in the receivers roles collection.

• User >>isAdmin

Return true if the receiver has anadmin permission.

• User >>isMainAdmin

Return true if the receiver has theAdminRole.

D.6. STRUCTURE 119

copying

• User >>postCopy

Make sure to also copy roles, createdRoles and createdUsers of the receiver.

update

• User >>clearRoles

Clear the roles of the receiver from all its permissions (add roles with the
same name and no permissions; do not do anything with main admin user,
since we do not have to manage any role stuff for him).

• User >>clearRolesFromBarrierPermissions:aRolesCollection

Return a copy of the receiver with aCollection of roles where certain permis-
sions have been removed.

• User >>updateRole:currentStructureRole

Return a copy of the receiver with currentStructureRole updated (if the re-
ceiver owns a role with the currentStructureRole name: make a copy of the
receiver and add the permissions of currentStructureRole to the receivers role
with same name; keep also its permission).

• User >>updateRoles:aCollection

Return a copy of the receiver with aCollection of roles updated (make sure
to remove the permissions in BarrierRole from the receivers’s role - except
for a receiver with an admin permission; do not update anything for the main
administrator).

• User >>updateRolesFromRootUntill:aStructure

Return a copy of the receiver with its updated roles from root ’till current
structure (first make sure to empty the roles before starting).

D.6 Structure

The structure is the basic entity of SmallWiki, representing the model of a single
page. A structure is identified by exactly one URL and is usually included in a
composite-tree of other structures (see FigureD.6). The three concrete subclasses
of Structure are: Page andResource as components and theFolder as
composite. In factStructure should not only be the subclass ofWikiItem ,
but also ofModel . As the visiting aspect, however, is far more important, the
messages provided in Model have been copied from this system class.

A structure provides basic navigational accessors to its parents, children and sib-
lings in the Wiki tree. The basic serving is done with the chain-of-responsibilities

120 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

design-pattern in the serving protocol. The resolving protocol provides messages
to look up other structure items using their name.

All the structures have a title, a back-reference to their parent, and might con-
tain user-defined properties,i.e., something like a dictionary containing symbols
as keys and any other objects as values. Structures are versioned automatically
using a reference pointing to the previous version of the same page. The mes-
sage#postCopy should be overridden to make it work correctly, since some
subclasses ofStructure have a dictionary with objects whereas others do not.

Figure D.6: Structure Composite

accessing

• Structure >>id

Return the id of the receiver, that is a string build from the title of the struc-
ture. The id is used to identify a structure within its parent and therefore has
to be unique.

• Structure >>parent

Return the parent of the receiver. In the case the receiver is the root node nil
is returned.

• Structure >>predecessor

Return the previous version in the history of the receiver. If there is no history

D.6. STRUCTURE 121

information available nil is returned.

• Structure >>roles

Return a collection of roles which are applied when the receiver processes a
query. All the roles of the current user are replaced with the corresponding
ones returned by this message.

• Structure >>timestamp

Return a timestamp with the latest modification-time of the receiver.

• Structure >>title:aString

Set the title of the receiver. If the receiver is a child of another structure the
title is checked to be unique. In case of a problem, aDuplicatedStructure

exception is thrown.

• Structure >>version

Return the version-number of the receiver, the numbering starts with version
0.

accessing-calculated

• Structure >>parents

Return an ordered collection with all the structures from the root up to and
including the receiver of the message.

• Structure >>root

Return the root node of the receiver.

• Structure >>url

Return a unix-path string representing the URL of the receiver. The URL
is unique within a Wiki tree and contains the id of the receiver and all its
parents ids, except for the root.

• Structure >>versions

Return an ordered-collection containing the receiver and all its older ver-
sions.

• Structure >>references

Return a collection of all references to the receiver.

• Structure >>referencesStartingAt: aStructure

Return a collection of references to the receiver starting at certain structure.

122 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

accessing-navigation

• Structure >>first

Return the first node of the receiver’s parent.

• Structure >>last

Return the last node of the receiver’s parent.

• Structure >>next

Return the next node of the receiver’s parent.

• Structure >>previous

Return the previous node of the receiver’s parent.

configuration

• Structure >>defaultAddTarget

Return the target where to put new children. The default implementation
returns the parent of the receiver, but structures that contain children usually
want to return self.

copying

• Structure >>postCopy

Copy a selection of the instance-variables and update the timestamp of the
receiver. Subclasses should override this message to do a deep-copy of their
data and call super. This is the key-message to make the versioning mecha-
nism work properly.

properties-inherited

• Structure >>properties

Return a property manager including the values of all inherited properties.
Changes to the returned object does not change the receivers property man-
ager.

• Structure >>propertyAt:aKey

Return the value of the property of the receiver with aKey. If there is no such
property defined, the look-up is retried in the parent of the receiver.

• Structure >>propertyAt:aKey ifAbsent:anExceptionBlock

Return the value of the property of the receiver with aKey. If there is no such
property defined, the look-up is retried in the parent of the receiver. If no
such property could be found, anExceptionBlock is evaluated.

D.6. STRUCTURE 123

• Structure >>propertyAt:aKey put:aValue

Set the property aKey to aValue in the receiver. This message does the same
as#localPropertyAt:put: and is here simply for convenience.

properties-local

• Structure >>localProperties

Return the properties of the receiver.

• Structure >>localPropertyAt:aKey

Return the value of the property of the receiver with aKey. If there is no such
property, nil is returned.

• Structure >>localPropertyAt:aKey ifAbsent:anExceptionBlock

Return the value of the property of the receiver with aKey. If there is no such
property, anExceptionBlock is evaluated.

• Structure >>localPropertyAt:aKey put:aValue

Set the property aKey to aValue in the receiver.

resolving

• Structure >>privateResolveChild:aString

As we usually do not have children, return nil. Subclasses with children
might want to override this message.

• Structure >>privateResolvePath:aCollection

Resolve a whole path starting at the receiver. If there is an error matching
the path, nil is returned.

• Structure >>resolveTo:aStringPath

Start the resolving-process at the receiver with the resolving-algorithm de-
pending on the count of identifiers in aPathString:

1. if the first character of the path is a separator the look-up is started in
the root-node and processed downwards.

2. if the first character is not a separator ...

(a) and an empty path is given, the receiver is returned.

(b) and a path with exactly one entry is given, a child with that name
is looked for.

(c) and a path with one or more entries is given, a look-up is started
in the parent of the receiver.

124 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

The first matching structure is returned or nil if no appropriate item could
be located in the tree. To see a bunch of examples about the use of this
message, have a look at the tests in protocoltesting-resolving of the
classStructureTests .

serving

• Structure >>process:aRequest

Process a basic request. First the security information contained in the re-
quest is updated, then it is decided if the request should be handled by the
current component or one of its children.

• Structure >>processAction:anAction

Executes the action on myself and catch basic errors.

• Structure >>processChild:aRequest

The default structure has got no children, therefore we process a not-found
message.

• Structure >>processSecurity:aRequest

Update the roles of the current user according to the current role configura-
tion. See#updateRoles: in the User class for additional information.

• Structure >>processSelf:aRequest

Look for an action that might be executed on the current structure. If there
is no action given, the default one is executed.

testing

• Structure >>isComposite

Return true if the structure has got the possibility to hold children.

• Structure >>isEmbedded

Return true if the structure should be embedded into documents referencing
the receiver.

• Structure >>isRoot

Answer whether the receiver is the root node. The root is a folder by default
and the only structure having no parent in the Wiki tree.

• Structure >>isSuccessor

Answer whether the receiver has got a previous version in the history.

• Structure >>hasParent

Answer whether the receiver has a parent.

D.6. STRUCTURE 125

versions

• Structure >>nextVersion

Copy the receiver to be used in the history and return the receiver.

• Structure >>nextVersionBecome:aStructure

This message creates a copy of the receiver and puts aStructure into the his-
tory. References pointing to the receiver will be still valid, as the current
version stays the same object all the time. Right now the new version must
be of the same class than the receiver, else an exception is thrown.

• Structure >>versionNumber:anInteger

Return the version anInteger of the receiver or nil if not present.

• Structure >>versionRestore:anInteger

Restore the version anInteger. In other words: the version anInteger will be-
come the current one, but all the other modifications are still kept in history.

• Structure >>versionRevert:anInteger

Revert to the version anInteger in history. All the newer modifications will
be lost.

• Structure >>versionTruncate:anInteger

Truncate all the history information behind the version anInteger.

D.6.1 Resource

A resource might contain any data, like images, videos, sound, pdf or zip files. In
fact it can be anything that you want to include within your pages or you want to
provide as a possibility to download.

The MIME-TYPE (Multipurpose Internet Mail Extensions Type, a specification
for formatting non-ASCII data so that it can be sent over the Internet) of the data
is used to determine how the given resource should be rendered. As an example
images and videos should be displayed inside the html document, whereas zip-files
are only references as a link to allow the user to download the file.

testing

• Resource >>isApplication

Return true if the mimetype of the receiver is application-data. This mes-
sage will match types like: application/octet-stream, application/oda, appli-
cation/postscript, application/zip, application/pdf, etc.

• Resource >>isAudio

Return true if the mimetype of the receiver is audio-data. This message will
match types like: audio/basic, audio/tone, audio/mpeg, etc.

126 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

• Resource >>isEmbedded

Return true if the resource of the receiver should be embedded into the de-
sired context. Return false if the resource should be simply linked.

• Resource >>isImage

Return true if the mimetype of the receiver is image-data. This message will
match types like: image/jpeg, image/gif, image/png, image/tiff, etc.

• Resource >>isText

Return true if the mimetype of the receiver is text-data. This message will
match types like: text/plain, text/html, text/sgml, text/css, text/xml, text/richtext,
etc.

• Resource >>isVideo

Return true if the mimetype of the receiver is video-data. This message will
match types like: video/mpeg, video/quicktime, etc.

D.6.2 Page

A page is the most important and probably the most used class of the Structure
hierarchy. As a sole entity it contains a composite of documents modeling the
contents of the page that the user entered using the Wiki syntax. When initializing
the instance a default document will be created to make the user aware of the newly
created page.

accessing

• Page>>document

Return the current document of the page.

configuration

• Page>>defaultDocument

Return the default document used when a new page is created.

• Page>>defaultVisitor

Return the default visitor used when rendering this document to html.

D.6.3 Folder

The folder groups a number of children.Folder is a subclass ofPage, therefore
it also contains a document that might be used to describe the contents.

D.6. STRUCTURE 127

accessing

• Folder >>children

Return a collection of all the children of the receiver.

• Folder >>sortedChildren

Return a sorted collection of all the children of the receiver.

children-accessing

• Folder >>at:aString

Return child of the receiver with id aString or nil if absent.

• Folder >>at:aString ifAbsent:aBlock

Return child of the receiver with id aString or nil if absent.

• Folder >>includes:aString

Return true if the receiver contains a child with the id aString.

• Folder >>uniqueTitle:aString

Proposes an unique name for a child within the receiver using aString base
name.

• Folder >>childrenCopyDo:aBlock

Copy the children before iterating.

• Folder >>withAllChildren

Return receiver and all children and their children as collection.

• Folder >>sortedChildrenDo:aBlock

Sort the children first before iterating.

children-structure

• Folder >>add:aStructure

Add aStructure as a child to the receiver. A DuplicatedStructure exception is
raised in case there is already a child with the same name.

• Folder >>copy:aStructure

This message is basically the same as#add: but it creates a copy of the
structure and makes sure that the title is unique within the receiver before
adding.

• Folder >>remove:aStructure

Remove aStructure from the list of children of the receiver. In case there is
no such child an exception is raised.

128 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

configuration

• Folder >>defaultChildrenCollection

When changing this message, you should modify the following messages:
#at:ifAbsent: , #add: , #remove: and#children .

• Folder >>defaultDocument

Return the default document used when a new folder is created.

• Folder >>defaultAddTarget

Return receiver as default target.

• Folder >>defaultChildrenListCode

Return default string.

navigation

• Folder >>next:aStructure

Return the next node of the receiver’s child aStructure.

• Folder >>previous:aStructure

Return the previous node of the receiver’s child aStructure.

D.7 Document

The document hierarchy describes the content of a Wiki page. It includes all the
basic elements to represent a text such as paragraph, table, list, links, etc (see
FigureD.7).

General notes.

• All the subclasses ofPageComponent must overwrite the message
postCopy to make a deep copy of all its content.

• All concrete subclasses ofPageComponent should overwrite the message
accept:aVisitor to visit this instance.

Remarks concerning Links.

• MailToLink holds a string with the e-mail address.

• ExternalLink holds a string with the URL. External links are also able
to point to internal resources, but they do not update when target is renamed
or moved.

D.8. ACTION 129

• InternalLink holds a reference to a structure and do update automati-
cally title and reference when target is renamed or moved. An internal link
might point to a nonexistent structure and that will be created automatically
when accessing.

When the user enters a text using the Wiki syntax it is parsed using SmaCC [16]
and the abstract syntax tree is stored within the page.

As TableB.1 shows, the syntax of SmallWiki is similar to SqueakWiki or Wiki-
Works. Changing the grammar of the parser is no big deal, if you are more familiar
with a different one and want to support that. However, as for all other parsers, it is
difficult to write extensions that can be added and removed independently in order
to parse new document entities.

Figure D.7: The Document Hierarchy

D.8 Action

Actions are instantiated by a structure and they are initialized with that structure
and the current request using the constructor method#request:structure: .
Actions have basically two tasks: first to perform the action itself, and second to
initiate or to render the GUI. Actions represent also the context in which a page
is rendered as they know about their structure, the request, the response, and the
security status (see FigureD.8).

Action Protocol This part of the action is used to handle the requests. The mes-
sage#execute is called by the structure after initializing the required instance
variables. It checks the security permissions of the current user, evaluates the call-
backs and starts the rendering by calling#render on itself. The running action
might use the accessors to manipulate and mediate with the current environment.

130 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

Figure D.8: The Action Hierarchy

It is usually not necessary to override the message#execute , the callback mech-
anism described in SectionD.11can be used instead.

Figure D.9: Parsing a Wiki Document

Rendering Protocol The rendering process is started from the message#render
at the end of#execute . The message#render fetches the collection of tem-
plates of the associated structure and starts generating the XHTML output. There-

D.8. ACTION 131

fore the document is parsed (see FigureD.9). It asks each template to render the
content they want to emit into the<head> ... </head> part of the output. Af-
terwards the body part<body>...</body> is generated and again every template
might contribute its content into that part. As explained in SectionD.9, there is
always an instance of the classTemplateBodyContent available calling the
message#renderContent of the action: by overriding this message the user-
interface is rendered by the new action. The state of any component inside the
rendering protocol should not be changed, as an action is unable to know when and
how many times it is actually called.

accessing-heading

• Action >>heading

Return the full heading of the receiver, containing the title of the receiver and
the one of the structure to be handled. Do not override this message, instead
have a look at#headingAction and#headingStructure .

• Action >>headingAction

Return the title of the receiver to be used in the heading. Do override this
message, if you want to provide something different. This might return nil,
if it is not appropriate.

• Action >>headingStructure

Return the title of the current structure to be used in the heading. Do override
this message, if you want to provide something different. This might return
nil, if it is not appropriate.

action

• Action >>execute

Usually it is not necessary to override this message, instead use the provided
callback mechanism. Still there are rare cases where you need to have full
control over the execution process; but do not generate any output in here,
use#renderContent instead. The rendering is called automatically, if there
has not been a redirect response created while checking the permissions or
while executing the callbacks.

• Action >>executeCallback

Override this message to provide your own way of evaluating callbacks. This
implementation only executes the anchor-callback when there are no form-
callbacks being executed. This prevents from executing form and anchor
callbacks at the same time by accident, what is usually not intended.

• Action >>executePermission

Override this message to check permission before anything inside this action

132 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

is executed. By default an action might be used by all users, so no permis-
sions are asserted.

rendering

• Action >>render

This message starts the basic html rendering of a page. Unless you do not
want the templates and the html addendum to be rendered, do not override
this message.

• Action >>renderContent

Override this message to customize the output of this action. Do not change
the state of the component in this message.

• Action >>renderForm

Renders the form. Override this message to customize the output of this
action.

security

• Action >>assertPermission:aPermission

Assert the presence of a Permission in the current session. If no such per-
mission is present anUnauthorizedError is thrown and an error page will
be rendered instead of the one of the current action.

• Action >>hasPermission

Return true if the permissions is present.

• Action >>hasRole

Return true if the role is present.

testing

• Action >>isIndexable

Override this message and return true to tell search-engines to index the con-
tents of this actions.

D.8.1 Advanced

The classAdvanced 3 is a subclass of theAdmin class. It provides the basic
methods for the graphical user interface of thesecurity management(see class de-
scription in SectionD.8.2, FigureC.1and FigureC.9) and of thetree management
(see class description in SectionD.8.5).

3used only in the SmallWiki Extended Security Model

D.8. ACTION 133

accessing

• Advanced >>errorMsg

Return the error message string. Used to give feedback on graphical user
interface.

render

• Advanced >>renderContent

Render the content. This will be the first menu row at this point.

• Advanced >>renderMenu

Render the menu.

• Advanced >>renderMenuRow

Render a menu row. This will render the menu items of the subclasses with
the corresponding html icons.

renderForm

• Advanced >>renderError

Render the error message. Use style sheeterror to highlight the message.

renderInformation

• Advanced >>renderStructureAsIconAndLinkTitle:aStructure

Render the structure’s name with corresponding html icon and its title and
its url.

utillities

• Advanced >>handleCollapseCookieFor:aStructure

Deal with the cookie value that is used to open and close a node in the Wiki
tree on the graphical user interface.
Check if cookie is set:

1. yes: remove the cookie.

2. no: set it with key title and url, and with value open.

• Advanced >>nodeIsOpen:aStructure

Return true if this node (aStructure) is open (therefore read cookie from re-
quest).

134 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

D.8.2 Security

The classSecurity 4 is a subclass of theAdvanced class. It is the superclass
of RolesEditor class andUsersEditor class. It provides methods for ren-
dering form buttons and methods for creating strings with information about roles
details. These strings will be used to render the details of the roles via Javascript
as popup or as html layer.

render

• Security >>renderContent

Render the menu and either the management form or an overview of the
users.

• Security >>renderMenu

Render the menu items of the superclass and of the subclasses.

renderButtons

• Security >>renderTabledataWithCreateAndCancelButtons

Render the create and cancel form buttons with their actions.

• Security >>renderTabledataWithCreateSaveAndCancelButtons

Render the create/save and cancel form buttons with their actions.

• Security >>renderTabledataWithDeleteAndCancelButtons

Render the delete and cancel form buttons with their actions.

• Security >>renderTabledataWithSaveAndCancelButtons

Render the save and cancel form buttons with their actions.

renderInformation

• Security >>renderRoleHtmlInfoAsVirtualDiv:aRole

comparedWith:oldRole

Render alt text, clickable image of role and render the details in html layer.
When we click on the image, the html layer will get visible. Another click
and the layer is hidden.

• Security >>renderRoleInfoAsPopup:aRole

parameterString:aString

Render alt text, clickable image of role and put the details in javascript popup
function. When we click on image, a popup window appears with the role
details inside.

4used only in the SmallWiki Extended Security Model

D.8. ACTION 135

• Security >>roleAttributesInfoStringForPopup:aRole

compared:oldRole

Return a html string with the details of the comparison of the two roles. The
difference will be marked with a css div style sheet.

utillities

• Security >>getAdminDeleteableRoles

Return a collection of roles that the current user has created.

• Security >>getAdminEditableRoles

Return a collection of roles that the current user has created and also his
roles.

• Security >>getRolesCollectionOfAllStructures

Return the roles of all structures (starting at root).

• Security >>getRoleWithName:aRoleName

Returns a role with indicated name.

• Security >>splitCollection:aCollection bySize:aSize

Split the collection into smaller collections and put each subcollection into
returned result collection. This will be used to create a nicer html policy
table. We do not want hundreds of columns next to each other.

D.8.3 UsersEditor

The classUsersEditor 5 is a subclass of the classSecurity and is responsible
for rendering the user administrating interface and rendering the overview of all
users and their updated roles on a certain structure. It is also responsible to execute
the corresponding actions.

action

• UsersEditor >>addUserToCreatedUsers:myUser

Add myUser to the createdUsers collection of the current user of the request.

• UsersEditor >>changePassword

Change the password of the user specified in the html form if the current user
is allowed to do so.

• UsersEditor >>createAndAddUser

Create the new user and add it to the current user createdUsers collection.
5used only in the SmallWiki Extended Security Model

136 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

• UsersEditor >>executeCreate

Create a user with given name and password specified in the html form.

• UsersEditor >>executeDelete

Delete the specified user (has been checked on the user interface) and also
its dependencies (the roles and users that he has created himself).

renderForm. In this protocol, there are methods that decide on which users the
currentadmin usercan execute admin methods,e.g.,an admin user is only allowed
to manage the users that he has created himself, unless he is themain administrator
who can manage any user.

• UsersEditor >>renderForm

Render the forms. This method will generate three forms:

1. Policy form. Here you can assign one or several roles to the users.

2. Creation form. Create a new user or change the password of a user.

3. Deletion form. Delete a user by selecting the corresponding checkbox.

• UsersEditor >>renderFormTitle

Render the title of the form.

• UsersEditor >>renderClassficationForm

Prepare to render the form used to assign roles to users.

• UsersEditor >>renderClassificationTitle

Render some hints for the classification form.

• UsersEditor >>renderClassficationTableUsers:users

andRoles:roles

Render the form with the user and roles.

• UsersEditor >>renderClassficationTableHeader:aNumberOfCols

Render the first header part of the classification table.

• UsersEditor >>renderClassificationTableUsers:aUsersCollection

Render the second header part of the classification table containing the users.

• UsersEditor >>renderClassificationUserCheckbox:aUser

withValue:aRole

Render a single checkbox where aRole can be assigned to aUser.

• UsersEditor >>renderClassficationTableCheckboxes:users

with:role

Render all check boxes where roles can be assigned to users.

D.8. ACTION 137

• UsersEditor >>renderCreateForm

Render the form to create a new user.

• UsersEditor >>renderCreateTitle

Render the title of the form.

• UsersEditor >>renderCreateUsernameField

Render the form field to enter the name of the user.

• UsersEditor >>renderCreatePasswordField

Render the form field to enter the password of the user.

• UsersEditor >>renderCreateConfirmField

Render the form field to confirm the password of the user.

• UsersEditor >>renderDeleteForm

Render the delete form.

• UsersEditor >>renderDeleteTitle

Render the title of this form.

• UsersEditor >>renderDeleteRowFor:aUser

Render the users with check boxes where we can select the user to be deleted.

renderInformation This protocol contains the methods that are responsible for
rendering the overview of all users and their updated roles with the permissions on
a certain structure.

• UsersEditor >>renderInformation

Render all the user information. All the users with their updated roles and
permissions will be rendered.

• UsersEditor >>renderInformationTitle

Render the title of the form.

• UsersEditor >>renderInformationText

Render the hint text of the form.

• UsersEditor >>renderAllAttributesOf:aUser

Render all details of aUser.

• UsersEditor >>renderUserAttributesWithPopup

Render the user with the details accessible in javascript popup.

• UsersEditor >>renderUserAttributesWithVirtualDiv:aUser

Render the user with the details accessible via html layer.

138 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

• UsersEditor >>renderRolesAndPermissionsAttributesOf:aUser

Render the roles and the permissions of aUser.

• UsersEditor >>renderRolesWithPermissionHints:aRolesCollection

Render all roles with their permissions in alt text and also available as popup
and as html layer.

• UsersEditor >>userAttributesInfoString:aUser

Return a string with the user attributes for the virtual popup function and for
virtual layer.

• UsersEditor >>userAttributesInfoStringForPopup:aUser

Return a string with the user attributes and with the popup function.

utillities

• UsersEditor >>deleteDependenciesOf:aUserCollection

Delete the dependencies of all users of aUserCollection.

• UsersEditor >>deleteInAllStructures:aRolesCollection

Delete the roles in the whole Wiki site.

• UsersEditor >>deleteUserWithDependenciesOf:aUser

Delete dependencies of aUser:

1. Delete all roles stored in adminRoles from all structures.

2. Delete all roles stored in adminRoles from all user’s instances variables
adminRoles and also from their roles collection.

3. Delete all user stored in adminUsers.

4. Delete all user stored in adminUsers from all user’s instances variables
adminUsers.

5. Finally delete the user itself.

• UsersEditor >>getAdminEditableUsers

Return collection of users that this user has created, or return all users if
current user is the main administrator.

• UsersEditor >>removeRolesCollectionDependenciesOf:

aRolesCollection in:aUser

Remove the roles from the user and from its instance variable createdRoles.

D.8.4 RolesEditor

The classRolesEditor is also a subclass of the classSecurity and is re-
sponsible for rendering the roles administrating interface and for executing the
corresponding actions.

D.8. ACTION 139

accessing-roles

• RolesEditor >>addPermission:aPermission toRole:aRole

If this role does not exist so far in current structure: create and append it to
structure and add the given permission to it.

• RolesEditor >>removePermission:aPermission fromRole:aRole

Remove a permission from a role.

• RolesEditor >>updateRole:aRole ofStructure:aStructure

Update the given role and return the updated role.

action

• RolesEditor >>addRoleToCreatedRoles:myRole

Add a role to the current users createdRoles collection. Make sure to update
the user in both: the server and in the request. In the request, there is only a
copy of the user with updated roles, but this user is used to render the form
after the role is created.

• RolesEditor >>deleteRolesFromFormOfStructure:aStructure

Remove a role that has been selected in the form from a structure and also
from its children. Uses recursive call. If the role is a top role: also remove
the role of the current user’s adminRoles collection.

• RolesEditor >>executeCreate

Create a new Role (self rolename) if the name is not already in use. Append
it to the structure, and also append the new role to the user’s adminRoles
collection, make sure not to just append it to the user copy.

• RolesEditor >>executeDelete

Delete some roles from a certain structure. If the role is a top role: remove it
from the users createdRoles collection.

• RolesEditor >>executeSave

The saving mechanism of roles with the given permissions in the form is
done via callback. Just remove here the empty barrier roles and do not delete
the other empty roles. The user has to do this explicit via the web-form.

• RolesEditor >>removeRoleFromCreatedRoles:myRole

Make sure to remove the role from all server users instance variable admin-
Roles. Usually we only have to delete this role in thecurrentadmin admin-
Roles collection, but the main admin might delete a role, that somebody else
has created!

• RolesEditor >>roleValidToAppend

Return true if the role can be created in current structure.

140 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

renderForm As in the classUsersEditor , the methods in this protocol de-
cide on which roles the currentadministratorcan execute admin methods,e.g.,an
administrator is only allowed to manage the roles and permissions that it has cre-
ated itself or owns itself, unless it is thesite administratorthat can manage any
role and permission.

• RolesEditor >>renderForm

Render the forms. This method will generate three forms:

1. Policy form. Here you can assign one or several permissions to the
roles.

2. Creation form. Create a new role.

3. Deletion form. Delete a role by selecting the corresponding checkbox.

• RolesEditor >>renderFormTitle

Render the title of the form.

• RolesEditor >>renderPolicyForm

Render the policy form in order to assign permissions to roles. Make sure,
that the table does not have to many columns. Use multiple tables instead.

• RolesEditor >>renderPolicyAcquireCheckbox:permission

editable:isEditable

Render the checkbox that allows to stopaquisitionfor a given permission.

• RolesEditor >>renderPolicyCheckbox:aRole withValue:aPermission

editable:isEditable

Render checkbox to add/remove a given permission to the given role. Use
the id attribute for the javascript function (select all/ de-select all). Render
permissions that should not be changed as disabled. Render the roles of the
current user as disabled; otherwise he could remove some of his permissions
by accident. Make sure to also disable the callback for disabled permissions;
otherwise a user could save the form, edit it (remove the disabled tags) and
send it and the callbacks would be executed.

• RolesEditor >>renderPolicyContentWith:rolesCollection

Render the rows of the table, where roles meet permissions.

• RolesEditor >>renderPolicyFormColumns:roles

Render the policy form for the given roles.

• RolesEditor >>renderPolicyHeaderRows:aRolesCollection

Render the first two rows of the policy table.

• RolesEditor >>renderPolicySelectAllNoneButtons: roles

Render two links for every role in order to select all/none permissions for a
role by using javascript.

D.8. ACTION 141

• RolesEditor >>renderPolicySelectButtonOf:rolesCollection

withMode:aMode

Render a link for every role in order to select permissions for a role according
to the aMode argument.

• RolesEditor >>renderPolicyTableHeader:aNumberOfCols

Render the header row of the policy table.

• RolesEditor >>renderPolicyTableRoles:aRolesCollection

Render name of the roles into table row (color the local roles green and color
the roles from a upper structure blue).

• RolesEditor >>renderPolicyTableRow:rolesCol with:permission

editable:isEditable

Render a row with the check boxes for a given permission and a roles col-
lection.

• RolesEditor >>renderRoleNameAsChildOrTop:aRole

Render the name of the role and consider its position in the structure.

• RolesEditor >>renderDeleteForm

Render to form in order to delete the selected users.

• RolesEditor >>renderDeleteFormTitle

Render the title of the delete form.

• RolesEditor >>renderDeleteCheckboxRow:aRole

Render a checkbox with name of the role that could be deleted by user.

• RolesEditor >>renderCreateForm

Render the form in order to create a new role.

• RolesEditor >>renderCreateFormTitle

Render the title of the create form.

• RolesEditor >>renderCreateRoleNameField

Render the form field to enter the name of the role.

renderInformation The methods of this protocol are responsible for rendering
the updating roles according to the structure on which the roles appear. The per-
missions of the roles are accessible via Javascript by clicking on either thepopup
iconor on thelayer iconthat appear next to the role name.

• RolesEditor >>renderAllRoles

Collect all roles in the Wiki site and render them.

• RolesEditor >>renderAllUpdatedLocalRolesOf:aStructure

Update and render local roles of a structure.

142 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

• RolesEditor >>renderAllUpdatedParentRolesOf:aStructure

Update and render parent roles of a structure.

• RolesEditor >>renderAllUpdatedRolesOf:aStructure

Update and render parent and local roles of a structure.

• RolesEditor >>renderInformationText

Render some hints for the admin.

• RolesEditor >>renderInformationTitle

Render the title of the form.

• RolesEditor >>renderLocalRolesOfSelfAndChildrenOf:aStructure

Render roles and permission of aStructure, then recursive call for its chil-
dren.

• RolesEditor >>renderRoles: aRolesCollection

Render the name of the roles of a certain roles collection.

• RolesEditor >>renderRoleWithInfo:updatedRole compared:oldRole

of:aStructure

Render the updated role compared with oldRole (render info as popup and
also in html layer).

utillities

• RolesEditor >>getPermissionsForPolicyTable

Return only permissions, that the specific admin owns himself (these are the
permissions that the current admin is allowed to manage).

• RolesEditor >>getRolesForDeleteTable

Return only roles from structure that the current user has created himself and
also child-roles that are local added.

• RolesEditor >>getRolesForPolicyTable

Return roles to render.

• RolesEditor >>isCheckedRole:aRole with:aPermission

Check if aRole exists in current structure and if the role has the permission
aPermission.

• RolesEditor >>isChildRole:aRole

Return true, if aRole is also defined in a parent structure.

• RolesEditor >>isTopRole:aRole

Return true, if aRole is not already defined in a parent structure.

D.8. ACTION 143

D.8.5 TreeEditor

The classTreeEditor 6 provides methods tocut, copy, anddeletenodes out of
the Wiki tree. It still lacks the support of re-arranging the links when a structure
has been moved to another place. Also the roles are still copied with the structure.
In a future release, the roles should be deleted before a structure is copied. The
cut, copy, and delete functions are only provided for thesite administratornamed
admin. All other administrators can only use thetreeEditor to browse the Wiki
tree.

action

• TreeEditor >>cutStructureFromFormOfSelfAndChildrenOf:

aStructure

Delete the structures stored in copyCutStructures collection in the structure’s
tree.

• TreeEditor >>deleteStructure:structureToDelete

OfSelfAndChildrenOf:aStructure

Delete a certain structure out of a tree.

• TreeEditor >>deleteStructureFromFormOfSelfAndChildrenOf:

aStructure

Check if user is allowed to delete the selected structure. For this: update
his roles according to the roles of the relevant structure. Delete one or more
structures that have been selected in the form.

• TreeEditor >>executeCutCopy

Check if user has permission copy. For this: update his roles according to the
roles of the relevant structure. Mode is set to cut or copy. Save the collection
into copyCutStructures and set selectedStructures back to nil.

• TreeEditor >>executeDelete

Delete the structures selected in the form.

• TreeEditor >>executePaste

If mode is set to cut, delete the structure out of the tree first. Paste structure
in specified place.

• TreeEditor >>pasteStructureOfSelfAndChildrenOf:aStructure

Check if the structure is selected to be pasted in. If it is selected: paste the
structures from copyCutStructures collection.

6used only in the SmallWiki Extended Security Model

144 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

renderForm Note that the buttons to cut, paste and delete are only rendered for
the main administrator.

• TreeEditor >>highlightItem

Highlight the item, if it was selected in the form. Insert a style class for this
item.

• TreeEditor >>renderButtons

Render the buttons in order to process an action.

• TreeEditor >>renderCheckboxOf:aStructure

Render the checkbox with the callback function.

• TreeEditor >>renderForm

Render the form to delete, cut, copy and paste.

• TreeEditor >>renderFormTitle

Render the title of the form.

• TreeEditor >>renderHiddenModeField

Render a hidden input field with the mode value.

• TreeEditor >>renderHiddenStructureField

Put the structure ids into hidden field.

• TreeEditor >>renderStructureOf:aStructure

Render the structure with its checkbox, icon and highlight it (if it has been
selected on the screen before).

• TreeEditor >>renderStructureOfSelfAndChildrenOf:aStructure

Render the structure tree’s items. Only open folders, that are open (the info
is stored in the cookie).

utillities

• TreeEditor >>cleanHiddenFields

Delete the values in the hidden field after we have pasted something, so
the structure’s items that have been selected before will not be highlighted
anymore.

D.9 Template

Templates are used to render common parts of Wiki pages. They are defined
within a collection held in the root of the Wiki and in combination with a selected
Stylesheet (see FigureD.10), they provide the look-and-feel of the Wiki. As the
templates are held in the property manager of the structure, they are shared within
all children of a folder unless there is a new definition.

D.9. TEMPLATE 145

Figure D.10: The Template Hierarchy

private

• Template >>expand:aString for:anAction

Expand aString within the context of anAction. This is often used to let the
user specify dynamic parts within the settings of the templates. Currently
the following tags are supported:

– %athe title of the action

– %hthe host-name of the server

– %i the ip-number of the server

– %l the the url of the structure

– %mthe modification time of the structure

– %pthe port-number of the server

– %r the title of the root structure

– %t the title of the structure

– %uthe name of the current user

– %vthe version-number of the structure

rendering

• Template >>renderBodyWith:anAction on:html

This message is called when the action should render its content to the body-

146 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

Figure D.11: The Template Editor

part of the resulting XHTML document. The default implementation is
empty.

• Template >>renderConfigWith:anAction on:html

This message is called when the configuration form of the receiver should be
rendered. This message is solely called from theTemplateEdit action to let
the user specify his settings. The default implementation is empty.

• Template >>renderHeadWith:anAction on:html

This message is called when the action should render its content to the head-
part of the resulting XHTML document. The default implementation is
empty.

D.9.1 TemplateHead.

The classTemplateHead is a subclass ofTemplate . It should be used for
templates rendering the header of the output-file. If someone wants to render to the
head and to the body, he should useTemplateBody as a superclass instead.

D.9.2 TemplateBody.

The classTemplateBody is a subclass ofTemplate . It should be subclassed
in most of the cases to create a new template component. The message#title

D.9. TEMPLATE 147

Figure D.12: The Property Editor

on the class-side should be implemented in order to return a string describing this
subclass. The title is also used by default to identify the associated CSS-id and to
render it into the body part. The messages#defaultId and#defaultTitle
might be used to change this behavior. The user is always able to edit the id and title
from within the template-editor (see FigureD.11) in the web-browser to customize
the template to his needs and to the applied stylesheet. Other adjustments can
be made via the property-editor (see FigureD.12) and the component editor (see
FigureD.13).

rendering

• TemplateBody >>renderBodyWith:anAction on:html

Override this message in all subclasses to render the body-part of the tem-
plate. All the HTML rendering is done within aBlock passed to the message
#renderDivFor: on: with: to ensure that the XHTML environment is
properly set-up and that the design can be specified using css-stylesheets.

• TemplateBody >>renderConfigWith:anAction on:html

If you override this message in your subclasses do not forget to call super, as
there are the default properties for the title and the css-id rendered in here.

In the appendix you can find the source of the default style-sheet used to layout the
components of SmallWiki. Take it as a starting point to create your own design.

148 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

Figure D.13: The Component Editor

D.10. STORAGE 149

D.10 Storage

The abstract storage class provides a protocol to all kinds of storage mechanism
implementing persistence in a Wiki. It takes care of the notification of changes.
Subclasses should implement either the message#changed or #changed: to
make the given structure persistent.

notification

• Storage >>changed

This message is called whenever something changed inside the Wiki struc-
ture, if you need to know what exactly happened override#changed: in-
stead.

• Storage >>changed:aStructure

Every time a structure inside the Wiki tree changes this message is called.
Override it to provide a storage mechanism.

D.10.1 Snapshot Storage

The classSnapshotStorage provides an interface to make snapshots of Wikis
on a regular bases. With the implementation of theImageStorage as a concrete
implementation this is the most secure and most widely used storage mechanism
(see FigureD.14).

Figure D.14: The Snapshot Hierarchy

accessing

• SnapshotStorage >>delay:aDelayInSeconds

Set the delay in seconds between the snapshots.

• SnapshotStorage >>lastchange

Return the timestamp of the last change of the whole Wiki.

150 APPENDIX D. SMALLWIKI RELEVANT DESIGN ASPECT IN DETAIL

• SnapshotStorage >>lastsnapshot

Return the timestamp when the last successful snapshot has been made.

snapshot

• SnapshotStorage >>privatePostSnapshot

Override this message with code that should be executed after doing the
actual snapshot.

• SnapshotStorage >>privatePreSnapshot

Override this message with code that should be executed before doing the
actual snapshot.

• SnapshotStorage >>privateSnapshot

Override this message to do the actual snapshot.

• SnapshotStorage >>snapshot

Do not override this message, that calls the messages#privatePreSnapshot ,
#privateSnapshot and#privatePostSnapshot in order to save the Wiki
structure as a whole.

testing

• SnapshotStorage >>isChanged

Return true if the Wiki has been changed since the last snapshot.

• SnapshotStorage >>isExpired

Return true if the delay has been expired since the last snapshot.

• SnapshotStorage >>isSnapshotNeeded

Return true if a snapshot is needed.

• SnapshotStorage >>isThreadRunning

Return if the storage thread is running.

D.11 HTML and Callbacks

Creating valid XHTML is an error prone task when using string concatenation.
SmallWiki follows the design of Seaside [19] and implements the class
HtmlWriteStream . This class subclassesWriteStream and provides a lot of
additional messages to append text and XHTML elements to the document being
rendered.

The following example could be part of the message#renderContent within
the Action hierarchy to render a simple user-interface:

D.11. HTML AND CALLBACKS 151

html heading:’Title’ level:1.
html paragraph:[

html text:’Click ’.
html

anchor:’here’
to:self url
callback:[:action | action doSomething]]

The code produces something like the following output:

<h1>Title<h1>
<p>

Click

here

</p>

The first message#heading:level: produces a simple section heading of
level 1. The message#paragraph: is similar to the one of the heading, but
in this example instead of passing a string we pass a block: everything done within
that block will be put inside the paragraph tags. This mechanism assures that all
tags are closed properly and that always valid XHTML is generated. The message
#text: escapes the given string to make sure the code can be displayed correctly
within the web-browser.

The message#anchor:to:callback: is used to generate an anchor with an
assigned callback block. Theanchor: argument obviously renders the things
that should be rendered as the content of the link. Theto: argument specifies the
place where the callback should be handled: usually this is within the same action,
but occasionally someone might need to specify something else. Thecallback:
argument is evaluated when clicking the link. As an argument the block receives
the action that is executing the callbacks, note that this is not necessarily the same
action that rendered the link and that is referenced using the keywordself .

HtmlWriteStream does not emit any unnecessary spaces into the output stream,
which makes investigation in the HTML code somehow difficult. For this purpose,
there is the possibility to enable the included pretty-printer with the method

HtmlWriteStream prettyPrint:true

The pretty-printer slows down the rendering process and might have unwanted
effects on the output in the web-browser.

More advanced examples about html-rendering and callbacks can be seen in the
Action-classCallbackDemo , that is part of the examples-bundle (see SectionB.1).
The user interface of this class is accessible by the url

http://localhost:8080/?action=CallbackDemo.

List of Figures

2.1 Model of e-mail exchange and of a mailing list.. 6

2.2 Model of shared shared files,e.g., a database.. 6

2.3 Model of decentralised Peer-to-Peer file sharing.The clientA
broadcasts the request to all other nodes, gets answers from all
nodes, and chooses the one with best transfer rate.. 7

2.4 Model of centralised Peer-to-Peer file sharing with a supern-
ode.The clientA sends keywords to search with to the supernode,
the supernode returns a list of hosts -< ip address, portnum >,
the client pings these nodes in order to find out their transfer rates,
and sends the request to the hostC with the best transfer rate.. . . 8

2.5 Interactive server model with collaborative content. The members
of a group can collectively collaborate on the content of a site.. . 9

3.1 The Core Design.MVC paradigm: the subclasses ofWikiItem
represent themodel, the rendering (view) is done within different
visitors, and the controller is represented by the hierarchy below
theAction class. 13

3.2 Server Setup. 14

3.3 Stack Dump in the Web-Browser.The exceptions are caught and
displayed as a stack-dump on the client side.. 15

3.4 Chain of Responsibility. Content serving after the user sent the
requesthttp://www.smallwiki.org/folder/page?action=EditPage. . 16

3.5 The Security Hierarchy. A role is a container of a set of permis-
sions. A role can be assigned to a user and also to a structure.. . . 17

3.6 Structure Composite. 19

3.7 The Document Hierarchy. 20

3.8 The Action Hierarchy. 21

3.9 Parsing a Wiki Document. 22

152

LIST OF FIGURES 153

3.10 The Template Hierarchy. 24

3.11 The Template Editor. 25

3.12 The Property Editor. 25

3.13 The Snapshot Hierarchy. 26

4.1 The access denied page.. 32

4.2 The login screen.. 32

4.3 Setup to illustrate inheritance of roles.Wiki tree with two fold-
ersa andb. The roler1 is attached on foldera with permissions
Folder AddandFolder View. 34

4.4 Result to show inheritance of roles.The roles of subfolderb are
inherited from foldera. The blue colored permissions with the icon
’+’ indicate roles that are defined locally, the yellow color and the
icon ’||’ mark roles that receive their permissions by inheritance.. 35

4.5 Setup to illustrate redefinition of role r1. The roler1 is redefined
on folderb. 36

4.6 Result to show the consequences of redefinition of the roler1.
The roler1 is redefined on folderb. Therefore the roler1 of folder
c owns the permissions form roler1 that is redefined on folderb. . 37

4.7 The setup of roles and users to illustrate unwanted side-effects.
The userssallyandducasseown admin permissions on foldera. . 38

4.8 The consequences of themalicious acts of the administrator
sally. On the folderb, the administratorsally removed all permis-
sions from userducasse, and gave itself additionally permissions.. 39

5.1 Setup to illustrate the mechanism for acquisition.Wiki tree with
three foldersa, b, andc. The roler1 is defined on foldera, and also
on subfolderb. 42

5.2 Result of acquisition. Instead of overriding the role, its permis-
sions areaddedto the previously defined one.. 43

5.3 Setup to illustrate the usage of the Barrier role.Wiki tree with
four foldersa, b, c, andd. The roler1 is defined on foldera, and
also on subfolderb. The Barrier role is defined on folderd. 44

5.4 Result of the usage of the Barrier role.TheBarrier role defined
on folderd stops the acquisition mechanism for the roles on folder
d by the set of permissions that it owns.. 45

154 LIST OF FIGURES

5.5 The setup of roles and users to illustrate acquisition for an ad-
ministrator. The rolesanonymousandteacherare added to folder
a. Userducassewith rolesteacherandanonymousis created. User
davidwith rolesr1 andanonymousis created.. 46

5.6 Result. Acquisition for an administrator compared to a com-
mon user.The administrator ducasse did not lose any permissions.
The common user david lost the Barrier permissions.. 47

5.7 The roles and users created by thesite admin. 49

5.8 The roles and users created by the sector administratorducasse. . 49

5.9 The user management interface forroles presented for the sector
administratorducasse. Some checkboxes are disabled since the
sector administrators are not allowed to manage permissions that
they do not own themselves.. 51

5.10 The user management interface foruserspresented for the sector
administratorducasse. It can only manage users that it has created,
and assign roles that it owns or that it has created. The other users
and roles are not listed.. 52

6.1 Scenario 1. Open editing policy.Everybody can view, edit, and
add content.. 56

6.2 Scenario 2. Site with two classes of users.Readers - the anony-
mous users - can only view content, and editors are responsible to
edit and add content.. 58

6.3 Scenario 3. Setup of a Wiki site, where resources have to be
managed in common by two classes of people.The permissions
to add, admin, andedit are given on specific folders to the roles.. 60

6.4 Scenario 3. Result. Wiki site where two groups of users are
able to manage common resources.The salesmenand thepro-
grammersare responsible for their private resources on their own.
Additionally both groups of users are able to manage the shared
resources in common.. 62

6.5 Scenario 4. Setup of the folders of a school site.Wiki tree with
six folders. 63

6.6 Scenario 4. The setup of roles on a school site.The roles are
created in order that responsibilities are safely delegated tosector
administrators. 65

6.7 Scenario 4. Overview of the users and their properties in this
school site.Thesite administrator. The non-administratorsharry,
sally, andkirk. Thesector administrators michele, admin01, ad-
min02, andadmin03. 65

LIST OF FIGURES 155

6.8 Scenario 4. Users with their updated roles on the root folderUni-
versity of Bern. 66

6.9 Scenario 4. Usermichelewith its updated roles on folderESE. The
roleese adminthat is assigned to the user michele has been created
on this folder. All other users keep their security settings from the
folderLectures. 67

6.10 Scenario 4. Usersadmin01andharry with their updated roles on
folderGroup01 . 67

6.11 Scenario 4. User admin01 restricts the view access for foreign
users. Therefore it adds the Barrier role with the view permissions
on folder group01. Thereby the view permissions of role anony-
mous are removed on folder group01.. 68

7.1 A Wiki tree with root, parent, children and leafs.. 70

7.2 Wiki tree made out of structure-nodes to illustrate the nomenclature.71

7.3 Wiki tree with Meta roles, Barrier role and the computed user roles.82

C.1 Roles management interface.. 98

C.2 Adding roleanonymousto a structure.. 99

C.3 Changing role properties.. 99

C.4 Using a Barrier role to enable and disable acquisition to all roles
for the selected permissions.. 101

C.5 Deleting roles.. .101

C.6 Collapsible Wiki tree with nodes and updated appended roles.. . 102

C.7 View appended roles details as popup.. 103

C.8 View appended roles details as html layer.. 103

C.9 Users management interface.. 104

C.10 Adding userSecretary. 105

C.11 Assigning roles to users.. 105

C.12 Delete userSecretary. 106

C.13 Overview over all users and their roles.. 107

C.14 View updated permissions of the roleanonymous. 107

C.15 View users and roles that the site administrator namedadminhas
created. .107

D.1 Core Design. .108

156 LIST OF FIGURES

D.2 Server Setup. .109

D.3 Stack Dump in the Web-Browser. 110

D.4 Chain of Responsibility: Content Serving. 112

D.5 The Security Hierarchy. 113

D.6 Structure Composite. 120

D.7 The Document Hierarchy. 129

D.8 The Action Hierarchy. 130

D.9 Parsing a Wiki Document. 130

D.10 The Template Hierarchy. 145

D.11 The Template Editor . 146

D.12 The Property Editor. 147

D.13 The Component Editor. 148

D.14 The Snapshot Hierarchy. 149

List of Tables

4.1 The set of SmallWiki default permissions.. 31

4.2 The set of SmallWiki default roles.. 31

B.1 SmallWiki Syntax compared to SqueakWiki and WikiWorks.. . . 96

157

Bibliography

[1] Lukas Renggli. SmallWiki Collaborative Content Man-
agement, 2003. University of Bern, SCG Group.
http://www.iam.unibe.ch/ scg/smallwiki/smallwiki.pdf

[2] Cincom VisualWorks Smalltalk. http://www.cincom.com/scripts/smalltalk.dll/.

[3] The WikiWiki behind Wikipedia. A free encyclopedia, collabora-
tively constructed over the internet. Uses PHP and MySQL database.
http://wikipedia.sourceforge.net.

[4] MoinMoin. A nice and easy WikiEngine with advanced features written in
Python. http://moinmoin.wikiwikiweb.de/.

[5] USEnet MODeration project. Perl-based. http://www.usemod.com/cgi-
bin/wiki.pl.

[6] A Web Based Collaboration Platform written in PERL. Mature and
full featured system, including revision control via CVS; with plugins.
http://twiki.org.

[7] BoLeuf, WardCunningham, The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley. (2001).

[8] Zope. An open source application server for building content managements,
intranets, portals, and custom applications. http://www.zope.org.

[9] The Mozilla project. Mozilla web and email suite and related products and
technology. http://www.mozilla.org.

[10] Wiki Markup Standard. The ’basic set’ of text formatting rules.
http://www.usemod.com/cgi-bin/mb.pl?WikiMarkupStandard.

[11] A free collaborative hypertext authoring program, written in CommonLISP.
http://www.cliki.net.

[12] WikkiTikkiTavi. A wikki engine implemented with PHP and
using MySQL for the wiki page database. By Scott Moonen.
http://tavi.sourceforge.net/WikkiTikkiTavi.

158

BIBLIOGRAPHY 159

[13] Wiki-Wiki implementation in Smalltalk. http://c2.com/cgi/wiki?SmallWiki.

[14] Unified Modeling Language (UML) Resource Page. http://www.uml.org.

[15] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns
Smalltalk Companion. Addison Wesley, 1998.

[16] John Brant and Don Roberts. Smalltalk Compiler-Compiler (SmaCC).
http://www.refactory.com/Software/SmaCC.

[17] A Wiki implementation based on Squeak.
http://minnow.cc.gatech.edu/squeak.

[18] Recreation of the Squeak implementation with variations using VisualWorks
Smalltalk. http://wiki.cs.uiuc.edu/VisualWorks/WikiWorks.

[19] Avi Bryant and Julian Fitzell. Seaside. http://www.beta4.com/seaside2.

[20] Risk Analysis A Model. By Per Rhein Hansen.
http://www.itu.dk/courses/DSK/E2003/DOCS/riskanalysis.pdf.

[21] The Number One HTTP Server On The Internet. http://httpd.apache.org.

[22] SSL 3.0 SPECIFICATION an Internet Draft dated November 1996.
http://wp.netscape.com/eng/ssl3.

[23] Editor MACroS, an extensible, customizable, self-documenting real-time dis-
play editor. http://www.gnu.org/software/emacs/emacs.html.

[24] Steve Pepper, Ontopia AS. The TAO of Topic Maps.
http://www.ontopia.net/topicmaps/materials/tao.html.

[25] Authentication, Authorization and Accounting in Ad Hoc networks.
Sami Levijoki. 26th of May 2000. Department of Computer Sci-
ence, Helsinki University of Technology. http://www.tml.hut.fi/Opinnot/Tik-
110.551/2000/papers/authentication/aaa.htm.

[26] Camp Smalltalk Project. Smalltalk Web Application Zoo (Swazoo).
http://swazoo.sourceforge.net.

[27] Standard Performance Evaluation Corporation.
http://www.spec.org/osg/web99/.

[28] An explanation of the SPECweb96 benchmark, December 1996.
http://www.specbench.org/osg/web96/webpaper.html.

[29] Apache JMeter. A 100% pure Java desktop application de-
signed to load test functional behavior and measure performance.
http://jakarta.apache.org/jmeter/.

160 BIBLIOGRAPHY

[30] The Benchmark for Web Servers. Mindcraft, Inc.
http://www.mindcraft.com/webstone/.

[31] http://httpd.apache.org/docs/misc/perf-tuning.html.

	Abstract
	Acknowledgments
	Introduction
	Wiki, a web-based Collaboration Tool
	Problems
	Solutions
	Organization of the Document

	Wiki, a web-based Collaboration Model
	Collaboration
	Computer-served Collaboration Models
	Requirements of Web-Collaborations
	Features of Web-Collaborations

	Wiki: a web-based Collaboration Tool
	Wiki Concept

	SmallWiki Relevant Design Aspect
	Server
	SecurityInformation
	Permission
	Role
	User
	Structure
	Document
	Action
	Template
	Storage
	HTML and Callbacks

	Security in Open Collaborations
	Risk, Threat and Vulnerability
	User Authentication and Authorization
	SmallWiki Security Model
	Authorization in the SmallWiki Default Security Model
	Inheritance. A Simple Mechanism for Updating Roles.
	Redefinition. Modification of Roles by Redefinition.
	Problems. Redefining the Roles of Administrators.

	SmallWiki Extended Security Model
	Authorization in the SmallWiki Extended Security Model
	Acquisition. A Mechanism for Updating Roles by Acquisition.
	Acquisition. Curtailing Roles with the Barrier role.
	Acquisition. Updating the Roles of an Administrator.
	Delegation. Providing Safe Delegation through Security Rules.
	Summary.

	Security Scenarios for the Extended Security Model
	Scenario 1: Open Editing.
	Scenario 2: Newspaper with Editors and Readers.
	Scenario 3: Managing Common and Private Resources.
	Scenario 4: Delegating Control to Sector Administrators.

	Formal Description of SmallWiki Extended Security Model
	Context C
	Structures Sxn
	Characteristics
	In the context of the implementation

	Permissions P
	Characteristics and example
	In the context of the implementation
	Admin Permissions AP

	Meta Roles M
	Characteristics
	In the context of the implementation
	Computing. Creation and modification of Meta Roles

	User Ux and its set of Roles R(Ux)
	Roles of a User R(Ux)
	Permissions of a User P(Ux)
	Admin Users AU
	Characteristics
	In the context of the implementation

	Barrier Role B
	Characteristics
	Computing

	Computing Roles of a User
	Computing the Roles of a User
	Example for Computing the Roles of a User

	Conclusion
	Summary
	Future Work

	Glossary
	SmallWiki in a Nutshell
	Loading Into the Image
	Running the Tests
	Starting a Server
	Accessing the Admin Account
	Accessing the Admin Advanced Interface
	Stylesheets, Images and Javascript
	Adding the Stylesheets
	Adding the Images
	Adding the Javascript

	Editing a Page

	SmallWiki Management User Interface
	Management of Roles
	Management of Users

	SmallWiki Relevant Design Aspect in Detail
	Server
	SecurityInformation
	Permission
	Role
	AdminRole
	BasicRole
	BarrierRole

	User
	Structure
	Resource
	Page
	Folder

	Document
	Action
	Advanced
	Security
	UsersEditor
	RolesEditor
	TreeEditor

	Template
	TemplateHead.
	TemplateBody.

	Storage
	Snapshot Storage

	HTML and Callbacks

