
Interactive 3-D Visualization of
Feature-traces

Master Thesis
Philosophisch-naturwissenschaftlichen Fakultät

der Universiẗat Bern

vorgelegt von

Christoph Wysseier

November 2005

Leiter der Arbeit:

Prof. Dr. Oscar Nierstrasz
Orla Greevy

Prof. Dr. Michele Lanza

Institut für Informatik und angewandte Mathematik



The address of the author:

Christoph Wysseier
Länggassstr. 74
CH-3012 Bern
chris@wysseier.net

mailto:chris@wysseier.net


Abstract

The maintenance or reengineering of an object-oriented system includes its reverse engineering. In
other words its internal structure and behavior needs to be understood. Many researchers have proposed
different techniques to support the reverse engineering effort. The two predominant approaches to reverse
engineering are:

• static analysis of source code

• dynamic analysis of behavior of a system at execution time.

Both techniques have strengths and short comings. The static analysis of an object-oriented software
system face difficulties such as polymorphism and it may be difficult to correlate parts with system
functionality. Dynamic analysis approaches generally do not achieve full coverage of a software system.
Moreover, due to the volume of data captured during dynamic analysis of a system, it is difficult to infer
high-level views.

In this thesis we address this issue of software maintenance and reengineering and propose a novel vi-
sualization technique which combines static analysis of source code with dynamic information extracted
by exercising features of a system. We refer to these asdynamic feature-traces. This technique supports
the software engineer in understanding the behavior of software systems by visualizing it in terms of its
internal structure. Using our visualizations we focus on modeling features of a system, how to detect
and locate them in the source code, hotspots of behavior and feature interaction as a means to understand
how different features behave in a software system.

iii





Acknowledgements

I would like to thank everybody from the university who supported me in one way or another to finish
my studies by writing this thesis. First of all, thank you Prof. Dr. Oscar Nierstrasz that you welcomed
me in your research group. It was a pleasure working with all the people you are surrounded with.
Two of them I would like to thank especially. The main vision which lead to this thesis came from my
friend and supervisor Michele Lanza. Thank you very much, Michele, for leading me in this direction
and also for the beautiful flat I could take over. I wish you all the best for your work at the Università
della Svizzera italiana. My supervisor in Berne was Orla Greevy who became very important for my
master thesis. Orla, the result of you work and your personal help for my thesis was an important and at
the beginning not expected support. Thank you very much for everything and good luck for your own
studies.
Of course I met during my studies a lot of other students. To list all of them would lead to an endless list.
So I would like just to thank you all for being my friends and I wish you all good luck for your future.

During the last five years I enjoyed the support of my family and a small but important circle of friends.
Thanks to my parents and my little sister for helping me through these sometimes difficult times. A
special greeting goes to my circle of friends in the eastern part of Switzerland. Ueli Niederer, Reto
Fischeret.al., the weekends there were always very recreative. Thank you! Of course I would also thank
all the friends here in Berne: Markus Beyeler, Daniela Luginbühl, Maurus B̈arlocher, Markus Kobel,
Adrian Lienhard, Dominik Wyss and Anne Simon to name just a few of them. A special regard goes to
Anna Schmid. Without her I would not be at this point personally and professionally as I am now. And
last but not least all the guys from the team handball club with which playing a team sport makes a lot of
fun.

A lot of my thoughts go to my little godchild Nayana Solomita and her parents Renato and Jasmin. Thank
you to entrust me this honor and for being my friends. Your independent view on my life is refreshing
and has helped me to almost always only look forward.

A big part of my life became netstyle.ch, the company I founded together with Adrian Lienhard. Together
with him and a lot of cool and professional co-workers we realized something which I have never thought
of at the beginning although it was not always easy. This company will probably influence my future
for a long time. Thank you everybody, namely my co-workers, customers, and other supporters, for the
possibility to work on this dream.

Christoph Wysseier
November 2005

v





Contents

vii



viii CONTENTS

viii



Chapter 1

Introduction

Sommerville [?, ] and Davis [?, ] estimate that the cost of software maintenance accounts for 50% to
75% of the overall costs of a software system. It would thus seem advisable to rewrite software as soon
as it does not fulfill the requirements anymore. However, it may be that the software is too valuable to be
replaced or to be rewritten. By adapting suchlegacy systemsto new requirements the lifetime of a system
can be increased which increases the return of investement for their owner. Reengineering is therefore
an integral part of the lifetime of a software system if it evolves to meet new and changing requirements.

Reengineering a software system is a difficult task and complicated by many factors. Original developers
may not be available anymore, the documentation is outdated or not available at all and the quality of
source code may have degraded over time as a result of continuous software maintenance. Therefore
reverse engineering is a key task during reengineering software systems.

Reverse engineering of software systems is part of the reengineering life cycle. It is defined by Chikofsky
and Cross as ”the process of analyzing a subject system to identify the system’s components and their
relationship, and to create representations of the system in another form at a higher level of abstraction”
[?, ]. It is the prerequisite for the maintenance, reengineering and evolution of software systems. Since
modifications of one part of a system may impact other parts of the system it is essential to have a mental
model of the software before the system can be modified or reengineered.

We have focused our attention on the reverse engineering ofobject-orientedlegacy systems, mainly
because most current software systems are written in languages implementing this paradigm. Reverse
engineering object-oriented software systems comes with additional challenges [?, ] compared to non-
object-oriented systems, such as polymorphism, late-binding, incremental class definitions, etc.

We identify the two predominant approaches that address the task of reverse engineering object-oriented
software systems:

• Static source code analysis
In this approach a model of the source code is abstracted to support the understanding of the
internal structure and design of a software system in terms of source code artifacts.

• Dynamic behavior analysis
In this approach information about method invocations, state, etc. of the running software system
is collected and interpreted to understand the behavior during execution.

Many reverse engineering approaches to software analysis focus on the source code artifacts of a sys-
tem, such as classes and methods. A static perspective considers only the structure and implementation
details of a system. Using static analysis alone we are unable to easily determine the roles of software
entities play in the features of a system and how these features interact. We define a feature as a unit of
observable behavior of a system [?, ]. Without relationships between features and the software entities
that implement them it is difficult to determine if a maintenance change cause undesirable side effects in

1



2 CHAPTER 1. INTRODUCTION

other parts of the software system. In this thesis our main focus is on the dynamic behavior analysis of
features to support the understanding of the run-time behavior of features.

1.1 Dynamic Behavior Analysis and Software Reverse Engineering

In the context of software reverse engineering dynamic behavior analysis is used to understand the run-
time behavior of a software system. Demeyeret.al. describe a reverse engineering pattern that recom-
mends stepping through the execution of the software system to gain an understanding of the dynamic
behavior of a software system [?, ]. This pattern underlines the motivation and the problem of dynamic
analysis. The motivation is to automate the analysis of run-time behavior because stepping through the
execution manually is very time-consuming. Another problem is the collection of the information espe-
cially because of the vast amount and complexity of the data gathered. To reduce the data researchers
often focus on features. This allows to only focus on the parts of the software system that are affected
by the execution of a feature. Moreover, different techniques were developed to filter the data using
common subtree approaches, concept analysis, clustering techniques, etc.

To obtain the execution trace we instrument the code using method wrappers [?, ]. We collect each
method invocation that occurs during the execution of a feature. We refer to this execution traces as
feature-tracewhich represent the run-time behavior of features.

One focus of feature-centric analysis approaches is to correlate features and source code entities. By
understanding which parts of the code are providing functionality to the features, we support the main-
tenance task as we identify which parts of the system may be affected by a maintenance change. Greevy
et.al. [?, ?, ] outline a feature approach to reverse engineering whereby they exercise a set of features
and establish how the classes or methods relate to these features. One of their visualization techniques
support the identification of parts of the system which are active in one or more feature or inactive. By
obtaining dynamic views of a software system at run-time and characterizing the roles of the software
entities this information also allows to speculate about the design of the software. Identifying the fea-
tures that are using the same parts of the system may indicate that these parts of the system have been
implemented in a generic manner.

Apart from the identification of parts of the system which are used by one ore more features it is also
important to identify which parts are more or less active during the execution. This information may be
used to optimize the behavior of features and reveals information about the architecture of the software
system.

2



1.2. 3-D VISUALIZATION OF DYNAMIC BEHAVIOR 3

1.2 3-D Visualization of Dynamic Behavior

We introduce a novel visualization technique based on 3-D visualization. Mainly, our goal is to support
the reverse engineer to understand run-time behavior of features by visualizing each message invocation
that occurs within a feature-trace. Therefore the individual method invocations collected during the exe-
cution of features are interpreted and visualized. As the basis of our visualization we use 2-D polymetric
views and extend this approach by modeling object instantiation as first-level entities and visualizing
these with the third dimension of the views. The visualization supports the understanding of a feature
execution. Futhermore, this approach provides an easy way to detect how features correlate with the
software system and relationships between features to reveal patterns of execution. It also provides a
technique to detect parts of the system which are stressed most.

We realize our approach as an enhancement of the existingMoosereengineering environment [?, ].
We integrate existing tools such asTraceScraper[?], CodeCrawler[?, ], etc. to collect and visualize
the information. Like this we take advantage of existing capabilities these tools are providing and are
contributing new approaches. In the following sections we describe the goals of this work and some of
the contributions of our approach.

1.3 Goals of this Work

Applying our visualizations of the dynamic behavior of features in terms of object instantiations and
method invocations we would like to answer the following questions:

• Does our 3-D visualization of feature execution support program comprehension of the dynamic
behavior?

• Which parts of a software system are affected by one or more features?

• How do the features interact with each other? Which parts of the system are used by all the
features?

• Can we identify patterns of activity that are shared by features?

• Are there any parts of the system that are stressed? By stressed we mean areas of high activity in
the execution of a feature, in other words classes and objects that are sending and receiving a lot
of messages.

1.4 Contributions

In this thesis we present a novel 3-D visualization to understand dynamic behavior of features and their
correlation to the static structure of the software system. The contributions in detail are:

• We extend the technique of method wrappers to get an unique identity of object instances contribut-
ing to a feature. This allows to explicitly determine which software entities such as classes and
objects are communicating with others and at which point of the feature-trace they were created.
A detailed description of this approach is discussed in Chapter??.

• We provide a new visualization technique to analyze feature-traces using the combination of dy-
namic and static software analysis. Mainly, we introduce thedynamic feature-trace viewwhich
visualizes the behavior of a feature at a specific point of a feature-trace. We discuss this technique
in Chapter??.

3



4 CHAPTER 1. INTRODUCTION

• We extend the visualization of feature characterization of classes by providing astatic feature
interaction view. This view maps the feature class characterization measurement [?] to a color of
the 3-D polymetric view [?, ] of thesystem complexity view. Our view indicates which classes are
characterized with respect to features. The principles of this view are shown in Chapter??.

• We describe a technique to detectfeature hotspots, i.e. software entities that are more active than
others during the execution of a feature. To achieve this we use a static representation of the
dynamic feature-trace view. We introduce the detection offeature hotspotsin Chapter??.

• Using our case studies in Chapter??we show how our approach supports the understanding of the
run-time behavior as well as its collaboration with the static structure. Therefore we introduce a
methodology to lead a software reverse engineer using our tools step-by-step.

• We build a toolTraceCrawlerwhich allows to step through the behavior of a feature using the
dynamic feature-trace viewand which controls the visualization. We describe this tool in Ap-
pendix??.

• We build an interactive 3-D visualization engine calledCCJunwhich provides the interface to cre-
ate 3-D views and navigation functionality to move through the 3-D space and zoom. Furthermore
it offers an interface to the meta-model of theMoosereengineering environment to provide more
detailed information about the entities displayed on screen. We provide a detailed discussion of all
tools in Appendix??.

1.5 Thesis Outline

• In Chapter?? we introduce the analysis of feature-traces and show some state-of-the-art analysis
techniques. We identify and discuss the scope and limitation of this research area. We then outline
our 3-D visualization approach and introduce our feature views.

• We present the novel visualization technique in Chapter??. We explain the principles of this
visualization and its use in the area of reverse engineering software systems.

• In Chapter?? we present the results of applying our visualization to two case studies as a proof
of concept of our approach. We apply our technique to the systemsSmallWikiandMooseand
describe our methodology of analyzing thefeature-tracesbased on these examples.

• In Chapter??we discuss the results we obtained from applying our approach, list some limitations
of our approach and identify future work.

• In Appendix??we describe in detail the tools which provide the foundation of our work.

• In Appendix??we provide a developers guide to describe how to useTraceCrawlerin the context
of MooseandTraceScraper.

4



Chapter 2

Analysis of Dynamic Feature-traces

As outlined in the previous chapter there are predominantly two areas of analysis that focus on software
comprehension, namely the static source code analysis and the dynamic behavior analysis. Many reverse
engineering approaches to software analysis focus on static source code entities of a system, such as
classes and methods. They use a wide range of tools such as visualizers, query engines and techniques
such as visualization, clustering, concept analysis, etc. which generate a high-level view of the source
code with different focus on the target software system. TheMoosereengineering environment [?] pro-
vides a wide range of such software reverse engineering tools and techniques. It provides a lot of different
software metrics, querying language and navigation support for the software engineer. Furthermore there
exist various tools that use the FAMIX meta model ofMoose[?,?, ] for other purposes such as software
visualization [?], concept analysis [?, ], etc.. But because we are unable to easily determine the roles of
software entities play in the features of a system and how these features interact using static source code
analysis only we focus in this thesis on dynamic behavior analysis of features.

In the case of dynamic analysis large traces complicate the task of generating high-level views. Many
researchers have focused on reducing and compressing traces. Using visualization, filtering, compressing
or other techniques to reduce the information the reverse engineer should be able to understand the
dynamic behavior of a software system. A further technique to reduce the amount of information is to
focus on features,i.e. a unit of observable behavior of a system. Because a full coverage of the software
system is impossible Greevy and Ducasse show that a feature-driven approach is sufficient to detect
which parts of the code are participating in a set of features [?]. Exercising features on a software system
generates an execution trace which we refer tofeature-trace. Because of its vast amount and complexity
the collection and interpretation offeature-tracesis a difficult task.

In this chapter we introduce the collection and interpretation of feature-traces as well as standard tech-
niques. Furthermore we describe how software visualization can be used to generate high-level views of
software system and finally present our approach which combines these methods to a novel visualization
technique.

5



6 CHAPTER 2. ANALYSIS OF DYNAMIC FEATURE-TRACES

2.1 Feature-trace Collection

Figure 2.1: An illustration showing the collection and correlation offeature-traceswith static entities
using dynamic and static analysis

The basis of our dynamic behavior analysis is the information that is collected during the execution
of a feature. We model features as test cases which are then executed in a instrumented environment.
The code instrumentation is done using method wrappers [?] which are installed in the target software
system. During exercising a feature every method call is extracted which leads to a collection of method
invocations, the so calledfeature-trace. The elements of thefeature-tracerepresent a specific method
call with additional information such as the sender and receiver object/class. The upper right part of
Figure??shows thefeature-traceextraction and its compaction to a feature set.

Code instrumentation is a difficult task in different programming languages. One needs to install method
wrappers which capture every method invocation. This requires an architecture where each method
invocation is executed within one method in the systems core. If this premise is fulfilled, the method
wrappers slow down the execution of the feature which may lead to a problem in case of large features.
Besides, this approach yields to a vast amount of information that is gathered from the software system.
An abstraction and high-level interpretation is therefore crucial to extract useful information about the
run-time behavior of features.

6



2.2. FEATURE-TRACE INTERPRETATION 7

2.2 Feature-trace Interpretation

To support comprehension of the run-time behavior we propose to analyzefeature-traces. There are a
variety of approaches adopted to manipulate the large volume of trace information and abstract high-level
views.

• Software Visualization: As listed below several approaches are using visualization to interpret
the feature-trace. A simple visualization is to display thefeature-traceas a tree of method invo-
cations. It is obvious that this technique is difficult to handle with largefeature-tracesbecause an
overview is difficult to obtain.
The UML standard [?, ] provides four kinds of behavioral models: sequence diagrams, collabora-
tion diagrams, state diagrams and activity diagrams. Using a sort of sequence diagram one may
obtain a view of thefeature-tracesas provided by ISVis [?, ?, ]. Program Explorer [?, ] offers
also simple sequence diagram and collaboration diagram like layouts intended for displaying only
small parts of afeature-trace.
De Pauwet.al. [?, ] represent execution traces using a variation of an interaction diagrams [?, ].
They handle the complexity by condensing the information using a zoom functionality to provide
an overview of the trace. Walkeret.al. [?, ] display the interaction between objects using program
animation techniques. Their tool focuses on displaying the number of objects involved as the ex-
ecution progresses. A more coarse-grained view proposed by Antoniolet.al. [?, ] visualizes the
evolution of features in combination with the static software entities.

• Software Metrics: With this technique the collected information is compacted by applying mea-
surements, for instance the frequency of calls or the number of objects. The results are usually
represented visually [?,?, ].

• Filtering and Clustering: In this strategy the amount of information to be displayed or analyzed
is reduced using filtering and clustering techniques. ISVis [?, ?] provides filtering and clustering
technique to reduce the information before visualizing the execution traces. Eisenbarthet.al. [?, ]
apply formal concept analysis to reduce the amount of information and are generating high-level
views of its result.

Nevertheless an accurate interpretation of the execution traces itself is difficult because of the huge
amount of data. Displaying a large trace as a sequence diagram produces a complex diagram where an
overview is impossible. This is also caused by the large amount of objects of different classes that are
affected by the execution trace.

Combination with Static Source Code Analysis
To detect undesirable side effects caused by a maintenance change on a feature it is important to deter-
mine what role static software entities play in a feature. Several works have shown that a feature-driven
approach allows to limit the amount of information to the parts of code that are important [?]. It is essen-
tial to establish a relationship between features and the source code entities which has been proposed by
several researchers with different techniques such as concept analysis, visualizations, etc. [?,?, ?, ].

Greevyet.al. describe an approach based on software metrics and proposes characterizations of features
and classes by how they participate in features [?]. Figure??shows their approach as an illustration. By
analyzing thefeature-tracefor each feature that is examined one may determine which class is active
in one or more feature or which class are inactive with respect to the features traced. On the other
hand a feature can be characterized by a so calledfeature-fingerprintwhich is a set of classes which
participate in the feature. This mapping between features and static software entities supports program
comprehension and facilitates maintenance changes. Moreover, in a previous work we introduced our
static feature interaction viewwhich reveals the parts of the software system that participate within one
or more feature [?, ].

7



8 CHAPTER 2. ANALYSIS OF DYNAMIC FEATURE-TRACES

Richner [?, ] has also conducted research on the combination of static and dynamic information with
the goal of recovering behavioral models of a software system. Therefore Richner uses a query-based
approach using perspectives which is a model of the kind of dynamic information a software engineer is
interested in. The perspectives are defined using queries on the source model.

2.3 Software Visualization

Software visualization is a specialization of information visualization where all is about reduction of
complexity. Software visualization is defined as ”the use of the crafts of typography, graphic design,
animation and cinematography with modern human-computer interaction and computer graphics tech-
nology to facility both the human understanding and effective use of computer software” [?, ]. The goal
is to provide a view on the software system on a higher level of abstraction which supports the reverse
engineer in understanding the software system.

In the context of static source code analysis information that can be extracted from the static structure of
the software system is visualized. Many tools make use of static information to visualize software, like
Rigi [?, ], Hy+ [?, ], SeeSoft [?, ], ShrimpViews [?, ], GSee [?, ], and the FIELD environment [?, ], to
name but a few prominent examples.
Lanzaet.al. propose the polymetric view [?] which provides a visual overview about the design and a
validation possibility about the design speculations made during the first contact with the system. Based
on the visualization one may identify exceptional entities, detect design patterns implemented or design
problems.

In the context of dynamic behavior analysis visualization is used to provide a high-level view of feature-
traces. Many researchers proposed such views to reduce the amount of information and complexity of a
feature-trace as we showed in the previous section.

2.3.1 Software Metrics

Software metrics measure certain properties of a software system by mapping them to numbers. They are
widely used to assess the quality and complexity of software [?, ] and in recent years metrics have been
defined and applied to object-oriented software as well [?,?, ]. This simple approach scales up for large
software systems and is language independent. In case of simple metrics they profit from their reliable
definition. However, simple measurements are hardly enough to sufficiently and reliably assess software
quality [?, ].

Most of the metric tools visualize information using diagrams for statistical analysis, like histograms and
Kiviat diagrams. Datrix [?, ], TAC++ [?,?, ] and Crocodile [?, ] are tools that exhibit such visualization
features.

8



2.4. OUR APPROACH 9

2.3.2 Polymetric View

The polymetric view [?] is a visualization of static code enriched with up to five software metrics. Ba-
sically the nodes are representing software entities while as the edges are representing relationships
between them. This method of visualization is then enriched with the metrics by adapting the node size,
color and position.

Figure 2.2: The principle of polymetric views

This approach combines software visualization with software metrics and therefore eliminates the need
of interpretation huge metric tables. After learning the visual language of polymetric views one gets a
fast overview about the software system, its entities and relationships.

2.4 Our Approach

Our approach is an extension of existing approaches such as feature-driven dynamic analysis and soft-
ware visualization. We are analyzing thefeature-tracescollected from a software system and are visu-
alizing and animating these to support the understanding of run-time behavior of a software system as
shown in Figure??. Below we list some key points of our approach:

• Feature-centric approach: We focus on features of a system and visualize thefeature-tracein
the context of a static entities of a system such as classes and methods. We model a feature as a
tree of method invocations. Although ourfeature-tracesdo not achieve a complete coverage of the
system under analysis, our feature perspective helps the software developer to focus on specific
parts of the code that would be affected by mainenance change to these features.

• Filtering: To reduce the amount of information visualized we propose two filtering techniques. On
the one hand it is crucial to focus on selected parts of thefeature-trace. We introduce a simple filter
which enables us to focus on selected parts of interest of a trace. Furthermore we filter the message
invocations between objects and their meta-classes that are concerned with the initialization of
newly created instances.

• 3-D Visualization and Animation: In the research area of software reverse engineering 3-D vs.
2-D visualization there is a controversial debate in progress [?, ]. For our approach we choose the
2-D polymetric view and exploit the third dimension to visualize object instantiation. We extend
the polymetric views by two further properties. The depth of an object which leads to quaders
instead of rectangles representing software entities and the position on the z-axis which we use to
build towers of quaders. In case of our visual metaphor a 3-D visualization is useful because we
are able to add additional information without the need to limit the approach of polymetric views.
To enhance the interpretation offeature-tracewe propose animated visualizations which allows the

9



10 CHAPTER 2. ANALYSIS OF DYNAMIC FEATURE-TRACES

Figure 2.3: An illustration of our approach extending feature-driven analysis with software visualization

software engineer to analyze the state of afeature-traceat a specific point of execution. We propose
to step through thefeature-traceselectively to understand the run-time behavior of a feature. Using
this technique the software engineer can also detect the formation offeature hotspots, i.e. object
instances or classes which are stressed during the execution. Moreover, we propose several static
views which support the comprehension of how a feature or parts of it affects specific parts of the
software system or other features.

• Software Metrics: To support the understanding of the interaction of features we use theFC
measurement as a color metric for our polymetric views. This metric characterizes a class in terms
of how it collaborates within one or more features [?].

• The Combination of Static Source Code and Dynamic Behavior Analysis:Our novel approach
combines the static source code and dynamic behavior analysis within one single visualization.
The main advantage of this technique is that several research questions can be answered within
one view. We map features to software entities such as classes but also to object instances which
are instantiated during the execution of a feature. Moreover, the proposed visualization provides
information about the static structure of the software system as well as information about the
method calls out of afeature-trace.

In the following chapter we will introduce our approach in detail. We show how we collect and interpret
feature-tracesand generate our static and dynamic views to analyze them. Moreover, we introduce a
methodology of analyzing our views and present in a further chapter the results of applying our approach
to two case studies.

10



Chapter 3

Interactive 3-D Visualization of
Feature-traces

In this chapter we introduce our approach of analyzingfeature-traceswhich is intended to support the
software reverse engineer to understand the run-time behavior of features. Our approach is a novel
visualization technique that combines the dynamic information collected exercising features with the
static structure of the software system. This way we realize a visualization which provides an abstracted
and compacted view on thefeature-tracesand allows to reveal how features correlate with the source
code.

As a start we describe the application of the extended method wrappers. Using code instrumentation our
tool TraceScraperextract thefeature-tracesthat are loaded into the visualization engine. Furthermore,
we explain how these information are stored within ourMoosereengineering environment.

We describe in detail the visualization of dynamic information which we refer to as thedynamic feature-
trace view. Using this technique the software developer can selectively step through execution traces
and drive a visualization engine which displays a 3-D representation of the events of a feature in terms
of object instantiations and message invocations between objects. Therefore the developer can see how
the system behaves during the execution of the traces. Moreover, the visualization is interactive and
navigable,i.e., the user can examine in detail interesting objects and also change his point of view in the
3D space to get a closer look at specific parts of the system being traced. The tool which implements
these dynamic feature-trace views is calledTraceCrawler, an extension of theCodeCrawlertool [?,?, ]
andCCJun[?, ].

TraceCrawleralso provides static views which we use to detectfeature hotspots. The termhotspotis
used in many different contexts. In a geological context for example, ahotspotis used to refer to areas
of volcanic activity. According to Wikipedia1 Hot spotsare defined as areas of high activity that are
surrounded by areas of lower activity. In the context of feature analysis, we use the termfeature hot spot
to refer to areas of high activity in a system during the execution of a feature which we reveal using our
visualizations. We therefore analyze the feature-traces to detectfeature hotspots. We consider objects
that appear as central points of communication to befeature hotspots. In other words they send and
receive a higher than average number of messages than other instances.

1See http://www.wikipedia.org

11



12 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

Figure 3.1: The principles of thedynamic feature-trace view

3.1 Understanding Dynamic Behavior of Features

3.1.1 Feature-trace Collection

As a basis of our visualization technique we need detailed information about the run-time behavior of the
software system. Therefore our toolTraceScraperinstalls method wrappers which record each message
invocation while exercising a specific feature. The method wrappers record the following information
for each event:

• Sender: The name and a unique id of the sending object or class which executes the method

• Receiver: The name and a unique id of the object or class where the call is executed

• Return value: A unique id of the object or class that is passed as return value from the method
currently executed

Each of these events are stored within a collection and classified into two groups. We distinguish between
constructors which instantiate new instances and other ordinary message invocations. When the new
instances are created the return value of the constructor is the unique id which identifies the new instance.
This is necessary to map later on the sender and receiver of message invocations to the appropriate
instances.

12



3.1. UNDERSTANDING DYNAMIC BEHAVIOR OF FEATURES 13

Figure 3.2: Class characterization using theFC measurement

13



14 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

3.1.2 Navigable Visualization of Feature-trace

Thedynamic feature-trace viewis a representation of the behavior of a system during the execution of
a feature in terms of classes, object-instantiations and message sends. In Figure?? we see a schematic
display of such a view: It is a 3-D visualization which displays the static structure of the system on a plane
floating above the ground. The boxes on the ground are the classes connected by black edges representing
inheritance. This way of representing the static structure of a software system was introduced with
polymetric views [?]. We use an adaptedsystem complexity viewfor our visualization which is provided
by our toolCodeCrawler[?] in 2-D and extended to 3-D byCCJun[?]. The position of the boxes are
computed using the vertical tree layout. The view uses theNOA (number of attributes) as a measurement
for the width andNOM (number of methods) as a measurement for the depth of the boxes as shown in
Figure??.

The color of these boxes is computed by theFC measurement. This measurement computes the char-
acterization of a class by counting how many features reference it and assigning it a value to represent
the characterization below. Figure?? shows an illustration of how classes were characterized. The red
class participates within all featuresF1 - F4 and is therefore infrastructural. On the other hand the two
classes on the top do not participate within a feature at all and are thereforenot coveredby the features.
We color the nodes according to the heat metaphor presented in Figure??. Classes that participate in no
feature are colored in blue and classes that participate in over the half of the features are shown in red.

• Not Covered (NC) is a class that does not participate to any of the features-traces of our current
feature model.

(NOFC = 0) → FC = 0 → blue

• Single-Feature (SF ) is a class that participates in only one feature-trace.

(NOFC = 1) → FC = 1 → cyan

• Group-Feature (GF ) is a class that participates in less than half of the features of a feature model.
In other words, group-feature classes/methods provide functionality to a group of features, but not
to all features.

(NOFC > 1) ∧ (NOFC < NOF/2) → FC = 2 → yellow

• Infrastructural (I) is a class that participates in more than half of the features of a feature model.

(NOFC >= NOF/2) → FC = 3 → red

Figure??shows theRoot ClassandSubclass 2are infrastructural classes, i.e., are used by more than the
half of the features.Subclass 1on the other hand participates only in one single feature.

Our color view also make use of colors to represent instances. When thefeature-traceis interpreted
step-by-step each instantiation of a class (the creation of an object) generates a blue box (like a floor in
a building) above the ground level which is the appropriate class. The more blue boxes that are above a
class, the more instances of this class have been created during the execution of the feature. We refer to
this phenomenon as atower of instances. The currently active objects are displayed in green. Each time
an object sends a message to another object, a red message edge is drawn between the two object boxes.

During the reverse engineering process we get a high-level view of the system and then focus on a part
of the system of interest. Zooming into the visualization and using the context-sensitive menus the user
is able to identify the class and to obtain more fine-grained information about the software entities of
interest. The navigation allows to zoom (or fly) to the wished part and using rotation one can change the
viewpoint to get a better interpretation in case of a lot of objects on the screen.

14



3.1. UNDERSTANDING DYNAMIC BEHAVIOR OF FEATURES 15

Figure 3.3: Initial position of thedynamic feature interaction viewof a test model

Figure 3.4: Zoomed in and rotated view with a openedclass blueprint

15



16 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

Figure 3.5: An instance creation within our test model

Figure 3.6: A message invocation from the meta-class to the newly created instance

Figure?? shows the initial position at a specific point of afeature-traceof a test model using ourdy-
namic feature-trace view. To determine to which class a specific tower of instance boxes belongs we
provide context-sensitive menus as shown in Figure??. This is the same view but zoomed in to the point
of interest. The menu in this case provides the possibility to get a more fine-grained view of the class,
namely theClass Blueprintintroduced by Lanzaet.al. [?, ]. This view reveals the internal structure of a
class in terms of attributes and methods which are characterized in different groups.

3.1.3 Exemplification

In Figure??, Figure??and Figure??we show an example test model with four feature-traces interpreted
by TraceCrawler. Our test model contains 22 classes and meta-classes and models people and their roles
at the university.

TraceCrawlerallows to visually step through the traces: At each point in time of the trace we see the
current state of the trace and we can navigate backward and forward within the trace. On the right side of

16



3.2. FEATURE HOTSPOT ANALYSIS 17

Figure 3.7: A communication between two instances of different classes

our example the feature-trace is shown as tree of method invocations with a highlighted node which is the
currently active method call. On the left sideTraceCrawlerrenders the interpreted data to the proposed
3-D visualization. Furthermore we allow searching to the next occurrence of a class and/or method and
TraceCrawlernavigates directly to it.

The three figures show three different steps during the trace:

1. Figure?? shows a instantiation of a class (the creation of an object) of the classSubRole. The
active class therefore is highlighted with a green color and a new instance box was drawn on top
of it.

2. Afterwards the meta-classSubRoleclass initializes the newly created instance. This message
invocation is drawn as a red edge between the meta-class and the instance boxes which are both
highlighted. This view is shown in Figure??.

3. In Figure?? the same instance is communicating with another instance on the tower of the class
Person. Again, the two communicating entities are highlighted with a green color and a red line is
drawn between the two boxes.

This short scenario shows how one can understand the dynamic behavior of a software system. In our
simple example the instance ofPersonis creating aSubRoleand is setting the attributepersonto itself
using the appropriate method.

3.2 Feature Hotspot Analysis

We analyze the feature-traces to detectfeature hotspots. We consider objects that appear as central
points of communication to befeature hotspots. In other words they send and receive a higher than
average number of messages than other instances. Such information is useful to understand the systems
run-time behavior and allows us to answer questions such as the ones listed in the introduction.

The formation of afeature hotspotcan be detected by thedynamic feature-trace viewand an additional
static view which we refer to asinstance collaboration view. This view shows the same visualization at
the end of thefeature-traceto identify the relevant entities. Zooming to the relevant entities the software
engineer can detect thesefeature hotspotsand identify the parts of the feature that are producing it. Using

17



18 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

Figure 3.8: The static instance collaboration view of the test model

the user interface the software engineer reveals the method calls with their sender and receiver and may
then change to the source code to analyze the hotspot further.

Using the test model presented above and a specific feature we show in Figure?? an example of thein-
stance collaboration view. The red lines are all method invocations analyzed during the specific feature-
trace. Using this view one can recognize the entities communicating during the execution of the feature.
Instances of the classesPersonandUniversityare communicating more than the other entities and are
thereforefeature hotspots.

18



3.3. FEATURE INTERACTION 19

Figure 3.9: The static feature interaction view of a test model

3.3 Feature Interaction

To map features to source code we propose a static view which is based on a polymetric view. Its color
metric is theFC measurement which measures for each class if it is active in one or more features or
inactive at all. The result is thestatic feature interaction viewwhich helps to identify parts of the software
system which participate within one or more feature. Zooming into the visualization and using the
context-sensitive menus the user is able to identify the class and to obtain more fine-grained information
about the software entities of interest.

In Figure?? thestatic feature interaction viewis used to visualize a simple test model. TheFC mea-
surement is based on four features of our simple example system. Out of our view we detect

• 15Not Covered (NC) classes and meta-classes

• 2 Single-Feature (SF ) classes and meta-classes, namelyProfessorclassandProfessor

• 2 Group-Feature (GF ) classes and meta-classes, namelyUniversity classandUniversity

• 3 Infrastructural (I) classes and meta-classes, namelyPersonclass, PersonandPersonTest

19



20 CHAPTER 3. INTERACTIVE 3-D VISUALIZATION OF FEATURE-TRACES

20



Chapter 4

Case Studies

4.1 Introduction

In this chapter we present the result of applying our visualization technique introduced in Chapter?? to
two software system:

1. SmallWiki is an object-oriented wiki implementation written in Smalltalk [?, ]. It provides com-
mon wiki functionalities like adding and editing pages, user authentication, etc. In Section?? we
present the results of analyzing five different features such as the login process, editing a page,
search the wiki and others.

2. The Moose reengineering environment is a language independent tool written in Smalltalk to sup-
port reengineering and reverse engineering [?]. It provides metrics, querying techniques, import
and export functionality from and to different formats and a lot of tools which are based on it. In
our case study we focus on the import and export of CDIF files and the loading of a model directly
from Smalltalk code. See Section?? for the presentation of the results.

4.2 Towards a Methodology

By applying our visualization tofeature-tracesof our case studies we developed a methodology to an-
alyze software system based onfeature-traces. Below we describe a step-by-step guide of our analysis
procedure. Steps 2 to 4 are iteratively executed for each feature exercised on the software system.

1. The first step is to analyze thestatic feature interaction viewwhich reveals the part of the systems
which are active during one or more features. Using this view we get a first impression of the
parts of the software system that are participating within the analyzed features. We gain an under-
standing of how feature interact which is an important information for the software maintenance.
Moreover, we are able to reveal exceptional entities within the static structure of the software sys-
tem. Exceptional entities may be classes with an exceptional form and that participate within one
or more features.

2. As a second step we analyze the tree view of thefeature-traceto get an coarse-grained overview.
This view reveals the basic structure of thefeature-trace.

3. Most of the information about the run-time behavior can be gained from theinstance collaboration
view. This view shows the instances that were created during the execution of a feature and the
message invocations between them and their classes. It is the basis to discoverfeature hotspots.
This view can be reduced to a specific part of afeature-traceand certain method invocations can
be filtered out.

21



22 CHAPTER 4. CASE STUDIES

4. To understand how thefeature hotspotswere formed we look at the animation and step through the
trace. This reveals the part of thefeature-tracewhich leads to the hotspot. Switching to the source
code using the context-sensitive menus of all class and meta-classes is the last step to analyze the
run-time behavior more fine-grained.

4.3 Smallwiki Case Study

Our second case study is based on SmallWiki, an object-oriented wiki implementation written in Smalltalk
[?]. The version we analyzed (1.297) consists of 288 classes. The following five features were analyzed:

1. Login Authentication (4008 message invocations)

2. Edit a Page (5608 message invocations)

3. Edit a Template (8435 message invocations)

4. Search the Wiki (7742 message invocations)

5. Show History of a Page (5563 message invocations)

As SmallWiki is written in Smalltalk we install the method wrappers of our toolTraceScraperto collect
the feature-trace. Therefore the SmallWiki web server is started and the use cases are executed. We use
WebUnit1 to run our use cases.

4.3.1 Overall Overview

As a start we analyze thestatic feature interaction viewwhich reveals the parts of SmallWiki which par-
ticipate in all features,i.e. which are infrastructural and are colored red. Using theMoosereengineering
environment and theFC measurement we detected 65 classes and meta-classes which are infrastructural.
These can be seen in Figure?? as red boxes. This represents theFC measurement value of 3 and we
are using the colors of the heat metaphor presented in Figure??. Moreover, this view allows to identify
exceptional entities. One class that stands out is theHTMLWriteStreamclass. This box is deeper than
the others because the metricNOM , i.e. number of methods, which has a value of 87 which results in a
deep box. We verify by scanning the source code that this class plays a key role as it is responsible for
the generation of the HTML source code.

In the further sections we describe the five features in detail. We apply our filter so as not to visualize
method invocations to instances from their own meta-classes. We use theinstance collaboration view
and zoom into the main inheritance hierarchy active during the execution of the features.

1http://webunit.sourceforge.net/

22



4.3. SMALLWIKI CASE STUDY 23

Figure 4.1: An overview of SmallWiki using the static feature interaction view

23



24 CHAPTER 4. CASE STUDIES

4.3.2 Feature 1: Login Authentication

Figure 4.2: SmallWiki login feature

Looking at Figure?? we detect fourfeature hotspots. Looking at their name and source code we can
reveal most of the run-time behavior of the login scenario.

Login: This class is part of theActionclass hierarchy. By executing the login feature it is no surprise
that the instances of this class perform the task of login the user. One of its instances is heavily commu-
nicating with instances of the template hierarchy (subclasses ofTemplateBodyandTemplateHead). In
SmallWiki templates are used for the composition of pages. That is why this is the instance that renders
the login form and is executed to perform the login itself. The second instance is asked if the login is still
correct while rendering the current page that is rendered after the login.

Response:The instances of this class are responsible for handling the HTTP response which is sent
back to the browser. It is responsible for the storage of cookies, the response stream and HTTP functions
such as redirection. During the login scenario four HTTP responses are sent back. We see this from
the number of instances of this class. One of its instances is not requesting any information from the
template hierarchy. This is caused by a HTTP redirection after the login form was sent back from the
browser which we can see by running the animation of the login scenario.

HTMLWriteStream: As we revealed in the previous section the instances of this class are responsible
for the generation of the HTML code.

PageView: This class is also part of theAction class hierarchy and is responsible for the rendering of
the page. Due to the fact that pages are composed of the templates it is also heavily communicating with
instances of this class hierarchy.

24



4.3. SMALLWIKI CASE STUDY 25

4.3.3 Feature 2: Edit a Page

Figure 4.3: SmallWiki edit page feature

This feature allows the user to edit the content of a wiki page. This feature is secure, in other words a
login has to take place before. Comparing Figure??and Figure??we detect that the differences between
the scenarios are small. In Figure?? we see that the there are againLogin instances. Looking at the use
cases that are used to generate thefeature-tracewe reveal as expected that the login scenario is part of
the edit page scenario. Apart from this important fact we also detect one newfeature hotspotwhich is
not part of the login scenario:

EditPage: There is one instance of the tower which is communicating heavily with the template class
hierarchy. This instance renders the form to edit the wiki page and saves the submitted content to the
model.

25



26 CHAPTER 4. CASE STUDIES

4.3.4 Feature 3: Edit a Template

Figure 4.4: SmallWiki edit template feature

This feature allows a user to modify the look and feel of pages by changing a template which affects the
position, color, etc. of the page elements. We see that this scenario looks quite complicated compared
to the previous introduced ones. A visually striking element in Figure?? is the tower of instances of
PropertyManagerthat all communicate with an instance ofVisitorReferenceswhich is a single-feature
class. This implies that while editing a template the properties of the template change and this is recorded
somewhere. Apart from thefeature hotspotswe found in the first feature we detect one newfeature
hotspot:

TemplateEdit: This class is part of theAction hierarchy and provides the functionality to change a
template using various commands. Therefore it is no surprise that instances of this class are heavily
communicating with the subclasses of the template hierarchy.

26



4.3. SMALLWIKI CASE STUDY 27

4.3.5 Feature 4: Search the Wiki

Figure 4.5: SmallWiki search feature

This feature allows the user to search for a specific string within the wiki. In Figure?? we detect
another singe-feature class, namelyVisitorSearch. Already the name reveals that the search functionality
of SmallWiki was realized using the Visitor pattern [?, ]. Unfortunately we realize that the process of
visiting the model of SmallWiki cannot be visualized. The reason for this is lack of information in the
feature-trace about the SmallWiki model itself. That is why we do not have the instances which are part
of the model within our visualization. We discuss this limitation in Section??. Nevertheless we detect
anotherfeature hotspotwhich is active during the search feature:

Search: This class is again part of theActionclass hierarchy. One instance is communicating heavily
with the template subclass instances. This is caused by the rendering of the results the search visitor
returns.

27



28 CHAPTER 4. CASE STUDIES

4.3.6 Feature 5: Show History of a Page

Figure 4.6: SmallWiki show history feature

This feature in SmallWiki allows the user to see a list of all pages in SmallWiki which have recently
changed. The history features refers to the versions saved in the model of each page. This information is
not part of the feature-trace and therefore not visible. Moreover, we detect one newfeature hotspot:

History: One instance of this action is communicating with the template subclasses. This is caused by
the rendering process of the version table which can be revealed by scanning the source code.

4.3.7 Discussion

Using our visualizations we were able to easily determine the parts of the software system that are
participating in a feature. Comparing the different views we were able to detectfeature hotspotsthat
arise only in one specific feature and is therefore interesting to analyze further using other methods such
as theClass Blueprintor source code reading. An important fact that was revealed using the visualization
is that the login feature is part of all the other features. This was even revealed without looking at the use
cases that were used to generate thefeature-trace.

We also realized that analyzing more complex feature is difficult as there are a lot of messages being
visualized. We detected that the rendering process is taking place in all features. Therefore a filtering
mechanism which would filter these method invocations would be an easy way to realize simpler views.
Such views would allow to focus even more detailed on the most interesting parts of the features.

A speciality of this case study is that SmallWiki is based on HTTP request and response. Action providers
such as the search, edit page and others are created for each rendering of a page individually. Using
our technique we can determine which instance is really executing the action using ourfeature hotspots.
This is a significant support for the software engineer to understand the run-time behavior of the different
features in SmallWiki. On the other hand because of the missing model information an important part
of the feature-trace is not visualized. The reason for this limitation is that the creation of the model of
Smallwiki is not part of the analyzedfeature-traces. This leads to an incomplete view which does not
reveal how the actions perform on the model.

28



4.4. MOOSE CASE STUDY 29

4.4 Moose Case Study

This case study is based on the Moose reengineering environment [?] which provides also the meta-
model for our visualizations. The version (3.0.25) we analyze consists of 792 classes and meta-classes.
We are analyzing three features:

1. Loading a model of a software system from Smalltalk (71280 message invocations)

2. Exporting a model to a CDIF file (44836 message invocations)

3. Importing a model from a CDIF file from the file system (95040 message invocations)

The CDIF standard for information exchange [?, ] which is mentioned within the feature names is used
to exchange language independent model information between reengineering tools [?, ].

4.4.1 Overall Overview

To analyze how the features interact with each other we start our analysis by looking for thestatic feature
interaction view. This reveals the classes which participate in one or more features. In Figure?? we see
that most of the infrastructural classes are residing in theModelandModel classhierarchy. These boxes
are colored in red in the visualization. Especially remarkable using this view is that there are no group-
feature at all and only a small number of singe-feature classes. This indicates that there is reuse of code.
We expect this as the features are providing similar functionality.

In Figure??we zoomed in to theModelhierarchy and are looking to exceptional entities. We are looking
for infrastructural classes that are colored red and which have a special form. The most eye-catching class
we see isMSEModel. Switching to the source code using the Smalltalk System Browser we reveal that
this class is responsible for the storage of the meta-model and is providing various functions on it. This
class is very tall because of the metricNOA = 0 (width) andNOM = 188 (depth). Another class
that stands out in this view isFAMIXClass. This class is part of the FAMIX meta-model which is no
surprise as our features are concerned with loading and exporting FAMIX models. Besides we detect
the ImportingContextas a further exceptional entity. This class controls the importing process. Another
thing this view reveals is that the wholeOperatorsubhierarchy is used in all features.Operatorsare
responsible of computing metrics or other properties based on the meta-model. It seems that those are
computed within each feature. Scanning the source code we are able to confirm this assumption.

In the following sections we describe each feature in detail and then discuss the results. We apply our
filter so that message calls from instances from its own meta-class are not visualized. We use theinstance
collaboration viewand the tree view of thefeature-traceto show the runtime behavior of the presented
features.

29



30 CHAPTER 4. CASE STUDIES

Figure 4.7: An overview of Moose using the static feature interaction view

30



4.4. MOOSE CASE STUDY 31

Figure 4.8: A view of the Moose model hierarchy using the static feature interaction view

4.4.2 Feature 1: Loading a Model from Smalltalk

Overview
To start the interpretation of this feature we look at thefeature-tracerendered as a tree in Figure??.
Looking at the first levels we reveal that thefeature-traceconsists of two parts. A setup routine which
is communicating with theModelManager, EntityTypeManagerandAbstractEntity. We assume that this
part of thefeature-tracepreparesMooseto import the model. The second part of the trace seems to be
concerned with the loading of the model itself. Our analysis reveals that theVisualWorksImporterFacade
which receives a message#doImportand assume that this message is responsible to load the model from
Smalltalk.

To prove our assumptions we filter ourfeature-traceto those parts and start ourstatic instance collabo-
ration view.

31



32 CHAPTER 4. CASE STUDIES

Figure 4.9: The tree view of the load model feature

Setup
To analyze this part of thefeature-tracewe present three screenshots. In Figure?? we show theModel
andModel classhierarchies which are the only ones participating in this part of the feature. At a dis-
tance we detect several high towers which are caused by a high amount of instances for a specific
class. MOFExtendedClass, MOFExtendedMultipleValueAttribute, MOFExtendedAttribute, MOFPack-
age, MOFImport and EntityTypeare their class names which we collect using theEntity Inspector.
Moreover, we see severalfeature hotspotswhich we analyze now in more detail.

First we focus on theModel classhierarchy as shown in Figure??which reveals severalfeature hotspots:

• MetaModelRepositoryclass: The class comment in the source code shows that this class is used
as a repository of model descriptions. This meta-class is mostly used to access its unique instance
which reveals that the Singleton pattern [?] is used. Unfortunately we are not able to visualize this
instance as the creation is not part of the analyzedfeature-trace.

• AbstractEntityclass: The messages this meta-class sends to other meta-class is#registerMofPack-
age. We assume that this is used to initialize the model descriptions of the entity types. Using the
tree view of thefeature-tracewe detect that this action is closly related to theMetaModelReposi-
tory classabove which is the repository of those descriptions.

• EntityTypeManagerclass: This class is accessed by all theEntityTypeinstances. Again the mes-
sages reveal that a Singleton pattern is used and that the creation of the unique instance is not
part of thefeature-trace. Nevertheless, the source code implies that the created entity types are
registering themselves within theEntityTypeManager.

We switch our view and focus on theModel hierarchy in Figure??. We see some action going on

32



4.4. MOOSE CASE STUDY 33

Figure 4.10: An overview of the setup routine of the Moose load model feature

33



34 CHAPTER 4. CASE STUDIES

Figure 4.11: TheModel classhierarchy of the setup routine in the Moose load model feature

within thePropertyOperatorandAbstractFactorysubhierarchy but only a singlefeature hotspotlocated
at theCCEntityTypeFactory. This class is added byCodeCrawlerto this subhierarchy and seems to add
necessary entity types toMoose.

If we analyze all the collected information above together with the tree view we are now able to infer the
intent of this part of thefeature-trace. Basically we detect two main purposes:

1. Registering Entity Types:
Started by the unique instance ofEntityTypeManagerall known entity types are initialized and
registered. Moreover, for all entity types the appropriate operators, menus, expressions, etc. are
initialized. The source code reveals that there is an extensible environment to add new entity
types, operators, etc. by subclassing the appropriate factory class. This is for instance realized by
CCEntityTypeFactoryof CodeCrawler.

2. Initializing MOF descriptions:
After registering all entity types the meta-description mechanism is initialized. In Moose each
entity has its own meta-description which is provided by its class. These are added to theMeta-
ModelRepositorywhich manages all meta-descriptions for the models. This also leads to the high
towers of instances of MOF2 classes.

2Meta-Object Facility, refer to http://www.omg.org/technology/documents/formal/mof.htm

34



4.4. MOOSE CASE STUDY 35

Figure 4.12: TheModelhierarchy of the setup routine in the Moose load model feature

Import Package

The analysis of this part offeature-traceturned out to be really challenging due to the amount of mes-
sages that were drawn on screen. Especially messages between theModelandModel classhierarchies
tend to hide whole parts of the inheritance hierarchy. To overcome this problem we introduced another
filter which allows to remove certain messages from the visualization. In this case we decided to re-
move the#uniqueInstancemessage invocations used by the Singleton pattern of several classes within
the analyzed software system. Nevertheless the amount of messages (40’736) processed is very high and
therefore the visualization is difficult to interpret.
In Figure??we see theModel classhierarchy. We detect severalfeature hotspotswhich can be grouped
together according to their inheritance relationship:

• FAMIXFormalParameterclass, FAMIXLocalVariableclass, FAMIXGlobalVariableclass
andFAMIXMethodclass: These classes are subclasses ofFAMIXModelRootclasswhich provides
various functions to create unique names for the different entities. These are the hotspots we see
in Figure??.

• FAMIXNameResolverclass: This class provides a method to produce a signature for methods
which is used byFAMIXMethodinstances. Surprisingly we detect also functions to create unique
names for different FAMIX entities which seems to be a code duplication although the messages
are not used within this feature.

35



36 CHAPTER 4. CASE STUDIES

Figure 4.13: TheModel classhierarchy of the package import in the Moose load model feature

Figure?? shows the difficulties of producing a screenshot of ourinstance collaboration viewwith a lot
of method invocations. Nevertheless we are able to detect somefeature hotspotsand high towers of
instances. We focus on these entities and try to identify their purpose looking at the source code.

• ImportingContext, VisualWorksImporterFacadeandVisualWorksPackageImporter: The instances
of these classes are responsible of importing Smalltalk code into aMoosemodel. Besides theIm-
portingContextthe classes are single-feature classes which implies that they are only participating
within this feature. We also reveal that the import is implemented using a Facade pattern3.

• ModelManager: The instance of this class is a largefeature hotspotwhich is no surprise as it is
responsible of managing different models inMoose. It communicates heavily with all the instances
of the FAMIX model.

• MSEModel, MSEEnumeratedGroup: While importing the Smalltalk package aMSEModelwas
created which holds the FAMIX model of the package. Enumerated groups are used to hold entities
of the same entity type and are therefore also heavily used.

• FAMIXClass, FAMIXMethodand others: Compared to Figure?? the view reveals that the FAMIX
model was initialized and therefore several high instance towers appear. We count for example 22
instances ofFAMIXClasswhich represents exactly the number of classes and meta-classes of the
loaded package.

3Refer to http://en.wikipedia.org/wiki/Facadepattern

36



4.4. MOOSE CASE STUDY 37

Figure 4.14: TheModelhierarchy of the package import in the Moose load model feature

4.4.3 Feature 2: Exporting a Model to CDIF

Looking at the tree view of this feature in Figure?? we detect that the setup routine is the same as in
the feature presented before. We are able to prove this assumption by looking at the implementation of
the test case which controls the trace extraction. In fact, the setup routine is called for each feature we
analyze in this case study.

Moreover, this feature reveals one of the most important limitations of our approach. Figure??shows the
instance collaboration viewof the part of thefeature-tracethat seems to be responsible for the export of
theMoosemodel to a CDIF file. We assume that the message#saveCurrentModelOnCDIFFileNamed:
is starting the export. Looking at the figure we are surprised that besides thetowers of instancesonly a
small amount of message invocation is shown. The reason for this behavior was already detected during
the Smallwiki case study. The creation of the model inMoosewhich then should be exported is not part
of the analyzedfeature-trace. That is why the identification of the instances is not possible and as a result
no message invocation edges are drawn. To overcome such difficulties we would need to analyze as well
as the execution trace, the software system state before the execution trace was started.

Nevertheless we are at least able to identify one important entity within the visualization. It is the
instance ofCDIFSaverwhich is responsible for the CDIF file writer. It is a single-feature class because
it participates only in this feature.

37



38 CHAPTER 4. CASE STUDIES

Figure 4.15: The tree view of the export to CDIF feature

4.4.4 Feature 3: Importing a Model from CDIF

As we proved in the section before the setup routine is the same for all feature and already analyzed.
Therefore we focus on the main behavior of this feature. We start the analysis by looking at Figure??
which reveals that the method#loadModelFromCDIFFileNamed:starts the import of the CDIF file.
Visualizing this part of thefeature-traceand zooming to theModelhierarchy leads to the view presented
in Figure??. As a first impression we detect that the difference to the first feature presented in this case
study seems to be small. We detect the following similarities and differences:

• ImportingContextandCDIFImporter: We detect that theImportingContextis again used. But
instead of theVisualWorksPackageImportertheCDIFImporterobviously controls the creation of
the FAMIX model based on the CDIF file. We reveal that all the instances of the FAMIX model are
created directly from this class. Therefore it is no surprise thatCDIFImporter is a single-feature
class.

• MSEModel, MSEEnumeratedGroup: As well as in the loading model from smalltalk feature we
detect atower of instancesof MSEEnumeratedGroupand the exceptional entityMSEModelwhich
holds the model information.

• FAMIXClass, FAMIXMethodand others: The FAMIX model built from the CDIF file is the same
as in the first feature. It contains again 22 classes and meta-classes as entities ofFAMIXClass. As
the imported CDIF file is the same exported in the previous feature this proves that the export and
import from CDIF files works correctly.

38



4.4. MOOSE CASE STUDY 39

Figure 4.16: TheModelhierarchy of the export to CDIF feature

4.4.5 Discussion

The interpretation of the features of this case study was significantly more difficult than for the Smallwiki
case study. Although we used a divide and conquer strategy and only focused on the most important parts
of each feature the visualization of thousands of messages reveal their limit. Nevertheless we were able
to determine the most important entities for each feature and were able to analyze their run-time behavior.

This case study also revealed that the detection of parts of thefeature-tracewhich are shared by all
features can be easily determined by the comparison of the different views. During this case study we
detected that the setup routine of the test cases generating the execution trace is the same for all features.
The source code of the test case proved this assumption.

The most important conclusion of this case study is that a filter mechanism is necessary to reduce the
amount of messages being analyzed. Nevertheless we were confronted with features which use a lot of
message invocations during their execution. There we detected the limit of our visualizations. This is
mainly caused by the intention of the features as the importing and creation of models is a task which
normally leads to a lot of side effects such as the computation of operators, meta-descriptions, etc.. Once
we are able to reduce the amount of message invocations to a lower level the view easily revealed a
lot of their run-time behavior. Moreover, the feature that exports a model to a CDIF file revealed a
further limitation of our approach. We cannot visualize message invocations where the sender or receiver
instance is not created within thefeature-trace. Therefore we would need to analyze the software system
before executing the features which we list as future work to improve our approach. We will discuss this
limitations in Chapter??

39



40 CHAPTER 4. CASE STUDIES

Figure 4.17: The tree view of the import from CDIF feature

Figure 4.18: TheModelhierarchy of the import from CDIF feature

40



Chapter 5

Conclusion

In this chapter we present the results of applying our 3-D visualization of dynamicfeature-tracesby
initially answering the question asked in the introduction of this thesis.

• Does our 3-D visualization of feature execution support program comprehension of the dynamic
behavior?

Yes, our views and animation offeature-tracesprovide a visual representation of dynamic behavior
of the software system. Our toolTraceCrawlerallows to zoom in to relevant entities and provides
a link to the source code and other visualization techniques such as theClass Blueprint. Using this
possibilities the software reverse engineer may detect all the entities that participate in a feature.
This significantly supports the understanding of dynamic behavior of these entities by navigating
through thefeature-trace.
However one needs to be aware of the limitations of this approach. It is still difficult to analyze
huge feature-traces although the visualization reduces the information significantly. Nevertheless,
the analysis especially using the navigation is not easy anymore because of the amount of message
invocations in huge traces.

• Which parts of a software system are affected by one or more features?

Our static feature interaction viewlets a software engineer detect entities that are affected by one
or more features using the colors provided by theFC measurement. With this visualization it is
easily possible to determine classes as well as whole inheritance hierarchies that participate within
a feature. With this information a software engineer has a significant support to focus on the
relevant parts of the software system.

• How do the features interact with each other? Which parts of the system are used by all the fea-
tures?

TheFC measurement provides an easy way to determine which parts of the system are participat-
ing in all features. This measurement is built in all views our toolTraceCrawleris providing. In
our case studies we showed that we are able to identify feature interaction in terms of classes that
are participating in one or more features.

• Can we identify patterns of activity that are shared by features?

It is difficult to determine parts of the runtime behavior feature are sharing. Comparing the views
of the different features may reveal some information of their interaction but does not deliver a
secure method to determine their interaction.

41



42 CHAPTER 5. CONCLUSION

• Are there any parts of the system that are stressed? By stressed we mean areas of high activity in
the execution of a feature, in other words classes and objects that are sending and receiving a lot
of messages.

Yes. Ourstatic instance collaboration viewreveals the entities such as class and instances which
are communicating more than others. Furthermore, the formation of afeature hotspotcan be easily
determined using our animation of the feature trace. However, the interpretation is difficult as we
are not taking the execution time into account. If we were to enhance our animation with execution
time information this would lead to a more meaningful conclusion how the parts of the system are
really stressed.

5.1 Summary

In this thesis we present a novel visualization technique which combines static analysis of source code
with dynamic information extracted by exercising features of a system. This technique will help software
reengineers to understand the dynamic runtime behavior of features. We therefore introduced state-
of-the-art techniques in the research area of static and dynamic software analysis in Chapter??. In
Chapter?? we introduced our views used to visualize the behavior of features. We showed that using
our static feature interaction viewwe can easily determine parts of the software system that are active
during the execution of different features. Moreover, we showed that we are able to detect the formation
of feature hotspotswhich is useful way of understanding the dynamic behavior of individual software
entities. As a proof of concept we presented two case studies which show how our approach simplifies
the understanding of the dynamic behavior of features. We presented in Chapter?? the results of these
case studies. We describe in the appendix in detail the implementation of our tool in the context of the
existing environment ofMoose, TraceScraperandCodeCrawler.

42



5.2. LIMITATIONS 43

5.2 Limitations

Especially during our case studies we detected some limitations of our approach.

• 3-D Navigation: The 3-D visualization is an important part of our approach. It allows to combine
polymetric views with the runtime information collected by feature execution. This results in a
combination of static and dynamic analysis which is very helpful to understand the relationship
between static and dynamic entities within a software system. Nevertheless the 3-D visualization
has also its limitations. To familiarize oneself with the navigation requires practice and some
functions as drag and drop, selection of multiple nodes etc. are not implemented in this version of
the tool.

• Scalability: Although we handle the runtime information in a efficient way and todays computers
have a lot of memory, the loading of the information lasts a long time in case of large features.
In our Moosecase study we had to handle almost 100’000 message invocations which leads to an
equivalent amount of objects for the visualization. Although our visualizations are very useful to
hide this complexity the loading process tends to be slow in such cases.

• Feature-trace Coverage:We discovered that we cannot visualize all message invocations of the
analyzedfeature-traces. This is caused by the method wrappers which cannot be installed on the
entire system which means that familiar classes such asString or Objectare not included in the
feature-trace. The reason for this limitation is again the amount information and the execution
time needed to run the instrumented system while collecting thefeature-trace.

• System Coverage:Another limitation is caused by our feature-centric approach. We do not start
our visualization with an initialized model which is then used to exercise the features on. In our
case studies we showed that this leads to an incomplete view of the runtime behavior. How this
could be solved is listed in Section??.

5.3 Future Work

As this approach is based on a lot of other techniques there is a lot of potential of improving our approach.

• An important extension of our approach would be to enhance the model with state information
before executing the features on it. This would lead to higher coverage of message invocation we
could visualize. Therefore the system needs to be instrumented from the beginning of the setup
process.

• Our approach is language independent but the collection offeature-tracesis not. To install method
wrappers in object-oriented languages such as Java would allow to analyze software system writ-
ten in other languages than Smalltalk. As soon as someone provides execution traces with the
information defined in our approach the visualization will work independent from the language.

• A more sophisticated filtering technique would allow to reduce the amount of messages being
visualized. We propose a filter mechanism which is controlled by the software engineer by select-
ing a group of messages which should not be processed. This would lead to views which can be
interpreted much better.

• A current research area is the detection of patterns of activity [?]. The result of analyzing our views
to identify such patterns could provide a more high-level analysis of the runtime behavior.

43



44 CHAPTER 5. CONCLUSION

44



Appendix A

Tools

Figure A.1: Illustration of the architecture of our tools

In this chapter we discuss the architecture of our toolTraceCrawlerand how it is integrated and con-
nected to other tools. In Figure?? we provide an illustration of the architecture of our tools. The basis
of our tool TraceCrawleris the FAMIX meta-model and theMoosereengineering environment. The
feature-trace extraction using code instrumentation is realized byTraceScraper. TraceCrawleris us-
ing the collected information and steering the visualization. The visualization engine is realized by our
tool CodeCrawlerwhich gets the meta model information from Moose and provides a model for the
visualization and 2d visualizations.CCJunprovides an interface toCodeCrawlerand is extending its
capabilities to the third dimension.

45



46 APPENDIX A. TOOLS

A.1 Feature-trace Extraction and Interpretation

For the feature-trace collection the toolTraceScraperexecutes test cases or scripted scenarios and code
instrumentation which records each message invocation and saves it in the meta model of theMoose
reengineering platform. Our toolTraceCrawlerthen interprets the information in the meta model step-
by-step or summarized and controls the visualization.

A.1.1 TraceScraper

TraceScraperprovides method wrappers to collectfeature-traces. A method wrapper captures each
message invocation during executing the feature and extracts the necessary information such as sender,
receiver and return value. Our toolTraceScraperimports the traces and models them as FAMIX entities
in Moose. Therefore it extends this meta model to modelfeature-tracesas first-class entities.
TraceScraperhas various instruments to analyzefeature-traces. Using a set of features which are com-
pacted tofeature-fingerprintsit facilitate the correlation of features and software entities such as pack-
ages, classes and methods.

A.1.2 Moose

The Moose reengineering platform [?] is based on the FAMIX meta model specification [?,?]. It provides
a language-independent representation of object-oriented software systems and instruments to reengi-
neer and reverse-engineer. It supports navigating, querying, metrics and refactorings, etc. of object-
oriented source code. The FAMIX meta model comprises the main object-oriented elements such as
Class, Method, Attribute and Inheritance as well as Invocation and Access. OurTraceScrapertool en-
hanced the meta-model with further first-level entities to model feature-traces.

A.1.3 TraceCrawler

Our toolTraceCrawlerinterprets thefeature-traceinformation stored as FAMIX meta model and con-
trols the visualization. The interpretation is based on the information that our tool TraceScrapers collects
by instrumenting the code of the target software system. The objects of the classScenarioNodethat are
stored as FAMIX entities represent each of them a single message invocation. Using the values of each
ScenarioNode TraceCrawlercreates the visual model by creating nodes (for object instances) and edges
(for message invocations) using theCodeCrawlertool.
Figure??shows the user interface ofTraceCrawlerwhich can be started directly from theMoosereengi-
neering environment. It provides the navigation controls through the feature trace by stepping through it
manually or automatically. Apart from using a settings dialog one can control preferences of the anima-
tion and there are shortcuts to static 3-D visualizations. Moreover, using a search dialog we provide the
possibility to quickly navigate and locate classes or methods within thefeature-trace.

46



A.1. FEATURE-TRACE EXTRACTION AND INTERPRETATION 47

Figure A.2: The user interface provided by TraceCrawler

47



48 APPENDIX A. TOOLS

A.2 Visualization Engine

The visualization engine used byTraceCrawleris based on three different tools. OurCodeCrawlertool
visualizes polymetric views in the 2-D space. It provides the connection to the FAMIX meta model
where the information to be visualized is modeled.CCJunis our 3-D visualization and animation tool
which uses the 3-D graphics library Jun to display the 3-D visualizations and animations.

A.2.1 CodeCrawler

CodeCrawler[?] visualizes polymetric views although it is also a generic information visualization tool.
It is built on top of Moose which provides the FAMIX meta-modelCodeCrawleris using to model its
visualizations. It provides a huge variety of different 2-D visualizations for static source code analysis
on a coarse-grained or fine-grained abstraction level. It implements different layout algorithms and a lot
of other functions that help to abstract different views of a software system.
We useCodeCrawlerto load the FAMIX meta-model entities into its own model. Using the layout
algorithms and other functionality this tool provides the functionalityTraceCrawleruses to create our
novel views.

A.2.2 Jun

Jun1 is a large 3-D graphics framework with support for OpenGL, VRML and other visualization tech-
niques. Besides other features it provides a hierarchy of classes that allows to create OpenGL objects
which are displayed on screen using its own user interface. OpenGL is a good choice because it is
available on a lot of platforms incorporated directly in the operating system.

A.2.3 CCJun

CCJun[?] is an extension ofCodeCrawlerwhich enables it to display 3-D polymetric views using the
3-D graphics library Jun. To support this task it acts as a bridge between those two tools. It provides
adapted 3-D objects which can be displayed using the OpenGL implementation of Jun. ThereforeCCJun
adds 3-D figures toCodeCrawlerto redirect the visualization input to its own engine.

1See http://www.srainc.com/Jun/Maine.htm

48



Appendix B

Programmers Guide to TraceCrawler

In this chapter we present a short guide to software engineers which would like to use our toolTrace-
Crawler. Therefore we show how to load it, how to generate feature-traces and give some hints to use of
it.

B.1 Loading TraceCrawler

Before loadingTraceCrawleryou need to have a VisualWorks virtual machine and an running image
which you can download as non-commercial version from the Cincom website1. The development and
case studies ofTraceCrawlerwere done with the version 9.2nc. Afterwards you need to download our
3-D framework Jun which you can obtain from the FTP repository of Cincom2. Download the ZIP file
and install it according to the instructions for your operating system.

To load TraceCrawleryou need to connect to the store database on the IAM database server of the
university of Berne. The package is namedTraceCrawlerand is dependent on the following packages
which will be automatically loaded:

• AareTraceScraperDevelopement

• CodeCrawlerDevelopement

• MooseDevelopment

While loading this packages choose the latest version of each tool. Our case studies was realized with
AareTraceScraperDevelopement 4.293, CodeCrawlerDevelopement 4.631, MooseDevelopment 3.0.25
and TraceCrawler 1.71. AsMoosewas refactored during this thesisTraceCrawlerandTraceScraper
needs to be adopted to the new version which has not been finished yet. If the loading of the newest
version of each tool fails, load the version mentioned above. To ensure that the tools are compatible just
run the tests provided in the test package ofTraceCrawler. This loads a small test model and tests if all
the functionality needed to analyzefeature-tracesis working.

1http://smalltalk.cincom.com/downloads/index.ssp
2ftp://ftp.cincomsmalltalk.com/pub/goodies/Jun/

49



50 APPENDIX B. PROGRAMMERS GUIDE TO TRACECRAWLER

B.2 Generating Feature-traces and using TraceCrawler

In this section we show how to generate feature-traces for a small example system. Therefore you start
your VisualWorks image and open the System Browser. Locate theTestCaseTraceTestclass and execute
the#testCreateTestCaseTraceExamplesmethod using the test runner. This installs the wrappers on the
test model and then runs the features in the instrumented environment. As a result a FAMIX model with
a small test model and fourfeature-traceswill be built.

To use the visualization provided byTraceCrawler, open Moose and click on the model you wish to
analyze. Clicking on theStarBrowsericon opens a view which allows to explore all the entities in the
current model. Especially you will find there the entity type offeature-tracescalledTestCaseTrace. The
context-sensitive menu for eachfeature-tracecontains a item to openTraceCrawler. This action loads
the current model using the model ofCodeCrawlerand opensTraceCrawler.

Figure B.1: Screenshot of theMoosereengineering environment andTraceCrawlerin action using a
small example system

As shown in Figure??TraceCrawlerinitially provides an overview of thefeature-traceusing a tree view.
Moreover, the tool provides a menu to open static views such as theinstance collaboration viewand the
editor to edit their definition as well as the menu to open the animation of thefeature-trace. Using the
buttons on the bottom the user controls the step-by-step animation. Furthermore using the search dialog
the identification of method invocations within thefeature-tracebased on their class or method name
is supported. To use the filter technique which lets the software engineer focus on selected parts of the
feature-traceuse the context menu on the node you would like to be the new root node.

Enjoy usingTraceCrawler!

50



List of Figures

51


