
Assessing Test Quality
TestLint

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Stefan Reichhart

April 2007

Leiter der Arbeit

Prof. Dr. Oscar Nierstrasz
Prof. Dr. Stéphane Ducasse

Institut für Informatik und angewandte Mathematik

i

Further information about this work, the used tools as well as an online
version of this document can be found at the following places.

Stefan Reichhart
stefan reichhart@students.unibe.ch
http://www.squeaksource.com/TestSmells
http://www.squeaksource.com/Coverage

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://www.iam.unibe.ch/~scg/

mailto:stefan_reichhart@students.unibe.ch
http://www.squeaksource.com/TestSmells
http://www.squeaksource.com/Coverage
http://www.iam.unibe.ch/~scg/

Abstract

With the success of agile methodologies, Testing has become a common and
important activity in the development of software projects. Large and auto-
mated test-suites ensure that the system is behaving as expected. Moreover,
tests also offer a live documentation for the code and can be used to under-
stand foreign code.

However, as the system evolves, tests need to evolve as well to keep up
with the system, and as the test suite grows larger, the effort invested into
maintaining tests becomes a significant activity. In this context, the qual-
ity of tests becomes an important issue, as developers need to assess and
understand the tests they have to maintain.

While testing has grown to be popular and well supported by today’s IDEs,
methodologies and tools trying to assess the quality of tests are still poorly
or not at all integrated into the testing process. Most important, there has
been no attempts yet to concretely measure the quality of a test by detecting
design flaws of the test code, so called Test Smells.

We contribute to the research of testing methodologies by measuring and
assessing the quality of tests. In particular we analyze Test Smells and
define a set of criteria to determine test quality. We evaluate our results in
a large case-study and present TestLint, an approach to automatically detect
Test Smells. We provide a bundle of tools that tightly integrate source-code
development, automated testing and quality assessment of tests.

ii

Acknowledgements

First of all, I thank Prof. Dr. Oscar Nierstrasz, head of the Software Com-
position Group, for giving me the opportunity to work in his group.

I thank Stéphane Ducasse for giving me the freedom, support and motivation
of composing the topic of this thesis. Thanks for all the constructive and
encouraging feedbacks on my work.

I thank Markus Gälli for helping me elaborating the final topic of this thesis,
giving me many references to related works and creative advices and ideas
to spice up the thesis as well as inspiring me for venturesome experimenta-
tions.

I thank Marcus Denker and Philippe Marschall for keeping me up-to-date
about the latest changes of their work on code instrumentation.

Special thanks to Tudor Gı̂rba for his mentoring and tenacity of motivat-
ing and encouraging me all the time and working out and inspiring me for
interesting visualizations on code quality as well as giving me valuable feed-
backs.

Thanks also to all the other members of the Software Composition Group
and the students working at the SCG student pool. I enjoyed all the discus-
sions, funny intermezzos and lunches I had with you.

My apologies to the Software Composition Group for accidentally having
messed up the thoroughly maintained bibliography database. :)

Finally, I want to thank my family for their patience and support they gave
me during all these years doing my study.

Stefan Reichhart
April 2007

iii

Contents

Abstract ii

Acknowledgements iii

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 2
1.3 Outline . 4

2 State of the Art in Testing 5
2.1 Code Coverage: Test Quantity 5
2.2 Mutation Analysis: Test Stability 9
2.3 Test Smells: Test-code Quality 13
2.4 Other testing methodologies 15
2.5 Conclusion . 15

3 TestLint: Measuring Test Quality 17
3.1 Analysis and Synthesis of Test Smells 18

3.1.1 Analysis . 18
3.1.2 Synthesis . 23

3.2 Detection Model . 25
3.2.1 Rules and Nodes . 26

4 Test Smells 28
4.1 Static Smells . 28

4.1.1 Improper Test Method Location 29
4.1.2 Mixed Selectors . 30
4.1.3 Anonymous Test . 31
4.1.4 Literal Pollution . 32
4.1.5 Assertionless Test . 33
4.1.6 Overreferencing . 35
4.1.7 Overcommented Test 36

iv

CONTENTS v

4.1.8 Long Test . 38
4.1.9 Guarded Test . 39

4.2 Dynamic Smells . 40
4.2.1 Under-the-carpet failing Assertion 41
4.2.2 Badly Used Fixture 42
4.2.3 Transcripting Test . 44
4.2.4 Interactive Test . 45

5 Case Study 47
5.1 Overview . 47
5.2 Distribution of Test Smells 49
5.3 Accuracy and Significance . 50
5.4 Localization . 52
5.5 Examples . 56

5.5.1 Aconcagua . 56
5.5.2 Magritte . 57
5.5.3 Refactoring Engine . 57
5.5.4 Cryptography . 58
5.5.5 Network . 59

6 Conclusion 61
6.1 Lessons Learned . 61
6.2 Future Work . 62

A TestLint: Measuring Test Quality 63
A.1 List of all detectable Test Smells 63

A.1.1 Code Smells . 63
A.1.2 Organizational Test Smells 63
A.1.3 Behavioral Test Smells 63
A.1.4 Testing Conventions 63
A.1.5 Other Test Smells . 63

A.2 Implementation . 65
A.2.1 Model: Synthesis of Rules and Nodes 66

A.3 User Interface . 68
A.3.1 TestLint System Browser 68
A.3.2 TestLint Package Browser 70
A.3.3 TestLint Rule Browser 71

A.4 How to install TestLint . 71

B Christo: Beyond Test Quantity 73
B.1 Introduction . 73
B.2 Enhancing Code Coverage . 74

B.2.1 Partial Ordering of Tests 76
B.2.2 Delta Debugging . 77

CONTENTS vi

B.2.3 Visualization . 80
B.3 Implementation . 84

B.3.1 Model . 84
B.3.2 User Interface . 87

B.4 How to install Christo . 92

Bibliography 93

Chapter 1

Introduction

1.1 Motivation

Unit Testing is a common and important activity in today’s software projects.
Automated tests help the developer to assure code quality and detect pos-
sible bugs and flaws in the application code. Furthermore, tests can also be
seen as live documentation, and be used to understand foreign code.

Due the continuous propagation of the methodologies Agile Development
[Cock02a], Extreme Programming [Beck00a, Beck01a] or Test-Driven Devel-
opment , many tools supporting automated Unit Testing [Beck98a, Mads02b]
have become real and have been integrated into several IDEs, making it easy
to create Unit Tests.

However Unit Tests, especially their number and size, neither reveal in-
sights into the amount of functionality or data being tested, nor about how
well tested those are or whether the tests themselves are “good” and trust-
worthy.

Tests might not check each single functionality or requirement of the appli-
cation code, leaving certain features or code patches untested. Furthermore,
tests might not cover all the possible boundary situations, not assuring the
stability of the source-code.

Moreover, following an Agile Development process, the body of tests grows
together with the source code. However, due to refactorings and changing
requirements, code might start to erode [Eick01a, Parn94a]. The same qual-
ity erosion also happens to test code [Romp06b] – it becomes long, complex
and obscure. Although such tests might still serve the purpose of checking
the correctness of the system at present time, they can easily break when
further adaptations to the application code are required.

1

CHAPTER 1. INTRODUCTION 2

A large body of research has been carried out to assess the quality of tests
from different perspectives:

• Code Coverage provides a quantitative measure [Zhu97a, Mari99a] of
functionality being tested.

• Mutation Analysis gives insights to code stability [Mott06, Howd82a,
YuSe02a, Moor01a, YuSe05a].

• Test Ordering shows the interconnection of tests [Parr02a, Gael04b,
Gael03b, Gael04a].

Although all those methodologies contribute differently in assessing the qual-
ity of tests, they all do it at a rather abstract level, and they do not focus
on the test or actual test code. Besides, techniques like Code Coverage
or Mutation Analysis are missing ease, integration and automation in to-
day’s testing tools and IDEs. Test Ordering and visualization of tests is
only used in research about test quality, but completely missing in current
testing frameworks. Furthermore, the results of all those techniques are
mostly static, have no connection to the code, are complex to read and com-
prehend, and miss the focus for the testing and development process, for
example refactorings.

Finally, there has been very little research into identifying and understand-
ing problems and design flaws that influence the maintenance of tests. As
the decayed parts of the application code are often referred to as Code Smells
[Fowl99a, VanE02a], Test Smells [Deur01a, Romp06a, Romp06b] refers to
test code that is difficult to maintain [Mesz07a].

1.2 Approach

Our solution to the previously described problems is to enhance and sub-
stantiate current methodologies trying to assess the quality of tests. We
introduce new features into testing tools that have not yet being imple-
mented but which are necessary or show evidence to be useful for an efficient
Test-Driven Development, refactoring and reengineering process.

In our research activities we primarily focus on the analysis and automatic
detection of Test Smells. We believe that this methodology will help devel-
opers to:

• detect problems early, fast and without much effort or spending time
in harvesting test code or debugging.

CHAPTER 1. INTRODUCTION 3

• write simpler and better understandable tests that more easily and
concisely document the features and requirements of the application
code as well as the aim of the test

• design tests to make them robust and stable to changes

• ease refactorings and get a better focus on what parts of the tests have
to be refactored, why and how

• learn to write qualitatively good tests and stick to standard coding and
testing conventions

We also believe that this methodology will greatly improve the quality of
tests in general and maybe also of the application code.

We present TestLint [Reic07a], an approach to detect design flaws in tests
automatically. We conduct an empirical study of a larger set of tests, gather
an extensive list of all kinds of Test Smells through manual inspection and
analyze them in detail. We cluster the problems, identify commonalities and
differences and distill the results in automatic queries to precisely detect
design flaws in test-code. We conduct a large case study to show the need
and significance of detecting Test Smells and conclude that writing tests can
really improve the quality of tests.

We implement the methodology of Test Smells in a tool called TestLint.
By integrating it into the development and testing environment we take the
first steps toward Quality-Driven Development. That is supposed to seam-
lessly and tightly integrate testing and quality-testing methodologies into
the evolution of application and test code. We believe that this will not
only enhance the quality of tests but also the documentation of the code
and the software in general.

Code
Coverage

Mutation
 Analysis

Test
&

Test-Code
Analysis

Quality-Driven Testing

Test-Driven Development xUnit Testing

Figure 1.1: The 3 best known quality assessing methodologies on top of Unit
Testing, forming the methodology of Quality-Driven Development

CHAPTER 1. INTRODUCTION 4

1.3 Outline

• Chapter 2 gives an introduction about the different kinds of testing
methodologies. In particular, we make an introduction to the recent
research of Test Smells, briefly explaining and describing them in gen-
eral. Furthermore, we present well known and highly used tools that
go beyond simple Unit Testing and discuss the advantages, problems
and limitations of current implementations and their methodologies.

• Chapter 3 presents TestLint, our approach and contribution to the
analysis of detecting design flaws in tests. We conduct an extensive
empirical study and analyze Test Smells at an abstract and lower code
level. We combine our results with the existing research results, en-
hance them and draw conclusions.

• Chapter 4 presents a selection of the most commonly found Test Smells
based on our empirical study. We discuss, explain and categorize them,
and formalize concrete rules to detect them automatically. Further-
more we give hints to fix the smells in the test-code.

• In Chapter 5 we discuss a large case study performed with TestLint,
conclude the need for the detection of Test Smells and give example
results on a selection of projects analysed with TestLint.

• In Chapter 6 we conclude our results and experience with TestLint
and give further insight into the future work.

In the Appendix we detail the implementation of TestLint and give a full list
of Test Smells we analysed. Furthermore we present Christo, an approach
to enhance standard Code Coverage to gather insights about the quality
of tests and reuse the dynamic data to make further conclusions about the
application and test code.

Chapter 2

State of the Art in Testing

Testing application code, in particular automated Unit and Regression Test-
ing is an integral part of today’s development processes as proposed by
Extreme Programming [Beck00a, Marc02a, Marc03a]. This methodology
proved to greatly increase the design and quality of the application code. In
the following sections we present various known testing methodologies and
techniques and discuss a selection of current tools supporting the testing
activity.

2.1 Code Coverage: Test Quantity

Code Coverage [Corn96a, Chil94a, Corn06a, Zhu97a], first based on a static
analysis later also on dynamic analysis, is a common and very well known
technique to measure the degree to which the source code of an applica-
tion is tested. It is one of the first techniques being developed to more
systematically and thoroughly test a software systems.

After the first official publication of the rough idea by Miller and Maloney
[Mill63a] at ACM1 in the early 70s, Code Coverage obtained much attention
in the following years in which the technique was more thoroughly researched
and elaborated. Code Coverage was implemented in many software testing
tools in all major and most other well known languages, for example C. Large
software projects use Code Coverage to measure test coverage of the entire
application code or the kernel functionality only. Safety critical projects, for
example in avionics and astronautics, even require such tools and demand
at least full coverage.

1ACM (Association for Computing Machinery) is the world’s first scientific and edu-
cational computing society

5

CHAPTER 2. STATE OF THE ART IN TESTING 6

Although Code Coverage proves to be an useful technique and tool for test-
ing, it can only serve as an indicator of how much and which parts of the
application logic are being covered by a test. It cannot tell the developer
whether the covered code works appropriately nor can it objectively assess
the quality of the code or the test itself [Corn99a, Mari99a].

Today, software testing distinguishes between 5 major aspects of quantity-
based Code Coverage [Corn96a]. We notice that other or more fine-grained
differentiations could also be done:

• Method Coverage is the simplest form of coverage only checking whether
a method has been called during the runtime of a test

• Statement Coverage focuses only on whether a line of sourcecode, e.g.,
a statement is executed or not

• Condition Coverage is analyzing conditional branches within source
code, checking that each branch is executed

• Path Coverage is checking a possible route through the code or a
given part of it

• Entry Coverage deals with any possible call and return of a method
during the current execution

Depending on the coverage strategy chosen the results might vary in preci-
sion and density. For example Condition Coverage implies Statement Cov-
erage, but not the other way around. Therefore Condition Coverage induces
more knowledge about the system than Statement Coverage.

Most Code Coverage tools focus on Method Coverage, Statement Coverage
or Condition Coverage as they are fairly simple to check. Full Path Cov-
erage is mostly impractical or even impossible, especially for medium and
large projects, as its complexity and the data collected is growing exponen-
tially with every branching or enumerating code structure. Moreover the
results gathered by Path Coverage are mostly complex and hard to under-
stand.

The following sections will discuss each of a Code Coverage tool being de-
veloped and used in VisualWorks and Java projects.

Zork Code Coverage

Zork is the only known project in Smalltalk that deals with Code Coverage.
It is implemented in VisualWorks and is based on John Brant’s Method
Wrappers [Bran98a], providing a kind of Statement Coverage and Condition
Coverage.

http://www.cincomsmalltalk.com
http://www.cincomsmalltalk.com/publicRepository/Zork-Analysis.html
http://www.cincomsmalltalk.com/publicRepository/Zork-Analysis.html
http://www.cincomsmalltalk.com

CHAPTER 2. STATE OF THE ART IN TESTING 7

Although wrapped code runs approximately 6 times slower, Zork is a fast
and sophisticated tool, providing a lot of very fine-grained information about
coverage. It provides an intuitive system-browser-like browser, called the
Analysis Browser (Figure 2.1), which offers the opportunity to browse that
information.

Figure 2.1: A standard view of the Zork Analysis Browser

However, Zork lacks automation, ease, usability and safety. A developer
needs to go through many manual and time-consuming steps to set up and
obtain coverage. For example, the developer must first select each class
or method separately from a flat list of all classes and methods within the
environment, and install the wrappers by clicking through multiple dialogs.
To browse the results, one must explicitly open the Analysis Browser and
search for the processed items manually.

Furthermore, the developer needs to know which methods are savfe to wrap.
Installing a wrapper on an unsafe element might corrupt the image or even
cause it to crash. Finally, the wrappers need to be manually uninstalled
before continuing to work in the environment. When running the analysis
again, the developer has to go through all steps again.

Although Zork provides an easy to use browser, coloring well-covered nodes
in green, others in red, and annotating the code with additional type in-
formation, it completely misses the connection between covered sources and
executed tests. It is therefore not possible to find out which method was

http://www.cincomsmalltalk.com/publicRepository/Zork-Analysis.html
http://www.cincomsmalltalk.com/publicRepository/Zork-Analysis.html
http://www.cincomsmalltalk.com/publicRepository/Zork-Analysis.html
http://www.cincomsmalltalk.com/publicRepository/Zork-Analysis.html

CHAPTER 2. STATE OF THE ART IN TESTING 8

actually covered by which test, or the other way round. However this infor-
mation is absolutely crucial to extend the Test-Suite with the right tests to
obtain a higher and better coverage.

We further notice that the coloring and accumulation of coverage values are
wrong. The selected method = in Figure 2.1 declares a coverage of 86%.
However all nodes, except the last block, are colored in red, assuming rather
0%. On the other hand, the method-category containing this method (and
only this method) shows 100%.

Emma Code Coverage

Emma is one of many Code Coverage tools for Java. However in contrast
to other Code Coverage tools, Emma is open-source and therefore available
for free. It provides many features like offline and online code instrumenta-
tion, partial coverage, full integration into build systems like Ant or Maven,
HTML- and XML-report generation and many more. Due its rich features
and simplicity compared to other tools, it gained a lot of interest and is
therefore one of the best known and most often used Code Coverage tools
in the Java community.

Figure 2.2: A standard Emma HTML-report showing the summary of a
processed package

The instrumentation is done either on single class files, packages or entire
JAR-libraries using direct Byte-Code transformation, resulting in a very low
runtime overhead.

Although Emma provides rich functionality and is also highly customizable,
it lacks – like many other Code Coverage tools – ease and usability. Emma
is not yet well integrated into today’s IDE’s, causing the developer to spend

http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://ant.apache.org
http://maven.apache.org/
http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://emma.sourceforge.net/

CHAPTER 2. STATE OF THE ART IN TESTING 9

time writing scripts or plugins to simplify and automate the gathering of
coverage information. Switching between the IDE and web browser is in-
evitable as only the features of Emma are accessible through the IDE; the
results on the other hand have to be inspected elsewhere.

Furthermore, Emma-reports – like any other coverage reports – generally
contain a lot of information and are rather complex. This requires the de-
veloper to spend a lot of time in understanding and harvesting valuable infor-
mation and getting used to the amount of data displayed. Figure 2.2 shows
the overview, called the package summary of a usual Emma-report.

Figure 2.3: Emma HTML-report, showing coverage details

Hyperlinked reports and visualized covered and uncovered lines of code help
browsing and identifying the uncovered pieces of the code (Figure 2.3). How-
ever the focus on the interesting and important parts is missing and also
Emma misses the link between sources and tests.

2.2 Mutation Analysis: Test Stability

Test stability can be measured using a variation of Code Coverage which is
based on fault tolerance and boundary checking rather than quantity. This
kind of coverage is also known as Mutation Testing or Mutation Analy-
sis [Mott06, Howd82a, Choi89a, Baud06a] and was originally introduced
by Moor at al. [Moor01a]. The original approach of Mutation Analy-
sis was recently altered and further extended and improved by Yu-Seung
at al. [YuSe04a, YuSe05a]. We discuss and give examples for both ap-
proaches.

http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://emma.sourceforge.net/

CHAPTER 2. STATE OF THE ART IN TESTING 10

The basic idea of Mutation Testing is to systematically modify pieces of the
program code by applying a Mutation Operator and to run the tests on
the mutated sources. If the tests pass then we can conclude either of two
possibilities.

• A test is missing because there is a mutation a.k.a. “mutant” that lets
the test pass, for example an unchecked boundary.

• There is some redundant code in the program.

A set of tests whose mutants all fail – or get “killed” –, i.e., there is no
succeeding test after a mutation, is said to be effective or having a good
fault coverage or high stability.

The major difference to quantity based coverage is that Mutation Testing
focuses more on the test quality and whether the tests behaviorally cover
all the specified requirements in the tests. Furthermore it cannot be fooled
by tests simply executing code, but not doing any assertions as could be
possible in Code Coverage.

Mutation Testing differentiates between weak [Howd82a] and strong Muta-
tion Coverage [Moor01a], whereas Strong Mutation implies Weak Mutation
but not the other way round.

• Weak Mutation Coverage assumes that the application code is cor-
rectly implemented according to the requirements. Therefore it can
only tell you whether there is a test missing for a certain mutant or
not.

• Strong Mutation Coverage rather enforces the correct specification of
a test and mutation, trying to figure out whether the tests really check
what the code suggests.

The following example demonstrates the fine difference between the weak
and strong aspect. Assume the following piece of application code containing
the simple fault <= instead of <:

(A <= B) ifTrue: [...]

If the tests runs and A<=B is always executed as A<B, Weak Mutation Cov-
erage only indicates a missing test for the condition A=B. However Strong
Mutation Coverage would lead to the mutant A=B not being killed, causing
the test to pass, and therefore lowering the coverage value and the quality
of the test.

Although Mutation Testing adds valuable information to Code Coverage,
the number of all possible mutations and their combinations cause a very
high computational effort, rising exponentially with the amount of code and

CHAPTER 2. STATE OF THE ART IN TESTING 11

mutants as a Test-Suite has to run for every single mutation seperately.
This causes Mutation Coverage to run extremely slow, even with a fast
Test-Suite on a small codebase. As a consequence of this, it is not very
often used or only to check simple boundaries, for example array indexes or
boolean conditions.

Another drawback of Mutation Testing is the sensitivity of the Mutation
Operators towards the data and subject of application – not every mutation
makes sense on all kind of data and application. As an example, mutating
a string which contains the name of a person or a number representing
the current year will very likely lead to mutants not being eliminated by
the tests, supposing a lower coverage. Because of that and despite the
computational effort, Mutation Analysis might not return any useful result,
causing many false positives, in the worst case even unnecessarily prolonging
the testing-process.

Jester

Jester [Moor01a] is probably the best known Strong Mutation Coverage
tool. It is open source, available for Java and ported to other languages like
Python or C#.

Although Jester exists for several years it has not yet been integrated into
any common IDE, for example Eclipse. Therefore using Jester is quite labor
intensive as someone has to specify all the classes and libraries by hand on
the command line. It is necessary to write an Ant script transforming the
necessary paths automatically.

Jester runs extremely slowly – as expected for a Mutation Testing tool.
For each mutant it has to duplicate and recompile the sources before it
can actually run the tests. Due to this performance limitation it is almost
impossible to analyze more than one class at a time. Furthermore, the
reports generated on the console or as XML are hard to decipher. There
is no support to browse between sources and tests. In general, developers
have a hard time harvesting the results.

As the methodology of Mutation Analysis is not foolproof due the partial
sensitivity to the context, it is very likely that mutants get created that
are either obvious to fail or can never fail. Therefore, Jester reports likely
contain many false positives, depending on the Mutation Operators used.

http://jester.sourceforge.net/
http://jester.sourceforge.net/
http://www.python.org/
http://msdn.microsoft.com/vcsharp/
http://jester.sourceforge.net/
http://www.eclipse.org/
http://jester.sourceforge.net/
http://ant.apache.org
http://jester.sourceforge.net/
http://jester.sourceforge.net/

CHAPTER 2. STATE OF THE ART IN TESTING 12

µJava

µJava [YuSe05a, YuSe04a] is another mutation system for Java that al-
ready comes with a complete and reasonably complicated user interface.
However it has only little in common with tools like Jester. µJava is ca-
pable of strong as well as weak Mutation Analysis making it more flexi-
ble to testing needs. Furthermore µJava introduces class-level mutation
[YuSe05a, YuSe02a].

Figure 2.4: µJava user interface to select and configure the Mutation Op-
erators

Class-level mutation applies only to object-oriented languages that provide
features like encapsulation, inheritance, polymorphism and others. µJava is
organizing the mutators in those categories giving them a description and a 3
letter shortcut. We list a few examples of µJava ’s class-level mutators:

• AMC (access modifier change): the operator changes the access mod-
ifier (public, private, protected) of a method or constructor. The pur-
pose of the AMC operator is to guide testers to generate test cases
that ensure that accessibility is correct.

http://ise.gmu.edu/~offutt/mujava/
http://ise.gmu.edu/~offutt/mujava/
http://jester.sourceforge.net/
http://ise.gmu.edu/~offutt/mujava/
http://ise.gmu.edu/~offutt/mujava/
http://ise.gmu.edu/~offutt/mujava/
http://ise.gmu.edu/~offutt/mujava/
http://ise.gmu.edu/~offutt/mujava/

CHAPTER 2. STATE OF THE ART IN TESTING 13

• I SI (super keyword insertion): the operator inserts a super keyword
to reference the overridden method or variable from the super class.
The ISI operator is designed to ensure that hiding/hidden variables
and overriding/overridden methods are used appropriately.

• J ID (Member variable initialization deletion): the operator removes
the initialization values of member variables. This is designed to ensure
correct initializations of instance variables

Contrary to Jester, µJava only mutates operators but not literals at the
method-level [YuSe05a]. This means, it does not mutate values of integers,
strings or booleans. Therefore µJava is less likely to be caught by the
contextual sensitivity which might produce many false positives, making
Mutation Testing a very expensive way of testing.

However it has similar but not as distinctive time-consuming computations
as Jester and requires a lot of knowledge to set up an appropriate mutation
set. As µJava is not integrated into any IDE, nor provides any set-up
scripts, the developer need a considerable amount of time to set this tool up
and run it.

2.3 Test Smells: Test-code Quality

The systematic analysis of Test Code is a rather new topic in measuring
the quality of a test. It is known under the keyword Test Smells [Deur01a,
Mesz07a, Romp06a, Romp06b] and focuses on the detection of bad code
fragments and design flaws in tests.

The idea of Test Smells is directly derived from Lint [Duca02v], a static code
analyzer for application code, and the research in reengineering. Whereas
Lint focuses on the low-level analysis of source-code, for example by scanning
for suspicious code elements, reengineering [Deme02a, Duca00a, Lanz99a]
tries to capture the problems at a more abstract level by detecting general
design flaws in the model design and evolution.

As an overview we give three simple introductory examples of Test Smells
as they can be found in the work of Meszaros [Mesz07a].

• An Eager Test is a test that verifies too much different functionality. It
is mostly, but not necessarily, a test with a large amount of statements
and assertions. It is normally difficult to understand, and it offers a
poor documentation.

• Conditional Logic breaks the linear execution path of a test, making
it less obvious which parts of the tests get executed. This increases a
test’s complexity and maintenance costs.

http://jester.sourceforge.net/
http://ise.gmu.edu/~offutt/mujava/
http://ise.gmu.edu/~offutt/mujava/
http://jester.sourceforge.net/
http://ise.gmu.edu/~offutt/mujava/

CHAPTER 2. STATE OF THE ART IN TESTING 14

• A Large Fixture provides a large amount of data to the tests, making it
difficult to understand the state of a unit under test and also obscures
the purpose of the tests. Furthermore setup and teardown require a
large amount of time slowing down the execution of the tests.

Test Smells have been summarized, categorized and described informally by
Deursen at al. [Deur01a] and Meszaros [Mesz07a]. Meszaros further de-
composed and subdivided them, explaining the reasons for their appearance
as well as their consequences in detail. Metrics and heuristics [Mari04a,
Mari01a], rather abstract and mathematical approaches to generally detect
design flaws are also being adapted to tests to make them able to detect sus-
picious code and design in tests, and to gain insights into their significance
[Romp06a, Romp06b].

Although the current research proves the significance and usability of de-
tecting design flaws and bugs in tests, all the approaches are still at a very
high level of abstraction or provide an informal description only. They can-
not detect concrete smells at the lower code level, nor their reasons due to
their abstractness.

As there are no tools available to statically or dynamically analyze tests
and test code we give a representative example of Lint, a static source-code
analyzer and briefly discuss its applicability to Test Smells.

Smalllint

Smalllint is the Smalltalk version of Lint, doing a static code analysis. It
implements a dedicated and special query language on the parse tree to find
design flaws or possible bugs.

Although it is not designed or meant to be applied to tests, some of its
rules could actually be used to analyze test code, however with a reduced
information value like the following examples demonstrate.

• Long Methods apply also to tests, however tests are normally much
longer than non-testing methods causing too many tests to appear
when using this rule with the same parameters.

• size=0 instead of isEmpty and similar code structures might reveal
some intention for source code. When used in tests it is rather a
sign of an encapsulation being broken in of the application code or
obfuscating the test code with symbols and literals.

• Method implemented but not sent completely fails for tests as test
methods are not referenced – unless tests are calling each other. How-

CHAPTER 2. STATE OF THE ART IN TESTING 15

ever Chained Tests represent rather a bad or at least unusual design
for unit tests.

Whereas Smalllint is great in detecting Code Smells, it is not suitable for
the detection of Test Smells. Although it is basically able to detect certain
design flaws in test-code, the results are mostly too general or fail due the
missing dedication of the rules towards tests. The last example above even
shows that some rules would need to be inverted to be useful fo tests.

We notice that other tools offering similar functionality to Smalllint, for
example FindBugs or Lint4J in Java, have the same limitations.

2.4 Other testing methodologies

Gaelli et al. propose a new taxonomy of tests [Gael03a, Wamp06a]. They
analyze the different types of tests, automatically categorize and decompose
them into smaller units, called commands [Gael04c]. They use partial order-
ing [Gael03b] to debug and comprehend unit tests [Gael04b] and application
code and present the Eg meta-model [Gael06b, Wamp06a] to link unit tests
to their method under test and compose unit tests to form higher-level test
scenarios. The basic concepts of the Eg-meta-model has been implemented
in a prototypical testing-browser in VisualWorks.

Delta Debugging , proposed by Zeller at al. [Zell01a, Zell05a], is an approach
to Automated Debugging. They analyze the cause-effect chain of a failure
to automatically find the failure-inducing statements [Zell02a, Zell02b], sup-
porting the developer in the development and debugging process. Due to
the complexity of Delta Debugging it is only available for a small number
of languages so far. As an example there is a Eclipse-plugin for Java.

The members of the Dynamix Group at the Software Composition Group
are developing multiple approaches to dynamic analysis and representing
it using various meta-models. Denker [Denk06a, Denk06b] introduced dy-
namic bytecode transformations using higher abstraction levels. Marschall
[Mars06a] is further abstracting this approach by introducing reflection into
the sub-method level. On top of this framework, Lienhard [Lien06a] has
built ObjectFlow to capture the life cycle of objects during execution.

2.5 Conclusion

Most techniques trying to assess additional information about quantity and
quality of tests have several drawbacks. Neither Code Coverage nor Muta-
tion Testing are able to reveal concrete design flaws in the test-code. Partial

http://www.cincomsmalltalk.com

CHAPTER 2. STATE OF THE ART IN TESTING 16

Ordering of tests can only help one to understand the interconnection of the
tests. Similar for Flow Analysis and Delta Debugging.

Furthermore, tools representing those methodologies are strictly separated
from each other and take a considerable amount of time to set up. They
are complex to use because either the methodology is complex or the testing
interface is badly designed. Moreover, they completely miss the automation
which is essential for an efficient testing process. Also, the results are mostly
static, for example in the form of a browsable, maybe hyperlinked HTML-
or XML-report, and are lacking connection between sources and tests. Such
reports are complex to understand and miss the essential focus as they
don’t point the developer to the really relevant parts of the code and tests;
in particular there is no support for refactoring.

Other techniques like Delta Debugging or Flow Analysis are still heavily in
research and barely implemented in tools usable for real applications. As
an example, there are currently no tools available to either dynamically or
statically analyze test code for possible design flaws or bugs within tests –
despite the existing advantages taken by Lint.

The following chapters present an approach to assess Test Quality. We
contribute to the analysis of Test Smells, define first automated detection
mechanisms and discuss the results in a large case study.

Although the topic of this thesis is about assessing code quality, we did not
focus on Mutation Analysis. That’s basically because of the complexity of
this methodology and its dependency towards the language and its features.
In particular there has been no attempt of introducing Mutation Testing to
dynamically typed languages like Smalltalk. This research will remain to
the future work on assessing test quality.

In the Documentation of the Appendix we give insights into Christo, an
approach to enhance the Code Coverage methodology to gather and extract
quality-based information from the tests and visualize the results in a more
effective and comprehensive way.

Chapter 3

TestLint: Measuring Test
Quality

During the evolution of a software system [Parn94a], code starts to erode.
It becomes complex, fragile, susceptive to bugs and hard to maintain. The
code and the design of the system starts to “smell” [Fowl99a, VanE02a].
The same happens to the tests and their code.

Test Smells [Deur01a] describe tests that are too long, complex, include
unnecessary redundancy, exposing or breaking encapsulation of the applica-
tion code, run unnecessarily slowly, or make inappropriate assumptions on
external resources. Furthermore they might frequently change their results,
leading to fragile and untrustworthy tests.

There are many reasons for Test Smells [Mesz07a]. One factor that makes
the test code brittle to changes in the application code are frequent changes
in the application code. Another is duplication in test code, as this leads
to developers not updating all the tests. Further aggravating factors for the
maintenance of tests are the complexity of the code to be tested, and the
lack of time for testing.

The consequence of such tests is that they are hard to understand, difficult
to maintain, and badly document the application, its features and require-
ments. Furthermore, they typically become unstable, or even become unused
or deprecated.

As only little research has been conducted on the detection of Test Smells so
far, mostly at a high and rather abstract level or describing them informally,
there is no approach or knowledge for the automatic detection of Test Smells
at the code level.

17

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 18

In the following sections we describe TestLint, our contribution to the method-
ology of Test Smells. We analyze Test Smells in a fine-grained fashion and
combine and synthesize our results with existing knowledge. We formalize a
model and rules to automatically detect Test Smells and explain a selection
of those rules in detail.

3.1 Analysis and Synthesis of Test Smells

The basis of our research is a case study consisting of 4834 test-methods
and 742 test-classes taken from the Squeak1 open-source community. Our
study was conducted in three steps:

1. The first step (Section 3.1.1) was to harvest the tests and collect a list
of problems found in the tests through manual inspection. Due the
large number of tests we did not analyze all tests, but rather focused
on a sample of approximately 500 test-methods that were known to be
good or bad based on input from the Squeak community.

2. In the second step (Section 3.1.2) we clustered the problems to iden-
tify commonalities and differences, and we distilled the lessons in au-
tomatic queries (Chapter 4) that we implemented in a tool called
TestLint.

3. In the third step we have applied our queries on all the tests in our case
study (Chapter 5) and manually inspected the detected Test Smells to
identify false positives.

3.1.1 Analysis

Based on our preparations we started to systematically analyze the test
samples by manually inspecting each test. We set up a list of Test Smells
including their causes and effects already known by other research projects
[Deur01a, Romp06a, Romp06b] and literature [Mesz07a].

During our analysis we heavily extended that list with more details and
added many new abstract design and very fine-grained concrete code prob-
lems found in the tests. Table 3.1 gives a small overviewof the 10 most
common and re-appearing problems. A full list of Test Smells including
descriptions for each is given in the Appendix.

First, we determine that some of the smells we captured in our analysis
are partially subjective. For example not everyone agrees to regard Chaotic

1Squeak is a Smalltalk dialect. For further details, please check:
http://www.squeak.org/

http://www.squeak.org/
http://www.squeak.org/
http://www.squeak.org/

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 19

Magic Literals
Bad test data, location or reuse
Code Duplication, Multiplication
Conditional Logics (ifTrue:, ifFalse:)
Missing Generics, Building Blocks
Complex and obscure tests
Too many and too large comments
Valid code (or complete test-methods) put into comments
Meaningless class and method names
Chaotic or no organization

Table 3.1: The 10 most common problems in tests and test-code

Organization or Large Comments as smells because they’re not directly re-
lated to the test-code or the runtime of a test. However we regard them as
smells because they obfuscate and therefore decrease the quality of docu-
mentation or even prevent the comprehension of it. Besides, we discovered
that such smells often appear in conjunction with other smells, sometimes
even causing them.

In a next step, by taking into account knowledge from the literature [Mesz07a],
we analyzed all Test Smells within their context to gather further insights
into the following problems and questions:

• Cause. What is causing a Test Smell, and why and how ?

• Consequences. How do Test Smells manifest themselves in the code ?
What effects or consequences do they have, for example on the code,
tests and other Test Smells?

We notice that some Test Smells are extremely context sensitive. For ex-
ample, a parser or compiler framework handles a lot of primitive data like
strings and numbers. Therefore Magic Literals in application and test code
appearing as Test Smells are inevitable. However respecting the context
and the matter of such a project we cannot treat Magic Literals as a design
flaw because there is no other way of doing such a project. Therefore it is
important to know the scope of a project when analyzing its tests for Test
Smells.

Furthermore identifying the concrete origin and cause of one particular Test
Smell or multiple smells is difficult and sometimes impossible. That’s be-
cause of the contextual sensitivity of the tests and smells. Therefore too
many different and possible reasons might apply. We give two examples.
The first one is describing causes at a very abstract level whereas the second
one describes a rather concrete Test Smell:

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 20

• Tests might be badly designed, having lots of Test Smells because
the project is lacking time for testing. Maybe testing was not part
of the development process in the first place, and done at the end
of the project, leaving only a small amount of time for testing. The
environment or language the project is made with provides no testing
platform fitting the needs of the project. ...

• A test-method has too many and large comments because the matter
of the project is complex. Maybe the code-under-test or its interface is
badly designed and became complex. Another reason for a design flaw
could be because the test was already badly designed, lacking generics
and no dedicated place for data. ...

We conclude for the cause of Test Smells that the contextual sensitivity in-
fluences the analysis and very likely has a negative impact on the automatic
detection of Test Smells. Therefore the automation will be fuzzy and heav-
ily depend on human arbitration. Furthermore, the same concrete detection
formalisms might work very well for some tests, but might completely fail
for others.

When analyzing tests we immediately become aware of the amount and
diversity of consequences Test Smells can have. We notice that the type of
Test Smell and the number and combination of smells found in a test can
lead to more or less severe consequences. For example, we regard a long test
with many conditional branches to be worse than an much longer test with
many and large comments. Others might not agree to that or even regard
the latter as not being a smell. Besides, the consequences of Test Smells
can be regarded as subjective as not everyone agrees to them. For instance
not everyone regards a slow test as a serious Test Smell. Nevertheless we
noticed in our analysis that slow tests are often put into comments, guarded
(Section 4.1.9) and therefore likely to be ignored.

In the following list, we present a selection of regularly reoccurring conse-
quences we’ve found in our analysis:

• Test becomes unsuitable for documenting the model as it is more com-
plex than the model itself.

• Lack of test comprehension. It is unclear what the test is doing, which
requirements, features or date it actually covers or what’s the purpose
of the test.

• The tests are or seem to be unmaintained and unused. The code is old
or failing as the model doesn’t implement the specified methods any
more. Maybe the test-data doesn’t fit either.

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 21

• Tests run extremely slowly. Slow tests often fail as they’re less often
executed. Many slow tests are put into comments, hiding the test and
pretending a good result.

Finally, the ultimate consequence of all Test Smells is that the test becomes
hard-to-maintain, maybe untrustworthy and obsolete. In the worst case the
test is not used any more or thrown away without an appropriate replace-
ment.

One other important thing we learnt about Test Smells taken from the
literature and our own experience from the analysis is that they consist of
multiple smelling aspects or characteristics. A smelling aspect is a part of
a Test Smell, either another Test Smell or a more fine-grained and concrete
unit of a design problem. For example, an Eager Test is by definition a test
referencing and executing many different methods while the test is running.
But it can also be long test or include many comments the different behaviors
of the test, consists of building blocks, code duplication or simply tests a lot
of data.

Moreover, Test Smells and their causes and consequences overlap and are
interconnected to each other. We give three short examples to illustrate
that:

• Obscure tests 2 are hard to understand and badly document the ap-
plication due to their length and complexity. However a complex test
does not necessarily need to be obscure as maybe only the code-under-
test is complex; the test itself is not hard to understand.

• Long tests are most of the times obscure. However, obscure tests are
not necessarily long.

• Erratic tests are those that produce an alternating test result. Erratic
tests are always obscure tests. However obscure test are rather seldom
erratic.

To get a better understanding of this interconnection we visualized this fact
in Figure 3.1 and Figure 3.2 using a network diagram implementing causes,
effects, smelling aspects and Test Smells.

Figure 3.1 shows a strongly demagnified overview of the network to give
an impression of the interconnection. Dark-orange boxes are abstract Test
Smells like described in literature [Mesz07a], light-green rounded-boxes are
possible and suggested refactorings and white and light-gray boxes represent
the possible effects, consequences and items causing the problems. The

2Obscure tests are often referred as Long or Complex Tests in literature. However we
regard them not as equivalent but rather as a combination of those.

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 22

conditional/loop test logic

correctness ?

complexity

weak tests

no deterministic
execution /

difficult
verification

complex
debugging

adaptioon of test to
code (non TDD)

hard
maintainability

branches/loops

difficult setup/
teardown

implicit/
automated

setup/teardown

Fresh Fixture

obscure test

multiple
standalone

testcase

untestable
code

hard to test code

no tests or
just a few

running
manually

less coding/
testing cycles

refactoring -> split
the code in smaller

testable pieces

bad repeatability /
determinism

less highly
coupled code

good
automation

lack of OO

async code

bad design

big test
methods

humble objects

lots of data to be
verified (e.g. parsers)

bad or no test
data

test-data/
structure

requirements
pre/post-

conditions

magical numbers /
literals

reusing test
code

copy&paste /
introduction of errors

data collisions
(fixtures)

database
tests

hard coded test data

hard to understand

smaller and
simpler test codeBIG testcases

simplicity

better localization

shared fixture

fragile fixture

lack of
documentation

growing
fixtures

providing different
requirements

slow tests

shared fixture

putting "private" data to
the test (local/external)

mystery guests

creation
methods

too much inlining

obscure setup
logic

code
duplication

copy/paste
errors

high test
maintainance

costsdifficult
refactorings/

redesigns

extract&generalize

non-TDD

Test code in production code

test hook

bad side effects on
tests

hard to understand

complexity untested code -
test leaks

strategy/null
objects

code for tests only

labelling /
annotations /

subclass

production depends
on test code

carefull design for
dependencies, ...

equality pollution

specific/custom test code
instead of adapting the

production logic

assertion roulette

time consuming
debugging

badly managed
resources

too much functionality
tested (eager test)

easier/fater debugging

better
understanding

erratic tests

interacting tests, execution
order, test/setup

dependecies

refactor tests,
remove

dependecies,
avoid duplication

fresh fixture

make
independent

resources

bad resource
management

(setup/teardown)

random value
inputs

Test Smell

possible responsible item
or consequence

possible consequence

possible cure

literals

Figure 3.1: Overview of the Test Smell network. The dashed line marks the
extract taken for Figure 3.2

dotted circle marks the extract taken for Figure 3.2. An arrow can be
interpreted as “leads to”.

When we look at the extract of the network it becomes clear that by finding
one Test Smell or smelling aspect we also have evidence for another design
problem or even more than one. Furthermore consequences are revealing
smells and give evidence for further smells.

We notice that we visualized only a very small selection of Test Smells col-
lected and analyzed during our study in Figure 3.1 and Figure 3.2. By
including other smells into the network, it would become larger and more
complex. Furthermore the density of interconnections would rapidly in-
crease.

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 23

conditional/loop test logic

correctness ?

complexity

weak test

no deterministic
execution /

difficult
verification

complex
debugging

adaption of test to
code (non TDD)

hard to maintain

branches / loops
difficult setup/

teardown

Fresh Fixture

obscure test

multiple
standalone
testcases

big test
method

hard to understand

smaller and
simpler test code

shared fixture

erratic test

lack of OO

complex model

literals

Test Smell

possible responsible item
or consequence

possible consequence

possible cure

Figure 3.2: A small part of the network from Figure 3.1 showing the inter-
connection of Test Smells, their likely consequences, items that cause them
and possible cures

3.1.2 Synthesis

As a first step of our synthesis we mapped the various fine-grained smells
and their consequences to already known abstract Test Smells, and distilled
the results gathered by the analysis (Figure 3.1) by removing redundancy
and clearing out causes, effects and consequences.

We also organized each smell for which we have clear results, taking cate-
gories from literature [Mesz07a] and introducing new ones.

We notice that a clear categorization is impossible to achieve as certain
smells have characteristics of multiple categories. For example the smell
Under-the-carpet failing Assertion (explained in details in Section 4.2.1)

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 24

Category Description
Code design flaws within the code
Behavior issues that only arise when executing tests
Organization problems about organizing tests and keeping suites tidy
Convention abuse or disregard of common coding or testing conventions
Sensitivity problems caused by changing the environment or its parameters
Project smells that appear as a consequence of an insufficient project plan-

ning or leading

Table 3.2: Test Smell Categories

has code and behavioral smells. The first one because it contains relevant
assertions in comments, second because those assertions fail on execution.
We give a full list of all smells and their assigned categories in the Ap-
pendix.

At the end of our synthesis we prepared various possible formalizations for
each smell for an automatic detection. During this process we gathered new
insights about Test Smells:

First, we can reuse one fine-grained formalization to detect multiple smells as
smells are interconnected and share some of their characteristics. Therefore
finding one smell might reveal evidence or even find another ones. We can
use this circumstance to set up a list of primitive detection rules and combine
them to detect fine-grained and abstract Test Smells.

Second, depending on the smell we have to choose and apply a different
detection methodology, or to combine multiple different ones. For example,
we cannot use Pattern Matching to decide whether or not a method is or
contains an assertion to detect an Assertionless Test (Section 4.1.5). For
this we have to query the interface of the Unit Testing Framework– because
that one is supposed to know how an assertion looks like – and analyze
the executed methods during the runtime. Although this approach works
fine for Assertionless Tests it is not efficient or suitable for detecting Magic
Literals (Section 4.1.4). For those we need another technique, for example
a parse-tree analysis.

Third, behavioral smells require additional information which a static anal-
ysis can not deliver as it would be too imprecise and unreliable. Such smells
require a runtime analysis, for example with a previous code instrumenta-
tion. Therefore we can also categorize Test Smells into static and dynamic
smells whereas dynamic smells often also include a static analysis.

Finally, we notice that not every smell can be detected by simply applying
an algorithm to the test. For example there is no way to detect Context-
Sensitivity smells. Such smells let a test suddenly fail although there was
neither a change to the source nor to the test. Therefore it would be neces-

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 25

sary to supervise and analyze the context during the development process
to make any assumption related to Test Smells. However in many cases this
might not be efficient or possible. Furthermore, quality analysis is mostly
done near the end of a project but not in-between.

We give details of possible formalizations on a selection of Test Smells
in Chapter 4. The full list of processed Test Smells is given in the Ap-
pendix.

3.2 Detection Model

As TestLint was basically inspired by Smalllint, but doing the analysis on
tests, we decided to take over some of its conceptual ideas. Therefore we also
implemented a rule-based model similar to the one in Smalllint. However
there are some major differences between the model of Smalllint and the one
of TestLint.

First, TestLint does not define its own dedicated query language, but rather
implements all rules in plain Smalltalk. The main reason for this is because
TestLint is an evolutionary and experience-based implementation and pro-
totype. Therefore developing a dedicated language would have been difficult
as not all knowledge was a priori defined and fully known. Besides, using
plain Smalltalk has several advantages when analyzing tests:

• Complexity is highly reduced as no special language needs to be learnt.
This increases understanding and comprehension.

• Flexibility is increased as each rule has a different context and require-
ments. Furthermore the goal of a rule depends only on its implemen-
tation and not on the capability of a query language.

• Dynamic. Many rules are dynamic or context-sensitive. They require
additional information by running or instrumenting the tests. However
this is extremely hard to specify in a static rule or query.

• Fuzziness. Most smells are fuzzy. We can utilize this circumstance
as an advantage to formalize fuzzy and context-sensitive rules imple-
menting various heuristics to increase the detection accuracy.

Furthermore the results of our analysis and synthesis (Section 3.1.2) showed
that a dedicated methodology like a query language would likely not be
appropriate for the detection of all kinds of smells. Due the fuzziness and
context sensitivity of certain flaws, they need their own dedicated technique
to more precisely detect them.

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 26

Second, TestLint represents all rules as instances of classes, organized in a
class-hierarchy whereas Smalllint defines each rule as a method in the Rule
class. This further increases the flexibility for the rule-implementations and
reduces the load of a single class, enhancing a rule’s documenting character.
Finally, we introduce different types of nodes which allow us to analyze more
than just test-methods.

3.2.1 Rules and Nodes

A rule is basically an object that takes a node as argument, applies some
detection strategies to that node and finally should return a result. The
result can be a boolean, deciding whether the node has the smell being
detected by the rule, the reasons why it has smells or a state notifying
whether and why the analysis was dropped or not successful. Figure 3.3
shows the basic concepts of the rule-node model.

Rule
Node

X
Result for
Node X

Empty
Result

Analysis of Node X

Figure 3.3: A rule takes a node as argument, produces an empty default
result and applies its analysis to the node, saving the results in the result
object.

To reduce the complexity of each rule and based on the results of Sec-
tion 3.1.1, concluding that Test Smells are interconnected, overlapping and
have different smelling aspects, we decided to map rules to the previously
analyzed concrete and low-level design problems. Therefore a TestLint-rule
might only cover one or multiple smelling aspects of a Test Smell, but not all
of them. Furthermore a rule could even partially cover multiple Test Smells
at once.

We organize rules following the categories (Table 3.2) resulted from our anal-
ysis and formalizations. We notice that some rules might by organized by
multiple categories as most smells cannot be assigned to one single category.
Furthermore there are two basic types of rules:

• Static rules to detect static Test Smells (Section 4.1) based on the
analysis of the test-code or its abstract syntax tree.

CHAPTER 3. TESTLINT: MEASURING TEST QUALITY 27

• Dynamic rules that allow the detection of static and dynamic Test
Smells (Section 4.1) by instrumenting or analyzing the tests at run-
time.

A node is a simple abstraction of a standard language entity, for example a
package, class or method. Each type of node can have an arbitrary number
of Test Smells, depending on the abstractness and number of rules imple-
mented. Furthermore each node can have different types of Test Smells.
Table 3.3 maps the different kinds of Test Smells that could apply to a
particular node.

Node Types of Test Smells
Test Method Static and Dynamic Smells, Testing Conventions, Naming
Test Class Hierarchy, Testing Conventions, Naming
Test Suite Structure, Test Order
Package, Class- and Organization, Testing Conventions, Naming
Method-Categories

Table 3.3: Nodes and their possible types of Test Smells

We give further details about our contribution of formalizing automated
rules and detecting Test Smells in Chapter 4 and Chapter 5. The Ap-
pendix includes in-depth information about the model and implementation
of TestLint as well as an extensive list of Test Smells we detected in our
study.

Chapter 4

Test Smells

In this section we present an overview of our contribution of formalizing
Test Smells based on our empirical analysis. We declare a selection of Test
Smells and the rules to detect them using TestLint. A first section covers
static smells, and the second gives a list of dynamic ones.

The section-templates about Test Smells are structured as follows: Each
smell is given by a unique, simple and meaningful name. We declare the
node it applies to, respectively what kind of node the detection rule expects.
Furthermore we define a set of smelling aspects or characteristics the Test
Smell belongs to or concerns.

We describe all smells in details and explain how the smells shape, what
smelling aspects they show and which problems and consequences they
cause. Furthermore we give code examples for the smells and the formaliza-
tion we used to detect them. All code examples use Smalltalk syntax as we
implemented TestLint in Squeak. A comprehensive list of Test Smells can
be found in the Appendix.

4.1 Static Smells

A static Test Smell is the simplest form of a smell and can be analyzed
without actually running or instrumenting the test or the test-suite. As
we’ve chosen not only test-methods for the subject of our analysis, but also
test-classes, we define two types of static smells:

• Static Class Smell. Class smells are rather abstract and focus on the
correct organization and categorization of the tests as well as naming
convention. Besides, we can for example analyze whether the test-
class is accordingly used based on the Unit Testing Framework, or the
test-suite is correctly setup.

28

http://www.squeak.org/

CHAPTER 4. TEST SMELLS 29

• Static Method Smell. Method smells can basically be detected by ap-
plying metrics to the source-code. Another way is to parse the source-
code and analyze the resulting parse-tree by scanning for specific nodes
and tokens, or to detect patterns in the source-code or parse-tree. Fi-
nally it is also possible to make assumptions about applied coding
conventions, in particular analyzing the name of a test-method.

We notice that in the literature static Test Smells refer only to the analysis
of test-methods, and mainly focus on parsing and analyzing the source-code
as well as applying metrics to it.

4.1.1 Improper Test Method Location

Node: Test Class
Concerns: Test Conventions, Organization, Documentation

Smalltalk-developers normally organize their source-code in packages, class-
categories and method-categories. Although there is no common convention
for doing so, most projects we encountered during our case study are or-
ganized in a very similar fashion. However we also noticed that tests are
sometimes excluded from that.

Badly organized tests tend to obfuscate the purpose of a test-suite as for
example it is not obvious at the first glance what features or requirements
they test or how abstract they are. Furthermore it is hard to find out
which functionality of the application code is not (yet) tested. In short,
the test-suite is harder to understand and badly documents the application
code.

Therefore we claim that developers should apply the same or similar organi-
zation to their tests as they do for their sources. We claim that a good orga-
nization of tests can help in finding and understanding them more quickly.
Furthermore as tests are well organized and the understanding is simplified
they also help in better understanding the features and requirements of the
application code. A tidy organization can also speed up the development
and future refactoring processes as tests have an obvious location. Finally
well organized code and represents a certain quality standard.

As there are no declared testing conventions, in particular how tests should
be organized, we propose a fuzzy formalization, shown in Figure 4.1, based
on testing patterns we’ve found in our case study.

CHAPTER 4. TEST SMELLS 30

collect all
testing method categories Ci

NAND

get method category Ci
for each Test Ti

Improper Test Method
Location

Ti has a testing category Ci

Ci has meaningful name

Figure 4.1: Schematics of Improper Test Method Location

The first condition in Figure 4.1 checks whether each test is contained by
a testing method-category. That is a method-category that contains only
test-methods and the name of which matches the patterns test* or run*. The
second condition makes sure that the name of the category is meaningful.
For example condition two would reject names like test1. As both conditions
combined represent a Proper Location we concatenate them with NAND to
get an Improper Location.

We notice that the analysis of names is fuzzy, subjective and the purpose
of names strongly context sensitive. Therefore this rule could produce false
positives.

4.1.2 Mixed Selectors

Node: Test Class
Concerns: Test Conventions, Organization, Documentation

The problem of mixing up all the methods of a test-class is that it is harder
to allocate and differentiate accessors, fixtures, utilities and test-methods.
By putting each type of method into a different method category, especially
strictly separating test-methods from other methods we get a better struc-
ture of the test-class. A better and cleaner structure helps in understanding
the test-suite, the fixtures and all the test-methods.

As it is hard to estimate or analyse the purpose of a method our rule for
detecting Mixed Selectors differentiates only between test-methods and non
test-methods.

CHAPTER 4. TEST SMELLS 31

method category Ci

AND

method category Ci

Mixed Selectors

Ci contains non test-methods

Ci contains test-methods

Figure 4.2: Schematics of Mixed Selectors

We regard Mixed Selectors not as a serious smell as it does not affect the
functionality or the runtime of tests, nor does it badly influence refactoring
actions. Due to the simplicity of our formalization we can completely exclude
false positives.

4.1.3 Anonymous Test

Node: Test Method
Concerns: Test Conventions, Documentation

An anonymous test is a test whose name is meaningless as it doesn’t express
the purpose of the test in the current context. However tests can be regarded
as documentation, and the name is an important part of that as it should
abstract what the test is all about.

We detect anonymous tests by analyzing the signature of a test-method. For
that, we split the test-method name by numbers and following camel-case
notation, and then we check whether all the obtained tokens are found in
the names of the application classes or methods. We do this by applying a
simple pattern matching.

As an example, the rule to detect anonymous tests rejects method names
like test1 to test31, but might allow testSHA256 if its context defines cryp-
tographic objects or methods implementing SHA256.

False positives are inevitable as the analysis of names and their meaning
heavily depends on the context and the algorithm used for calculating sim-
ilarities. In out implementation we use a simple and fast pattern matching

CHAPTER 4. TEST SMELLS 32

applied on each part of the obtained tokens of the test-method name. We
notice that other algorithms or heuristics might produce better results.

4.1.4 Literal Pollution

Node: Test Method
Concerns: Obscure, Obfuscation, Multiplication, Costs

When writing tests for the application code it is mostly required also to
provide some data to be able to test the functionality. This is mostly done
by defining literals in the test code. However an excessive use of literals can
cause severe problems:

• Too many literals are distracting and obfuscate the functionality and
purpose of a test. This makes a test hard to read and understand.

• The same or similar test data is often repeated within a test or test-
suite. This is often a consequence of simply extending or adding tests
without actually designing them. The result is a test-suite that is ex-
tremely hard to maintain and refactor. We detected such Duplication
in harvesting our case study.

VariableEnvironmentTest >> #testAddRemove

| refs |

refs := VariableEnvironment new.

refs

addClass: RefactoringManager

instanceVariable: ’refactorings’. ...

refs

removeClass: RefactoringManager

instanceVariable: ’refactorings’. ...

refs

addClass: RefactoringManager

instanceVariableReader: ’refactorings’. ...

We further argue that test data, especially data that is reused, should in
general not be hardcoded into the test code, but rather stored somewhere
else or accessed using accessor, example or factory methods. This further
increases the maintainability as only the data-source has to be modified, but
not the test or even multiple tests.

CHAPTER 4. TEST SMELLS 33

UrlTest >> #testUsernamePasswordPrinting

#(’http://user:pword@someserver.blah:8000/root/index.html’

’http://user@someserver.blah:8000/root/index.html’

’http://user:pword@someserver.blah/root/index.html’

) do: [:urlText | self should: [urlText = urlText asUrl asString]].

We formalize the detection of Literal Pollution by simply parsing the test-
method for literals and rejecting any literal that represents an existing class
or selector. We don’t detect data duplication and don’t define any kind of
threshold as the use and purpose of literals is sensitive to the context.

The negative effects of Literal Pollution can be decreased, but mostly not
completely eliminated by defining accessor methods or a database return-
ing the literals. This would heavily reduce the number of duplicated liter-
als within a test-suite and enhance the readability and comprehension of a
test.

4.1.5 Assertionless Test

Node: Test Method
Concerns: Pseudo-Test, Anti-Test

A test that does not contain at least one valid assertion is not a real test
as it does only execute plain source-code, but never assert any data, state
or functionality. Besides, it can either succeed or throw an error but can
never throw an assertion failure, unless thrown explicitly, which should not
be done.

We define a valid assertion as one that is either provided by the underlying
Unit Testing Framework or a user defined one that is composed of valid asser-
tions. The following code shows an example of a valid user defined assertion,
containing an assertion provided by the Unit Testing Framework:

UserDefinedTestCase >> #userDefinedNotNilAssertion: anObject

self assert: anObject isNil not

An Assertionless Test is a weak test because the only thing it tests and
documents is that the code of the application does not throw an error for a
particular run. The following example shows such a test:

CHAPTER 4. TEST SMELLS 34

ICCreateCalendarTest >> #testCreatingSeveralCalendars

self addCalendarWithName: ’new Calendar 1’.

self addCalendarWithName: ’new Calendar 2’.

self addCalendarWithName: ’new Calendar 3’.

self addCalendarWithName: ’new Calendar 1’.

self addCalendarWithName: ’new Calendar 2’.

self addCalendarWithName: ’new Calendar 3’.

We can detect most of those tests by statically analyzing the parse-tree,
including all referenced methods (shown in Figure 4.3). If none of them is
known as a valid assertion to the system, then we probably found an As-
sertionless Test. False positives might appear in a dynamic language like
Smalltalk as we cannot retrieve the implementor of a method by doing a
static analysis. A dynamic analysis could eliminate this uncertainty.

re
fe

re
nc

ed
 m

et
ho

ds

method-1 method-N... asserttest

Figure 4.3: A simple but weak way of checking for assertions by checking
each referenced method in the parse-tree

Although Assertionless Tests do not directly cause any serious problems
they should be avoided or at least handled with great care as the intention
of a test is to assert data, functionality or state, and not only whether the
code runs without errors. In fact, code is often running without raising any
error, but still working improperly. This might cause unexpected misbe-
havior and is hard to detect and debug. Moreover it is more difficult to
understand a test without assertions as they normally document the rele-
vant functionalities and objects under test.

CHAPTER 4. TEST SMELLS 35

4.1.6 Overreferencing

Node: Test Method
Concerns: Coupling, Multiplication, Obscure

Another problem very similar to Literal Pollution is Overreferencing. It
is about test-methods referencing many times classes from the application
code.

The main problem with an Overreferencing Test is that it causes a lot of
unnecessary dependencies towards the model code. That distracts from the
goal of the test. In our experimentations, such tests were also rather long
and obscure. Furthermore we have detected overreferencing as a source for
subtle code duplication and missing generics in the test code which makes it
hard or impossible to maintain: different and slightly different fixtures are
present in different test-methods.

Figure 4.4 shows how overreferencing can be detected. The first condition
checks for the different referenced types. The second one counts how often
the same type is referenced in the code. From our experimentations, we have
found 3 to be a good value for the thresholds. It captures all the projected
and really smelling tests while producing only a very small amount of false
positives.

maximum appearance of
reference type Ri

OR

number of different
types of references

Overreferencing

REFS > 3

max(Ri) >= 3

Figure 4.4: The Overreferencing Test rule.

The example below emphasizes and shows the problem of the smell Over-
referencing and the negative side-effects (e.g., code duplication, coupling) it
can have. Applying our rule on the example test, we would get the value 5
for the first condition and 14 for the second one:

BooleanTypesTest >> #testTrueFalseSubtype

| system boolType boolMetaType |

system := TPStructuralTypeSystem new.

CHAPTER 4. TEST SMELLS 36

boolType := TPClassType on: Boolean.

self assert: (system is: (TPClassType on: True) subtypeOf: boolType).

self assert: (system is: (TPClassType on: False) subtypeOf: boolType).

self assert: (system is: (TPClassType on: False)

subtypeOf: (TPClassType on: True)).

self assert: (system is: (TPClassType on: True)

subtypeOf: (TPClassType on: False)).

boolMetaType := TPClassType on: Boolean class.

self assert: (system is: (TPClassType on: True class)

subtypeOf: boolMetaType).

self assert: (system is: (TPClassType on: False class)

subtypeOf: boolMetaType).

self assert: (system is: (TPClassType on: False class)

subtypeOf: (TPClassType on: True class)).

self assert: (system is: (TPClassType on: True class)

subtypeOf: (TPClassType on: False class)).

Overreferencing can be fixed using different techniques, depending on how
the smell manifests in the code. For example it would make sense to define
a shared fixture setting up all the Objects if that smell appears more than
once in the test-suite, and all the class-references are used to instantiate
basic objects. In cases like in the example above it would be reasonable
to define accessor or generic (factory) methods that return the reoccurring
code elements such as TPClassType on: True class. User-defined assertions
might also be an valuable option.

4.1.7 Overcommented Test

Node: Test Method
Concerns: Documentation, Model Complexity, Descriptive Encapsulation
Break, Obscure

Overcommented Tests define too many comments, obfuscating the code and
distracting from the purpose of the test.

As tests can be regarded as a form of requirement-specification and docu-
mentation the model code, it is conceptually unnecessary to write comments
within a test. Especially comments about the model code and how to treat
it is a Test Smell. They are redundant and likely to become obsolete in the
future. Furthermore they’re defined at the wrong place (Descriptive Encap-
sulation Break).

CHAPTER 4. TEST SMELLS 37

Besides, too many comments within the code break the “reading flow”,
making the test even harder to understand, therefore achieving the opposite
of the purpose of comments. A lot of comments also indicate that the
model code is complex, however this should not be commented but rather
refactored – “good code only need tests and a very few comments”.

We detect overcommented tests by parsing the test code, extracting and
analyzing the comments within the test context. We correlate the number
of comments to the size of the shared fixture and the number of asser-
tions:

relation between shared fixture
and comments

OR

relation between assertions
and comments

Overcommented

comments > assertions

comments > shared fixture

Figure 4.5: The Overcommented Test rule.

This means that for every assertion or instance variable used in the test is
actually allowed to have one comment of any size at most. For example the
following test is overcommented as the relation evaluates to 7 > 3:

DebuggerTest >> #testUnwindDebuggerWithStep

"test if unwind blocks work properly when a debugger is closed"

| sema process debugger top |

sema := Semaphore forMutualExclusion.

self assert: sema isSignaled.

process := [sema critical:[sema wait]]

forkAt: Processor userInterruptPriority.

self deny: sema isSignaled.

"everything set up here - open a debug notifier"

debugger := Debugger openInterrupt: ’test’ onProcess: process.

"get into the debugger"

debugger debug.

top := debugger topView.

"set top context"

debugger toggleContextStackIndex: 1.

"do single step"

debugger doStep.

"close debugger"

top delete.

"and see if unwind protection worked"

self assert: sema isSignaled.

CHAPTER 4. TEST SMELLS 38

Although our formalization seems to be weak by allowing quite a lot of com-
ments, it actually proved to do the opposite in our case study by being very
restrictive and focusing only on the very bad and obviously overcommented
tests. During our analysis we detected numerous tests with many comments
inside. Some of them could be identified as Overcommented Tests. In most
of those cases either the test, the model under test or both showed design
flaws.

We further notice that analyzing the concrete purpose of a comment is gener-
ally not possible or can only be approximated using heuristics as this would
require one to fully understand the semantic meaning and the context of the
comment. Therefore false negatives and false positives are inevitable.

4.1.8 Long Test

Node: Test Method
Concerns: Long Tests, Complex Test, Documentation

A Long Test is a test that consists of lot of code and statements. Such tests
are mostly (but not necessarily) complex and badly document the purpose
of the test and the application code. Furthermore they tend to test too
much functionality, maybe even getting eager.

We detect long tests by simply counting the number of statements, ignoring
the context, the purpose and functionality being tested. We then evaluate
this number against a fixed threshold.

Our experimentation showed that a threshold above 10 to maximum 20
statements is a very good threshold to detect long tests. However we notice
that due to the simplicity of this formalization it is quite likely to get false
positives. On the other hand we detect really long tests and also slightly
longer tests extremely quickly. We detected numerous Long Tests in our
analysis and case study.

If a Long Test shows evidence an Eager Test, for example by testing various
features of the model at once, it can be easily refactored into multiple smaller
and distinct units. The same applies for tests which test a lot of different
data values. Tests which verify a large or complex model are probably Long
Tests and often difficult or even impossible to eliminate.

CHAPTER 4. TEST SMELLS 39

4.1.9 Guarded Test

Node: Test Method
Concerns: Control Flow, Hidden-Test, Obscure

Guarded Tests include boolean branching logics like ifTrue: or ifFalse:.

testRendering

self shouldRun ifFalse: [^ true].

self assert: ...

...

The problem of using such conditionals is that they break the linearity of a
test by controlling the execution flow, making the test less predictable and
harder to understand. The documenting nature of a test might vanish. Fur-
thermore it could be that certain assertions are not executed. In the worst
case an actual failing test returns a success letting the developer believe
the test is green. Moreover, guarding clauses might reveal an encapsulation
break of the application code by exposing the internal model logic to the
tests. This also increases the coupling between the tests and the sources and
leads to fragile and trust-unworthy tests.

We identify Guarded Tests by scanning the abstract syntax tree of a test-
method for all occurrences of any conditional logic. The code-example from
above would be identified as an instance of a Guarded Test

In particular we do not differentiate whether the conditional includes assert-
ing or non asserting code, and we do not try to analyze the intention of the
conditional as we regard the use of them as a general smell for tests.

We notice at this point that many projects we harvested use conditionals
with a specific purpose to drop certain tests. In these situations we could
regard Guarded Tests as false positives. We give some examples of such
situations in the following:

• (Extremely) slow tests which badly influence the runtime of a test-
suite, endangering the automation and manual execution of tests

• Platform-dependent tests

• Tests accessing an external resource like a database which might not
always be accessible

As this is always done in the same way we can identify this need for Condi-
tional Tests as a missing design pattern for unit testing. Therefore Guarded
Tests, when used for such purposes, can be regarded as false positives. Un-
fortunately it is extremely difficult or mostly impossible to automatically

CHAPTER 4. TEST SMELLS 40

identify the meaning and intention of a piece of code. Therefore false pos-
itives cannot be eliminated. However because of the following reasons we
regard the way those tests are realized as a Test Smell:

• Conditional code is repeated like a pattern all over the tests (code
duplication) and pollutes the test code, making a test harder to com-
prehend.

• Standard unit-testing frameworks are not aware of the condition and
its meaning and purpose. Therefore conditional tests always return a
success even if they didn’t run any code or assertions. However this
is critical as it is not possible to decide whether a test actually ran or
not.

We therefore recommend to extend any unit testing framework to become
aware of such tests and the condition under which they can be executed,
without the need of polluting the test code with conditional branches. Like
that a developer would be notified which and why tests were not exe-
cuted.

A simple way of extending an unit testing framework with such a feature
could be by creating a new subclass ConditionalTestCase of the class TestCase
which must implement a condition that evaluates before a test can run.
Like that the testing framework would know why it cannot run certain tests
and notify the tester about that circumstance. Extending the exception
mechanism could be another solution.

4.2 Dynamic Smells

Dynamic Test Smells require the test to be run to assess quality information.
Therefore dynamic analysis applies to test-methods only. However almost
all dynamic smells also include static analysis.

For most dynamic Test Smells it suffices to execute the test once, but there
are also some that require multiple runs. Some Test Smells require an in-
strumentation of the application code, the test fixture or the test itself.
As not all code can be successfully instrumented, these smells include an
uncertainty factor and might therefore not return a result.

Dynamic test analysis is more complex and runs much slower than the static
ones. Furthermore results are harder to interpret due to the amount and
complexity of information collected at runtime.

CHAPTER 4. TEST SMELLS 41

4.2.1 Under-the-carpet failing Assertion

Node: Test Method
Concerns: Pretending Test, Hidden Failure, Obscure

A test having the smell Under-the-carpet failing Assertion is a test that
returns a successful test-result, but contains hidden assertions. A hidden
assertion is an assertion that is put into comments, is not executed when
the test runs, and which would actually throw an Error or Failure if the
comment were removed.

The problem of such a test is that it drops one or maybe even all assertions,
pretending a good test-result. Thats because a Unit Testing Framework is
normally not aware of the assertions it executes, but only about Errors and
Assertion Failures raised. This lets the developer believe the application
code works properly. The following code gives an example for an Under-the-
carpet failing Assertion as it can be found in many test-cases. We notice
that the hidden assertions are not visible without code highlighting at first
glance:

ICImporterTest >> #testImport

...

self assert: eventAtDate textualDescription = ’blabla’."

self assert: eventAtDate categories anyOne

= (calendar categoryWithSummary: ’business’).

"self assert: ...

A closer analysis of the context of the commented code in the example code
above reveals that the method categoryWithSummary: can throw an Error if
aString is not detected in categories – a situation the test doesn’t catch due
to the comment.

ICCalendar >> #categoryWithSummary: aString

^ self categories detect: [:each | each summary = aString]

We detect Under-the-carpet failing Assertion using a 2-pass procedure, for-
malized in Figure 4.6. In the first pass we simply run the test and save the
result. In the second pass we parse the comments of the tests, identify com-
ments including assertions, safely remove any comment-tokens around valid
code and asserting statements and run the test again. Finally we compare
both test results.

This Test Smell is important to detect as developers obviously often com-
ment out failing assertions due to several reasons. We have encountered

CHAPTER 4. TEST SMELLS 42

run test with
assertions un-commented

AND

run test with
unmodified source

Under-the-carpet Assertion

Test result = Success

Test result = Failure

Figure 4.6: Schematics of Under-the-carpet failing Assertion

assertions that were probably commented in the course of debugging activ-
ities, and later forgotten to be removed. We have also detected commented
assertions that were just obsolete and tests that were completely commented
just for the sake of making the test green because they run slow, or require
a special environment to run.

4.2.2 Badly Used Fixture

Node: Test Method
Concerns: Slow Test, Complexity, Obscure

A Badly Used Fixture is a fixture that is not fully used by the tests in the
test-suite. Figure 4.7 shows an example of a badly used shared fixture.

Fixture

inst var1

inst var2

inst var3

test1

test2

test3

test4

Figure 4.7: A (badly) shared fixture only used by one of four tests

CHAPTER 4. TEST SMELLS 43

This smell mainly appears in tests that use implicit fixtures. Such a fixture
is shared by all the test-methods and mostly includes optional setup and
teardown instructions which are executed before and after each test-method.
However not all of the tests require this fixture or at least not everything
that the fixture provides.

As a consequence tests start to run slowly. That’s because the implicit
fixture is always executed, even if the tests don’t require the data being set
up – or only few parts of it. Furthermore, the size of the fixture normally
grows with the evolution of tests as extending the fixture is a simple way to
setup and share test-data and objects. This further aggravates the problem.
Finally as such tests start to run slowly they’re also executed more seldom,
potentially hiding newly introduced bugs which get overseen or discovered
too late.

We detect a Badly Used Fixture by first instrumenting all instance variables
including all fixture and test-methods of a test-class. In a second step we
run the tests gathering all read and write accesses to the shared fixture for
each method. Finally we evaluate the information about the shared fixture
and apply the following metric (Figure 4.8) to gain knowledge about its
usage.

Variables used by each Test Ti
OR

Tests using the Fixture

Badly Used FIxture

 avg(Tests) < 0.75

 avg(Vars/Ti) < 0.50

Figure 4.8: Schematics of Badly Used Fixture

The first simple condition in Figure 4.8 says that at least 75% of all tests
should use the fixture. The second condition requires that in average all
tests should use at least 50% of the variables defined within the fixture.
When we apply this metric to the example of Figure 4.7 then the first
condition would evaluate to 0.25 (=1/4), and also the second condition
(=(0+0+1+0)/4).

False positives cannot be totally excluded as the purpose of an instance
variable is difficult to determine, therefore the rule to detect Badly Used
Fixture is quite sensitive to the context of the test. Furthermore the thresh-
olds we’ve chosen for both conditions are rather restrictive and might not

CHAPTER 4. TEST SMELLS 44

work for all situations. For example we might encounter a false positive
for very abstract high level test requiring a large fixture. However, in our
experimentations, those thresholds proved to return reliable results in most
situations.

4.2.3 Transcripting Test

Node: Test Method
Concerns: Test Conventions, Slow Test, Obscure

A Transcripting Test is writing information to the console or a global stream,
for example the Transcript in Smalltalk, while it is running. The following
code shows an example of method called in one of the test-methods of the
test-class HeapTest.

HeapTest >> #testExamples

self shouldnt: [self heapExample] raise: Error.

self shouldnt: [self heapSortExample] raise: Error.

HeapTest >> #heapSortExample

"HeapTest new heapSortExample"

"Sort a random collection of Floats and compare the results with ... ’’

| n rnd array time sorted |

n := 10000. "# of elements to sort"

rnd := Random new.

...

Transcript cr; show:’Time for heap-sort: ’, time printString,’ msecs’.

"The quicksort version"

...

Transcript cr; show:’Time for quick-sort: ’, time printString,’ msecs’.

"The merge-sort version"

...

Aside from the effect of slowing down the test execution, writing data to the
console contradicts the idea of unit testing: A test should only return the
result of the test, for example “green” or “failed”. It should never output
any additional data that has to be processed or harvested manually as this
would be distracting and encumber the automation of tests. Furthermore,
transcripting code obfuscates the test-method and distracts from the goal of
the test and its documenting attribute.

CHAPTER 4. TEST SMELLS 45

We detect Transcripting Tests by instrumenting code responsible for writing
data to the console, and running the tests, collecting all methods and data
written to the console. Any attempt to access the console is recognized as
a Test Smell.

4.2.4 Interactive Test

Node: Test Method
Concerns: Test Conventions, Slow Test, Obscure

An Interactive Test is a test that interrupts the automatic execution of a
test, requiring manual actions from the user, for example pressing a button,
closing a window or entering some data.

The problem of such tests is that they contradict the idea of automating
tests as they require the full attention of the developer while they’re run-
ning. Furthermore they’re not predictable and repeatable as the input might
change for each execution. Besides the result of the test might change de-
pending on the input. For example, the tester once chooses to enter some
data and press the “ok” button, another time he selects the “cancel” button,
not entering any data which causes a test failure.

To detect an Interactive Test in Squeak we instrument the core methods of
the package “Morphics”1. We use the following code for the instrumentation
using ByteSurgeon [Denk06a]:

(<:#methods>

at: RunningSUnitTest current

ifAbsentPut: [Set new])

add: (<meta: #receiver> class) -> (<meta: #receiver>).

(<:#pattern> match: (<meta: #receiver> class name))

ifFalse: [TestFailure signal].

#methods represents a Set containing associations of Morphs that were
attempted to be displayed as well as their classes for a particular test
(RunningSUnitTest current). We throw a TestFailure as soon as the test tries
to open a Morph. We reject non critical Morphs like progess- or status-bars
using a name-based #pattern matching.

1Morphics is a graphical library of Squeak to build graphical objects or windows and
dialogs

http://www.squeak.org/
http://www.squeak.org/

CHAPTER 4. TEST SMELLS 46

As the detection of interactive Morphs is context sensitive – we cannot ana-
lyze the meaning and intention of code – the rule to detect Interactive Tests
also collects tests that simply open and close Morphs without requiring any
interaction. Although those tests don’t have the Test Smell of interactivity,
we still regard them as badly designed as no unit-test is supposed to open
Morphs except the tests of the package Morphics or those specifically testing
the GUI.

Chapter 5

Case Study

The following sections are dedicated to the details of applying TestLint to
a large set of tests. Section 5.1 will give a brief overview about the config-
uration of our case study. Section 5.2 will give an introduction about the
distribution of Test Smells. Section 5.3 handles accuracy and significance.
Section 5.4 finalizes our global analysis by locating the Test Smells. At the
end of our case study we examine a selection of well known packages in more
detail and also evaluate the usability of TestLint in action.

5.1 Overview

Our case study is based on a Squeak 3.9-7067 image including the latest
version of Christo Code Coverage, TestLint and several scripts to easily and
quickly recreate the case study data and diagrams. Both tools as well as the
case study scripts are Open-Source and can be downloaded from Squeak-
Source. For mapping and visualizing data we use Microsoft Excel.

In the very first step we harvested from SqueakSource any freely-available
and installable packages including tests. We notice that this was quite a
time consuming process as many packages are

• obsolete, unmaintained or badly documented,

• difficult to set up due missing documentation, and complex and un-
known dependecies,

• cause unforeseen conflicts with other already installed packages

• don’t define any tests at all.

47

http://www.squeak.org/

CHAPTER 5. CASE STUDY 48

We finally set up our case study image with approximately 70 packages
including 5’500 test-nodes whereas a test-node is either a test-method or a
test-class. Table 5.1 details the configuration of the case study.

Packages 67
Test-methods 4834
Test-classes 742
Classes in total 2355
Methods in total 27054
Detected Authors 93

Table 5.1: Overview about the composition of the case study

Based on harvesting SqueakSource, we determine that writing tests is not
a common or often used technique in the Squeak community. We conclude
this due to the fact that SqueakSource contained about 630 projects at that
time, however we found only 67 usable packages. Therefore approximately
80% of all packages on SqueakSource don’t define any tests at all.

Besides, we notice that the number of detected authors, declared in Ta-
ble 5.1, is fuzzy. Many methods are missing “author initials” 1 because they
were not declared or cannot be retrieved from the sources. Furthermore
some authors are using multiple different, but similar ones to declare their
code, for example SR and SReichhart. The case study showed that these sit-
uations are exceptions and don’t have any severe side-effect on the results.
We therefore didn’t correct this discrepancy for the case study.

To get a first rough impression about the case study we present some fur-
ther information about the distribution of tests on packages and authors.
Table 5.2 shows how tests are spread over the packages in the case study.
The differences in average, median and max value let us assume that the
distribution of tests is very unbalanced. Therefore we expect that only a
few packages define a lot of tests and the rest is provided by the majority
of packages.

Average Tests per Package 6
Median Tests per Package 36
Max Tests per Package (’KernelTests’) 663

Table 5.2: Distribution of Tests on Packages

1Each method and class in Squeak is saving its author using an arbitrary string, nor-
mally the author’s initials, identifying it.

http://www.squeak.org/
http://www.squeak.org/

CHAPTER 5. CASE STUDY 49

We can endorse this assumption as we get a similar result when applying
the same metrics to authors, shown in Table 5.3. As the average and me-
dian value of the number of tests are very low and close together and in
consideration of the results by Table 5.2 and the configuration of the case
study by Table 5.1 we determine that most authors define only a very few
tests. However we also notice that there are also some exceptional authors
writing a lot of tests.

Average Tests per Author 7
Median Tests per Author 2
Max Tests per Author (’lr’) 789

Table 5.3: Distribution of Tests on Authors

5.2 Distribution of Test Smells

The first questions we wanted to answer is to find out how many Test Smells
do the tests within the case study have, are there any nodes having more
than one smell, and how distributed are the smells among the tests.

We therefore applied all available rules to each package separately and on
the complete image at once. This process took a few hours. As the results
of distribution between packages and the complete image is quite stable we
can conclude the results shown in Table 5.4.

Smells per Test 0 1 2 3 4 5 6-9
Distribution 61 % 20 % 11 % 4 % 2 % 1 % < 0.5 %

Table 5.4: Distribution of Smells per Test-node

We discover that about 60% of all tests are supposed to be free of Test
Smells whereas about 40% of all tests have one or more possible smells. We
also observe that nodes having more smells appear less often, in decreasing
order. Tests with more than 4 to 5 smells are extremely rare and can be
neglected or regarded as exceptions.

We must further notice that we did not filter false positives or true negatives
for this first analysis. This would have been an huge overhead due the size
of the case study.

CHAPTER 5. CASE STUDY 50

5.3 Accuracy and Significance

The next step in doing the case study was to find out how accurately are
the rules working, which ones need refactorings and further improvements
and what kind of changes would be necessary to make them more reliable.
Furthermore we wanted to answer how many false positives do our rules
produce, how often does a certain smell really appear and how important is
it to detect that smell.

We therefore manually analyzed each of the observed Test Smells to ex-
ploit the measure of accuracy of our detection rules. Furthermore we also
inspected the values and reasons that caused the detection. Like that, we
could easily filter out false positives and further gather new valuable criteria
to improve the rules. Due the size of the case study and the fact that we
designed our detection rules rather restrictively (to capture only the serious
problems), we did not do the opposite operation to find true negatives.

The graph in Figure 5.1 displays the detected Test Smells and the corre-
sponding rules in descending order based upon the total number and global
percentage of their occurrence frequency.

Figure 5.1: Each bar represents the total number and percentage of de-
tected smells by the corresponding rule. True positives are light-orange,
false positives are dark-red

CHAPTER 5. CASE STUDY 51

Figure 5.1 shows that most of the rules have a high accuracy, not producing
too many false positives in general. We notice that the early prototype of
TestLint had an overall accuracy of approximately 80% at the time of this
case study.

Furthermore we discover that certain smells, especially the ones about Log-
ics, Naming and Organization appear quite frequently. We therefore con-
clude that these are the most common problem in unit tests (based on the
selection of rules we used for this case study). The other Test Smells appear
less often and are rather equally distributed.

Figure 5.1 also shows that certain rules like Proper Organization, Abnormal
UTF Use or rules trying to analyze the Shared Fixture tend to produce
more false positives than other rules. We can explain this with the following
reasons:

• Test Smells are fuzzy and context sensitive. For instance, the meaning
and purpose of a shared variable in the Shared Fixture cannot be
estimated. Hence, there is no way to formalize such a rule.

• There is no common convention to test against. Therefore a precise
rule cannot be formalized. Example: Proper Organization.

Due to these facts it will not be possible to detect certain Test Smells without
false positives. However it might be possible to reduce them using fuzzy
heuristics.

Including and combining the results after sorting smells by their appearance
frequency and accuracy of their corresponding rules (Figure 5.2), we also
discover that conditional smells including branching logics (Guarded Test),
missing assertions, smells causing a higher coupling (Overreferencing), or
breaches of testing conventions (Assertionless Test) appear quite often. We
can assume they have a higher relevance. We refer to this measure as Sig-
nificance.

Exotic Test Smells like Transcripting or Early Returning Test appear rather
rarely, however they exist. We further notice that on our test data statically
analyzed Test Smells appear more often and mostly have a higher accuracy
and significance than dynamic ones.

CHAPTER 5. CASE STUDY 52

Figure 5.2: Test Smells and their corresponding rules sorted by their ap-
pearance frequency and accuracy

5.4 Localization

To finalize the case study we also wanted to know where we can actually
find smells, in particular in which packages and what kind of smells are
distributed in which package. Moreover we would like to know who creates
Test Smells and whether we could find any relation between authors writing
a lot of tests and such ones only writing a few tests.

We get a rough impression about the distribution of smells on packages when
calculating again some synthetic values based only on the total number of
packages and detected Test Smells, neglecting false positives and relations
(Table 5.5).

Average smells per Package 32.4
Median smells per Package 12
Max smells per Package (’KernelTests’) 433

Table 5.5: Synthetically calculated smells per Packages

We discover again the larger differences between average, median and max-
imum values, indicating large differences between the number of smells per
package. We therefore expect some packages with a high number of smells
and several packages with only a few smells.

CHAPTER 5. CASE STUDY 53

We get quite a similar result when doing the same for authors. (Table 5.6).
Due to reasons of anonymity and to avoid offending people we do not publish
data that directly maps authors, smells and tests.

Average smells per Author 47.6
Median smells per Author 8
Max smells per Author 449

Table 5.6: Synthetically calculated smells per Author

To further refine localisation results we made a simple mapping between
packages and smells to get the relation between packages, smells and tests.
We visualize this correlation in Figure 5.3.

Figure 5.3: Relations between packages and smells per tests

After doing a full manual test analysis on a few packages as shown in Fig-
ure 5.3, we can determine that packages, known to have good code and tests,
maybe even done by Test-Driven Development like Aconcagua or Magritte
tend to have much better tests. This means fewer Test Smells per node
than other packages like Tool-Builder or SMBase, containing “Spaghetti”-
code and just a very few, bad or almost no tests.

To better visualize the relation of smells, tests and packages we mapped all
available data together into Figure 5.4. This graph shows all packages on the

CHAPTER 5. CASE STUDY 54

x-axis, sorted by number of tests in ascending order. The y-axis show the
absolute values of tests (dark-blue) and smells (light-orange). We further
clarify the data results by calculating an exponential approximation of tests
(dark-blue) and smells (light-orange).

Figure 5.4: Tests and Smells on Packages, sorted by the number of tests in
ascending order

Based on Figure 5.4 we determine that Test Smells grow steadily with the
number of tests written. Moreover we discover that the number of smells is
growing slightly slower than the number of tests and that we mostly have
fewer smells than tests within a package, however exceptions exist.

Moreover, Figure 5.4 indicates and lets us assume that developers writing
more tests also tend to write better tests with the quality of the tests raising
with the amount of tests written.

We could actually prove this assumption by re-mapping the data of Fig-
ure 5.4 to authors instead packages. Figure 5.5 visualizes the total number
of tests (primary y-axis), total number of Test Smells per test (secondary
y-axis) and the authors writing tests (x-axis), sorted ascending by the total
number of tests.

We clearly discover that the number of smells per test is decreasing steadily
while the number of tests is increasing. So our assumption of Figure 5.4
is proven and we can conclude that developers writing more tests produce

CHAPTER 5. CASE STUDY 55

Figure 5.5: Tests and Smells on Authors, sorted by the number of tests in
ascending order

proportionally fewer Test Smells than those writing only a few tests, or the
other way round. Furthermore we also notice that this conclusion might
only apply to the whole case study at once, but might not be true for each
individual developer.

Besides, Figure 5.5 is a good and strong argument for doing testing and
Test-Driven Development:

The more tests a developer writes the better the tests

So we conclude that testing and especially Test-Driven Development does,
at least in long terms, scale extremely well.

An interesting question that arises from this conclusion is whether the qual-
ity of the tests positively affects the quality of the application code and
design – or the other way around. Although we discovered in our studies
that packages having only a few Test Smells mostly also have well-designed
sources, and that packages having many Test Smells show lack in the design
of the model, we did not further investigate that within this work. We leave
this question to the future work on Test Smells.

CHAPTER 5. CASE STUDY 56

Finally, the results taken by Figure 5.5 let us expect a package, especially
the tests of one author to change, even tend to get better in time. This
means earlier packages have more Test Smells than later ones. Although
this sounds reasonable, we did not further investigate this assumption due
to its complexity of including additional context-sensitive information like
time into the statistics. This might be another interesting question for the
future work.

5.5 Examples

5.5.1 Aconcagua

Aconcagua defines about 549 tests and is known to have very good tests,
most of them done by Test-Driven Development, in particular Test-First De-
velopment. Our manual analysis enforces this by discovering that most tests
are rather short and easy to understand, however exceptions exist.

Using TestLint does only show a few Test Smells compared to the size of
Aconcagua:

• 14 tests doing Overreferencing, however just reaching the threshold of
being recognized as such

• 1 class (NumberMeasureProtocolTest) mixing test methods with other
methods e.g., fixtures, accessors or utilities

• 3 tests are too long and exceed the maximum number of statements
(using 15 as a threshold)

We found several false positives in Aconcagua. In particular we found 6
Assertionless Tests in the class EvaluationTests whose assertions cannot be
retrieved using static analysis as the tests get re-composed at runtime. We
also encountered a lot of Magic Literals, however this is to be expected as
Aconcagua is about numbers and units. Still the amount is critical.

Using TestLint we actually found all issues of Aconcagua that might be the
source of current or future problems. However the number of false positives
is quite large, giving the impression that TestLint is not really useful or not
well enough formalized – which might be true for packages defining very well
designed tests. However we notice that we designed TestLint to catch all
possible issues, not to detect them perfectly.

CHAPTER 5. CASE STUDY 57

5.5.2 Magritte

Magritte [Reng06a] is a meta-description framework to build user-interfaces,
reports, queries and persistency. It defines a large number of tests (1778),
most of them being very good and easy to understand. Using the results
of our case study we encountered that only about 2% of all tests have Test
Smells, false positives not counted.

Our analysis and the one by TestLint of Magritte concludes that the tests
are in general very well designed. However, there are a several tests using
Conditionals like self shouldSkipStringTests ifTrue: [ˆself] to drop tests.
The manual inspection also revealed that one test in the class MAAutoSe-
lectorAccessorTest is overriding the default behavior of the underlying unit
testing framework, however this is not regarded as a flaw. There are also
some cases of Overreferencing which actually show some code duplications
and missing generic methods.

5.5.3 Refactoring Engine

By manual analysis we discover that Refactoring Engine defines a lot of tests,
mostly long and complex test methods, equally distributed over multiple
classes using method categories to further organize tests. We notice that
at the time of this examination Refactoring Engine had a lot of errors and
failing tests. Besides, tests run extremely slowly or even let the Squeak
image freeze. The latter issue complicated the automatic analysis as certain
rules need to run the tests. Therefore we had to repeat this analysis multiple
times.

Analysing Refactoring Engine using Testlint identifies it as a package of
average test quality, having an average distribution of Test Smells among
all tested packages. Using Figure 5.1 we discover that most tests seem to
have Test Smells. TestLint reveals a bunch of serious and less serious Test
Smells, in particular, Refactoring Engine contains:

• Two Transcripting Tests, this is tests writing some data on the console

• 20 tests about Overreferncing, therefore strongly exceeding the max-
imum number of references. All of those tests are also very long and
complex.

• 10 tests using Logic Operators, heavily obfuscating the test code

• About 25 tests are too long, exceeding the maximum number of state-
ments

http://www.squeak.org/

CHAPTER 5. CASE STUDY 58

• 11 tests have valid code put into comments, whereas 2 tests include
Under-the-carpet Assertion, one even including a Under-the-carpet fail-
ing Assertion in ExtraParsingAndFormattingTests

• 7 tests with too many or too long comments

Besides, all tests are infected by Magic Literals. However we expect most
of them as Refactoring Engine needs to reference and define a lot of data
and includes a lot of parsing-related code. Still we do not count all of them
as false positives as some literals could have been avoided by a better test
design. Finally, shared fixtures in Refactoring Engine are not always fully
used and TestLint even recommends to use a fresh fixture in RefactoringTest
instead of the large shared one.

We also found several other false positives besides Magic Literals. There
are approximately 146 tests wrongly detected with the smell Assertionless
Test. This failure is caused by a special user defined assertion, used in
almost every test, which is not correctly recognized. Furthermore TestLint
wrongly identified one Under-the-carpet failing Assertion, caused by a bug
when parsing comments.

The results from TestLint are mostly the same as those obtained by the
manual analysis, except for the problems TestLint is not able to detect
due to missing rules. However TestLint could also detect flaws that were
not detected by manual analysis e.g., Under-the-carpet failing Assertion.
Although Refactoring Engine has many tests, we detected many smaller but
also some more severe flaws. Moreover, many tests fail, throw errors or have
to be executed manually.

5.5.4 Cryptography

Cryptography defines a set of well known and frequently used Cryptographic
algorithms and protocols. It is a rather large package (247 classes), but
contains only very few tests (39). The main problem of Cryptography tests
are Magic Literals. Although they are expected in such a package they
appear far too often. Every single test is heavily “infected”, making the tests
difficult to understand, especially the purpose of the data. The following
Smalltalk code gives an example.

CryptoRigndaelCBCTest >> #testRFC3602Case2

| result |

((CBC on: (Rijndael new keySize: 16;

key: (ByteArray fromHexString:

’06A9214036B8A15B512E03D534120006’)))

initialVector: (ByteArray fromHexString:

’3DAFBA429D9EB430B422DA802C9FAC41’))

CHAPTER 5. CASE STUDY 59

encryptBlock: (result _ ’Single block msg’ asByteArray).

self assert: result hex = ’E353779C1079AEB82708942DBE77181A’

A database, examples or factory methods for tests would clean up many
of the tests and would also document them and make them easier to un-
derstand. Furthermore, using TestLint we detected one Under-the-carpet
Assertion in testSHA256, but not a failing one. TestLint also found out that
most tests are badly organized, as it found missing method categories or
ones with meaningless names. Furthermore, several test methods are mixed
up with non test methods.

Our manual analysis and the results obtained by TestLint are very simi-
lar. Especially the organization of tests makes it difficult to understand the
model behind and how it is designed and structured. Furthermore we ex-
pected many Magic Literals, still we believe the amount could be reduced
by a better design of the test data.

5.5.5 Network

Network defines only about 57 tests, not much for such a big and important
package. Our manual analysis mainly concludes many small and low level
tests, using a lot of meaningless literals and strings. There are also some
code duplications.

TestLint detects the following major issues in Network:

• 2 tests in UUIDPrimitivesTest might return too early due to a Logic-
Operator and/or dropping all the assertions.

• 3 tests in UrlTest make too many references to the same class. Besides
they define too many comments and exceed the maximum length of a
test. The manual check reveals heavy Code Mutliplication and Build-
ing blocks.

• Almost all tests in TestURI (45/47) and 4 in UrlTest have meaningless
selector names e.g., test1, test2, and so on.

• The class category NetworkTests-Kernel belongs to the testing cate-
gories of the package Network but does not define any tests, only a
mock object.

• The fixture of UrlTest includes a variable that is never read or written
by any of the tests defined. Furthermore the content of the fixture is
shared but not correctly setup.

Besides, TestLint found a lot of Magic Literals. Again, we could regard them
as false positives as literals can be expected for such a package. However

CHAPTER 5. CASE STUDY 60

as the use of them is extremely excessive in Network we would not regard
the detection as such but rather as a global design flaw. Furthermore there
are 6 possible Mystery Guests, which however can be identified as false
positives.

Although TestLint cannot identify all the issues of Network due missing
rules e.g., Code Duplication, its result fully agrees to the previous manual
checking of Network.

Chapter 6

Conclusion

Unit testing is an important activity in a software project to assure the re-
quirements and features of an aplication are properly reflected in the source-
code. In the same way assessing the quality of tests is important to assure
the quality and reliability of tests.

As we ascertained in our analysis, many problems emerge from Test Smells.
Tests can become complex, hard-to-understand and hard-to-maintain. In
the worst case the developer cannot rely on them any more due to their
instability and obscure-ness, and don’t use them any more. Therefore it
is crucial to be able to automatically detect such design flaws early and
refactor the tests.

In our approach towards solving those problems, we analyzed Test Smells at
the code level, instead of describing them informally or formalizing them at a
high abstract level. We formalized concrete rules and discovered and verified
the need and significance of being able to detect Test Smells. Furthermore
while conducting a large case study, we could actually prove that writing
tests contributes to the writing of better tests.

6.1 Lessons Learned

• The automatic detection of Test Smells is important as design flaws
in tests occur quite often and could have severe drawbacks on the
evolution and understanding of an application.

• Writing a lot of tests enhances the quality of tests, leading to more ro-
bust and trustworthy tests which are simple to understand and better
document the requirements and functionalities of the software.

61

CHAPTER 6. CONCLUSION 62

• Dynamic analysis is a powerful technique which can considerably en-
hance the understanding of a software system and its tests. Under-
standing the runtime of an application, especially how the entities and
features are interconnected can help finding flaws in the model design
but also bugs in the code.

• Visualization of data is an important technique to compact and sim-
plify complex problems as well as providing a specific focus on inter-
esting or problematic locations on the application.It is a considerable
help for understanding software. However finding the right visualiza-
tion and focus is not trivial.

6.2 Future Work

In our research and implementation to assess the quality of tests we have
primarily focused on Test Smells. A part of the future work will be an
evaluation of Mutation Analysis. It will be interesting to know how use-
ful and applicable this methodology is in dynamically typed languages like
Smalltalk, and whether it adds new valuable information about a software
system, especially about the quality of tests.

Furthermore we want to investigate whether there is connection between the
quality of tests and the quality of the model. In particular we’re interested
whether writing tests and the quality of tests does affect the quality of the
application code and design. Correlating the results of Lint and TestLint
might give further insights into that question.

Using TestLint on well-designed tests produces a considerable number of
false positives. We plan to formalize new rules trying to increase the pre-
cision of the rules to get more accurate results. Furthermore we will add
several missing rules, for example to detect Eager tests, Code Duplication
or Building Blocks. We want to enhance TestLint to become a valuable and
indispensable part of the testing process.

We also want to focus on further enhancing Code Coverage to gather insight
about the quality of tests as well as evaluating the usability and applicability
of Partial Order and Delta Debugging (see the additional chapters in the
Appendix).

The future goal is to propagate Quality-Driven Development by tightly in-
tegrating methodologies measuring the quality of tests into the development
process. We want to achieve this by providing tools giving access to those
methodologies while hiding the complexity, and visualizing the results in a
simple and comprehensive way.

Appendix A

TestLint: Measuring Test
Quality

A.1 List of all detectable Test Smells

The following sections and tables present a list of all Test Smells extracted
during our analysis. We notice that this list in not complete and that not
all smells are implemented in TestLint. The Test Smells mentioned in our
case-study in Figure 5.1 and Figure 5.2 are regarded to work reliable.

Test Smell Description
Mystery Guest a test that might access an external resource
Code Duplication / Multiplication copy-pasted code and data
Magic Literals using many strings, symbols and numbers
Literal Pollution high level literals used in multiple test-methods within a test-

suite or between test-suites
Overreferencing test creating unnecessary dependencies and causing duplication
Assertionless Test pretending to assert data and functionality, but doesn’t
Cascaded Assertions assertions in cascades
Manual Test a test that is not recognized as test by the Unit Testing Frame-

work, but either contains assertions or executable code in the
header comment

Long Test tests including too many statements
Under-the-carpet Assertion some assertions put into comments
Comments Only Test all test-code put into comments
Over-commented Test test having too many comments
Large Comments comments that consist of text using multiple lines
Pseudo Test a test that is an Assertionless and Manual Test
Max Instance Variables large or oversized fixture
Likely ineffective Object-
Comparison

objects comparisons which can never fail

Building Blocks blocks of similar code and assertions within the test, separated
by empty lines or comments

Table A.1: Code Test Smells

63

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 64

Test Smell Description
Proper Organization violating testing conventions by using bad organization of meth-

ods
Test-MethodCategory Name method categories having a meaningless name
Test-Package Name meaningless name for the package containing tests
Mixed Selectors violating common organizational testing conventions by mixing

up testing and non-testing methods
Unclassified MethodCategory methods not being organized by any method-category
Empty MethodCategory empty method categories
Empty Test-MethodCategory empty testing method categories

Table A.2: Organizational Test Smells

Test Smell Description
Under-the-carpet failing Assertion failing assertions put into comments
Slow Test a test that runs slowly
Erratic Test a test with a (permanently) alternating test result
Transcripting Test test writing and logging to the console
Morphic Test test opening graphical windows or dialogs, maybe requesting

input
Early Returning Test test returning a value and too early, maybe dropping assertions
Returning Assertions an assertion that returns
Control Logic test controlling the execution flow by using methods like debug

or halt
Guarded Test conditional test including branches like ifTrue:aBlock or if-

False:aBlock
Empty Test Suite test class defining tests, but the suite is empty
Unused Shared-Fixture Variables parts of the fixture that are never used
Empty Shared Fixture a fixture that is explicitly declared but empty
Teardown Only Test test-suite only defining teardown (unusual for unit tests)
Abnormal UTF-Use test-suite overriding the default code-behavior of the unit test-

ing framework
Empty Shared-Fixture fixture defined, but empty
Hidden Shared Fixture fixture variables are used/shared, but not explicitly defined in

the shared fixture

Table A.3: Behavioral Test Smells

Test Smell Description
Anonymous Test test-methods having a meaningless name
Test-Class Name test-class having meaningless name
Unusual Test Order tests calling each other explicitly (unusual for unit tests)

Table A.4: Inofficial Test Convention Test Smells

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 65

Test Smell Description
Eager Test testing too much different (non-related) functionality of the

model
Unused Test Behaviors methods defined within the test-suite, but never sent during a

test run
Empty Test Class class defined but not providing any test (or methods)
Missing Tests model behavior not covered by any tests
Insufficient Test Coverage test not covering any possible execution of a method
Bad Test Data using dummy input values that don’t have any meaning in the

context

Table A.5: Other Test Smells of various categories

A.2 Implementation

As mentioned in Section 3.2.1 the model of TestLint is based on the basic
model entities rule and node. This also applies to the implementation of
the model. Rules and nodes are each organized and implemented in a single
inheritance class hierarchy and provide each a common superclass called
Rule and Node. Besides, rules and nodes make heavy use of Traits [Duca06b,
Scha02b] to share common behavior that could not be easily shared avoiding
code duplication or using single inheritance.

Nodes are common Smalltalk entities, polymorphically encapsulated in an
instance of a Node-class and provide and hide certain functionality. Nodes
are interconnected using an abstract ancestry-relation. For example a Class-
Node has the sub-nodes Method Categories and one super-node Class Cate-
gory. The sub-nodes of a Method-node is an empty collection. Figure A.1
presents an selection of the different types of nodes available in TestLint.
We notice that other nodes can by easily introduced at any time without
the need of modifying the base-model.

Node

Package Node Class Category
Node Class Node

Test Class
Node

Method
Category Node Method Node

Test Method
Node

Figure A.1: Node-hierarchy used in TestLint

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 66

Rules are basically organized by the type of node they apply to respectively
they accept as input. There exist multiple abstract classes to share common
behavior to reduce code duplication. Figure A.2 shows the class hierarchy
implemented for rules.

Rule

Method Rule Class Rule Slow RuleInstrumentation
Rule

Coverage Rule

Category Rule

Figure A.2: A selection of abstract and predefined rule classes implemented
in TestLint

We notice that organizing rules by the categories of Test Smells (Section 3.1.2)
would conceptually be more natural and comprehensive. However that
would considerably complicate the model and also be more difficult to realize
as most smells can be associated to multiple categories.

Most rules provided with TestLint are dedicated to detect one fine-grained
Test Smell. However rules share common detection-code with other nodes.
Furthermore, the granularity and abstractness of the rules is not restricted.
Therefore TestLint can be used to detect abstract and fine-grained Test
Smells.

Each rule is dedicated to analyze one particular node. As explicitly modeling
this connection would be complex, we use Traits to share the node-related
code and make sure that each rule applies to the right kind of node. This
keeps the model extremely lightweight and flexible. Figure A.3 visualizes
the connection between rules and traits.

A.2.1 Model: Synthesis of Rules and Nodes

The model of TestLint is based on Double Dispatches between the model
entities rule and node. These double dispatches make the analysis of Test
Smells completely transparent by hiding the fact that rules are dedicated to
certain node-types. Due the dispatches and the use of node-specific traits
we ensure that the right rule is applied on the right type of node without the
need of explicitly specifying the relationship between nodes and rules.

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 67

Instrumentation
Rule

Concrete Method
Instrumentation

Concrete Class
Instrumentation TClassNode

TMethodNode

Figure A.3: Depending on the target node, a rule requires a different base
code which is provided by traits

We visualize the connection between rules and nodes as well as the basic
functionality of the TestLint-model in the sequence diagram of Figure A.4.
The diagram shows the dispatches when applying a Method-rule on a Class-
Node.

MethodRule ClassNode

runNode: aClassNode

aClassNode applyRule: MethodRule

MethodRule runClass: aClassNode

rule := MethodRule new
aClassNode methodNodes
 do: [:node | rule run: node]

Figure A.4: Double Dispatch between nodes and rules building the basic
code model of TestLint

The resulting model is extremely loose coupled with high cohesion within
each entity. This simplifies the extendibility and usability of TestLint. We
can therefore reduce the public interface of TestLint to the following basic
methods:

Node >> # applyRule: aRule

Rule >> # runNode: aNode

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 68

Moreover, the double dispatches enable a convenient handling of TestLint as
the analysis can either be started from a node or from a rule. This simplifies
the design of a user interface as the analysis is not dedicated to a specific
entry point.

A.3 User Interface

A good and easy-to-use interface [Shne98a, Smit82a, Coll95a, Coop95a] is
crucial for doing efficient software analysis and testing. However, developing
a good user interface that provides full functionality, hides all the details of
the model beneath and is still easy and intuitive to use is difficult and time
consuming. Furthermore, any kind of interface is subjective due different
human expectations and perceptions.

As the primary goal in our research was to analyze and detect Test Smells we
decided to make a little tradeoff in the development of the user interface by
providing only very basic and standardized browsers and features without
further regards to their usability and handling. Therefore TestLint consists
of 3 slightly different browsers, each based on the Omnibrowser Framework
[Putn, Berg07b].

• TestLint SystemBrowser integrates unit testing, debugging, profiling
and Test Smell analysis

• TestLint Package Browser offers a way to browse detected Test Smells
based on packages

• TestLint Rule Browser allows to browse tests by detected Test Smells

Each browser opens another perspective on tests and Test Smells and pro-
vides a reasonable amount of functionality, depending on the current scope.
Furthermore they completely hide the details of the TestLint detection en-
gine, making it easy to use TestLint without further knowledge of knowing
how the model beneath works.

A.3.1 TestLint System Browser

This browser is a modification of the Testing SystemBrowser of the Om-
niTesting1 package. This package includes a default system browsers that

1OmniTesting is an open-source package on SqueakSource

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 69

provides rich testing actions based on SUnit and enhanced browsing capabil-
ities between sources and tests. It tightly integrates testing and source-code
development.

Figure A.5: TestLint SystemBrowser providing unit-testing and quality-
testing features at once

We decided to extend this browser with TestLint-specific actions because
many developers already use Omnibrowser-based browsers, increasing the
acceptance of our browsers and the ease of using it. Furthermore this browser
already provides testing actions and fulfills our goals of integrating testing
into the development process. That makes it ideal for TestLint actions as
developers don’t need to switch to a dedicated “tool” for testing or detecting
Test Smells.

Detecting Test Smells is very simple and can be achieved by selecting a
testing node2 clicking on the “run testlint” button or selecting the action
from the context menu. The action will display a small menu (Figure A.6)
with a list of available rules.

The main-menu shows the different categories of rules, the sub-menu all the
concrete rules. by clicking on any list entry will either run one rule, all the

2A testing node is a node containing or defining test-methods according to the under-
laying testing framwork, for example SUnit

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 70

Figure A.6: Menu displaying available rules for detecting Test Smells

rules of the category or all available rules. A TestLint Package Browser
opens the current context after the analysis.

We notice that the names of the rules (=names of the rule classes) used in
the TestLint implementation slightly differ from the Test Smell-names used
in our case study. This is a subject to change in future versions to simplify
TestLint and synchronize it with the theory behind.

A.3.2 TestLint Package Browser

This browser is partially based on the OB Package Browser3 and dedicated
to browse (only) packages defining tests and packages for which TestLint
data is already available. It provides a selection of elementary actions for
packages and actions to run TestLint rules on an entire package.

The result of each Test Smell or rule in a selected package is displayed in the
second column and can be sorted alphabetically iabc...j or by the number of
smells i987...j found. Smelling nodes are shown in the third column including
their default representation, for example source-code for a test-method, in
the description panel below.

As some developers might be interested why Test Smells have been detected
on a particular node, we provide a low-level inspector of the result or the
data a rule collected. Furthermore the developer can annotate nodes as
false positives to hide them to avoid further distractions from invalid re-
sults.

3OB Package Browser is an ope-source package on SqueakSource

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 71

Figure A.7: TestLint Package Browser

A.3.3 TestLint Rule Browser

This browser is basically identical to the TestLint Package Browser with
the small difference that it scopes the entire Squeak image and not packages.
Therefore it is reduced to two columns, displaying only rules and smelling
nodes. Besides, it provides the same functionality and behavior.

A.4 How to install TestLint

To use the TestLint-browsers make sure you have exactly the following Om-
niBrowser -packages installed:

• OB-Standard.39, cwp.161

• OmniBrowser.39, cwp.318

It is recommended to have Christo, ByteSurgeon and Mondrian installed as
certain rules and features of TestLint depend on those packages. However
it is not required in general.

The simplest way to install TestLint, including all detection rules and browsers,
is to use the PackageLoader. That will automatically load all working depen-
dencies in the right order and setup the environment. The PackageLoader
can be retrieved from the following repository:

http://www.squeak.org/

APPENDIX A. TESTLINT: MEASURING TEST QUALITY 72

Figure A.8: TestLint Rule Browser

MCHttpRepository

location: ’http://www.squeaksource.com/PackageLoader’

user: ’’

password: ’’

Open a workspace and do: TestSmellsLoader new loadAll. During the in-
stallation you will be asked to specify whether or not to install optional
packages. After the installation TestLint will run some setup-procedures.
This might take some time and should not be interrupted.

Appendix B

Christo: Beyond Test
Quantity

This chapter is structured as followed. Section B.1 gives a brief overview
about the problems of traditional Code Coverage. In Section B.2 we enhance
Code Coverage to provide a developer with deeper and more comprehensive
insights into the system. We give examples of such enhancements in Sec-
tion B.2.1, Section B.2.2 and Section B.2.3.

B.1 Introduction

In Section 2.1 we described the traditional principles of Code Coverage and
gave two representative examples of well-known and very sophisticated tools
to gather coverage data. We determine that the traditional analysis lacks
several problems:

First, the coverage visualization is poor and lacks of focus towards testing
and maintenance. For example methods having no coverage and methods
having full coverage, are mixed up and displayed the same way. Further-
more, the associations of method names to numbers and percentages are
very abstract and difficult to compare, especially if they appear in large
quantities like in Figure 2.2. Such a result is hard and time consuming to
embrace and therefore not really suitable.

Second, the results of the analysis are incomplete or reduced too much.
They’re missing the links between sources and their tests. For example it is
not possible to find out which method or which statements of the method
gets executed by a particular test. However this information is crucial for
the development and testing cycle to complete tests to ensure high coverage
of the methods under test.

73

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 74

Finally, the dynamically collected data is not re-used or further manipulated
to help the developer in the testing and development process.

The consequence of these problems are that the coverage analysis loses its
value as relevant and crucial results and conclusions are hard or impossible to
extract. Furthermore as dynamic analysis requires a higher computational
effort, but is not sufficiently used, it becomes a very time and cost intensive
analysis. Therefore we even claim that the traditional analysis is a waste of
computational power and development and testing time.

We fix these issues by enhancing the traditional approach of Code Cover-
age with several simple methodologies and ideas which we explain in the
following sections:

• Increasing the amount of data collected (Section B.2) during the dy-
namic analysis, establishing dynamic links between sources and their
tests.

• Using the results to provide more insights into the tests and sources.
We demonstrate this with Partial Ordering of tests (Section B.2.1) and
a simplification of Delta Debugging (Section B.2.2).

• Displaying and visualizing coverage results in a more perceivable and
natural way to support the testing process (Section B.2.3).

We are convinced that by enhancing Code Coverage and adapting it to
the real needs of Quality-Driven Development we can express more and
contribute high level quality feedback to further support developers with
crucial information about their application code and tests.

B.2 Enhancing Code Coverage

The problem of traditional Code Coverage is that it mostly annotates meth-
ods or statements as executed or not executed. We demonstrate this in the
following instrumentation example.

CodeInstrumenter >> #instrumentMethod: aMethod

aMethod insertBefore: [self markExecuted]

CodeInstrumenter >> #instrumentStatement: aStatement

aStatement insertAfter: [self markExecuted]

Although this might be enough to get a rough impression about the covered
code it is not enough for a thorough test-driven development. Using the
traditional coverage information we are not able to draw any conclusions
about how much, which methods and what parts of a method a single test

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 75

is covering. However this information is important to know to adapt tests
to raise coverage where it is mostly required or to add new tests covering
new or other yet-untested features of a method. We therefore instrument all
source methods in the scope of the dynamic analysis with more sophisticated
code to gather more information about the runtime.

The most basic but important extension is to gather the currently executing
test for each method, statement or node of the abstract syntax tree. This
information is responsible to establish the connections between the meth-
ods and their tests – or the other way round. The following pseudo-code
illustrates this idea, again using method-coverage:

CodeInstrumenter >> #instrumentMethod: aMethod

aMethod insertBefore: [self coverage append: self system currentTest]

The consequence of this small change is a mapping of source-methods to test-
methods. Therefore we can query the system to find out which methods are
covered by which test, and the other way round. The same also works for
sub-method coverage.

If required, we can further enhance this by also collecting information about
the senders of a method, its receivers or even collect the method’s context
or argument values passed to it. The more we collect the more information
we get from the runtime, the more thorough but also complex are the results
and the conclusions we can draw from them.

We notice that when collecting senders, receivers, but especially objects and
values, it might be more appropriate to use a Tracing-technique [Lien06a,
Kuhn06d, Gree05b] as this one is more suitable for gathering this kind and
amount of information.

As the basis of our Code Coverage analysis we use various commonly known
code instrumentation methodologies which enable dynamic analysis:

• MethodWrappers [Bran98a, Denk06a] are a well known and common
technique to instrument methods and tests to gather dynamic run-
time data, for example Code Coverage. A MethodWrapper basically
installs a piece of source-code in front or after the method-source and
recompiles it to activate the additional code. This code can then be
used to execute additional functionality or gather information about
the runtime.

• ByteSurgeon [Denk06a] is a flexible framework to enable on-the-fly
bytecode transformation at runtime. It is doing something similar
to MethodWrappers. However the instrumentation works on a lower
level, transparently transforming normal source-code to byte-code and

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 76

adding it to the existing byte-codes of a method. The instrumentation
normally runs faster and does not need to recompile the whole method
after adding and removing code.

• JMethods/Persephone [Mars06a] introduces methods as a first-class
and high level abstraction. It provides rich structural reflection at
sub-method level, for example to ease meta-programming. We can
use JMethods/Persephone for sub-method coverage by annotating the
nodes of the abstract syntax tree of a method.

B.2.1 Partial Ordering of Tests

Using the extended coverage information gathered at runtime we are able to
partially sort and order tests [Gael03b, Gael04b] based on the comparison
of their coverage-sets1. A unit tests covers another unit test, if the coverage
set of methods invoked by the first test is a superset of the coverage set of
the second. We illustrate this in Figure B.1.

T2 ABC

T1
A

ABC A≥
T3 AD

AD A≥
ABC AD

Figure B.1: Schematics of Partial Order relations (dark-blue) between the
tests T1, T2 and T3. The coverage-sets of each test is colored in gray and
contains letters which represent methods

The Partial Order of tests give various insights into and hints about an
application and its tests:

• It can help in comprehending the features and requirements of an
(completely unknown) application by systematically reading the tests,
for example starting with the most abstract ones, then steadily diving
deeper into the lower tests and more details of the system.

• The ordering of tests show the relations between the tests and the
methods they’re covering. The resulting sub-graphs of the ordering
might even be used to identify groups of features whereas a feature
would be set of methods which belongs together. This can help in
understanding the functionality of an application.

1A coverage-set is either a collection of methods which are executed by a test or a
collection of test-methods executing a particular source-method

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 77

• Partial Order might also be used to minimize the effort spent in test-
ing and debugging (Section B.2.2), by prioritizing a set of tests most
likely covering the sources containing the defects [Gael04b, Gael06b,
Roth01a, Elba00a].

We visualize Partial Order relations between tests in Figure B.2 using a
graph-layout and interconnecting the tests with appropriate relations.

ArithmeticObjectIntervalTest>>#testFirst

ArithmeticObjectIntervalTest>>#testLast

ArithmeticObjectIntervalStrategyTest>>#testSingleton

ArithmeticObjectIntervalTest>>#testSize

Figure B.2: Partial Order on a small set of tests taken from the package
Aconcagua

We notice that the tests testFirst and testLast in Figure B.2 have a special
relation - there are equivalent. This means that they have the identical
coverage set and therefore covering the same functionality. However the
tests themselves are likely not identically as the data being tested or the
execution flow during the runtime might vary.

B.2.2 Delta Debugging

With the evolution of a software project the amount of source-code written
and the complexity of a system is raising. Writing and maintaining tests
[Beck03, Beck98a] can help to maintain the source-code, minimize refactor-
ing efforts and minimize the probability of severe failures and errors unex-
pectedly [Zell99a, Zell05b] appearing in the development and deployment
process.

However bugs have many possible causes [Zell05a] and can never be com-
pletely removed, nor their absence be proven. Debuggers are often the only
change to effectively identify bugs and very often used during the devel-
opment cycle. However as bugs seldom cause an exception on their own
the debugger jumps over the buggy code directly to the location where the
exception occurs, sometimes hiding the methods of interest.

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 78

Delta Debugging [Zell02a, Zell02b] is an automatic and systematic technique
to automatically debug an application to reduce the effort of manually de-
bugging an application and to reduce the set of failure inducing sources to
a minimum. Delta Debugging can be used for various debugging purposes
like checking data boundaries using various good and malicious data-files and
comparing the results from the test runs or testing source-code behavior by
calculating the difference between multiple revisions. Other applications are
possible.

Based on our dynamic analysis with Christo we implemented a highly sim-
plified and distant kind of Delta Debugging to demonstrate the capabilities
of using dynamic information to reduce the possibilities of failure inducing
sources. We implemented various simple and more complex strategies for
our experimentation and to precise the results. We give two examples in the
following.

We notice that there are many other or ways to realize techniques to au-
tomatically find the failure inducing sources. For instance we believe that
tracing technologies gathering more dynamic data at runtime as well as
and graph-matching techniques applied to the traces or partial-order graphs
could be used to enhance Delta Debugging .

Strategy 1: Diffing Coverage-Sets

This strategy is based on the previous calculation of the Partial Order of
tests and is optimistically reducing the set of failure inducing methods.

Using the ordering of tests we iteratively calculate the differences between
the failing test under analysis and the tests it is covering. The result of
those differences are sets of methods not being covered by another test. We
assume that those methods are most likely to contain the failure inducing
sources because no test is checking them. We collect each source-method
within those sets by its number of appearance and sort them in descending
order. We show this in Figure B.3.

In the example of Figure B.3 we calculate the differences between the failing
tests (T3) and the tests it is covering (T2, T1). We sort the results by the
source-methods that is most often appearing in the differences (C), weakly
assuming it is more likely to fail.

We determine that we cannot guarantee that this strategy is able to find
the failure inducing source. That’s because the calculation of the differences
assumes the functional correctness of the sources being covered by the suc-
ceeding tests. However tests can never prove the absence of a bug nor the

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 79

T3 ABC

T2 AB

T1 A

T4 AD

T5
D

∆(T3,T2) = CB
∆(T3,T1) = BC

failure inducing (T3):
C : 2
B : 1

T6 ...C... T20 ...C...

Figure B.3: Diffing Coverage-Sets Strategy

correctness of the covered source functionality. Therefore this strategy is
actually based on a wrong assumption. As a consequence it is more ag-
gressively reducing the number of failure-inducing possibilities, maybe also
removing the actual bug-method. On the other hand, assuming the cov-
ered functionality really behaves correctly it likely delivers a very precise
result.

We demonstrate this with the example from above. We assume the same test
configuration and result. We introduce a nasty a bug in A which does not
cause test T1 and T2 to fail, but T3. We further assume that C is correctly
implemented. As the strategy assumes complete coverage and correctness
of A and B it concludes the failure in C. Therefore the strategy would not
be able to find the actual bug.

Strategy 2: Example-Methods

The strategy of Example Methods is a pessimistic approach of detecting the
failure-inducing sources. It eliminates the wrong assumption of the Diffing
Coverage-Sets strategy and assumes that every method is likely to have a
failure, independent of its coverage value or test results.

For this strategy we calculate the probability of a source-method inducing
a failure or error. This probability results by enumerating the good and bad
examples of covered source-methods within the current context whereas the
good examples are the succeeding tests and the bad examples are failing tests
or tests raising an error. We illustrate that in Figure B.4.

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 80

T3 ABC

T2 AB

T1 A

T4 AD

T5 D

"good" examples:
A : 3
B : 1

C : 15
D : 2

"bad" examples:
A : 1
B : 1
C : 1

failure inducing (T3):
B : 0
A : 2

C : 14T6 ...C... T20 ...C...

Figure B.4: Example-Methods Strategy

In the example of Figure B.4 we calculate the examples for each source-
methods in the context. For example A is covered by 3 successful tests and
one failing one, leading to 3 good and 1 bad example.

The advantage of this strategy is that it runs extremely fast as neither
Partial Order nor complex and time-consuming set operations have to be
done. Furthermore it doesn’t depend on the partial order and respects the
context as more than just the tests within a subgraph of the Partial Order-
graph are taken for the calculation.

B.2.3 Visualization

The comprehension of rich information, complex problems and their coher-
ence depends a lot of human perception. Therefore a good visualization is
an important and inevitable technique of presenting and communicating rich
and complex information by focusing on and revealing the interesting parts
of the underlaying data without the need of introspecting a large amount of
raw data. Visualization in computer science is often used for understanding
software architectures [Eden01a, Lang05a], reverse engineering [Duca99s] or
evolution of software [Girb06a, Girb04a] and data.

In Section 2.1 we notice that the presentation of Code Coverage data in
todays implementations is poor. Most approaches use large tables filled
with numbers, meaningless coloring, sorting the methods and their coverage
results alphabethically, or miss the focus towards the relevant source and
test parts. Others reduce the data in such an extent that no value of the
coverage analysis remains.

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 81

In the following we present several example visualizations provided by Christo
based on collecting dynamic runtime information, in particular coverage, in
a very compact and comprehensive way providing a much better focus on
tests and coverage than numbers would do, and without loosing or reducing
the amount of data colected. We use Mondrian [Meye06a, Meye06a] and
GraphViz for our visualizations.

Coverage Map

The purpose of the Coverage Map is to get an overview of the coverage of
a collection of source-nodes without being cluttered with a large amount
of numbers. It is supposed to communicate the most relevant information
about coverage and tests at thee first glance.

box:
box-color:

border-color:

source-node (class, method, ...)
coverage value
red-green: 0-100%
black: no data available
gray: coverage has no meaning

test-result
green: success
orange: failure
red: error

Figure B.5: The Coverage-Map of the package Aconcagua based on a selec-
tion of source-classes

This visualization is directly based on the raw coverage data. We display
a number of nodes, for examples source-classes or source-methods, repre-
sented as small squared boxes sorted in descending order by the amount of
coverage.

The coverage value, normally given as a number in percent, is a color of a
heat-map whereas green represents 100% and red 0% coverage. All nodes
within the scope of the visualization which don’t have any coverage infor-
mation available yet are black. Nodes for which coverage would have no
meaning, for example methods only declaring self subclassResponsibility are
displayed in gray.

Furthermore we draw a colored border around each box, displaying the ac-
cumulated result of the tests covering that particular node. A green border
means that all tests covering that node return a success. An orange or
red border represents at least one failure or one error within the cover-
ing tests. As we know the link between sources and tests, we can quickly

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 82

browse the tests of a node by clicking on the node and opening it in a code
browser.

The advantage of this visualization is that it contains the most important
information at the first glance while using only little space. The interesting
parts, for example methods having no coverage, not enough or failing or
error tests can be identified immediately without harvesting large reports
containing numbers (Figure 2.2, Figure 2.1). Furthermore due the interac-
tivity of Mondrian we are able introspect each node in an agile way and
open further visualizations, giving more details, or open the selected node
in a code or class browser.

Test Complexity

To gather insights about the tests and their quality it is not enough to visu-
alize the coverage of the sources. It is sometimes interesting and important
to know what kind of tests we look at, how complex, abstract or eager2

they are, or what and how many sources they cover. The correlation of
this information can help in comprehending the tests, identifying special or
abnormal tests and finally improving the quality of the test-suite.

We visualize this using a scatter-plot technique. Each test-method is repre-
sented by a squared box in a coordinate system with the origin in the upper
left corner. The color of the box stands for the size of the coverage set,
and therefore for the abstractness of a test. A dark color means the test is
covering a large amount of functionality whereas white can be interpreted
as a primitive unit test. The x-axis measures the amount of statements and
the y-axis the number of assertions.

box:
color:
x:
y:

test-method
size of the coverage set
statements
assertions

Figure B.6: Test Complexity taken from a test-class of the package
Aconcagua

2A test is said to be eager if it tests a lot of code or different features. Following the
methodology of Test Smells, eager tests are “bad” tests and should be avoided

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 83

We identify 2 tests (dark boxes), covering a lot more functionality than any
the other test in the test-suite. The one in the upper middle probably has
the double amount of statements than the one on upper left side. Both have
only a very few assertions. We can assume that those tests are checking
high level functionality. We also detect a very interesting test (bottom right
corner) which covers only a very little functionality but seems to be a test
including a lot of statements and assertions. That tests probably verifies
a lot of data and data boundaries or includes lot of code which does not
belong to the context of its package.

Coverage Relevance

As we calculate the coverage of a selection of sources, we might discover some
that are not covered at all or not sufficiently enough. In such cases it would
be interesting to get a pinpoint to the sources which would be most relevant
or important to have tests for, respectively to have coverage information
available. Especially for applications in which test-coverage is crucial this
hint could prove helpful to resolutely develop further tests.

We try to achieve this by correlating the size of a source-method to its
senders within the current context, for example the package under analysis.
We assume that the larger a source is the more complex it is and therefore
more susceptive to hidden bugs or missing requirements. Furthermore the
more often a source-method is used the more features depend on it and the
more important it is that this method correctly fulfills the requirements of
a software system. Therefore, we conclude that it is most relevant to have
tests for such a method or feature.

We visualize this in Figure B.7. Each source-method which is not covered by
any test within the context is represented by a rectangular box. The color
stands for the usage of that method, in particular the number of different
senders. The width and height of a box represent the usage and size of that
method. As a normalization for the color and the size of a method we use
the entire context of the analysis. In the example of Figure B.7 the height
can be interpreted as the number of different methods called and the width
as the number of statements.

We detect a large number of extremely small and medium-sized methods.
Furthermore we notice several rather big ones. Whereas most methods are
not often sent we detect 5 exceptional methods (black boxes) which are
heavily used within that package. Those methods likely fulfill an important
task.

Using this knowledge we can very easily and quickly detect and verify for
which source-methods it would be most appropriate to write the next tests

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 84

source-method
senders within the context
different methods called
statements

box:
color:
heigth:
width:

Figure B.7: Coverage Relevance on non covered or insufficiently covered
methods in the package Aconcagua

for to cover the most important sources and functionality with tests. In our
example we might first have a look at the sources represented by the black
and darker boxes, as well as the very large ones.

B.3 Implementation

B.3.1 Model

The model of Christo Code Coverage is based on the following princi-
ples:

• Simplicity. The public user interface of the model should be as simple
and small as possible and should not require any knowledge about
dynamic analysis or Code Coverage.

• Safety. Code Coverage should be safe, for example using MethodWrap-
pers on unsafe elements should not crash the image.

• Transparency. Christo should be able to work using various differ-
ent technologies to gather dynamic data. Furthermore the developer

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 85

should not necessarily need to know how they work to enable Code
Coverage.

We realize this using a 3-layer architecture (Figure B.8). The first layer
consists of the technology, providing Adaptors to hide the technology spe-
cific features. The second layer is the security, making sure Christo does
not execute any actions which could result into an unstable system. The
last layer is the public user interface which gives a unified access to Code
Coverage through Nodes and Sets.

Security

Technologies

By
te

Su
rg

eo
n

JM
et

ho
ds

 /
Pe

rs
ep

ho
ne

O
bj

ec
ts

 a
s

M
et

ho
ds

M
et

ho
dW

ra
pp

er
s

...

Public Interface

Abstract Nodes Coverage Set

Figure B.8: Overview of the Christo Code Coverage model

The advantage of this model is that each layer can be replaced or extended
with additional functionality without the need of adapting or rewriting all
the other components. For example it is fairly easy to add new technolo-
gies as they don’t affect the rest of the implementation. Furthermore the
model has a loose coupling between and high cohesion within the compo-
nents. This makes it very simple to replace certain features without affecting
others.

On the other hand this model also has one big disadvantage. Due high level
abstractions, many small objects are involved in the dynamic analysis, mak-
ing it slower than a hard-coded one-method-coverage approach. However,
the performance primarily depends on the number of methods being called
during the runtime. The more method calls the slower it is compared to
a less abstract implementation as the gathering of coverage on a high-level
requires additional method calls and creation of objects.

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 86

We detail the model of Christo in the UML of Figure B.9, describe each
entity and briefly explain how they interact.

NodeSet

Adaptor

Adaptor Class

Collector Class

Runner

Security

1
* *

1

1

1

1 *
Collector

1

1
State

1

SystemInstrum
entation

*

1

Figure B.9: Model of Christo Code Coverage

Node. A node is any kind of an abstract Smalltalk node, for example a
package, class or method. A node is either a source- or a test-node3, or
contains such. It provides a minimal interface to query parent- and child-
nodes as well as sources and tests.

Set. A set is an collection of nodes. It must contain source- and test-
nodes to make the analysis meaningful. A set also knows which technology
(adaptor) to use and what and how much data to collect (collector).

Adaptor. The adaptor is the interface to the underneath technology used
to gather coverage and should only be used internally. It encapsulates all the
technology-dedicated functionality and features and offers only a minimal
interface which basically consists of the methods install and uninstall.

Runner. The runner is the runtime that accepts a set as input and knows
how to prepare the nodes, adaptors or the system to enable it for gathering
coverage. It executes the tests and ensures the system is put back into the
state is was before the analysis started. A standard routine might look like:
install, run tests, uninstall.

3The underlaying Unit Testing Framework decides what a test-node is, for example in
SUnit a class inheriting from the class TestCase is a test-node

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 87

Collector. The collector is an instance that knows which and how much
data to collect, and how and where to store it. A collector becomes active
whenever a method, statement or sub-method node4 is called – depending
on the technology/adaptor being used. The default collector collects the
test in execution and how often it calls the current method or node.

State. Each adaptor has a state declaring the condition of the node’s
coverage, for example adaptor installed, adaptor ready, adaptor failed instal-
lation and so on.

SystemInstrumentation. This is a cache for the adaptors that can swap
in/out the original and instrumented method-code to speed up the instru-
mentation and un-instrumentation process.

Security. This is a component called by the runner to decide whether
or not it is safe to instrument a particular node. For example the security
component would reject the installation of a MethodWrapper on any method
of the class Array as this is likely to cause problems.

B.3.2 User Interface

The user interface of Christo is dedicated to efficiently configure and browse
coverage and Partial Order as well as visualizing various interesting aspects
of tests Section B.2.3, including coverage and Partial Order.

Christo consists of three basic browsers, each providing a specific focus on
one or multiple features and functionalities. Besides, all browsers are inter-
connected among each other and are accessible through the main-menu of
Squeak. To gain a higher acceptance for Christo and to keep it as simple
as possible we used the Omnibrowser-Framework [Putn, Berg07b] to model
the browsers.

We briefly describe each browser and its functionality in the following sec-
tions.

4A sub-method node is a node in the Abstract Syntax Tree of a method

http://www.squeak.org/

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 88

System Coverage Browser

This is the main-browser of Christo and provides the following features:

Configuration. A developer can set-up various Coverage sets. Each set
contains a selection of sources and tests which have to be specified by the
developer. This can be done by drag&drop-ing nodes from any browser dis-
playing system-nodes like classes, methods and so on. Besides, the configu-
ration has knowledge about the technology (e.g., ByteSurgeon, Persephone)
used to collect coverage with and the granularity or amount of information
to be gathered. In general Christo is making the best choice automatically,
but the developer has the possibility to make other specifications.

Actions on a Coverage Set : new, rename, remove, merge, choose adaptor,
choose collector, inspect, coverage result

Running Coverage. The developer has the choice between running the
full analysis, regenerating the obsolete5 results or updating the missing6

values. The later two options can considerably speed up the analysis process
by optimizing the set and runtime based on the last result.

Runtime Actions : run coverage, run obsolete, run missing

Browsing Configuration. The browser provides basic insights into the
coverage set. First, the lower panel displays a coverage overview of the cur-
rently selected element, for example showing the coverage value in percent
and the number of source- and test-methods being processed. Second the
upper right panel shows the contents and status of the set. You can browse
the abstract nodes ielementsj and the concrete isourcej - and itestj -methods
they contain. Furthermore, it provides access to specifically browse the ob-
solete nodes i?j , nodes insufficiently covered i$j and unexpected failures
produced during the last analysis on that set.

As the System Coverage Browser focuses on configuring coverage it is ideal
to setup a new coverage configuration, declare the technology used or to
specify the kind and amount of data collected. It is also suitable to inspect
failures, search for badly covered nodes or obsolete coverage. Moreover,
it provides access to the caches used to store information, for example to

5A coverage result of a node, for example a method, becomes obsolete if its source-code
changes.

6When adding new nodes to an already processed set, their coverage is normally missing
at that time.

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 89

Figure B.10: System Coverage Browser having multiple configurations set-
up

remove the results of the current set or to wipe-out everything. This helps
to keep the image size low and Squeak responsive.

Coverage Browser

The Coverage Browser is a normal System Browser with the focus on cover-
age by annotating each node with the traditional coverage value as a number
in percent and a more intuitive color representing this value. The colors are
taken from a heat-map between green and red whereas green represents
100% and red 0% coverage. Black is used for nodes having no coverage
available and gray for nodes which coverage would have no meaning.

A fifth panel shows up when selecting on a source-method, displaying all the
tests executing that method. Selecting a test-method will show all source-
methods and their classes being executed during that test.

Besides, the browser provides the same features like a normal System Browser,
but extending them with coverage-related actions. The most important ac-
tions are placed in a button-panel at the bottom of the browser. It provide
the following set of features:

Quick Configuration. Using the buttons i+j and i-j you can very quickly
add or remove the currently selected node from a coverage configuration

http://www.squeak.org/

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 90

Figure B.11: Coverage Browser showing the coverage of a selection of the
package Aconcagua

without opening the System Coverage Browser. A list of available sets
pops-up on clicking on either of those buttons. The button iconfigj on the
right-most of the panel opens the System Coverage Browser.

Running Coverage. The browser provides multiple buttons to run a spe-
cific set irun setj , the currently selected package irun packagej or to update the
coverage using irun missingj or irun outdatedj .

Furthermore, the Coverage Browser provides a lot of other actions through
the contextual menu, in particular access to browse and visualize Partial
Order and various visualizations on sources and tests using GraphViz and
Mondrian.

We notice that Christo also has a Coverage Browser called Package Coverage
Browser that starts at the package level and not class-categories. Besides,
it provides the absolutely identical features and functionality.

Partial Order Browser

The Partial Order Browser is the entry point for browsing and visualiz-
ing the Partial Order of Tests and can be opened through the Coverage
Browser or the Squeak main-menu. It is based on the typical look of any
Omnibrowser and features a standard browsing-panel (top) the nodes in the
graph and a text-panel for displaying the content of the currently selected
node.

http://www.squeak.org/

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 91

Although a browser for browsing a Partial Order-graph on tests seems to
be quite inconvenient, it does have some advantages over a Mondrian or
GraphViz-Visualization. First, it can display a lot of concrete information
at once, for example class and method names as well as the code of the test.
Second the browser is very compact and you can browse and search more
determined as it provides a very specific focus on a small selection of the
graph. On the other hand the total overview is missing. However this can
be compensated by the provided visualizations.

Figure B.12: Partial Order Browser showing the Partial Order of tests on
a selected test of the package Aconcagua

The Partial Order graph can be browsed by selecting one of the directional
buttons >=, << and == and clicking on a node to go into that direction
in the graph. This will open another panel to the right side of the selected
node showing the nodes of going into that direction in the graph. The
direction-buttons have the following meanings:

• => will go downwards in the graph, showing all the tests being covered
by or equivalent to the selected test

• << will go upwards in the graph, showing all the tests that cover the
selected test

• == will show all the tests that are functional equivalent to the selected
test

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 92

We notice that depending on the graph and using the directions => and
<< you could browse in cycles.

There is wide range of actions available for each selected tests. We can
visualize the graph using Mondrian or export the graph-data into a file to
visualize it using GraphViz. There are also options available to browse the
most or least abstract tests within the current selection or package. The
most abstract test is a test which is not covered by any other test, the least
abstract is a test which is not covering any other tests. This is in particular
useful to browse the boundary of a graph. Furthermore each selection can
be browsed using a dedicated browser for coding (standard SystemBrowser),
coverage (Coverage Browser) or testing (Testing Browser).

We mention that there is also a Partial Order Class Browser available with
the focus and Partial Order-relations on test-classes instead on test-methods.
However this browser is only suitable for very large packages including lots
of tests.

B.4 How to install Christo

To use Christo you require a Squeak-3.9 image, release build 7067 at least.
If you have another release build, make sure you have exactly the following
OmniBrowser -packages installed:

• OB-Standard.39, cwp.161

• OmniBrowser.39, cwp.318

Due the complexity of dependencies it is recommended do load Christo us-
ing the PackageLoader. This one will automatically load all working and
optional dependencies in the right order. Load it from the following reposi-
tory:

MCHttpRepository

location: ’http://www.squeaksource.com/PackageLoader’

user: ’’

password: ’’

Open a workspace and do: CoverageLoader new loadAll. During the installa-
tion you will be asked to specify whether or not to install optional packages
and which technologies to gather coverage. Further information will be pro-
vided during installation.

The installer can be re-run at any time to load further packages or to update
the installed packages to the latest versions.

http://www.squeak.org/

APPENDIX B. CHRISTO: BEYOND TEST QUANTITY 93

In the following we list some technologies that can be used with Christo
to gather coverage information. Read the instructions of those projects
for a correct installation – or use the PackageLoader which will load them
automatically.

• ByteSurgeon
http://www.squeaksource.com/ByteSurgeon

• ObjectsAsMethods
http://www.squeaksource.com/ObjectsAsMethodsWrap

• JMethods / Persephone
http://www.squeaksource.com/JMethods

• (unstable) MethodWrappers
http://www.squeaksource.com/MethodWrappers

http://www.squeaksource.com/ByteSurgeon
http://www.squeaksource.com/ObjectsAsMethodsWrap
http://www.squeaksource.com/JMethods
http://www.squeaksource.com/MethodWrappers

Bibliography

[Baud06a] Benoit Baudry, Franck Fleurey, and Yves Le Traon. “Improv-
ing test suites for efficient fault localization”. In: ICSE ’06:
Proceeding of the 28th international conference on Software en-
gineering, pp. 82–91, ACM Press, New York, NY, USA, 2006.

[Beck00a] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison Wesley, 2000.

[Beck01a] Kent Beck and Martin Fowler. Planning Extreme Programming.
Addison Wesley, 2001.

[Beck03] Kent Beck. Test Driven Development: By Example. Addison-
Wesley, 2003.

[Beck98a] Kent Beck and Erich Gamma. “Test Infected: Programmers
Love Writing Tests”. Java Report, Vol. 3, No. 7, pp. 51–56,
1998.

[Berg07b] Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel
Wuyts. “Creating Sophisticated Development Tools with Omni-
Browser”. Journal of Computer Languages, Systems and Struc-
tures, 2007. To appear.

[Bran98a] John Brant, Brian Foote, Ralph Johnson, and Don Roberts.
“Wrappers to the Rescue”. In: Proceedings European Confer-
ence on Object Oriented Programming (ECOOP 1998), pp. 396–
417, Springer-Verlag, 1998.

[Chil94a] J. J. Chilenski and S. P. Miller. “Applicability of modified con-
dition/decision coverage to software testing”. Software Engi-
neering Journal, Vol. 9, No. 5, pp. 193–200, 1994.

[Choi89a] B. J. Choi, R. A. DeMillo, E. W. Krauser, R. J. Martin, A. P.
Mathur, A. J. Offutt, H. Pan, and E. H. Spafford. “The Mothra
Tool Set (Software Testing)”. In: System Sciences, pp. 275–284,
jan 1989.

94

BIBLIOGRAPHY 95

[Zell05b] Holger Cleve and Andreas Zeller. “Locating causes of program
failures”. In: ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pp. 342–351, 2005.

[Cock02a] Alistair Cockburn. Agile Software Development. Addison Wes-
ley, 2002.

[Coll95a] Dave Collins. Designing Object-Oriented User Interfaces. Ben-
jamin/Cummings Publishing, 1995.

[Coop95a] Alan Cooper. About Face — The Essentials of User Interface
Design. Hungry Minds, 1995.

[Corn06a] Steve Cornett. “Minimum Acceptable Code Coverage”. 2006.

[Corn96a] Steve Cornett. “Code Coverage Analysis”. 1996.

[Corn99a] Steve Cornett. “What is Wrong with Line Coverage”. 1999.

[Deme02a] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Object-Oriented Reengineering Patterns. Morgan Kaufmann,
2002.

[Denk06a] Marcus Denker, Stéphane Ducasse, and Éric Tanter. “Runtime
Bytecode Transformation for Smalltalk”. Journal of Computer
Languages, Systems and Structures, Vol. 32, No. 2-3, pp. 125–
139, July 2006.

[Denk06b] Marcus Denker, Orla Greevy, and Michele Lanza. “Higher
Abstractions for Dynamic Analysis”. In: 2nd International
Workshop on Program Comprehension through Dynamic Anal-
ysis (PCODA 2006), pp. 32–38, 2006.

[Deur01a] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Ger-
ard Kok. “Refactoring Test Code”. In: M. Marchesi, Ed., Pro-
ceedings of the 2nd International Conference on Extreme Pro-
gramming and Flexible Processes (XP2001), pp. 92–95, Univer-
sity of Cagliari, 2001.

[Duca00a] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar.
“Moose: an Extensible Language-Independent Environment
for Reengineering Object-Oriented Systems”. In: Proceedings
of CoSET ’00 (2nd International Symposium on Constructing
Software Engineering Tools), June 2000.

[Duca02v] Stéphane Ducasse. “Refactoring Browser et SmallLint”. Pro-
grammez! Le Magazine du Développement, Vol. 1, No. 46, Sep.
2002.

BIBLIOGRAPHY 96

[Duca06b] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel
Wuyts, and Andrew Black. “Traits: A Mechanism for fine-
grained Reuse”. ACM Transactions on Programming Languages
and Systems (TOPLAS), Vol. 28, No. 2, pp. 331–388, March
2006.

[Duca99s] Stéphane Ducasse, Michele Lanza, and Serge Demeyer. “Re-
verse Engineering based on Metrics and Program Visualization”.
In: Object-Oriented Technology (ECOOP’99 Workshop Reader),
Springer-Verlag, 1999.

[Eden01a] Amnon H. Eden. “Visualization of Object-Oriented Architec-
tures”. In: International ICSE workshop on Software Visual-
ization, May 2001.

[Eick01a] Stephen Eick, Todd Graves, Alan Karr, J. Marron, and Au-
dris Mockus. “Does Code Decay? Assessing the Evidence from
Change Management Data”. IEEE Transactions on Software
Engineering, Vol. 27, No. 1, pp. 1–12, 2001.

[Elba00a] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg
Rothermel. “Prioritizing test cases for regression testing”. In:
International Symposium on Software Testing and Analysis,
pp. 102–112, ACM Press, 2000.

[Fowl99a] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison Wesley, 1999.

[Gael03a] Markus Gaelli. “Test composition with example objects and
example methods”. Technical Report IAM-03-009, Institut für
Informatik, Universität Bern, Switzerland, May 2003.

[Gael03b] Markus Gaelli, Oscar Nierstrasz, and Roel Wuyts. “Partial or-
dering tests by coverage sets”. Tech. Rep. IAM-03-013, Institut
für Informatik, Universität Bern, Switzerland, Sep. 2003. Tech-
nical Report.

[Gael04a] Markus Gaelli. “PhD-Symposium: Correlating Unit Tests and
Methods under Test”. In: 5th International Conference on Ex-
treme Programming and Agile Processes in Software Engineer-
ing (XP 2004), p. 317, June 2004.

[Gael04b] Markus Gaelli, Michele Lanza, Oscar Nierstrasz, and Roel
Wuyts. “Ordering Broken Unit Tests for Focused Debugging”.
In: 20th International Conference on Software Maintenance
(ICSM 2004), pp. 114–123, 2004.

BIBLIOGRAPHY 97

[Gael04c] Markus Gaelli, Oscar Nierstrasz, and Stéphane Ducasse. “One-
Method Commands: Linking Methods and Their Tests”. In:
OOPSLA Workshop on Revival of Dynamic Languages, Oct.
2004.

[Gael06b] Markus Gaelli. Modeling Examples to Test and Understand Soft-
ware. PhD thesis, University of Berne, Nov. 2006.

[Girb04a] Tudor Gı̂rba and Michele Lanza. “Visualizing and Characteriz-
ing the Evolution of Class Hierarchies”. 2004.

[Girb06a] Tudor Gı̂rba and Stéphane Ducasse. “Modeling History to An-
alyze Software Evolution”. Journal of Software Maintenance:
Research and Practice (JSME), Vol. 18, pp. 207–236, 2006.

[Gree05b] Orla Greevy and Stéphane Ducasse. “Characterizing the Func-
tional Roles of Classes and Methods by Analyzing Feature
Traces”. In: Proceedings of WOOR 2005 (6th International
Workshop on Object-Oriented Reengineering), July 2005.

[Howd82a] W. E. Howden. “Weak Mutation Testing and Completeness
of Test Sets”. IEEE Transactions on Software Engineering,
Vol. SE-8, No. 4, pp. 371–379, jul 1982.

[Kuhn06d] Adrian Kuhn and Orla Greevy. “Summarizing Traces as Signals
in Time”. In: Proceedings IEEE Workshop on Program Compre-
hension through Dynamic Analysis (PCODA 2006), pp. 01–06,
IEEE Computer Society Press, Los Alamitos CA, Oct. 2006.

[Lang05a] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin.
“Visualization-based analysis of quality for large-scale software
systems”. In: ASE, pp. 214–223, 2005.

[Lanz99a] Michele Lanza. Combining Metrics and Graphs for Object Ori-
ented Reverse Engineering. Master’s thesis, University of Bern,
Oct. 1999.

[Lien06a] Adrian Lienhard, Stéphane Ducasse, Tudor Gı̂rba, and Os-
car Nierstrasz. “Capturing How Objects Flow At Runtime”.
In: Proceedings International Workshop on Program Compre-
hension through Dynamic Analysis (PCODA 2006), pp. 39–43,
2006.

[YuSe02a] Yu-Seung Ma, Yong-Rae Kwon, and Jeff Offutt. “Inter-Class
Mutation Operators for Java”. In: Proceedings of the 13th
International Symposium on Software Reliability Engineering,
pp. 352–363, EEE Computer Society Press, Annapolis MD, nov
2002.

BIBLIOGRAPHY 98

[YuSe05a] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. “MuJava :
An Automated Class Mutation System”. Journal of Software
Testing, Verification and Reliability, Vol. 15, No. 2, pp. 97–133,
jun 2005.

[Mads02b] Per Madsen. “Testing By Contract — Combining Unit
Testing and Design by Contract”. In: The Tenth
Nordic Workshop on Programming and Software Develop-
ment Tools and Techniques, 2002. On-line proceedings:
http://www.itu.dk/people/kasper/NWPER2002/.

[Marc02a] Michele Marchesi, Giancarlo Succi, Don Wells, and Laurie
Williams. Extreme Programming Perspectives. Addison Wes-
ley, 2002.

[Marc03a] Michele Marchesi and Giancarlo Succi, Eds. Extreme Program-
ming and Agile Processes in Software Engineering. Springer,
2003.

[Mari01a] Radu Marinescu. “Detecting Design Flaws via Metrics in
Object-Oriented Systems”. In: Proceedings of TOOLS, pp. 173–
182, 2001.

[Mari04a] Radu Marinescu. “Detection Strategies: Metrics-Based Rules
for Detecting Design Flaws”. In: 20th IEEE International
Conference on Software Maintenance (ICSM’04), pp. 350–359,
IEEE Computer Society Press, Los Alamitos CA, 2004.

[Mari99a] Brian Marick, John Smith, and Mark Jones. “How to Misuse
Code Coverage”. International Conference and International
Conference and Exposition on Testing Computer Software, jun
1999.

[Mars06a] Philippe Marschall. Persephone: Taking Smalltalk Reflection to
the sub-method Level. Master’s thesis, University of Bern, Dec.
2006.

[Mesz07a] Gerarde Meszaros. XUnit Test Patterns - Refactoring Test
Code. Addison Wesley, jun 2007.

[Meye06a] Michael Meyer. Scripting Interactive Visualizations. Master’s
thesis, University of Bern, Nov. 2006.

[Meye06a] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. “Mondrian:
An Agile Visualization Framework”. In: ACM Symposium on
Software Visualization (SoftVis 2006), pp. 135–144, ACM Press,
New York, NY, USA, 2006.

BIBLIOGRAPHY 99

[Mill63a] Joan C. Miller and Clifford J. Maloney. “Systematic mistake
analysis of digital computer programs.”. Commun. ACM, Vol. 6,
No. 2, pp. 58–63, 1963.

[Moor01a] I. Moore. “Jester – a JUnit test tester”. In: M. Marchesi,
Ed., Proceedings of the 2nd International Conference on Ex-
treme Programming and Flexible Processes (XP2001), Univer-
sity of Cagliari, 2001.

[Mott06] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. “Muta-
tion Analysis Testing for Model Transformations”. In: ECMDA-
FA, pp. 376–390, IRISA, Campus Universitaire de Beaulieu, Bil-
bao, Spain, jul 2006.

[YuSe04a] Jeff Offut, Yu-Seung M, and Yong-Rae Kwon. “An Experimen-
tal Mutation System for Java”. ACM SIGSOFT Software En-
gineering Notes, Workshop on Empirical Research in Software
Testing, Vol. 29, No. 5, pp. 1–4, sep 2004.

[Parn94a] David Lorge Parnas. “Software Aging”. In: Proceedings 16th
International Conference on Software Engineering (ICSE ’94),
pp. 279–287, IEEE Computer Society, Los Alamitos CA, 1994.

[Parr02a] Allen Parrish, Joel Jones, and Brandon Dixon. “Extreme Unit
Testing: Ordering Test Cases To Maximize Early Testing”.
In: Michele Marchesi, Giancarlo Succi, Don Wells, and Laurie
Williams, Eds., Extreme Programming Perspectives, pp. 123–
140, Addison-Wesley, 2002.

[Putn] Colin Putney. “OmniBrowser, an extensible browser framework
for Smalltalk”. http://www.wiresong.ca/OmniBrowser.

[Reic07a] Stefan Reichhart, Tudor Gı̂rba, and Stéphane Ducasse. “Rule-
based Assessment of Test Quality”. In: Proceedings of TOOLS
Europe 2007, 2007. To appear.

[Reng06a] Lukas Renggli. Magritte – Meta-Described Web Application De-
velopment. Master’s thesis, University of Bern, June 2006.

[Romp06a] Bart Van Rompaey, Bart Du Bois, and Serge Demeyer. “Charac-
terizing the Relative Significance of a Test Smell”. icsm, Vol. 0,
pp. 391–400, 2006.

[Romp06b] Bart Van Rompaey, Bart Du Bois, and Serge Demeyer. “Im-
proving Test Code Reviews with Metrics: a Pilot Study”. Tech.
Rep., Lab On Re-Engineering, University Of Antwerp, 2006.

[Roth01a] Gregg Rothermel, Roland Untch, Chengyun Chu, and
Mary Jean Harrold. “Prioritizing Test Cases For Regression

BIBLIOGRAPHY 100

Testing”. Transactions on Software Engineering, Vol. 27, No. 10,
pp. 929–948, Oct. 2001.

[Scha02b] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and An-
drew P. Black. “Traits: Composable Units of Behavior”. Tech-
nical Report IAM-02-005, Institut für Informatik, Universität
Bern, Switzerland, Nov. 2002. Also available as Technical Re-
port CSE-02-014, OGI School of Science & Engineering, Beaver-
ton, Oregon, USA.

[Shne98a] Ben Shneiderman. Designing the User Interface. Addison Wes-
ley Longman, third Ed., 1998.

[Smit82a] D.C.S. Smith, C. Irby, R. Kimball, B. Verplank, and E. Harlem.
“Designing the Star User Interface”. Byte, Vol. 7, No. 4, pp. 242–
282, Apr. 1982.

[VanE02a] Eva van Emden and Leon Moonen. “Java Quality Assurance by
Detecting Code Smells”. In: Proc. 9th Working Conf. Reverse
Engineering, pp. 97–107, IEEE Computer Society Press, Oct.
2002.

[Wamp06a] Rafael Wampfler. Eg – a Meta-Model and Editor for Unit Tests.
Master’s thesis, University of Bern, Nov. 2006.

[Zell01a] Andreas Zeller. “Automated Debugging: Are We Close”. Com-
puter, Vol. 34, No. 11, pp. 26–31, 2001.

[Zell02b] Andreas Zeller. “Isolating cause-effect chains from computer
programs”. In: SIGSOFT ’02/FSE-10: Proceedings of the 10th
ACM SIGSOFT symposium on Foundations of software engi-
neering, pp. 1–10, ACM Press, New York, NY, USA, 2002.

[Zell02a] Andreas Zeller and Ralf Hildebrandt. “Simplifying and Isolat-
ing Failure-Inducing Input”. IEEE Transactions on Software
Engineering, Vol. SE-28, No. 2, pp. 183–200, Feb. 2002.

[Zell05a] Andreas Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, oct 2005.

[Zell99a] Andreas Zeller. “Yesterday, my program worked. Today, it does
not. Why?”. In: ESEC/FSE-7: Proceedings of the 7th European
software engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of software
engineering, pp. 253–267, Springer-Verlag, London, UK, 1999.

[Zhu97a] Hong Zhu, Patrick A. V. Hall, and John H. R. May. “Soft-
ware Unit Test Coverage and Adequacy”. ACM Comput. Surv.,
Vol. 29, No. 4, pp. 366–427, 1997.

	Title
	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Approach
	Outline

	State of the Art in Testing
	Code Coverage: Test Quantity
	Mutation Analysis: Test Stability
	Test Smells: Test-code Quality
	Other testing methodologies
	Conclusion

	TestLint: Measuring Test Quality
	Analysis and Synthesis of Test Smells
	Analysis
	Synthesis

	Detection Model
	Rules and Nodes

	Test Smells
	Static Smells
	Improper Test Method Location
	Mixed Selectors
	Anonymous Test
	Literal Pollution
	Assertionless Test
	Overreferencing
	Overcommented Test
	Long Test
	Guarded Test

	Dynamic Smells
	Under-the-carpet failing Assertion
	Badly Used Fixture
	Transcripting Test
	Interactive Test

	Case Study
	Overview
	Distribution of Test Smells
	Accuracy and Significance
	Localization
	Examples
	Aconcagua
	Magritte
	Refactoring Engine
	Cryptography
	Network

	Conclusion
	Lessons Learned
	Future Work

	TestLint: Measuring Test Quality
	List of all detectable Test Smells
	A.1.1 Code Smells
	A.1.2 Organizational Test Smells
	A.1.3 Behavioral Test Smells
	A.1.4 Testing Conventions
	A.1.5 Other Test Smells

	Implementation
	Model: Synthesis of Rules and Nodes

	User Interface
	TestLint System Browser
	TestLint Package Browser
	TestLint Rule Browser

	How to install TestLint

	Christo: Beyond Test Quantity
	Introduction
	Enhancing Code Coverage
	Partial Ordering of Tests
	Delta Debugging
	Visualization

	Implementation
	Model
	User Interface

	How to install Christo

	Bibliography

