Interactive 3-D Visualization of
Feature-traces

Master Thesis
Philosophisch-naturwissenschaftlichen Fakultat
der Universitit Bern

vorgelegt von

Christoph Wysseier

November 2005

Leiter der Arbeit:

Prof. Dr. Oscar Nierstrasz
Orla Greevy
Prof. Dr. Michele Lanza

Institut fiir Informatik und angewandte Mathematik

The address of the author:

Christoph Wysseier
Lénggassstr. 74
CH-3012 Bern

chris@wysseier.net

mailto:chris@wysseier.net

Abstract

The maintenance or reengineering of an object-oriented system includes its reverse engineering. In
other words its internal structure and behavior needs to be understood. Many researchers have proposed
different techniques to support the reverse engineering effort. The two predominant approaches to reverse
engineering are:

e static analysis of source code

e dynamic analysis of behavior of a system at execution time.

Both techniques have strengths and short comings. The static analysis of an object-oriented software
system face difficulties such as polymorphism and it may be difficult to correlate parts with system
functionality. Dynamic analysis approaches generally do not achieve full coverage of a software system.
Moreover, due to the volume of data captured during dynamic analysis of a system, it is difficult to infer
high-level views.

In this thesis we address this issue of software maintenance and reengineering and propose a novel vi-
sualization technique which combines static analysis of source code with dynamic information extracted
by exercising features of a system. We refer to these as dynamic feature-traces. This technique supports
the software engineer in understanding the behavior of software systems by visualizing it in terms of its
internal structure. Using our visualizations we focus on modeling features of a system, how to detect
and locate them in the source code, hotspots of behavior and feature interaction as a means to understand
how different features behave in a software system.

il

Acknowledgements

I would like to thank everybody from the university who supported me in one way or another to finish
my studies by writing this thesis. First of all, thank you Prof. Dr. Oscar Nierstrasz that you welcomed
me in your research group. It was a pleasure working with all the people you are surrounded with.

Two of them I would like to thank especially. The main vision which lead to this thesis came from my
friend and supervisor Michele Lanza. Thank you very much, Michele, for leading me in this direction
and also for the beautiful flat I could take over. I wish you all the best for your work at the Universita
della Svizzera italiana. My supervisor in Berne was Orla Greevy who became very important for my
master thesis. Orla, the result of you work and your personal help for my thesis was an important and at
the beginning not expected support. Thank you very much for everything and good luck for your own
studies.

Of course I met during my studies a lot of other students. To list all of them would lead to an endless list.
So I would like just to thank you all for being my friends and I wish you all good luck for your future.

During the last five years I enjoyed the support of my family and a small but important circle of friends.
Thanks to my parents and my little sister for helping me through these sometimes difficult times. A
special greeting goes to my circle of friends in the eastern part of Switzerland. Ueli Niederer, Reto
Fischer et.al., the weekends there were always very recreative. Thank you! Of course I would also thank
all the friends here in Berne: Markus Beyeler, Daniela Luginbiihl, Maurus Birlocher, Markus Kobel,
Adrian Lienhard, Dominik Wyss and Anne Simon to name just a few of them. A special regard goes to
Anna Schmid. Without her I would not be at this point personally and professionally as I am now. And
last but not least all the guys from the team handball club with which playing a team sport makes a lot of
fun.

A lot of my thoughts go to my little godchild Nayana Solomita and her parents Renato and Jasmin. Thank
you to entrust me this honor and for being my friends. Your independent view on my life is refreshing
and has helped me to almost always only look forward.

A big part of my life became netstyle.ch, the company I founded together with Adrian Lienhard. Together
with him and a lot of cool and professional co-workers we realized something which I have never thought
of at the beginning although it was not always easy. This company will probably influence my future
for a long time. Thank you everybody, namely my co-workers, customers, and other supporters, for the
possibility to work on this dream.

Christoph Wysseier
November 2005

Contents

[Abstract

|Acknowledgements|

(I Introduction|

|1.1 Dynamic Behavior Analysis and Software Reverse Engineering|.

[1.2 3-D Visualization of Dynamic Behavior{

[2.2 Feature-trace Interpretation| e

2 ftware Visualization

[2.3.2 Polymetric View|

2.4 Our Approach|

1 e 3-D Visualization of F . |

[3.1 Understanding Dynamic Behavior of Features|

[3.1.2 Navigable Visualization of Feature-trace|.

[(3.1.3 Exemplification|.

3.2 Feature Hotspot Analysis|

3.3 Feature Interaction| .

4 Case Studies]

4.2 Towards a Methodology|

4.3 Smallwiki Case Study|

vii

iii

11
12
12
14
16
17
19

viii CONTENTS
{4.3.2 Feature 1: Login Authentication| 24

[4.3.3 Feature 2: EditaPage|, 25

[4.3.4 Feature 3: EditaTemplate] 26

435 Feature4: Searchthe Wikil 27

[4.3.6 Feature 5: Show HistoryofaPage|. 28

M37 DISCUSSION - « -« v v v e e e e 28

4.4 Moose Case Study| e 29
441 OverallOverviewl. oo e 29

[4.4.2 Feature 1: Loading a Model from Smalltalkl 31

[4.4.3 Feature 2: Exporting a Model to CDIF|. 37

[4.4.4 Feature 3: Importing a Model from CDIH 38

4 D1 1ON] 39

5 Conclusion 41
.. 42
B2 Timitations] 43
53 Future Workl oL 43
[A_Tools| 45
|A.1 Feature-trace Extraction and Interpretation|. 46
[A.T.T TraceScraper| e e e 46

ATZ MOOSE. - . v v oot e e 46

A.l Tr. rawlerl 46

|A.2 Visualization Engine| o o 48
A2.1 rawled 48
AZ2TUnl . o oo 48

A2Z3 CCIUNl. . o o oot e e e 48

B~ Programmers Guide to TraceCrawler] 49
[B.1 Loading TraceCrawler] it 49
[B.2 Generating Feature-traces and using TraceCrawler|. 50

viii

Chapter 1

Introduction

Sommerville [SOMM 00] and Davis [[DAVI 95| estimate that the cost of software maintenance accounts
for 50% to 75% of the overall costs of a software system. It would thus seem advisable to rewrite
software as soon as it does not fulfill the requirements anymore. However, it may be that the software
is too valuable to be replaced or to be rewritten. By adapting such legacy systems to new requirements
the lifetime of a system can be increased which increases the return of investement for their owner.
Reengineering is therefore an integral part of the lifetime of a software system if it evolves to meet new
and changing requirements.

Reengineering a software system is a difficult task and complicated by many factors. Original developers
may not be available anymore, the documentation is outdated or not available at all and the quality of
source code may have degraded over time as a result of continuous software maintenance. Therefore
reverse engineering is a key task during reengineering software systems.

Reverse engineering of software systems is part of the reengineering life cycle. It is defined by Chikofsky
and Cross as the process of analyzing a subject system to identify the system’s components and their
relationship, and to create representations of the system in another form at a higher level of abstraction”
[[CHIK 90]. It is the prerequisite for the maintenance, reengineering and evolution of software systems.
Since modifications of one part of a system may impact other parts of the system it is essential to have a
mental model of the software before the system can be modified or reengineered.

We have focused our attention on the reverse engineering of object-oriented legacy systems, mainly
because most current software systems are written in languages implementing this paradigm. Reverse
engineering object-oriented software systems comes with additional challenges [[WILD 92] compared to
non-object-oriented systems, such as polymorphism, late-binding, incremental class definitions, etc.

We identify the two predominant approaches that address the task of reverse engineering object-oriented
software systems:

e Static source code analysis
In this approach a model of the source code is abstracted to support the understanding of the
internal structure and design of a software system in terms of source code artifacts.

e Dynamic behavior analysis
In this approach information about method invocations, state, etc. of the running software system
is collected and interpreted to understand the behavior during execution.

Many reverse engineering approaches to software analysis focus on the source code artifacts of a system,
such as classes and methods. A static perspective considers only the structure and implementation details
of a system. Using static analysis alone we are unable to easily determine the roles of software entities
play in the features of a system and how these features interact. We define a feature as a unit of observable
behavior of a system [EISE 03[]. Without relationships between features and the software entities that

2 CHAPTER 1. INTRODUCTION

implement them it is difficult to determine if a maintenance change cause undesirable side effects in
other parts of the software system. In this thesis our main focus is on the dynamic behavior analysis of
features to support the understanding of the run-time behavior of features.

1.1 Dynamic Behavior Analysis and Software Reverse Engineering

In the context of software reverse engineering dynamic behavior analysis is used to understand the run-
time behavior of a software system. Demeyer et.al. describe a reverse engineering pattern that recom-
mends stepping through the execution of the software system to gain an understanding of the dynamic
behavior of a software system [DEME 02]]. This pattern underlines the motivation and the problem of
dynamic analysis. The motivation is to automate the analysis of run-time behavior because stepping
through the execution manually is very time-consuming. Another problem is the collection of the infor-
mation especially because of the vast amount and complexity of the data gathered. To reduce the data
researchers often focus on features. This allows to only focus on the parts of the software system that are
affected by the execution of a feature. Moreover, different techniques were developed to filter the data
using common subtree approaches, concept analysis, clustering techniques, etc.

To obtain the execution trace we instrument the code using method wrappers [[BRAN 98|]. We collect
each method invocation that occurs during the execution of a feature. We refer to this execution traces as
feature-trace which represent the run-time behavior of features.

One focus of feature-centric analysis approaches is to correlate features and source code entities. By
understanding which parts of the code are providing functionality to the features, we support the main-
tenance task as we identify which parts of the system may be affected by a maintenance change. Greevy
et.al. [GREE 05a,/GREE 05b] outline a feature approach to reverse engineering whereby they exercise a
set of features and establish how the classes or methods relate to these features. One of their visualization
techniques support the identification of parts of the system which are active in one or more feature or
inactive. By obtaining dynamic views of a software system at run-time and characterizing the roles of the
software entities this information also allows to speculate about the design of the software. Identifying
the features that are using the same parts of the system may indicate that these parts of the system have
been implemented in a generic manner.

Apart from the identification of parts of the system which are used by one ore more features it is also
important to identify which parts are more or less active during the execution. This information may be
used to optimize the behavior of features and reveals information about the architecture of the software
system.

1.2. 3-D VISUALIZATION OF DYNAMIC BEHAVIOR 3

1.2 3-D Visualization of Dynamic Behavior

We introduce a novel visualization technique based on 3-D visualization. Mainly, our goal is to support
the reverse engineer to understand run-time behavior of features by visualizing each message invocation
that occurs within a feature-trace. Therefore the individual method invocations collected during the exe-
cution of features are interpreted and visualized. As the basis of our visualization we use 2-D polymetric
views and extend this approach by modeling object instantiation as first-level entities and visualizing
these with the third dimension of the views. The visualization supports the understanding of a feature
execution. Futhermore, this approach provides an easy way to detect how features correlate with the
software system and relationships between features to reveal patterns of execution. It also provides a
technique to detect parts of the system which are stressed most.

We realize our approach as an enhancement of the existing Moose reengineering environment [DUCA 05]].
We integrate existing tools such as TraceScraper |[GREE 05al], CodeCrawler [LANZ 99|, etc. to collect
and visualize the information. Like this we take advantage of existing capabilities these tools are provid-
ing and are contributing new approaches. In the following sections we describe the goals of this work
and some of the contributions of our approach.

1.3 Goals of this Work

Applying our visualizations of the dynamic behavior of features in terms of object instantiations and
method invocations we would like to answer the following questions:

e Does our 3-D visualization of feature execution support program comprehension of the dynamic
behavior?

e Which parts of a software system are affected by one or more features?

e How do the features interact with each other? Which parts of the system are used by all the
features?

e Can we identify patterns of activity that are shared by features?

e Are there any parts of the system that are stressed? By stressed we mean areas of high activity in
the execution of a feature, in other words classes and objects that are sending and receiving a lot
of messages.

1.4 Contributions

In this thesis we present a novel 3-D visualization to understand dynamic behavior of features and their
correlation to the static structure of the software system. The contributions in detail are:

e We extend the technique of method wrappers to get an unique identity of object instances contribut-
ing to a feature. This allows to explicitly determine which software entities such as classes and
objects are communicating with others and at which point of the feature-trace they were created.
A detailed description of this approach is discussed in Chapter 3]

e We provide a new visualization technique to analyze feature-traces using the combination of dy-
namic and static software analysis. Mainly, we introduce the dynamic feature-trace view which
visualizes the behavior of a feature at a specific point of a feature-trace. We discuss this technique
in Chapter 3]

CHAPTER 1. INTRODUCTION

1.5

We extend the visualization of feature characterization of classes by providing a static feature
interaction view. This view maps the feature class characterization measurement [|GREE 05a] to a
color of the 3-D polymetric view [LANZ 03a]] of the system complexity view. Our view indicates
which classes are characterized with respect to features. The principles of this view are shown in
Chapter 3]

We describe a technique to detect feature hotspots, i.e. software entities that are more active than
others during the execution of a feature. To achieve this we use a static representation of the
dynamic feature-trace view. We introduce the detection of feature hotspots in Chapter 3]

Using our case studies in Chapter @ we show how our approach supports the understanding of the
run-time behavior as well as its collaboration with the static structure. Therefore we introduce a
methodology to lead a software reverse engineer using our tools step-by-step.

We build a tool TraceCrawler which allows to step through the behavior of a feature using the
dynamic feature-trace view and which controls the visualization. We describe this tool in Ap-

pendix

We build an interactive 3-D visualization engine called CCJun which provides the interface to cre-
ate 3-D views and navigation functionality to move through the 3-D space and zoom. Furthermore
it offers an interface to the meta-model of the Moose reengineering environment to provide more
detailed information about the entities displayed on screen. We provide a detailed discussion of all
tools in Appendix [A]

Thesis Outline

In Chapter 2] we introduce the analysis of feature-traces and show some state-of-the-art analysis
techniques. We identify and discuss the scope and limitation of this research area. We then outline
our 3-D visualization approach and introduce our feature views.

We present the novel visualization technique in Chapter [3] We explain the principles of this visu-
alization and its use in the area of reverse engineering software systems.

In Chapter [] we present the results of applying our visualization to two case studies as a proof
of concept of our approach. We apply our technique to the systems SmallWiki and Moose and
describe our methodology of analyzing the feature-traces based on these examples.

In Chapter [5| we discuss the results we obtained from applying our approach, list some limitations
of our approach and identify future work.

In Appendix [A] we describe in detail the tools which provide the foundation of our work.

In Appendix |B|we provide a developers guide to describe how to use TraceCrawler in the context
of Moose and TraceScraper.

Chapter 2

Analysis of Dynamic Feature-traces

As outlined in the previous chapter there are predominantly two areas of analysis that focus on software
comprehension, namely the static source code analysis and the dynamic behavior analysis. Many re-
verse engineering approaches to software analysis focus on static source code entities of a system, such
as classes and methods. They use a wide range of tools such as visualizers, query engines and tech-
niques such as visualization, clustering, concept analysis, etc. which generate a high-level view of the
source code with different focus on the target software system. The Moose reengineering environment
[Duca 05]] provides a wide range of such software reverse engineering tools and techniques. It provides
a lot of different software metrics, querying language and navigation support for the software engineer.
Furthermore there exist various tools that use the FAMIX meta model of Moose [DEME 01, T1CH 01] for
other purposes such as software visualization [LANZ 99|, concept analysis [AREV 05], etc.. But because
we are unable to easily determine the roles of software entities play in the features of a system and how
these features interact using static source code analysis only we focus in this thesis on dynamic behavior
analysis of features.

In the case of dynamic analysis large traces complicate the task of generating high-level views. Many
researchers have focused on reducing and compressing traces. Using visualization, filtering, compressing
or other techniques to reduce the information the reverse engineer should be able to understand the
dynamic behavior of a software system. A further technique to reduce the amount of information is
to focus on features, i.e. a unit of observable behavior of a system. Because a full coverage of the
software system is impossible Greevy and Ducasse show that a feature-driven approach is sufficient to
detect which parts of the code are participating in a set of features [GREE 05a]. Exercising features on a
software system generates an execution trace which we refer to feature-trace. Because of its vast amount
and complexity the collection and interpretation of feature-traces is a difficult task.

In this chapter we introduce the collection and interpretation of feature-traces as well as standard tech-
niques. Furthermore we describe how software visualization can be used to generate high-level views of
software system and finally present our approach which combines these methods to a novel visualization
technique.

6 CHAPTER 2. ANALYSIS OF DYNAMIC FEATURE-TRACES

2.1 Feature-trace Collection

Source Code
{ \ extract execution traces
for each feature

" >

}

compact
feature traces
abstract a
static madel

relate features
to classes

| L

characterize classes
with respect to features

Figure 2.1: An illustration showing the collection and correlation of feature-traces with static entities
using dynamic and static analysis

The basis of our dynamic behavior analysis is the information that is collected during the execution
of a feature. We model features as test cases which are then executed in a instrumented environment.
The code instrumentation is done using method wrappers [BRAN 98|| which are installed in the target
software system. During exercising a feature every method call is extracted which leads to a collection
of method invocations, the so called feature-trace. The elements of the feature-trace represent a specific
method call with additional information such as the sender and receiver object/class. The upper right
part of Figure shows the feature-trace extraction and its compaction to a feature set.

Code instrumentation is a difficult task in different programming languages. One needs to install method
wrappers which capture every method invocation. This requires an architecture where each method
invocation is executed within one method in the systems core. If this premise is fulfilled, the method
wrappers slow down the execution of the feature which may lead to a problem in case of large features.
Besides, this approach yields to a vast amount of information that is gathered from the software system.
An abstraction and high-level interpretation is therefore crucial to extract useful information about the
run-time behavior of features.

2.2. FEATURE-TRACE INTERPRETATION 7

2.2 Feature-trace Interpretation

To support comprehension of the run-time behavior we propose to analyze feature-traces. There are a
variety of approaches adopted to manipulate the large volume of trace information and abstract high-level
views.

e Software Visualization: As listed below several approaches are using visualization to interpret
the feature-trace. A simple visualization is to display the feature-trace as a tree of method invo-
cations. It is obvious that this technique is difficult to handle with large feature-traces because an
overview is difficult to obtain.

The UML standard [BoocC 99] provides four kinds of behavioral models: sequence diagrams,
collaboration diagrams, state diagrams and activity diagrams. Using a sort of sequence diagram
one may obtain a view of the feature-traces as provided by ISVis [JERD 97a,[JERD 97b]]. Program
Explorer [[LANG 93] offers also simple sequence diagram and collaboration diagram like layouts
intended for displaying only small parts of a feature-trace.

De Pauw et.al. [PAUW 98] represent execution traces using a variation of an interaction dia-
grams [JACO 92]. They handle the complexity by condensing the information using a zoom
functionality to provide an overview of the trace. Walker et.al. [WALK 98] display the interac-
tion between objects using program animation techniques. Their tool focuses on displaying the
number of objects involved as the execution progresses. A more coarse-grained view proposed
by Antoniol et.al. [ANTO 05]] visualizes the evolution of features in combination with the static
software entities.

e Software Metrics: With this technique the collected information is compacted by applying mea-
surements, for instance the frequency of calls or the number of objects. The results are usually
represented visually [[SEFI 96, PAUW 93|

¢ Filtering and Clustering: In this strategy the amount of information to be displayed or analyzed
is reduced using filtering and clustering techniques. ISVis [[JERD 97alJERD 97b] provides filtering
and clustering technique to reduce the information before visualizing the execution traces. Eisen-
barth et.al. [EISE Ola] apply formal concept analysis to reduce the amount of information and are
generating high-level views of its result.

Nevertheless an accurate interpretation of the execution traces itself is difficult because of the huge
amount of data. Displaying a large trace as a sequence diagram produces a complex diagram where an
overview is impossible. This is also caused by the large amount of objects of different classes that are
affected by the execution trace.

Combination with Static Source Code Analysis

To detect undesirable side effects caused by a maintenance change on a feature it is important to deter-
mine what role static software entities play in a feature. Several works have shown that a feature-driven
approach allows to limit the amount of information to the parts of code that are important [GREE 05b].
It is essential to establish a relationship between features and the source code entities which has been
proposed by several researchers with different techniques such as concept analysis, visualizations, etc.
[WILD 95| EISE O1b,|/GREE 05a].

Greevy et.al. describe an approach based on software metrics and proposes characterizations of features
and classes by how they participate in features [GREE 05al]. Figure [2.1] shows their approach as an
illustration. By analyzing the feature-trace for each feature that is examined one may determine which
class is active in one or more feature or which class are inactive with respect to the features traced. On the
other hand a feature can be characterized by a so called feature-fingerprint which is a set of classes which
participate in the feature. This mapping between features and static software entities supports program
comprehension and facilitates maintenance changes. Moreover, in a previous work we introduced our

7

8 CHAPTER 2. ANALYSIS OF DYNAMIC FEATURE-TRACES

static feature interaction view which reveals the parts of the software system that participate within one
or more feature |[GREE 05c|.

Richner [RICH 02] has also conducted research on the combination of static and dynamic information
with the goal of recovering behavioral models of a software system. Therefore Richner uses a query-
based approach using perspectives which is a model of the kind of dynamic information a software
engineer is interested in. The perspectives are defined using queries on the source model.

2.3 Software Visualization

Software visualization is a specialization of information visualization where all is about reduction of
complexity. Software visualization is defined as the use of the crafts of typography, graphic design,
animation and cinematography with modern human-computer interaction and computer graphics tech-
nology to facility both the human understanding and effective use of computer software” [Sta 98||. The
goal is to provide a view on the software system on a higher level of abstraction which supports the
reverse engineer in understanding the software system.

In the context of static source code analysis information that can be extracted from the static structure of
the software system is visualized. Many tools make use of static information to visualize software, like
Rigi [MULL 88|, Hy+ [[CONS 93], SeeSoft [[EICK 92|, ShrimpViews [STOR 95|, GSee [FAVR 01]], and
the FIELD environment [REIS 90], to name but a few prominent examples.

Lanza et.al. propose the polymetric view [LANZ 03a] which provides a visual overview about the design
and a validation possibility about the design speculations made during the first contact with the system.
Based on the visualization one may identify exceptional entities, detect design patterns implemented or
design problems.

In the context of dynamic behavior analysis visualization is used to provide a high-level view of feature-
traces. Many researchers proposed such views to reduce the amount of information and complexity of a
feature-trace as we showed in the previous section.

2.3.1 Software Metrics

Software metrics measure certain properties of a software system by mapping them to numbers. They
are widely used to assess the quality and complexity of software [FENT 96] and in recent years metrics
have been defined and applied to object-oriented software as well [LORE 94, HEND 96|. This simple
approach scales up for large software systems and is language independent. In case of simple metrics
they profit from their reliable definition. However, simple measurements are hardly enough to sufficiently
and reliably assess software quality [DEME 99].

Most of the metric tools visualize information using diagrams for statistical analysis, like histograms and
Kiviat diagrams. Datrix [MAYR 96], TAC++ [FIOR 98al,[FTIOR 98b]] and Crocodile [[LEWE 98] are tools
that exhibit such visualization features.

2.4. OUR APPROACH 9

2.3.2 Polymetric View

The polymetric view [LANZ 03al] is a visualization of static code enriched with up to five software
metrics. Basically the nodes are representing software entities while as the edges are representing rela-
tionships between them. This method of visualization is then enriched with the metrics by adapting the
node size, color and position.

Position Metrics (x.y)

\ 4—— Width Metric —»

*

Color Metric Height metric

'

<4+— Relationship

<— Enlity

Figure 2.2: The principle of polymetric views

This approach combines software visualization with software metrics and therefore eliminates the need
of interpretation huge metric tables. After learning the visual language of polymetric views one gets a
fast overview about the software system, its entities and relationships.

2.4 Our Approach

Our approach is an extension of existing approaches such as feature-driven dynamic analysis and soft-
ware visualization. We are analyzing the feature-traces collected from a software system and are visu-
alizing and animating these to support the understanding of run-time behavior of a software system as
shown in Figure [2.3] Below we list some key points of our approach:

o Feature-centric approach: We focus on features of a system and visualize the feature-trace in
the context of a static entities of a system such as classes and methods. We model a feature as a
tree of method invocations. Although our feature-traces do not achieve a complete coverage of the
system under analysis, our feature perspective helps the software developer to focus on specific
parts of the code that would be affected by mainenance change to these features.

e Filtering: To reduce the amount of information visualized we propose two filtering techniques. On
the one hand it is crucial to focus on selected parts of the feature-trace. We introduce a simple filter
which enables us to focus on selected parts of interest of a trace. Furthermore we filter the message
invocations between objects and their meta-classes that are concerned with the initialization of
newly created instances.

e 3-D Visualization and Animation: In the research area of software reverse engineering 3-D vs.
2-D visualization there is a controversial debate in progress [MARC 03|]. For our approach we
choose the 2-D polymetric view and exploit the third dimension to visualize object instantiation.
We extend the polymetric views by two further properties. The depth of an object which leads to
quaders instead of rectangles representing software entities and the position on the z-axis which we
use to build towers of quaders. In case of our visual metaphor a 3-D visualization is useful because
we are able to add additional information without the need to limit the approach of polymetric
views.

10 CHAPTER 2. ANALYSIS OF DYNAMIC FEATURE-TRACES

Source Code
extract execution traces

{ \ for each feature

compact
feature traces

abstract a
static model

| & trtetramn o
™ 0 = L

Visualize A

.
feature-trace v’
(4

L]
relate features L] @
to classes > '
. ¢
L] ‘ v
¢

]

L
——

characterize classes i
with respect to features TraceCrawler
Feature-Interaction-View

Figure 2.3: An illustration of our approach extending feature-driven analysis with software visualization

To enhance the interpretation of feature-trace we propose animated visualizations which allows the
software engineer to analyze the state of a feature-trace at a specific point of execution. We propose
to step through the feature-trace selectively to understand the run-time behavior of a feature. Using
this technique the software engineer can also detect the formation of feature hotspots, i.e. object
instances or classes which are stressed during the execution. Moreover, we propose several static
views which support the comprehension of how a feature or parts of it affects specific parts of the
software system or other features.

e Software Metrics: To support the understanding of the interaction of features we use the F'C
measurement as a color metric for our polymetric views. This metric characterizes a class in terms
of how it collaborates within one or more features [|[GREE 05al].

e The Combination of Static Source Code and Dynamic Behavior Analysis: Our novel approach
combines the static source code and dynamic behavior analysis within one single visualization.
The main advantage of this technique is that several research questions can be answered within
one view. We map features to software entities such as classes but also to object instances which
are instantiated during the execution of a feature. Moreover, the proposed visualization provides
information about the static structure of the software system as well as information about the
method calls out of a feature-trace.

In the following chapter we will introduce our approach in detail. We show how we collect and interpret
feature-traces and generate our static and dynamic views to analyze them. Moreover, we introduce a
methodology of analyzing our views and present in a further chapter the results of applying our approach
to two case studies.

10

Chapter 3

Interactive 3-D Visualization of
Feature-traces

In this chapter we introduce our approach of analyzing feature-traces which is intended to support the
software reverse engineer to understand the run-time behavior of features. Our approach is a novel
visualization technique that combines the dynamic information collected exercising features with the
static structure of the software system. This way we realize a visualization which provides an abstracted
and compacted view on the feature-traces and allows to reveal how features correlate with the source
code.

As a start we describe the application of the extended method wrappers. Using code instrumentation our
tool TraceScraper extract the feature-traces that are loaded into the visualization engine. Furthermore,
we explain how these information are stored within our Moose reengineering environment.

We describe in detail the visualization of dynamic information which we refer to as the dynamic feature-
trace view. Using this technique the software developer can selectively step through execution traces
and drive a visualization engine which displays a 3-D representation of the events of a feature in terms
of object instantiations and message invocations between objects. Therefore the developer can see how
the system behaves during the execution of the traces. Moreover, the visualization is interactive and
navigable, i.e., the user can examine in detail interesting objects and also change his point of view in the
3D space to get a closer look at specific parts of the system being traced. The tool which implements these
dynamic feature-trace views is called TraceCrawler, an extension of the CodeCrawler tool [[LANZ 05,
LANZ 03b]] and CCJun [WYSS 04].

TraceCrawler also provides static views which we use to detect feature hotspots. The term hotspot is
used in many different contexts. In a geological context for example, a hotspot is used to refer to areas
of volcanic activity. According to Wikipedi Hot spots are defined as areas of high activity that are
surrounded by areas of lower activity. In the context of feature analysis, we use the term feature hot spot
to refer to areas of high activity in a system during the execution of a feature which we reveal using our
visualizations. We therefore analyze the feature-traces to detect feature hotspots. We consider objects
that appear as central points of communication to be feature hotspots. In other words they send and
receive a higher than average number of messages than other instances.

ISee http://www.wikipedia.org

11

12 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

Instances of
Root Class
Active Instance

/

Root
Class

Inheritance

Relationship Subclass 2

Active Message

Subclass 1

Metrj, metrc

Figure 3.1: The principles of the dynamic feature-trace view

3.1 Understanding Dynamic Behavior of Features

3.1.1 Feature-trace Collection

As a basis of our visualization technique we need detailed information about the run-time behavior of the
software system. Therefore our tool TraceScraper installs method wrappers which record each message
invocation while exercising a specific feature. The method wrappers record the following information
for each event:

e Sender: The name and a unique id of the sending object or class which executes the method
e Receiver: The name and a unique id of the object or class where the call is executed

e Return value: A unique id of the object or class that is passed as return value from the method
currently executed

Each of these events are stored within a collection and classified into two groups. We distinguish between
constructors which instantiate new instances and other ordinary message invocations. When the new
instances are created the return value of the constructor is the unique id which identifies the new instance.
This is necessary to map later on the sender and receiver of message invocations to the appropriate
instances.

12

3.1. UNDERSTANDING DYNAMIC BEHAVIOR OF FEATURES 13

- —
01 2 3 FC Measurement
{ Heat metaphor)
P
«single features
ClassA
«single features
ClassB
F2
a«group features
ClassC F3
F4
F5
Features

Classes

Figure 3.2: Class characterization using the £'C' measurement

13

14 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

3.1.2 Navigable Visualization of Feature-trace

The dynamic feature-trace view is a representation of the behavior of a system during the execution of
a feature in terms of classes, object-instantiations and message sends. In Figure we see a schematic
display of such a view: Itis a 3-D visualization which displays the static structure of the system on a plane
floating above the ground. The boxes on the ground are the classes connected by black edges representing
inheritance. This way of representing the static structure of a software system was introduced with
polymetric views [LANZ 03a]. We use an adapted system complexity view for our visualization which is
provided by our tool CodeCrawler [|[LANZ 99] in 2-D and extended to 3-D by CCJun [WYSS 04f]. The
position of the boxes are computed using the vertical tree layout. The view uses the NOA (number of
attributes) as a measurement for the width and NOM (number of methods) as a measurement for the
depth of the boxes as shown in Figure3.1]

The color of these boxes is computed by the F'C' measurement. This measurement computes the char-
acterization of a class by counting how many features reference it and assigning it a value to represent
the characterization below. Figure [3.2]shows an illustration of how classes were characterized. The red
class participates within all features F'1 - F'4 and is therefore infrastructural. On the other hand the two
classes on the top do not participate within a feature at all and are therefore not covered by the features.
We color the nodes according to the heat metaphor presented in Figure Classes that participate in no
feature are colored in blue and classes that participate in over the half of the features are shown in red.

e Not Covered (NC) is a class that does not participate to any of the features-traces of our current
feature model.

(NOFC =0) - FC =0 — blue

o Single-Feature (SF) is a class that participates in only one feature-trace.

(NOFC =1) - FC =1 — cyan

o Group-Feature (GF) is a class that participates in less than half of the features of a feature model.
In other words, group-feature classes/methods provide functionality to a group of features, but not
to all features.

(NOFC > 1) AN(NOFC < NOF/2) — FC =2 — yellow

o Infrastructural (I) is a class that participates in more than half of the features of a feature model.

(NOFC >= NOF/2) - FC =3 — red

Figure shows the Root Class and Subclass 2 are infrastructural classes, i.e., are used by more than
the half of the features. Subclass I on the other hand participates only in one single feature.

Our color view also make use of colors to represent instances. When the feature-trace is interpreted
step-by-step each instantiation of a class (the creation of an object) generates a blue box (like a floor in
a building) above the ground level which is the appropriate class. The more blue boxes that are above a
class, the more instances of this class have been created during the execution of the feature. We refer to
this phenomenon as a tower of instances. The currently active objects are displayed in green. Each time
an object sends a message to another object, a red message edge is drawn between the two object boxes.

During the reverse engineering process we get a high-level view of the system and then focus on a part
of the system of interest. Zooming into the visualization and using the context-sensitive menus the user
is able to identify the class and to obtain more fine-grained information about the software entities of
interest. The navigation allows to zoom (or fly) to the wished part and using rotation one can change the
viewpoint to get a better interpretation in case of a lot of objects on the screen.

14

3.1. UNDERSTANDING DYNAMIC BEHAVIOR OF FEATURES 15

T@ CodeCrawler 3D g@*

File Edit Miew Light Misc

0
&

S ‘

[A |

Figure 3.3: Initial position of the dynamic feature interaction view of a test model

(@Cudetrﬂwler 30 g@ & CodeCrawler =3

File Edit Wiew Light Misc

CodeCrawler Moose Apply Wiew Spawn Wiew Selection Transformation Colors Layout CodEValver

DR BxEBe mE | i QE@ TLE

Item Infarmation

G | Class Root::Smalltalk:: TestCaseExamples::Person belongs To Model test |

width |-'EI |He\ghl |--n ‘Enlnr |-'EI |><Pns |--n ‘YFns |-'EI

1=

Inspect Figure

Figure Operations...

|

Display Edges. .]

Entity Menu ¥ Code Crawler

Spawn Class Blueprint

Inspect Teem (Method x Feature table) relationship
Inspect Entity

Browse Source

Edit/add Comment
Browse Source File

Open Entity Yiewer 11 Nodes, & Edges - 0 selected Nodes

Navigat
Spawn Class Blusprint avigation

Spawn Mamed Class Blueprint Inspect Entity
Browse Class

Figure 3.4: Zoomed in and rotated view with a opened class blueprint

15

16 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

@

@Tmcelnterpreler g@

File Edit Wiew Light Misc TraceCrawler Skatic Yiews

.

oot::Smalltalk:: TestCaseExamples:: Person becormeProfessorin: (Object)(s) "~

oot Srnalltalk:: TestCaseExamples::SubRole_class. new((1)
Root::Smalltalk:: TestCaseExamples:: SubRole.initialize (){0)

oot Sralltalk:: TestCaseExamples::Role person:(Object] ()

oot Srnalltalk:: TestCaseExamples::Rale university: (Object) ()

oot Sralltalk:: TestCaseExamples::Person.addRole: (Object) ()

HRoot: Smalltalk: TestCaseExamples:: University. addPersan: (Object)(1)

=Root:Smalltalk: TestCaseExamples:: University. persons()(0)
Root::Smalltalk: TestCaseExamples::Person.addRole: (Object)id)

E t::Smalltalk:: TestCaseExamples:: Person.becormeProfessorln: (Object)(E)

oot Sralltalk:: TestCaseExamples: SubRole_class. new()(1)

“Root: Smalltalk:: TestCaseExamples: SubRole.initialize()(0)

oot Smalltalk:: TestCaseExamples::Role. person:{Object) ()

oot Sralltalk:: TestCaseExamples::Role. university: (Object) (D)

Root: Smalltalk:: TestCaseExamples:: Person.addRole: {Object)il)

[Hl<l-d

]
[Play] l | <<] [<< Step] [Step »»] [w2 I [Stop
1[N TSR Processing 17 of 36 scenaria nodes

Figure 3.5: An instance creation within our test model

-‘é -2.‘\ Tracelnterpreter g@
File Edit Wew Light Misc TraceCrawler Static Views
M Z:Hoot:: Smalltalk: TestCaseExamples:: Person becomeProfessorin: {Object)(5) ~
ﬂ oot :Smalltalk:: TestCaseExamples: SubRole_class.new()i1)
o Root: Smalltalk: TestCaseExamples:: SubRole.initialized) (T
. Root::Smalltalk:: TestCaseExamples:: Role.person: (Object) ()
~Root::Smalltalk:: TestCaseExamples::Role.university: (Object){d)
Root::Smalltalk:: TestCaseExamples:: Person.addRole: (Object) (0}
Root:Smalltalk:: TestCaseExamples: University. addPerson:{Object)(1)

Hoot: Smalltalk:: TestCaseExamples:: University. persons(iid)

-Hoot:: Smalltalk: TestCaseExamples::Person.addRole: (Object)(d)
SiRoot: Smalltalk: TestCaseExamples::Person. becomeProfessarin: (Object)(s)
“Root::Smalltalk:: TestCaseExamples: SubRole_class.new()i1)

Root: Smalltalk:: TestCaseExamples:: SubRale initialized (0
~Root::Smalltalk:: TestCaseExamples::Role.person: (Dbject)({0)
Root::Smalltalk: TestCaseExamples: Role.university: (Object)(0)
~Root::Smalltalk:: TestCaseExamples::Person.addRole: (Object) ()

]
[Play] [[E<S] [<4 Step] [Step »»] [=] [Stop
0
(| Processing 18 of 36 scenanio nodes

Figure 3.6: A message invocation from the meta-class to the newly created instance

Figure [3.3] shows the initial position at a specific point of a feature-trace of a test model using our dy-
namic feature-trace view. To determine to which class a specific tower of instance boxes belongs we
provide context-sensitive menus as shown in Figure [3.4] This is the same view but zoomed in to the
point of interest. The menu in this case provides the possibility to get a more fine-grained view of the
class, namely the Class Blueprint introduced by Lanza et.al. [LANZ O1]]. This view reveals the internal
structure of a class in terms of attributes and methods which are characterized in different groups.

3.1.3 Exemplification

In Figure Figure [3.6] and Figure [3.7] we show an example test model with four feature-traces inter-
preted by TraceCrawler. Our test model contains 22 classes and meta-classes and models people and
their roles at the university.

TraceCrawler allows to visually step through the traces: At each point in time of the trace we see the
current state of the trace and we can navigate backward and forward within the trace. On the right side of

16

3.2. FEATURE HOTSPOT ANALYSIS 17

@ -?: Tracelnterpreter g@
File Edit Wiew Light Misc TraceCrawler Skatic Yiews

M : oot::Smalltalk:: TestCaseExamples:: Person becormeProfessorln: (Object)(s) "~
ﬂ oot Sralltalk:: TestCaseExamples:: SubRole_class.new((1)

ﬂ Root::Smalltalk:: TestCaseExamples:: SubRole.initialize (){0)

-Root: Smalltalk:: TestCaseExamples::Role. person: (Ohject) i)

~Root: Smalltalk:: TestCaseExamples::Role university: (Object)(0)
-Root:: Smalltalk:: TestCaseExamples::Person.addRole: (Object)id)

oot Srnalltalk:: TestCaseExamples::University addPerson: (Dbject)(1)
-Root: Smalltalk:: TestCaseExamples:: University. persons{(0)

~Root::Smalltalk: TestCaseExamples:: Person.addRole: (Object)(0)

oot Smalltalk: TestCaseExamples:: Person.becormeProfessorn: (Object)(E)

oot Sralltalk:: TestCaseExamples: SubRole_class. new()(1)
=Root:Smalltalk: TestCaseExamples: SubRole.initialize (D)
‘ - -Foot:: Smalltalk:: TestCaseExamples::Role person: (Ohject)d)
v -Root: Smalltalk:: TestCaseExamples::Rale university: (Object)(0)
~Root:: Smalltalk:: TestCaseExamples::Person. addRole: (Object)(d)
[Play] l | <<] [<< Step] Step »»] [w2 I [Stop

L

=

1[N TSR Processing 19 of 36 scenaria nodes

Figure 3.7: A communication between two instances of different classes

our example the feature-trace is shown as tree of method invocations with a highlighted node which is the
currently active method call. On the left side TraceCrawler renders the interpreted data to the proposed
3-D visualization. Furthermore we allow searching to the next occurrence of a class and/or method and
TraceCrawler navigates directly to it.

The three figures show three different steps during the trace:

1. Figure [3.5] shows a instantiation of a class (the creation of an object) of the class SubRole. The
active class therefore is highlighted with a green color and a new instance box was drawn on top
of it.

2. Afterwards the meta-class SubRole_class initializes the newly created instance. This message
invocation is drawn as a red edge between the meta-class and the instance boxes which are both
highlighted. This view is shown in Figure

3. In Figure the same instance is communicating with another instance on the tower of the class
Person. Again, the two communicating entities are highlighted with a green color and a red line is
drawn between the two boxes.

This short scenario shows how one can understand the dynamic behavior of a software system. In our
simple example the instance of Person is creating a SubRole and is setting the attribute person to itself
using the appropriate method.

3.2 Feature Hotspot Analysis

We analyze the feature-traces to detect feature hotspots. We consider objects that appear as central
points of communication to be feature hotspots. In other words they send and receive a higher than
average number of messages than other instances. Such information is useful to understand the systems
run-time behavior and allows us to answer questions such as the ones listed in the introduction.

The formation of a feature hotspot can be detected by the dynamic feature-trace view and an additional
static view which we refer to as instance collaboration view. This view shows the same visualization at
the end of the feature-trace to identify the relevant entities. Zooming to the relevant entities the software
engineer can detect these feature hotspots and identify the parts of the feature that are producing it. Using

17

18 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

@ CodeCrawler 3D E]@

Fille Edit view Light Misc

[elid

o

Figure 3.8: The static instance collaboration view of the test model

the user interface the software engineer reveals the method calls with their sender and receiver and may
then change to the source code to analyze the hotspot further.

Using the test model presented above and a specific feature we show in Figure [3.8/an example of the in-
stance collaboration view. The red lines are all method invocations analyzed during the specific feature-
trace. Using this view one can recognize the entities communicating during the execution of the feature.
Instances of the classes Person and University are communicating more than the other entities and are
therefore feature hotspots.

18

3.3. FEATURE INTERACTION 19

@Cude(‘rawler D E]@

File Edit Wiew Light Misc
iy
o
ﬂ

=]

9

Figure 3.9: The static feature interaction view of a test model

3.3 Feature Interaction

To map features to source code we propose a static view which is based on a polymetric view. Its color
metric is the F'C' measurement which measures for each class if it is active in one or more features or
inactive at all. The result is the static feature interaction view which helps to identify parts of the software
system which participate within one or more feature. Zooming into the visualization and using the
context-sensitive menus the user is able to identify the class and to obtain more fine-grained information
about the software entities of interest.

In Figure [3.9| the static feature interaction view is used to visualize a simple test model. The F'C' mea-
surement is based on four features of our simple example system. Out of our view we detect

e 15 Not Covered (N C) classes and meta-classes
o 2 Single-Feature (SF') classes and meta-classes, namely Professor_class and Professor
o 2 Group-Feature (GF) classes and meta-classes, namely University_class and University

o 3 Infrastructural (I) classes and meta-classes, namely Person_class, Person and PersonTest

19

20

CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

20

Chapter 4

Case Studies

4.1 Introduction

In this chapter we present the result of applying our visualization technique introduced in Chapter [3|to
two software system:

1. SmallWiki is an object-oriented wiki implementation written in Smalltalk [RENG 03]). It provides
common wiki functionalities like adding and editing pages, user authentication, etc. In Section
we present the results of analyzing five different features such as the login process, editing a page,
search the wiki and others.

2. The Moose reengineering environment is a language independent tool written in Smalltalk to sup-
port reengineering and reverse engineering [DUCA 05]. It provides metrics, querying techniques,
import and export functionality from and to different formats and a lot of tools which are based on
it. In our case study we focus on the import and export of CDIF files and the loading of a model
directly from Smalltalk code. See Section {4 for the presentation of the results.

4.2 Towards a Methodology

By applying our visualization to feature-traces of our case studies we developed a methodology to an-
alyze software system based on feature-traces. Below we describe a step-by-step guide of our analysis
procedure. Steps 2 to 4 are iteratively executed for each feature exercised on the software system.

1. The first step is to analyze the static feature interaction view which reveals the part of the systems
which are active during one or more features. Using this view we get a first impression of the
parts of the software system that are participating within the analyzed features. We gain an under-
standing of how feature interact which is an important information for the software maintenance.
Moreover, we are able to reveal exceptional entities within the static structure of the software sys-
tem. Exceptional entities may be classes with an exceptional form and that participate within one
or more features.

2. As a second step we analyze the tree view of the feature-trace to get an coarse-grained overview.
This view reveals the basic structure of the feature-trace.

3. Most of the information about the run-time behavior can be gained from the instance collaboration
view. This view shows the instances that were created during the execution of a feature and the
message invocations between them and their classes. It is the basis to discover feature hotspots.
This view can be reduced to a specific part of a feature-trace and certain method invocations can
be filtered out.

21

22 CHAPTER 4. CASE STUDIES

4. To understand how the feature hotspots were formed we look at the animation and step through the
trace. This reveals the part of the feature-trace which leads to the hotspot. Switching to the source
code using the context-sensitive menus of all class and meta-classes is the last step to analyze the
run-time behavior more fine-grained.

4.3 Smallwiki Case Study

Our second case study is based on SmallWiki, an object-oriented wiki implementation written in Smalltalk
[RENG 03]]. The version we analyzed (1.297) consists of 288 classes. The following five features were
analyzed:

1. Login Authentication (4008 message invocations)

[\

. Edit a Page (5608 message invocations)

W

. Edit a Template (8435 message invocations)
4. Search the Wiki (7742 message invocations)

5. Show History of a Page (5563 message invocations)

As SmallWiki is written in Smalltalk we install the method wrappers of our tool TraceScraper to collect
the feature-trace. Therefore the SmallWiki web server is started and the use cases are executed. We use
WebUnifllto run our use cases.

4.3.1 Overall Overview

As a start we analyze the static feature interaction view which reveals the parts of SmallWiki which par-
ticipate in all features, i.e. which are infrastructural and are colored red. Using the Moose reengineering
environment and the F'C' measurement we detected 65 classes and meta-classes which are infrastructural.
These can be seen in Figure as red boxes. This represents the F'C' measurement value of 3 and we
are using the colors of the heat metaphor presented in Figure[3.2] Moreover, this view allows to identify
exceptional entities. One class that stands out is the HTMLWriteStream class. This box is deeper than
the others because the metric NOM, i.e. number of methods, which has a value of 87 which results in a
deep box. We verify by scanning the source code that this class plays a key role as it is responsible for
the generation of the HTML source code.

In the further sections we describe the five features in detail. We apply our filter so as not to visualize
method invocations to instances from their own meta-classes. We use the instance collaboration view
and zoom into the main inheritance hierarchy active during the execution of the features.

"http://webunit.sourceforge.net/

22

23

4.3. SMALLWIKI CASE STUDY

Figure 4.1: An overview of SmallWiki using the static feature interaction view
23

24 CHAPTER 4. CASE STUDIES

4.3.2 Feature 1: Login Authentication

HTMLWriteStream instances

. Action class
Response instances

.‘-’.‘M)

g

¢/

"r

A

i 3
f’e/’ ‘

TemplateHead and
TemplateBody subclasses

$

PageView instances

Login instances

Figure 4.2: SmallWiki login feature

Looking at Figure 4.2 we detect four feature hotspots. Looking at their name and source code we can
reveal most of the run-time behavior of the login scenario.

Login: This class is part of the Action class hierarchy. By executing the login feature it is no surprise
that the instances of this class perform the task of login the user. One of its instances is heavily commu-
nicating with instances of the template hierarchy (subclasses of TemplateBody and TemplateHead). In
SmallWiki templates are used for the composition of pages. That is why this is the instance that renders
the login form and is executed to perform the login itself. The second instance is asked if the login is still
correct while rendering the current page that is rendered after the login.

Response: The instances of this class are responsible for handling the HTTP response which is sent
back to the browser. It is responsible for the storage of cookies, the response stream and HTTP functions
such as redirection. During the login scenario four HTTP responses are sent back. We see this from
the number of instances of this class. One of its instances is not requesting any information from the
template hierarchy. This is caused by a HTTP redirection after the login form was sent back from the
browser which we can see by running the animation of the login scenario.

HTMLWriteStream: As we revealed in the previous section the instances of this class are responsible
for the generation of the HTML code.

PageView: This class is also part of the Action class hierarchy and is responsible for the rendering of
the page. Due to the fact that pages are composed of the templates it is also heavily communicating with
instances of this class hierarchy.

24

4.3. SMALLWIKI CASE STUDY 25

4.3.3 Feature 2: Edit a Page

PageEdit instances

Login instances

Figure 4.3: SmallWiki edit page feature

This feature allows the user to edit the content of a wiki page. This feature is secure, in other words
a login has to take place before. Comparing Figure #.3] and Figure [4.2] we detect that the differences
between the scenarios are small. In Figure [4.3| we see that the there are again Login instances. Looking
at the use cases that are used to generate the feature-trace we reveal as expected that the login scenario
is part of the edit page scenario. Apart from this important fact we also detect one new feature hotspot
which is not part of the login scenario:

EditPage: There is one instance of the tower which is communicating heavily with the template class
hierarchy. This instance renders the form to edit the wiki page and saves the submitted content to the
model.

25

26 CHAPTER 4. CASE STUDIES

4.3.4 Feature 3: Edit a Template

TemplateEdit instances

PropertyManager instances

VisitorReferences
instance

Figure 4.4: SmallWiki edit template feature

This feature allows a user to modify the look and feel of pages by changing a template which affects the
position, color, etc. of the page elements. We see that this scenario looks quite complicated compared
to the previous introduced ones. A visually striking element in Figure #.4]is the tower of instances of
PropertyManager that all communicate with an instance of VisitorReferences which is a single-feature
class. This implies that while editing a template the properties of the template change and this is recorded
somewhere. Apart from the feature hotspots we found in the first feature we detect one new feature
hotspot:

TemplateEdit: This class is part of the Action hierarchy and provides the functionality to change a
template using various commands. Therefore it is no surprise that instances of this class are heavily
communicating with the subclasses of the template hierarchy.

26

4.3. SMALLWIKI CASE STUDY 27

4.3.5 Feature 4: Search the Wiki

Search instances

VisitorSearch
instance

Figure 4.5: SmallWiki search feature

This feature allows the user to search for a specific string within the wiki. In Figure[d.5|we detect another
singe-feature class, namely VisitorSearch. Already the name reveals that the search functionality of
SmallWiki was realized using the Visitor pattern [GAMM 95[]. Unfortunately we realize that the process
of visiting the model of SmallWiki cannot be visualized. The reason for this is lack of information in the
feature-trace about the SmallWiki model itself. That is why we do not have the instances which are part
of the model within our visualization. We discuss this limitation in Section Nevertheless we detect
another feature hotspot which is active during the search feature:

Search: This class is again part of the Action class hierarchy. One instance is communicating heavily
with the template subclass instances. This is caused by the rendering of the results the search visitor
returns.

27

28 CHAPTER 4. CASE STUDIES

4.3.6 Feature 5: Show History of a Page

Page History
instance

Figure 4.6: SmallWiki show history feature

This feature in SmallWiki allows the user to see a list of all pages in SmallWiki which have recently
changed. The history features refers to the versions saved in the model of each page. This information is
not part of the feature-trace and therefore not visible. Moreover, we detect one new feature hotspot:

History: One instance of this action is communicating with the template subclasses. This is caused by
the rendering process of the version table which can be revealed by scanning the source code.

4.3.7 Discussion

Using our visualizations we were able to easily determine the parts of the software system that are
participating in a feature. Comparing the different views we were able to detect feature hotspots that
arise only in one specific feature and is therefore interesting to analyze further using other methods such
as the Class Blueprint or source code reading. An important fact that was revealed using the visualization
is that the login feature is part of all the other features. This was even revealed without looking at the use
cases that were used to generate the feature-trace.

We also realized that analyzing more complex feature is difficult as there are a lot of messages being
visualized. We detected that the rendering process is taking place in all features. Therefore a filtering
mechanism which would filter these method invocations would be an easy way to realize simpler views.
Such views would allow to focus even more detailed on the most interesting parts of the features.

A speciality of this case study is that SmallWiki is based on HTTP request and response. Action providers
such as the search, edit page and others are created for each rendering of a page individually. Using
our technique we can determine which instance is really executing the action using our feature hotspots.
This is a significant support for the software engineer to understand the run-time behavior of the different
features in SmallWiki. On the other hand because of the missing model information an important part
of the feature-trace is not visualized. The reason for this limitation is that the creation of the model of
Smallwiki is not part of the analyzed feature-traces. This leads to an incomplete view which does not
reveal how the actions perform on the model.

28

4.4. MOOSE CASE STUDY 29

4.4 Moose Case Study

This case study is based on the Moose reengineering environment [DUCA 05]] which provides also the
meta-model for our visualizations. The version (3.0.25) we analyze consists of 792 classes and meta-
classes. We are analyzing three features:

1. Loading a model of a software system from Smalltalk (71280 message invocations)
2. Exporting a model to a CDIF file (44836 message invocations)

3. Importing a model from a CDIF file from the file system (95040 message invocations)

The CDIF standard for information exchange [COMM 94| which is mentioned within the feature names
is used to exchange language independent model information between reengineering tools [NIER 98].

4.4.1 Overall Overview

To analyze how the features interact with each other we start our analysis by looking for the static feature
interaction view. This reveals the classes which participate in one or more features. In Figure we
see that most of the infrastructural classes are residing in the Model and Model_class hierarchy. These
boxes are colored in red in the visualization. Especially remarkable using this view is that there are no
group-feature at all and only a small number of singe-feature classes. This indicates that there is reuse
of code. We expect this as the features are providing similar functionality.

In Figure 4.8 we zoomed in to the Model hierarchy and are looking to exceptional entities. We are looking
for infrastructural classes that are colored red and which have a special form. The most eye-catching class
we see is MSEModel. Switching to the source code using the Smalltalk System Browser we reveal that
this class is responsible for the storage of the meta-model and is providing various functions on it. This
class is very tall because of the metric NOA = 0 (width) and NOM = 188 (depth). Another class
that stands out in this view is FAMIXClass. This class is part of the FAMIX meta-model which is no
surprise as our features are concerned with loading and exporting FAMIX models. Besides we detect
the ImportingContext as a further exceptional entity. This class controls the importing process. Another
thing this view reveals is that the whole Operator subhierarchy is used in all features. Operators are
responsible of computing metrics or other properties based on the meta-model. It seems that those are
computed within each feature. Scanning the source code we are able to confirm this assumption.

In the following sections we describe each feature in detail and then discuss the results. We apply our
filter so that message calls from instances from its own meta-class are not visualized. We use the instance
collaboration view and the tree view of the feature-trace to show the runtime behavior of the presented
features.

29

CHAPTER 4. CASE STUDIES

30

Figure 4.7: An overview of Moose using the static feature interaction view
30

4.4. MOOSE CASE STUDY 31

ImportingContext

Operator subhierarchy

FAMIXClass

Figure 4.8: A view of the Moose model hierarchy using the static feature interaction view

4.4.2 Feature 1: Loading a Model from Smalltalk

Overview

To start the interpretation of this feature we look at the feature-trace rendered as a tree in Figure £.9]
Looking at the first levels we reveal that the feature-trace consists of two parts. A setup routine which
is communicating with the ModelManager, EntityTypeManager and AbstractEntity. We assume that this
part of the feature-trace prepares Moose to import the model. The second part of the trace seems to be
concerned with the loading of the model itself. Our analysis reveals that the VisualWorksImporterFacade
which receives a message #doImport and assume that this message is responsible to load the model from
Smalltalk.

To prove our assumptions we filter our feature-trace to those parts and start our static instance collabo-
ration view.

31

32 CHAPTER 4. CASE STUDIES

o Tracelnterpreter E]@

TraceCrawler Static Views

estCaseloadModelFromSmalltalk(2)

setlp)

-Root::Smalltalk: SCG:Moose::ModelManager_class. uniguelnstance()0)

‘Root: Smalltalk:: SCG:Moose: ModelManager. modelNamedBecomeCurrent: (Object)(1)
-Root::Smalltalk:: SCG::Moose:: EntityTypeManager_class. uniguelnstance ()

sHoot: Smalltalk: SCG: Moose: Entity TypeManager reinitialize)(5)

oot Smalltalk:: SCG::Moose: AbstractEntity_class.initializeAllMofDescriptions() (226)
testCaseloadModelFromSmalltalk(10)

#Root: Smalltalk:: SCG:Moose: ImporterFacade_class forvisualWorks((1)

~Root:Smalltalk: SCG:Moose: ImporterF acade. impartingContext (00
#Root::Smalltalk:: SCG: Moose: ImportingContext.importhaxirmurm((2)

oot Smalltalk: 306 Moose: MadelManager_class. uniguelnstance(d)

oot::Smalltalk:: SCG::Moose: ModelManager.defineOrEraseNewhodelNamedAndBecomeCurrent; (Object)(2)
‘oot Smalltalk:: SCG:Moose: isualWorksimporterFacade. importPackageMame: (Object)(1)
oot Smalltalk::SCG::Moose: VisualWWorkslmporterF acade. importPackageMames: (Object)(1)
mrHoot Smalltalk:: S0 Moose: VisualWoaorksimporterF acade. importFPackages: (Object)(s)
Root:: Smalltalk:: SCG::Moose:ImporterFacade. prepareForlmport((3)

Hoot: Smalltalk: SC G Moose: VisualvorksimporterFacade. packagelmporter()(1)
Root:: Smalltalk:: SCG::Moose::ImporterFacade. dolmport:withimporter withF eedbackCornment: (Object, Object, Object)(8)
Root:: Smalltalk:: S3CG::Moose: VisualWorksimporerFacade. runDefault Operators() (4)
Root:: Smalltalk:: SCG::Moose::ImporterFacade.importDone()(3)

-Root;:Smalltalk;; SCG: Moose:: EntityTypeManager_class. uniguelnstance (i)

#Root::Smalltalk:: SCG:Moose: Entity TypeManager.reinitialize() (5)

-Root;:Smalltalk; SCG:: Moose:: ModelManager_class. uniguelnstance()()
~Root::Smalltalk:: SCG:Moose:: ModelManager. currenthodel () (0)

Figure 4.9: The tree view of the load model feature

Setup

To analyze this part of the feature-trace we present three screenshots. In Figure [4.10] we show the
Model and Model_class hierarchies which are the only ones participating in this part of the feature. At
a distance we detect several high towers which are caused by a high amount of instances for a spe-
cific class. MOFEXxtendedClass, MOFExtendedMultipleValueAttribute, MOFExtendedAttribute, MOF-
Package, MOFImport and EntityType are their class names which we collect using the Entity Inspector.
Moreover, we see several feature hotspots which we analyze now in more detail.

First we focus on the Model_class hierarchy as shown in Figure which reveals several feature
hotspots:

o MetaModelRepository_class: The class comment in the source code shows that this class is used
as a repository of model descriptions. This meta-class is mostly used to access its unique instance
which reveals that the Singleton pattern [GAMM 95| is used. Unfortunately we are not able to
visualize this instance as the creation is not part of the analyzed feature-trace.

o AbstractEntity_class: The messages this meta-class sends to other meta-class is #registerMofPack-
age. We assume that this is used to initialize the model descriptions of the entity types. Using the
tree view of the feature-trace we detect that this action is closly related to the MetaModelReposi-
tory_class above which is the repository of those descriptions.

o EntityTypeManager_class: This class is accessed by all the EntityType instances. Again the mes-
sages reveal that a Singleton pattern is used and that the creation of the unique instance is not
part of the feature-trace. Nevertheless, the source code implies that the created entity types are
registering themselves within the EntityTypeManager.

32

4.4. MOOSE CASE STUDY 33

Figure 4.10: An overview of the setup routine of the Moose load model feature

33

34 CHAPTER 4. CASE STUDIES

MetaModelRepository_class

EntityTypeManager_class

Figure 4.11: The Model_class hierarchy of the setup routine in the Moose load model feature

We switch our view and focus on the Model hierarchy in Figure d.12] We see some action going on
within the PropertyOperator and AbstractFactory subhierarchy but only a single feature hotspot located
at the CCEntityTypeFactory. This class is added by CodeCrawler to this subhierarchy and seems to add
necessary entity types to Moose.

If we analyze all the collected information above together with the tree view we are now able to infer the
intent of this part of the feature-trace. Basically we detect two main purposes:

1. Registering Entity Types:
Started by the unique instance of EntityTypeManager all known entity types are initialized and
registered. Moreover, for all entity types the appropriate operators, menus, expressions, etc. are
initialized. The source code reveals that there is an extensible environment to add new entity
types, operators, etc. by subclassing the appropriate factory class. This is for instance realized by
CCEntityTypeFactory of CodeCrawler.

2. Initializing MOF descriptions:
After registering all entity types the meta-description mechanism is initialized. In Moose each
entity has its own meta-description which is provided by its class. These are added to the Meta-
ModelRepository which manages all meta-descriptions for the models. This also leads to the high
towers of instances of MOH? classes.

“Meta-Object Facility, refer to http://www.omg.org/technology/documents/formal/mof.htm

34

4.4. MOOSE CASE STUDY 35

PropertyOperator subhierarchy

AbstractFactory subhierarchy

Figure 4.12: The Model hierarchy of the setup routine in the Moose load model feature

Import Package

The analysis of this part of feature-trace turned out to be really challenging due to the amount of mes-
sages that were drawn on screen. Especially messages between the Model and Model_class hierarchies
tend to hide whole parts of the inheritance hierarchy. To overcome this problem we introduced another
filter which allows to remove certain messages from the visualization. In this case we decided to re-
move the #uniquelnstance message invocations used by the Singleton pattern of several classes within
the analyzed software system. Nevertheless the amount of messages (40°736) processed is very high and
therefore the visualization is difficult to interpret.

In Figure[d.13|we see the Model_class hierarchy. We detect several feature hotspots which can be grouped
together according to their inheritance relationship:

o FAMIXFormalParameter_class, FAMIXLocalVariable_class, FAMIXGlobalVariable_class
and FAMIXMethod_class: These classes are subclasses of FAMIXModelRoot_class which provides
various functions to create unique names for the different entities. These are the hotspots we see

in Figure d.13]

o FAMIXNameResolver_class: This class provides a method to produce a signature for methods
which is used by FAMIXMethod instances. Surprisingly we detect also functions to create unique
names for different FAMIX entities which seems to be a code duplication although the messages
are not used within this feature.

36 CHAPTER 4. CASE STUDIES

FAMIXNameResolver_class

FAMIXMethod_class

FAMIXGlobalVariable_class
FAMIXFormalParameter_class
FAMIXLocalVariable_class

Figure 4.13: The Model_class hierarchy of the package import in the Moose load model feature

Figure [.13] shows the difficulties of producing a screenshot of our instance collaboration view with a
lot of method invocations. Nevertheless we are able to detect some feature hotspots and high towers of
instances. We focus on these entities and try to identify their purpose looking at the source code.

o Importing Context, VisualWorksImporterFacade and VisualWorksPackagelmporter: The instances
of these classes are responsible of importing Smalltalk code into a Moose model. Besides the Im-
portingContext the classes are single-feature classes which implies that they are only participating
within this feature. We also reveal that the import is implemented using a Facade patter

o ModelManager: The instance of this class is a large feature hotspot which is no surprise as it is
responsible of managing different models in Moose. It communicates heavily with all the instances
of the FAMIX model.

o MSEModel, MSEEnumeratedGroup: While importing the Smalltalk package a MSEModel was
created which holds the FAMIX model of the package. Enumerated groups are used to hold entities
of the same entity type and are therefore also heavily used.

e FAMIXClass, FAMIXMethod and others: Compared to Figure[d.12]the view reveals that the FAMIX
model was initialized and therefore several high instance towers appear. We count for example 22
instances of FAMIXClass which represents exactly the number of classes and meta-classes of the
loaded package.

3Refer to http://en.wikipedia.org/wiki/Facade_pattern

36

4.4. MOOSE CASE STUDY 37

ImportingContext instances VisualWorksimporterFacade instances VisualWorksPackagelmporter instance
ModelManager instance

"
il

i
fi

i
1

!

B
giliny,
' 4%.%9

MSEModel instance FAMIXInvocation instances

FAMIXLiteral instances
FAMIXComment instances

MSEEnumeratedGroup instances .
FAMIXMethod instances

FAMIXClass instances

Figure 4.14: The Model hierarchy of the package import in the Moose load model feature

4.4.3 Feature 2: Exporting a Model to CDIF

Looking at the tree view of this feature in Figure .15| we detect that the setup routine is the same as in
the feature presented before. We are able to prove this assumption by looking at the implementation of
the test case which controls the trace extraction. In fact, the setup routine is called for each feature we
analyze in this case study.

Moreover, this feature reveals one of the most important limitations of our approach. Figure .16 shows
the instance collaboration view of the part of the feature-trace that seems to be responsible for the export
of the Moose model to a CDIF file. We assume that the message #saveCurrentModelOnCDIF FileNamed:
is starting the export. Looking at the figure we are surprised that besides the towers of instances only a
small amount of message invocation is shown. The reason for this behavior was already detected during
the Smallwiki case study. The creation of the model in Moose which then should be exported is not part
of the analyzed feature-trace. That is why the identification of the instances is not possible and as a result
no message invocation edges are drawn. To overcome such difficulties we would need to analyze as well
as the execution trace, the software system state before the execution trace was started.

Nevertheless we are at least able to identify one important entity within the visualization. It is the
instance of CDIFSaver which is responsible for the CDIF file writer. It is a single-feature class because
it participates only in this feature.

37

38 CHAPTER 4. CASE STUDIES

-

@ Tracelnterpreter E]@_\

TraceCrawler Static Yiews

EHestCaseSaveCOIFModel(2)
=raetlplE)

: cEmalltalk:: 3CGE:Moose:ModelManager_class. uniguelnstancei)

camalltalk:: SCG:Moose:: ModelbManager. modelMamedBecomeCurrent: (Object)i1)
camalltalk:: SCG:Moose:: EntityTypeManager_clazss. uniguelnstance(0)
camalltalk: SCG:Moose: Entity TypelManager.reinitialize)(B)

camalltalk:: SCG o Moose: AbstractEntity_class.initializeAllMofDescriptions((226)

sethlodeToTest(2)
Root::Smalltalk::5CG::Moose::FilelOFacade_class uniquelnstance)(d)
#Hoot: Smalltalk:: 5CG::Moose::FilelOFacade. saveCurrenthodelOnCDIFFileMamed: (Object)(2)

<

Figure 4.15: The tree view of the export to CDIF feature

4.4.4 Feature 3: Importing a Model from CDIF

As we proved in the section before the setup routine is the same for all feature and already analyzed.
Therefore we focus on the main behavior of this feature. We start the analysis by looking at Figure |4.17
which reveals that the method #loadModelFromCDIFFileNamed: starts the import of the CDIF file.
Visualizing this part of the feature-trace and zooming to the Model hierarchy leads to the view presented
in Figure[4.18] As a first impression we detect that the difference to the first feature presented in this case
study seems to be small. We detect the following similarities and differences:

o ImportingContext and CDIFImporter: We detect that the ImportingContext is again used. But
instead of the VisualWorksPackagelmporter the CDIFImporter obviously controls the creation of
the FAMIX model based on the CDIF file. We reveal that all the instances of the FAMIX model are
created directly from this class. Therefore it is no surprise that CDIFImporter is a single-feature
class.

o MSEModel, MSEEnumeratedGroup: As well as in the loading model from smalltalk feature we
detect a fower of instances of MSEEnumeratedGroup and the exceptional entity MSEModel which
holds the model information.

o FAMIXClass, FAMIXMethod and others: The FAMIX model built from the CDIF file is the same
as in the first feature. It contains again 22 classes and meta-classes as entities of FAMIXClass. As
the imported CDIF file is the same exported in the previous feature this proves that the export and
import from CDIF files works correctly.

38

4.4. MOOSE CASE STUDY 39

CDIFSaver nsta _ 7

Figure 4.16: The Model hierarchy of the export to CDIF feature

4.4.5 Discussion

The interpretation of the features of this case study was significantly more difficult than for the Smallwiki
case study. Although we used a divide and conquer strategy and only focused on the most important parts
of each feature the visualization of thousands of messages reveal their limit. Nevertheless we were able
to determine the most important entities for each feature and were able to analyze their run-time behavior.

This case study also revealed that the detection of parts of the feature-trace which are shared by all
features can be easily determined by the comparison of the different views. During this case study we
detected that the setup routine of the test cases generating the execution trace is the same for all features.
The source code of the test case proved this assumption.

The most important conclusion of this case study is that a filter mechanism is necessary to reduce the
amount of messages being analyzed. Nevertheless we were confronted with features which use a lot of
message invocations during their execution. There we detected the limit of our visualizations. This is
mainly caused by the intention of the features as the importing and creation of models is a task which
normally leads to a lot of side effects such as the computation of operators, meta-descriptions, etc.. Once
we are able to reduce the amount of message invocations to a lower level the view easily revealed a
lot of their run-time behavior. Moreover, the feature that exports a model to a CDIF file revealed a
further limitation of our approach. We cannot visualize message invocations where the sender or receiver
instance is not created within the feature-trace. Therefore we would need to analyze the software system
before executing the features which we list as future work to improve our approach. We will discuss this
limitations in Chapter 3]

39

CHAPTER 4. CASE STUDIES

40

=X

o Tracelnterpreter

-

)
-

ek}
=l

=
w || =
z |
Al
= |2
18
Ol |
[a k]
o
(1]
O
=
[y}
o,

TraceCrawler

—
o
=
]
=
o
W

=
[
-
=]
=
w
]
]
k=)
]
o
-
T
I
W
L]
=
S.

)
=
—
QL
()
=
13
I
o
=
Q
=2
=
=
a
o
o
@
(&)
_l
Q
[a2)
[0
=
13
=
=i)
=)
(=)
=
@
1)
=]
=)
=
0
O
)
=
[
=
=
E
73]
—
=)
)
o

Foot::Smalltalk:: 3CG: Moose: :ModelfManager. defineOrErazelewhodelMamedAndBecome Current: [Object)(2)

Foot:: Smalltalk:: SCG:: Moose: FilelOF acade_class.uni

quelnstance)il)

Root::Smalltalk:: SCG::Moose::FilelOF acade. loadModelFrom CDIFFileMarmed: (Object)(5)

Figure 4.17: The tree view of the import from CDIF feature

CDIFImporter instance

ImportingContext instance

MSEModel instance

MSEEnumeratedGroup instances

FAMIX model entities

Figure 4.18: The Model hierarchy of the import from CDIF feature

40

Chapter 5

Conclusion

In this chapter we present the results of applying our 3-D visualization of dynamic feature-traces by
initially answering the question asked in the introduction of this thesis.

e Does our 3-D visualization of feature execution support program comprehension of the dynamic
behavior?

Yes, our views and animation of feature-traces provide a visual representation of dynamic behavior
of the software system. Our tool TraceCrawler allows to zoom in to relevant entities and provides
a link to the source code and other visualization techniques such as the Class Blueprint. Using this
possibilities the software reverse engineer may detect all the entities that participate in a feature.
This significantly supports the understanding of dynamic behavior of these entities by navigating
through the feature-trace.

However one needs to be aware of the limitations of this approach. It is still difficult to analyze
huge feature-traces although the visualization reduces the information significantly. Nevertheless,
the analysis especially using the navigation is not easy anymore because of the amount of message
invocations in huge traces.

e Which parts of a software system are affected by one or more features?

Our static feature interaction view lets a software engineer detect entities that are affected by one
or more features using the colors provided by the F'C measurement. With this visualization it is
easily possible to determine classes as well as whole inheritance hierarchies that participate within
a feature. With this information a software engineer has a significant support to focus on the
relevant parts of the software system.

e How do the features interact with each other? Which parts of the system are used by all the fea-
tures?

The F'C' measurement provides an easy way to determine which parts of the system are participat-
ing in all features. This measurement is built in all views our tool TraceCrawler is providing. In
our case studies we showed that we are able to identify feature interaction in terms of classes that
are participating in one or more features.

e Can we identify patterns of activity that are shared by features?

It is difficult to determine parts of the runtime behavior feature are sharing. Comparing the views
of the different features may reveal some information of their interaction but does not deliver a
secure method to determine their interaction.

41

42 CHAPTER 5. CONCLUSION

e Are there any parts of the system that are stressed? By stressed we mean areas of high activity in
the execution of a feature, in other words classes and objects that are sending and receiving a lot
of messages.

Yes. Our static instance collaboration view reveals the entities such as class and instances which
are communicating more than others. Furthermore, the formation of a feature hotspot can be easily
determined using our animation of the feature trace. However, the interpretation is difficult as we
are not taking the execution time into account. If we were to enhance our animation with execution
time information this would lead to a more meaningful conclusion how the parts of the system are
really stressed.

5.1 Summary

In this thesis we present a novel visualization technique which combines static analysis of source code
with dynamic information extracted by exercising features of a system. This technique will help software
reengineers to understand the dynamic runtime behavior of features. We therefore introduced state-of-
the-art techniques in the research area of static and dynamic software analysis in Chapter[2] In Chapter 3|
we introduced our views used to visualize the behavior of features. We showed that using our static
feature interaction view we can easily determine parts of the software system that are active during the
execution of different features. Moreover, we showed that we are able to detect the formation of feature
hotspots which is useful way of understanding the dynamic behavior of individual software entities. As a
proof of concept we presented two case studies which show how our approach simplifies the understand-
ing of the dynamic behavior of features. We presented in Chapter [the results of these case studies. We
describe in the appendix in detail the implementation of our tool in the context of the existing environ-
ment of Moose, TraceScraper and CodeCrawler.

42

5.2. LIMITATIONS 43

5.2 Limitations

Especially during our case studies we detected some limitations of our approach.

e 3-D Navigation: The 3-D visualization is an important part of our approach. It allows to combine
polymetric views with the runtime information collected by feature execution. This results in a
combination of static and dynamic analysis which is very helpful to understand the relationship
between static and dynamic entities within a software system. Nevertheless the 3-D visualization
has also its limitations. To familiarize oneself with the navigation requires practice and some
functions as drag and drop, selection of multiple nodes etc. are not implemented in this version of
the tool.

e Scalability: Although we handle the runtime information in a efficient way and todays computers
have a lot of memory, the loading of the information lasts a long time in case of large features.
In our Moose case study we had to handle almost 100’000 message invocations which leads to an
equivalent amount of objects for the visualization. Although our visualizations are very useful to
hide this complexity the loading process tends to be slow in such cases.

o Feature-trace Coverage: We discovered that we cannot visualize all message invocations of the
analyzed feature-traces. This is caused by the method wrappers which cannot be installed on the
entire system which means that familiar classes such as String or Object are not included in the
feature-trace. The reason for this limitation is again the amount information and the execution
time needed to run the instrumented system while collecting the feature-trace.

e System Coverage: Another limitation is caused by our feature-centric approach. We do not start
our visualization with an initialized model which is then used to exercise the features on. In our
case studies we showed that this leads to an incomplete view of the runtime behavior. How this
could be solved is listed in Section[5.3

5.3 Future Work

As this approach is based on a lot of other techniques there is a lot of potential of improving our approach.

e An important extension of our approach would be to enhance the model with state information
before executing the features on it. This would lead to higher coverage of message invocation we
could visualize. Therefore the system needs to be instrumented from the beginning of the setup
process.

e Our approach is language independent but the collection of feature-traces is not. To install method
wrappers in object-oriented languages such as Java would allow to analyze software system writ-
ten in other languages than Smalltalk. As soon as someone provides execution traces with the
information defined in our approach the visualization will work independent from the language.

e A more sophisticated filtering technique would allow to reduce the amount of messages being
visualized. We propose a filter mechanism which is controlled by the software engineer by select-
ing a group of messages which should not be processed. This would lead to views which can be
interpreted much better.

e A current research area is the detection of patterns of activity [PAUW 98||. The result of analyz-
ing our views to identify such patterns could provide a more high-level analysis of the runtime
behavior.

43

44

CHAPTER 5. CONCLUSION

44

Appendix A

Tools

Trace Extraction &
Interpretation

Visualization Engine

TraceCrawler

CCJun

TraceScraper

CodeCrawler

Jun

Moose Reengineering Environment

Figure A.1: Illustration of the architecture of our tools

In this chapter we discuss the architecture of our tool TraceCrawler and how it is integrated and con-
nected to other tools. In Figure [A.T] we provide an illustration of the architecture of our tools. The
basis of our tool TraceCrawler is the FAMIX meta-model and the Moose reengineering environment.
The feature-trace extraction using code instrumentation is realized by TraceScraper. TraceCrawler is
using the collected information and steering the visualization. The visualization engine is realized by
our tool CodeCrawler which gets the meta model information from Moose and provides a model for the
visualization and 2d visualizations. CCJun provides an interface to CodeCrawler and is extending its

capabilities to the third dimension.

45

46 APPENDIX A. TOOLS

A.1 Feature-trace Extraction and Interpretation

For the feature-trace collection the tool TraceScraper executes test cases or scripted scenarios and code
instrumentation which records each message invocation and saves it in the meta model of the Moose
reengineering platform. Our tool TraceCrawler then interprets the information in the meta model step-
by-step or summarized and controls the visualization.

A.1.1 TraceScraper

TraceScraper provides method wrappers to collect feature-traces. A method wrapper captures each
message invocation during executing the feature and extracts the necessary information such as sender,
receiver and return value. Our tool TraceScraper imports the traces and models them as FAMIX entities
in Moose. Therefore it extends this meta model to model feature-traces as first-class entities.
TraceScraper has various instruments to analyze feature-traces. Using a set of features which are com-
pacted to feature-fingerprints it facilitate the correlation of features and software entities such as pack-
ages, classes and methods.

A.1.2 Moose

The Moose reengineering platform [DUCA 05]] is based on the FAMIX meta model specification [DEME 01},
T1icH O1]]. It provides a language-independent representation of object-oriented software systems and
instruments to reengineer and reverse-engineer. It supports navigating, querying, metrics and refactor-
ings, etc. of object-oriented source code. The FAMIX meta model comprises the main object-oriented
elements such as Class, Method, Attribute and Inheritance as well as Invocation and Access. Our Trace-
Scraper tool enhanced the meta-model with further first-level entities to model feature-traces.

A.1.3 TraceCrawler

Our tool TraceCrawler interprets the feature-trace information stored as FAMIX meta model and con-
trols the visualization. The interpretation is based on the information that our tool TraceScrapers collects
by instrumenting the code of the target software system. The objects of the class ScenarioNode that are
stored as FAMIX entities represent each of them a single message invocation. Using the values of each
ScenarioNode TraceCrawler creates the visual model by creating nodes (for object instances) and edges
(for message invocations) using the CodeCrawler tool.

Figure [A.2] shows the user interface of TraceCrawler which can be started directly from the Moose
reengineering environment. It provides the navigation controls through the feature trace by stepping
through it manually or automatically. Apart from using a settings dialog one can control preferences of
the animation and there are shortcuts to static 3-D visualizations. Moreover, using a search dialog we
provide the possibility to quickly navigate and locate classes or methods within the feature-trace.

46

A.1. FEATURE-TRACE EXTRACTION AND INTERPRETATION

47

-

o Tracelnterpreter

BEE]

TraceCrawler Static Wiews

~Hoot::Smalltalk:: TestCaseExamples::PersonTest. setUp(){0)

ZHHoot: Smalltalk:: TestCaseExamples::Person_class new()(2)
~Haoot::Smalltalk:: TestCaseExamples::Person.inttialize(){0)
~Root::Smalltalk:: TestCaseExamples::Person.roles()id)
oot::Smalltalk:: TestCaseExamples::Person_class. new()(2)
~Root::Smalltalk:: TestCaseExamples::Person.intialize()(0)
~Hoot::Smalltalk:: TestCaseExamples::Persaon.roles()0)
oat::Smalltalk:: TestCaseExamples::Person. name: (Object)il)
oot Smalltalk:: TestCaseExamples::University_class new()(2)
~Root::Smalltalk:: TestCaseExamples:: University. initialize ()
~Hoot::Smalltalk:: TestCaseExamples:: University. persons()(0)
~Hoot::Smalltalk:: TestCaseExamples:: University. name: (Ohject)(D)
~Root:: Smalltalk:: TestCaseExamples:: Person. addRole: (Ohject)l)

2R

-
=R

[Search Forward l

oot Smalltalk: TestCaseExamples::PersonTest testBecomePrafessorln(){10)

| <<

|

Flay H << Step H Step > H

<

Figure A.2: The user interface provided by TraceCrawler

47

48 APPENDIX A. TOOLS

A.2 Visualization Engine

The visualization engine used by TraceCrawler is based on three different tools. Our CodeCrawler tool
visualizes polymetric views in the 2-D space. It provides the connection to the FAMIX meta model
where the information to be visualized is modeled. CCJun is our 3-D visualization and animation tool
which uses the 3-D graphics library Jun to display the 3-D visualizations and animations.

A.2.1 CodeCrawler

CodeCrawler |[LANZ 99] visualizes polymetric views although it is also a generic information visualiza-
tion tool. It is built on top of Moose which provides the FAMIX meta-model CodeCrawler is using to
model its visualizations. It provides a huge variety of different 2-D visualizations for static source code
analysis on a coarse-grained or fine-grained abstraction level. It implements different layout algorithms
and a lot of other functions that help to abstract different views of a software system.

We use CodeCrawler to load the FAMIX meta-model entities into its own model. Using the layout algo-
rithms and other functionality this tool provides the functionality TraceCrawler uses to create our novel
views.

A.2.2 Jun

Ju is a large 3-D graphics framework with support for OpenGL, VRML and other visualization tech-
niques. Besides other features it provides a hierarchy of classes that allows to create OpenGL objects
which are displayed on screen using its own user interface. OpenGL is a good choice because it is
available on a lot of platforms incorporated directly in the operating system.

A.2.3 CCJun

CCJun [WYSS 04] is an extension of CodeCrawler which enables it to display 3-D polymetric views
using the 3-D graphics library Jun. To support this task it acts as a bridge between those two tools. It
provides adapted 3-D objects which can be displayed using the OpenGL implementation of Jun. There-
fore CCJun adds 3-D figures to CodeCrawler to redirect the visualization input to its own engine.

ISee http://www.srainc.com/Jun/Main_e htm

48

Appendix B

Programmers Guide to TraceCrawler

In this chapter we present a short guide to software engineers which would like to use our tool Trace-
Crawler. Therefore we show how to load it, how to generate feature-traces and give some hints to use of
it.

B.1 Loading TraceCrawler

Before loading TraceCrawler you need to have a VisualWorks virtual machine and an running image
which you can download as non-commercial version from the Cincom websit The development and
case studies of TraceCrawler were done with the version 9.2nc. Afterwards you need to download our
3-D framework Jun which you can obtain from the FTP repository of Cinco Download the ZIP file
and install it according to the instructions for your operating system.

To load TraceCrawler you need to connect to the store database on the IAM database server of the
university of Berne. The package is named TraceCrawler and is dependent on the following packages
which will be automatically loaded:

o AareTraceScraperDevelopement
o CodeCrawlerDevelopement

e MooseDevelopment

While loading this packages choose the latest version of each tool. Our case studies was realized with
AareTraceScraperDevelopement 4.293, CodeCrawlerDevelopement 4.631, MooseDevelopment 3.0.25
and TraceCrawler 1.71. As Moose was refactored during this thesis TraceCrawler and TraceScraper
needs to be adopted to the new version which has not been finished yet. If the loading of the newest
version of each tool fails, load the version mentioned above. To ensure that the tools are compatible just
run the tests provided in the test package of TraceCrawler. This loads a small test model and tests if all
the functionality needed to analyze feature-traces is working.

"http://smalltalk.cincom.com/downloads/index.ssp
ftp://ftp.cincomsmalltalk.com/pub/goodies/Jun/

49

50 APPENDIX B. PROGRAMMERS GUIDE TO TRACECRAWLER

B.2 Generating Feature-traces and using TraceCrawler

In this section we show how to generate feature-traces for a small example system. Therefore you start
your VisualWorks image and open the System Browser. Locate the TestCaseTraceTest class and execute
the #testCreateTestCaseTraceExamples method using the test runner. This installs the wrappers on the
test model and then runs the features in the instrumented environment. As a result a FAMIX model with
a small test model and four feature-traces will be built.

To use the visualization provided by TraceCrawler, open Moose and click on the model you wish to
analyze. Clicking on the StarBrowser icon opens a view which allows to explore all the entities in the
current model. Especially you will find there the entity type of feature-traces called TestCaseTrace. The
context-sensitive menu for each feature-trace contains a item to open TraceCrawler. This action loads
the current model using the model of CodeCrawler and opens TraceCrawler.

[S
i @
Models Mavigation Tools Help File Edit “iew Light Misc
- !
1

Model Manager | test et

2z

TestCaseTraces(4]

- @ FAMIXAccesses(142) TestCaseTraceGroup (4 iterns) Actions w
- @ FAMIXAttributes()
@ FAMIXClasses(22)

~@ FAMIXComments(10)

TestCaseTrace

Root: Smalltalk:: TestCaseExamples::PersonTest: testAspect()

-\
: Eim:iﬁg?;:\pfzfgzi Root::Smalltalk:: TestCaseExamples:: PersonTest: testMew() ﬂ
-@ FAMDnheritanceDef Root:: Smalltalk:: TestCaseExamples:: PersonTest: testBecomeProfessoring
-~ FAMIRInvocations(11z Root::Bmalltalk:: TestCaseExamples::PersonTest: testhame()
~@ FAMIXLiterals(B)
-@ FAMIKLocalvanables /IR EERN
-@ FAMIXMethods{a1)
- @ FAMIXNamespaces(3 % Tracelnterpreter E]@

- @ FAMIXPackages(2)
- TestCaseTracesid)
- TraceClassAssociatic
~@ TraceClassCollaborat

TraceCrawler Static Views

‘TestCaseExamples::PersonTest testBecomeProfessorin((3):

alk::TestCaseExamples::PersonTest. setUp ()

Shown entities: 4 Hidden entities: 0 .
rRoot: Sealltalk: TestCageExamples::PersonTest.testBecomeProfessorin((10)

Root:: Senalltalk:: TestCaseExamples::Person_class. new()(2)
Root: Sealltalk: TestCaseExamples::Person.initialize(
Root: Sealltalk: TestCaseExamples::Person. roles (i)

rRoot: Smalltalk: TestCagseExamples::Person_class. new()(2)

Root: Sealltalk: TestCaseExamples::Person.initialize(
Root: Sealltalk: TestCaseExamples::Person. roles (i)
Root:: Senalltalk:: TestCaseExamples::Person. name: (Object)(d)
rRoot: Smalltalk:: TestCagseExamples::University_class. new()(2)
Root: Sealltalk: TestCaseExamples:University. initialize() (1)
Root:: Senalltalk: TestCaseExamples:: University. persons(id)
Root:: Sealltalk: TestCaseExamples:University. name: (Object)id)
Root: Sealltalk: TestCaseExamples::Person. addRole: (Object)id)

Search Forward

] [<« Step I [Step > I [22|] [Stop

~@ TraceMethodAssocial
@ TracePackageAssoci

Group Filtering | Group Properties | Group Description || Gror

#nigue name matches

Use the cortextual menu 1o edit the expression

P [1

Figure B.1: Screenshot of the Moose reengineering environment and TraceCrawler in action using a
small example system

As shown in Figure TraceCrawler initially provides an overview of the feature-trace using a tree
view. Moreover, the tool provides a menu to open static views such as the instance collaboration view
and the editor to edit their definition as well as the menu to open the animation of the feature-trace.
Using the buttons on the bottom the user controls the step-by-step animation. Furthermore using the
search dialog the identification of method invocations within the feature-trace based on their class or
method name is supported. To use the filter technique which lets the software engineer focus on selected
parts of the feature-trace use the context menu on the node you would like to be the new root node.

Enjoy using TraceCrawler!

50

List of Figures

[2.1 Anillustration showing the collection and correlation of feature-traces with static entities |
using dynamic and static analysis|. L L L oo Lo 6

[2.2 Explanation of a Polymetric View| 9

[2.3 An 1illustration of our approach extending feature-driven analysis with software visual- |

| 1ZATON| « « v v v v e 10
[3.1 The principles of the dynamic feature-trace view|. 12
[3.2 Class characterization using the /'C' measurement|. 13
[3.3 Initial position of the dynamic feature interaction view of atestmodel| 15
3.4 Zoomed in and rotated view with a opened class bluepring 15
3.5 An instance creation within our testmodell oL 16
[3.6 A message invocation from the meta-class to the newly created instance] 16
3.7 A communication between two instances of different classesl 17
3.8 The static instance collaboration view of the testmodell 18
[3.9 _The static feature interaction view of atestmodell 19
4.1 An overview of SmallWiki using the static feature interaction view| 23
4.2 SmallWiki login feature|. 24
4.3 SmallWiki edit page feature| 25
4.4 SmallWiki edit template feature| 26
M5 SmallWikisearchfeature] o 0 27
4.6 SmallWiki show history feature|. oL oo 28
|47 An overview of Moose using the static feature interaction view| 30
4.8 A view of the Moose model hierarchy using the static feature interaction view| 31
4.9 The tree view of the load model featurel 32
[4.10 An overview of the setup routine of the Moose load model feature] 33
4.11 The Model_class hierarchy of the setup routine in the Moose load model feature| 34
|4.12 The Model hierarchy of the setup routine in the Moose load model feature| 35
|4.13 The Model _class hierarchy of the package import in the Moose load model feature| . . . 36
|4.14 The Model hierarchy of the package import in the Moose load model feature]. 37
|4.15 The tree view of the export to CDIF feature] 38

51

LIST OF FIGURES

4.16 The Model hierarchy of the export to CDIF feature| 39
|4.17 The tree view of the import from CDIF feature|. 40
|4.18 The Model hierarchy of the import from CDIF feature|. 40
(A.1_Illustration of the architecture of ourtools 45
|IA.2 The user interface provided by TraceCrawler|. 47

[B.1 Screenshot of the Moose reengineering environment and 7TraceCrawler 1n action using a |

small example system| 50

52

Bibliography

[ANTO 05]

[AREV 03]

[Booc 99]

[BRAN 98]

[CHIK 90]

G. Antoniol, E. Merlo, Y.-G. Guéhéneuc, and H. Sahraoui. Feature Traceability in Object
Oriented Software. In J. 1. Maletic, G. Antonio, J. Cleland-Huang, and J. H. Hayes, edi-
tors, proceedings of the 3"¢ International Workshop on Traceability in Emerging Forms of
Software Engineering. ACM Press, November 2005. (p7)

G. Arévalo. High Level Views in Object Oriented Systems using Formal Concept Analysis.
PhD thesis, University of Berne, January 2005. (p5)

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley, 1999. (p7)

J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to the Rescue. In Proceedings
ECOQP ’98, volume 1445 of LNCS, pages 396—417. Springer-Verlag, 1998. (pp2, 6)

E. J. Chikofsky and J. H. C. Il. Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software, pages 13—17, January 1990. (p 1)

[ComM 94] C. T. Committee. CDIF Framework for Modeling and Extensibility. Research Report

[CONS 93]

[DAVI 95]

[DEME 99]

[DEME 01]

[DEME 02]

[Duca 05]

[EIcKk 92]

EIA/IS-107, Electronic Industries Association, January 1994. (p29)

M. P. Consens and A. O. Mendelzon. Hy+: A Hygraph-based Query and Visualisation Sys-
tem. In Proceeding of the 1993 ACM SIGMOD International Conference on Management
Data, SIGMOD Record Volume 22, No. 2, pages 511-516, 1993. (p8)

A. M. Davis. 201 Principles of Software Development. McGraw-Hill, 1995. (p 1)

S. Demeyer and S. Ducasse. Metrics, Do They Really Help? In J. Malenfant, editor,
Proceedings LMO 99 (Languages et Modeles a Objets), pages 69-82. HERMES Science
Publications, Paris, 1999. (p8)

S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The FAMOOS Information Ex-
change Model. Research report, University of Bern, 2001. (pp 3, 46)

S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns. Mor-
gan Kaufmann, 2002. (p2)

S. Ducasse, T. Girba, M. Lanza, and S. Demeyer. Moose: a Collaborative and Extensi-
ble Reengineering Environment. In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series, pages 55-71. Franco Angeli, 2005. (pp3. 5, 21, 29,
46)

S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—A Tool for Visualizing Line Oriented
Software Statistics. 1EEE Transactions on Software Engineering, vol. 18, no. 11, pages
957-968, November 1992. (p8)

53

54 BIBLIOGRAPHY

[EISE Ola] T. Eisenbarth, R. Koschke, and D. Simon. Feature-Driven Program Understanding us-
ing Concept Analysis of Execution Traces. In Proceedings of IWPC ’01 (9th International
Workshop on Program Comprehension), pages 300-309. IEEE Computer Society Press,
2001. (p7)

[EISE O1b] T. Eisenbarth, R. Koschke, and D. Simon. Aiding Program Comprehension by Static and
Dynamic Feature Analysis. In Proceedings of ICSM ’01 (International Conference on Soft-
ware Maintenance). IEEE Computer Society Press, 2001. (p7)

[E1sE 03] T. Eisenbarth, R. Koschke, and D. Simon. Locating Features in Source Code. IEEE Com-
puter, vol. 29, no. 3, pages 210-224, March 2003. (p1)

[FAVR 01] J.-M. Favre. GSEE: a Generic Software Exploration Environment. In Proceedings of the
Oth International Workshop on Program Comprehension, pages 233-244. IEEE, Mai 2001.

(3

[FENT 96] N. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. Inter-
national Thomson Computer Press, London, UK, Second edition, 1996. (p8)

[FIOR 98a] F. Fioravanti, P. Nesi, and S. Perli. Assessment of System Evolution Through Characteriza-
tion. In ICSE 98 Proceedings (International Conference on Software Engineering). IEEE
Computer Society, 1998. (p8)

[FIOR 98b] F. Fioravanti, P. Nesi, and S. Perli. A Tool for Process and Product Assessment of C++
Applications. In CSMR ’98 Proceedings (Euromicro Conference on Software Maintenance
and Reengineering). IEEE Computer Society, 1998. (p8)

[GAMM 95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, Mass., 1995. (pp 27, 32)

[GREE 05a] O. Greevy and S. Ducasse. Correlating Features and Code Using A Compact Two-Sided
Trace Analysis Approach. In Proceedings of CSMR 2005 (9th European Conference on
Software Maintenance and Reengineering, pages 314-323. IEEE Computer Society Press,
2005. (pp2.3,4,5,7, 10)

[GREE 05b] O. Greevy and S. Ducasse. Characterizing the Functional Roles of Classes and Methods
by Analyzing Feature Traces. In Proceedings of WOOR 2005 (6th International Workshop
on Object-Oriented Reengineering), July 2005. (pp2,7)

[GREE 05c] O. Greevy, M. Lanza, and C. Wysseier. Visualizing Feature Interaction in 3-D. In Pro-
ceedings of Vissoft 2005 (3th IEEE International Workshop on Visualizing Software for
Understanding), September 2005. (p8)

[HEND 96] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice-Hall,
1996. (p3)

[Jaco 92] 1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software En-
gineering — A Use Case Driven Approach. Addison Wesley/ACM Press, Reading, Mass.,
1992. (p7)

[JERD 97a] D. Jerding and S. Rugaber. Using Visualization for Architectural Localization and Extrac-
tion. In L. Baxter, A. Quilici, and C. Verhoef, editors, Proceedings of WCRE ’97 (4th
Working Conference on Reverse Engineering), pages 56—65. IEEE Computer Society Press,
1997. (p7)

[JERD 97b] D.J. Jerding, J. T. Stasko, and T. Ball. Visualizing Interactions in Program Executions. In
Proceedings of ICSE 97, pages 360-370, 1997. (p7)

54

BIBLIOGRAPHY 55

[LANG 95]

[LANZ 99]

[LANZ 01]

D. Lange and Y. Nakamura. Program Explorer: A Program Visualizer for C++. In Pro-
ceedings of Usenix Conference on Object-Oriented Technologies, pages 39-54, 1995. (p7)

M. Lanza. Combining Metrics and Graphs for Object Oriented Reverse Engineering.
Diploma Thesis, University of Bern, October 1999. (pp3, 3, 14, 48)

M. Lanza and S. Ducasse. A Categorization of Classes based on the Visualization of their
Internal Structure: the Class Blueprint. In Proceedings of OOPSLA °01 (International
Conference on Object-Oriented Programming Systems, Languages and Applications), pages
300-311. ACM Press, 2001. (p 16)

[LANZ 03a] M. Lanza and S. Ducasse. Polymetric Views — A Lightweight Visual Approach to Reverse

Engineering. 1EEE Transactions on Software Engineering, vol. 29, no. 9, pages 782—795,
September 2003. (pp4, 8,9, 14)

[LANZ 03b] M. Lanza. CodeCrawler — Lessons Learned in Building a Software Visualization Tool. In

[LANZ 05]

[LEWE 98]

[LORE 94]

[MARC 03]

[MAYR 96]

[MULL 88]

[NIER 98]

[PAUW 93]

[PAUW 98]

[REIS 90]

[RENG 03]

Proceedings of CSMR 2003, pages 409—418. IEEE Press, 2003. (p11)

M. Lanza, S. Ducasse, H. Gall, and M. Pinzger. CodeCrawler — An Information Visualiza-
tion Tool for Program Comprehension. In Proceedings of ICSE 2005 (27th IEEE Interna-
tional Conference on Software Engineering), pages 672—-673. ACM Press, 2005. (p11)

C. Lewerentz and F. Simon. A Product Metrics Tool Integrated into a Software Development
Environment. In Object-Oriented Technology Ecoop 98 Workshop Reader, volume 1543 of
LNCS, pages 256-257, 1998. (p8)

M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical Guide. Prentice-
Hall, 1994. (p8)

A. Marcus, L. Feng, and J. I. Maletic. 3D representations for software visualization. In
SoftVis ’03: Proceedings of the 2003 ACM symposium on Software visualization, pages
27—ff, New York, NY, USA, 2003. ACM Press. (p9)

J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the Automatic Detection of Func-
tion Clones in a Software System Using Metrics. In International Conference on Software
Maintenance (ICSM), pages 244-253, 1996. (p38)

H. A. Miiller and K. Klashinsky. Rigi — A system for programming-in-the-large. In ICSE
’88: Proceedings of the 10th international conference on Software engineering, pages 80—
86. IEEE Computer Society Press, 1988. (p8)

O. Nierstrasz, S. Tichelaar, and S. Demeyer. CDIF as the Interchange Format between
Reengineering Tools. In OOPSLA °98 Workshop on Model Engineering, Methods and
Tools Integration with CDIF, October 1998. (p29)

W. D. Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visualizing the Behavior of Object-
Oriented Systems. In Proceedings OOPSLA °93, pages 326-337, October 1993. (p7)

W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Execution Patterns in Object-
Oriented Visualization. In Proceedings Conference on Object-Oriented Technologies and
Systems (COOTS ’98), pages 219-234. USENIX, 1998. (pp7, 43)

S. P. Reiss. Interacting with the FIELD environment. Software — Practice and Experience,
vol. 20, pages 89-115, 1990. (p8)

L. Renggli. SmallWiki: Collaborative Content Management. Informatikprojekt, University
of Bern, 2003. (pp21, 22)

55

56

BIBLIOGRAPHY

[RICH 02]

[SEFI 96]

[SomM 00]

[STOR 95]

[TicH 01]

[WALK 98]

[WILD 92]

[WILD 95]

[WYSs 04]

[Sta 98]

T. Richner. Recovering Behavioral Design Views: a Query-Based Approach. PhD thesis,
University of Berne, Mai 2002. (p8)

M. Sefika, A. Sane, and R. H. Campbell. Monitoring Complicance of a Software System
with Its High-Level Design Models. In Proceedings ICSE-18, pages 387-396, March 1996.

®7)
I. Sommerville. Software Engineering. Addison Wesley, Sixth edition, 2000. (p1)

M.-A. D. Storey and H. A. Miiller. Manipulating and Documenting Software Structures
using SHriMP Views. In Proceedings of ICSM °95 (International Conference on Software
Maintenance), pages 275-284. IEEE Computer Society Press, 1995. (p8)

S. Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and Refactoring.
PhD thesis, University of Berne, December 2001. (pp 5, 46)

R.J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson, and J. Isaak. Visu-
alizing Dynamic Software System Information through High-Level Models. In Proceedings
OOPSLA °98, pages 271-283. ACM, October 1998. (p7)

N. Wilde and R. Huitt. Maintenance Support for Object-Oriented Programs. 1IEEE Trans-
actions on Software Engineering, vol. SE-18, no. 12, pages 1038-1044, December 1992.

((:RY)

N. Wilde and M. C. Scully. Software Reconnaisance: Mapping Program Features to Code.
Software Maintenance: Research and Practice, vol. 7, no. 1, pages 49-62, 1995. (p7)

C. Wysseier. CCJun — Polymetric Views in Three-dimensional Space. Informatikprojekt,
University of Berne, June 2004. (pp 11, 14, 43)

J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price, editors. Software Visualization —
Programming as a Multimedia Experience. The MIT Press, 1998. (p8)

56

	Abstract
	Acknowledgements
	Introduction
	Dynamic Behavior Analysis and Software Reverse Engineering
	3-D Visualization of Dynamic Behavior
	Goals of this Work
	Contributions
	Thesis Outline

	Analysis of Dynamic Feature-traces
	Feature-trace Collection
	Feature-trace Interpretation
	Software Visualization
	Software Metrics
	Polymetric View

	Our Approach

	Interactive 3-D Visualization of Feature-traces
	Understanding Dynamic Behavior of Features
	Feature-trace Collection
	Navigable Visualization of Feature-trace
	Exemplification

	Feature Hotspot Analysis
	Feature Interaction

	Case Studies
	Introduction
	Towards a Methodology
	Smallwiki Case Study
	Overall Overview
	Feature 1: Login Authentication
	Feature 2: Edit a Page
	Feature 3: Edit a Template
	Feature 4: Search the Wiki
	Feature 5: Show History of a Page
	Discussion

	Moose Case Study
	Overall Overview
	Feature 1: Loading a Model from Smalltalk
	Feature 2: Exporting a Model to CDIF
	Feature 3: Importing a Model from CDIF
	Discussion

	Conclusion
	Summary
	Limitations
	Future Work

	Tools
	Feature-trace Extraction and Interpretation
	TraceScraper
	Moose
	TraceCrawler

	Visualization Engine
	CodeCrawler
	Jun
	CCJun

	Programmers Guide to TraceCrawler
	Loading TraceCrawler
	Generating Feature-traces and using TraceCrawler

