

 dec-
nities,
nd sys-
[5] [6]
t-ori-

ption
y con-
] “for
rmally
st be
l infor-
ortant
idered
rrent

Cons

Tsich
Repr
may
othe
right
Chapter 5

A Temporal Perspective of
Composite Objects

Constantin Arapis

Abstract For the development of object-oriented applications, the description
of temporal aspects of object behaviour often turns out to be an important issue.
We present a collection of notions and concepts intended for the description of
the temporal order in which messages are sent to and received from an object.
We also propose notions for the description of the temporal order of messages
exchanged between cooperating objects related with part-of relationships.
Using propositional temporal logic as the underlying formalism of our approach,
we show how to verify the consistency of object specifications.

5.1 Introduction

The increasing popularity of object-oriented systems [7] [12] [18] [22] over the past
ade, within both the research and commercial/industrial computer science commu
have promoted the use of the object-oriented approach for requirements analysis a
tem design. Thus, several object-oriented analysis and design methodologies [4]
[15] [20] [21] [23] [24] are currently available to assist the early phases of the objec
ented application development process.

An important activity during object-oriented design often turns out to be the descri
of temporal aspects of object behaviour. Indeed, the design of many applications ma
tain objects whose behaviour exhibits important temporal traits. As Booch states [4
some objects, this time ordering of operations is so pervasive that we can best fo
characterize the behaviour of an object in terms of a finite state machine.” It mu
stressed that even for applications which are not designed for processing tempora
mation, their development requires several objects whose behaviour exhibits imp
temporal aspects. Yet the description of temporal properties of objects, either cons
in isolation or in cooperation with other objects, is not exclusively relevant to concu
tantin Arapis, “A Temporal Perspective of Composite Objects,” Object-Oriented Software Composition, O. Nierstrasz and D.
ritzis (Eds.), pp. 123-152, Prentice Hall, 1995.
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. It is not
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
s reserved.

124 A Temporal Perspective of Composite Objects

ritical

 and

epts
g for-
ethod-
]. The
sons:
eans of

ay: a

ly de-

ology
ts. The
pera-
 an
en the
mporal
 of the

of any
TL).

acking
shall
poral
ntal
e de-

e de-

ich

e not
ose is
environments. Often, the description of temporal properties of objects is deemed c
and even mandatory in sequential environments.

5.1.1 Specifying Temporal Aspects of Object Behaviour

A number of object-oriented design methodologies [4] [20] [21] integrate notions
concepts for the description of temporal properties of objects. We will call the temporal
component of an object-oriented design method the collection of notions and conc
intended for the description of temporal aspects of object behaviour. The underlyin
malisms upon which the various temporal components of object-oriented design m
ologies are founded are finite state machines (FSMs) or extensions of FSMs [13
preponderance of FSMs over other formalisms is attributed to the following two rea
first, FSMs are easy to understand, and second, a FSM can be easily depicted by m
a state transition diagram.

In general, object-oriented design methodologies use FSMs in the following w
FSM Mc models temporal aspects of the behaviour of an instance of class C. Transitions of
Mc are labelled with operations that an instance of C is expected to carry out. States of Mc
correspond to the various possible states of an instance of C. A transition of Mc, labelled p,
from state s1 to state s2, models the fact that operation p can be requested of an instanceo
of C when the current state of o is s1. After p is carried out, the current state of o becomes
s2. Thus, by means of FSMs, temporal aspects of object behaviour are ultimate
scribed in terms of sequences of pairs: (state, operation).

Note that the role of the temporal component of an object-oriented design method
is limited to the description of sequences of operations and state transitions of objec
temporal component is not designed for specifying how an object will carry out an o
tion. In addition, the design and integration of a temporal component within
object-oriented design methodology should guarantee harmonious synergy betwe
various other parts of the methodology. The above requirement suggests that the te
component should be complementary and orthogonal to the fundamental principles
object-oriented approach.

We will present a temporal component which has been designed independently
design methodology and is founded on the theory of propositional temporal logic (P
The aim of the temporal component is to enhance existing design methodologies l
or offering limited support for the description of temporal properties of objects. We
introduce the temporal component in terms of a specification model called the Tem
Specification Object Model (TSOM). The specification model blends fundame
notions of the object-oriented approach and temporal notions, thus illustrating th
pendence and/or orthogonality existing between them.

In contrast with temporal components founded on FSMs, TSOM emphasizes th
scription of temporal properties of an object o in terms of sequences of messages wh
are sent to and received from o. Thus, the user is not compelled to devise states that ar
necessarily relevant to the description of an object’s behaviour and whose only purp

Introduction 125

of

he de-
hould

 order

ject and
 behav-
ented
ating
ject

rder to
ordina-
d for

object
other
bject,

eory
exam-
nent is
es but
ion and
Fail-
inated

st suit-
d by

ized as
how a
tem. In
d first.

 foun-
erning
sis of
n: the
objects
ed the
to complete the FSM under development. However, TSOM provides the concept at-
tribute by means of which the user may introduce states he considers relevant for t
scription of an object’s behaviour and may also describe the various conditions that s
be verified for enabling state transitions to occur.

Another important point that TSOM emphasizes is the description of the temporal
of messages exchanged between a collection of cooperating objects related by part-of re-
lationships. The temporal order of messages exchanged between a composite ob
its constituent objects provides a temporal perspective of what has been called the
ioural composition of objects. Promoted as a fundamental feature of object-ori
design methodologies, behavioural composition consists of combining and coordin
the functionality of existing objects to create new objects [8] [14] [19]. A composite ob
in TSOM encapsulates and coordinates a collection of objects that cooperate in o
reach some goal or perform some task. The composite object plays the role of a co
tor taking into account the various temporal properties and constraints specifie
constituent objects. Furthermore, TSOM enables an incremental specification of
coordination. In particular, a composite object may become a constituent of an
composite object, which in turn may become a constituent of another composite o
and so on.

5.1.2 Design Choices for TSOM

First and foremost, let us justify our decision for TSOM to be founded on a formal th
rather than developing a temporal component founded on some informal basis, for
ple a natural language. Establishing a formal basis upon which a temporal compo
founded permits us not only to test the consistency of the various notions it integrat
also to test the consistency of user-provided specifications. Indeed, the early detect
correction of design errors is critical for the whole application development activity.
ing to correct design errors causes their harmful effects to be amplified and dissem
throughout the subsequent stages of the application development process.

From a number of candidate formalisms the language of PTL appears as the mo
able formalism for TSOM. Indeed, temporal properties can be very easily specifie
means of PTL formulas. Formalisms like FSMs and Petri nets have been character
low level in the following sense: by means of FSMs and Petri nets we can specify
system operates and then verify which properties are satisfied by the modelled sys
temporal logic the contrary is done. The desirable properties of a system are specifie
A system satisfying the specified properties is derived subsequently.

Another important argument in favour of PTL is the fact that it has been used as a
dation for various investigations performed in the area of concurrent systems, conc
the synthesis of a collection of parallel communicating processes [9] [17]. Synthe
communicating processes bears many similarities with object behaviour compositio
collection of communicating processes can be seen as a collection of cooperating
which should be synchronized in order to perform a particular task. We have borrow

126 A Temporal Perspective of Composite Objects

 have

ven a
neral

p-
rone
pealing
oral
er to
tions.
erful

redi-
r veri-

 we
of ob-
tions.

ave
s ob-

ties at-
oints,
 shall

ators
 Dif-
al sys-
rators:

main ideas proposed for synthesizing communicating processes from [17] whilst we
adapted and tailored them when necessary to meet our specific needs.

We have acknowledged the verification of specifications to be an important and e
mandatory activity of the design process. However, verifying specifications is in ge
a difficult and lengthy process carried out without computer assistance. Automated su
port for the verification of specifications, relieving users from laborious and error-p
procedures, has been selected among the most important requirements. An ap
property of PTL is the existence of algorithms for testing the satisfiability of a temp
logic formula [2] [16] [17]. These algorithms may be used in a straightforward mann
provide an automated procedure for verifying the consistency of object specifica
The decidability of PTL outweighed substantial arguments for choosing a more pow
formalism, in particular predicate temporal logic [1]. Since the satisfiability test of p
cate temporal logic is no longer decidable the design of an automated procedure fo
fying specifications could be seriously compromised.

5.1.3 Layout

In the following section we provide a brief introduction to the temporal logic system
shall be using. In section 5.3 we describe the specification of temporal properties
jects in TSOM. Section 5.4 presents the verification procedure of object specifica
The last section presents our concluding remarks.

5.2 Propositional Temporal Logic

PTL is an extension of propositional logic (PL) in which atomic propositions h
time-varying truth value assignments. The time-varying truth value assignment i
tained by associating each time-point with a world. A world is a particular interpretation
in the sense of classical PL. Thus, the truth value of an atomic proposition p at instant t
would be the truth value assigned to p in the world associated with t.

Several temporal logical systems have been developed. They differ in the proper
tributed to time, i.e. whether it is discrete or continuous, with or without start or end p
or viewed as containing linear or branching past and future. The logical system we
use considers time to be discrete, with a starting point, and linear [11].

Another important extension characterizing PTL is the collection of temporal oper
which, in addition to the usual operators of PL, are used for forming PTL formulas.
ferent collections of temporal operators may be encountered depending on the logic
tem used. The logical system we have chosen to use has the following temporal ope

❑ f called the always in the future operator, meaning that f is satisfied* in the
current and all future worlds,

* We say that an atomic proposition p or a formula f is satisfied in a world w if p or f is assigned the truth
value true in w.

Propositional Temporal Logic 127

s

ra-
rators

he

ak
been

ce

s

each
◊ f called the eventually in the future operator, meaning that f is satisfied in
the current or in some future world,

❍ f called the next operator, meaning that f is satisfied in the next world,
f1 U f2 called the until operator, meaning that either f1 is satisfied in the current

and all future worlds or f1 is satisfied in the current and all future world
until the world when f2 is satisfied.

The first three operators are unary, while the last is binary. Note that for the until opera-
tor we do not claim f2 will eventually be satisfied in some future world. The above ope
tors deal only with future situations. We can extend the system with symmetric ope
for the past:

■ f called the always in the past operator, meaning that f is satisfied in the
current and all previous worlds,

◆ f called the eventually in the past operator, meaning that f is satisfied in the
current or in some past world,

● f called the previous operator, meaning that the current world is not t
starting point and f is satisfied in the previous world,

◗ f called the weak-previous operator, meaning that either f is satisfied in the
previous world or the current world is the starting point; the we
previous operator has no symmetric future operator and has
included because of our assumption that time has a starting point,

f1 S f2 called the since operator, meaning that either f1 is satisfied in the current
and all past worlds or f1 is satisfied in the current and all past worlds sin
the world when f2 was satisfied.

Figure 5.1 illustrates the meaning of each temporal operator over the time axiτ. A
time-point t which is labelled with a PTL formula f means that f is satisfied at t. Operators
until and since require two alternative time axes for representing their meaning, so
pair of time axes is enclosed within a rectangular box.

5.2.1 Syntax of PTL

Given:

1. P = {p1, p2, p3, …} the set of atomic propositions

2. non-temporal operators: ¬ , ∧ , ∨ , ⇒ , ⇔
3. temporal operators: ❑ , ◊, ❍ , U, ■ , ◆ , ● , ◗, S

formulas are formed as follows:

1. An atomic proposition is a formula.

2. If f1 and f2 are formulas then

(f1), ¬ f1, f1 ∧ f2, f1 ∨ f2, f1 ⇒ f2, f1 ⇔ f2 are formulas, and
❑ f1, ◊ f1, ❍ f1, f1 U f2, ■ f1, ◆ f1, ● f1, ◗ f1, f1 S f2 are formulas.

3. Every formula is obtained by application of the above two rules.

128 A Temporal Perspective of Composite Objects
❑ f

f ff f

◊ f

f

❍ f

f

■ f

f ff f ff

◆ f

f

● f

f

f

1 s f 2

f

2

f

1

f

1

f

1

◗ f ⇔ true

f

1 u f 2

f

1

f

1

f

1

f

1

τ

τ

τ

τ

τ

τ

τ

τ

τ

f

1 u f 2

f

1

f

1

f

1

f

1

f

2

τ

f

1 s f 2

f

1

f

1

f

1

f

1

f

1

f

1

τ

f ff f

…

f

1

f

1

f

1

f

1

…

or

or

Figure 5.1

The meaning of temporal operators over the time axis.

Propositional Temporal Logic 129

mean-
bility
To be

Examples of well-formed formulas (wff) of PTL include:

❑

 ((

p

 ∧

q

)

 ∨

r

)

❑

 (

p

⇒

◆

q

)

❍

 (

r

U

 (

p

 ∧

q

))

The first wff says that in all time-points either

p

 and

q

 are satisfied or

r

 is satisfied. The
second wff says that for any time-point

tp

 in which

p

 is satisfied,

q

 must have been satisfied
in some time-point t, t ≤ tp. The last wff says that from the next time-point tnext either r is
satisfied for all time-points t ≥ tnext or there exists a time-point tp ∧ q, tp ∧ q ≥ tnext, where
q ∧ p is satisfied and for all t, tnext ≤ t < tp ∧ q, r is satisfied.

5.2.2 Semantics of PTL

The time-varying truth value assignment of atomic propositions and the time-based
ing attributed to temporal operators leads to a definition of the notion of satisfia
where the truth or falsity of PTL formulas is evaluated over sequences of worlds.
more precise, let σ = w0, w1, w2, w3, … be an infinite sequence of worlds, each wi ∈ W be-
ing an element of the powerset 2P, W the set of all worlds and P the set of atomic proposi-
tions.

The satisfiability of a formula f in a world wi ∈ W of a sequence σ is denoted by
(σ, wi) f and can be deduced by the following rules:

(σ, wi) p iff p ∈ wi
(σ, wi) p iff p ∉ wi
(σ, wi) f1 ∧ f2 iff (σ, wi) f1 and (σ, wi) f2
(σ, wi) f1 ∨ f2 iff (σ, wi) f1 or (σ, wi) f2
(σ, wi) ¬ f1 iff not (σ, wi) f1
(σ, wi) f1⇒ f2 iff (σ, wi) (¬ f1) ∨ f2
(σ, wi) f1⇔ f2 iff (σ, wi) (f1 ⇒ f2) ∧ (f2⇒ f1)
(σ, wi) ❑ f1 iff ∀ j, j ≥ i, (σ, wj) f1
(σ, wi) ◊ f1 iff ∃ j, j ≥ i, (σ, wj) f1
(σ, wi) ❍ f1 iff (σ, wi+1) f1
(σ, wi) f1 U f2 iff either ∀ j, j ≥ i, (σ, wj) f1

or ∃ j, j ≥ i, (σ, wj) f2 and ∀ k, i ≤ k < j, (σ, wk) f1
(σ, wi) ■ f1 iff ∀ j, 0 ≤ j ≤ i, (σ, wj) f1
(σ, wi) ◆ f1 iff ∃ j, 0 ≤ j ≤ i, (σ, wj) f1
(σ, wi) ● f1 iff i > 0 and (σ,wi-1) f1
(σ, wi) ◗ f1 iff i > 0 and (σ,wi-1) f1 or i = 0
(σ, wi) f1 S f2 iff either ∀ j, 0 ≤ j ≤ i, (σ, wj) f1

or ∃ j, 0 ≤ j ≤ i, (σ, wj) f2 and ∀ k, j < k ≤ i, (σ, wk) f1
A formula f is initially satisfied or simply satisfied by a sequence σ iff (σ, w0) f. A

formula f is satisfiable iff there exists a sequence satisfying f. Such a sequence is a model
of f. A formula is valid iff it is satisfiable by all possible sequences.

130 A Temporal Perspective of Composite Objects

based

d-

bility

odes
-

ous

e
d

 is
s are
When
 is

at are

h
tenat-

fy

e that
edges

rmula
ode.

ode.

sat-
In order to check the satisfiability of PTL formulas we can use one of the tableau-
algorithms presented in [2] [16] or [17]. Such algorithms we will call satisfiability algo-
rithms. The algorithm takes as input a formula F and outputs a graph representing all mo
els satisfying F. Such a graph we will call a satisfiability graph. If F is not satisfiable the
algorithm signals that it is unable to produce a graph.

The main idea of the algorithm presented in [2] consists of building up the satisfia
graph in the following way. Start with an initial node labelled with the input formula F. For
the initial node and all other nodes the following procedure is applied until no more n
remain unprocessed. The formula labelling a node N is decomposed into disjunctive nor
mal form, each disjunct being of the form:

current-instant-formula ∧ ❍ next-instant-formula ∧ ● previous-instant-formula

The previous-instant-formula specifies what should have been verified the previ
time-point. For any node N´ from which an edge points to N, the formula labelling N´
should satisfy previous-instant-formula. Otherwise node N and all edges pointing to N
should be deleted. The next-instant-formula specifies what should be verified the next tim
point. Let N´´ be the node labelled with next-instant-formula. If there exists no node labelle
with next-instant-formula then a new node N´´ is created with label next-instant-formula. Then
an edge from N to N´´ labelled with current-instant-formula is introduced in the graph. The
current-instant-formula specifies what should be verified the current time-point and
always a formula of PL. Thus edges are labelled with formulas of PL while node
labelled with formulas of PTL. The following remark ensures that the process stops.
transforming a formula f into disjunctive normal form, each conjunct within a disjunct
a conjunction of either subformulas of f or negated subformulas of f. Thus the maximum
number of nodes that possibly will be generated equals the number of formulas th
conjunctions of either subformulas of F or negated subformulas of F.

Given a satisfiability graph corresponding to a formula F, a possible model µ of F is
identified by traversing the graph. Initially µ is empty. Starting at the initial node, eac
time an edge is traversed, a world satisfying the formula labelling that edge is conca
ed to the sequence of worlds forming the model µ. In general, several worlds may satis
a formula but a single world should be chosen to be concatenated in µ. In other words, a
formula labelling an edge identifies a world wi of some model µ. The formula labelling
each node identifies the rest of the sequence of worlds of µ, that is wi+1, wi+2, … Note that
the graph produced from the satisfiability algorithm may not be minimal in the sens
the models of the input formula could be identified with a graph with less nodes and .

The satisfiability graph corresponding to the formula ❑ ((p ∧ q) ⇒ ❍ r) is shown in fig-
ure 5.2. Each node is divided into two parts: the lower part of the node contains the fo
in disjunctive normal form equivalent to the formula labelling the upper part of the n
The node drawn with a thick line is the initial node. Note that the current-instant-formula is
missing from the second disjunct of the formula labelling the lower part of the initial n
In such cases any non-contradictory PL formula can be taken as the current-instant-formula.
We use the symbol ⊥ to denote any non-contradictory PL formula. The various worlds
isfying the formulas labelling the edges of the satisfiability graph are:

Propositional Temporal Logic 131

s hav-

fy
et of
[{ p}, { q}, { r}, { p, r}, { q, r}] satisfy the formula ¬ (p ∧ q),
[{ r}, { p, r}, { q, r}, { p, q, r}] satisfy the formula r,
[{ r}, { p, r}, { q, r}] satisfy the formula ¬ (p ∧ q) ∧ r,
[{ p}, { q}, { r}, { p, q}, { p, r}, { q, r}, { p, q, r}] satisfy ⊥

Each world is represented by enclosing within curly brackets the atomic proposition
ing truth value true and assuming that all other propositions have truth value false.

Figure 5.3 shows three sequences of worlds relative to the formula ❑ ((p ∧ q) ⇒ ❍ r).
Sequences (a) and (b) satisfy the formula ❑ ((p ∧ q) ⇒ ❍ r). Sequence (c) does not satis
❑ ((p ∧ q) ⇒ ❍ r). The world which causes the sequence to be excluded from the s
models of ❑ ((p ∧ q) ⇒ ❍ r) is the third one in which the atomic proposition r is not satis-
fied while in the previous world the formula (p ∧ q) was satisfied.

¬ (p ∧ q)

❑

 ((

p ∧ q) ⇒ ❍ r) ❑ ((p ∧ q) ⇒ ❍ r) ∧ r

⊥

¬ (p ∧ q) ∧ r

r

[

¬

(

p ∧ q) ∧ ❍ ❑ (¬ (p ∧ q) ∨ ❍ r)] ∨
[

❍ r ∧ ❍ ❑ (¬ (p ∧ q) ∨ ❍ r)]
[

r ∧ ¬ (p ∧ q) ∧ ❍ ❑ (¬ (p ∧ q) ∨ ❍ r)] ∨

[

r ∧ ❍ r ∧ ❍ ❑ (¬ (p ∧ q) ∨ ❍ r)]

Figure 5.2

Satisfiability graph corresponding to the formula

❑

 ((p

 ∧

 q)

⇒

❍

r).

{p, q}

{p, q, r}

{r}

{r, q} {r}

{r}

{p, q}

{r}

{p, q}

{p, q, r} {r}

{r} {q, r}

{p, r} {p, r} {q, r}

{p, q}

{p, q, r}

{p}

{r, q} {r}

{r} {p, q}

(a)

(b)

(c)

Figure 5.3 Sequences (a) and (b) satisfy ❑ ((p ∧ q) ⇒ ❍ r);
Sequence (c) does not satisfy ❑ ((p ∧ q) ⇒ ❍ r)).

132 A Temporal Perspective of Composite Objects

Each
 the

object
nt from

 the re-
 to the
ate, a
 or some
 varia-

rt of
]. We
rested
at the

men-
sts of

posite

mong

tems:

s. To

ing

ra-

ply
 as-
e, in a

d at-
5.3 The Specification of Temporal Properties

In TSOM objects are intended for modelling the various entities of an application.
object is associated with a unique object identifier (oid) permitting one to identify
object independently of its behaviour and the values of its instance variables. An
communicates with other objects by sending and receiving messages. Messages se
an object (sender) to another object (receiver) may be interpreted as requests for
ceiver to perform some task or simply as requests to send back some information
sender. The reaction of the receiver may result in a modification of its internal st
number of messages being sent to other objects, the return of a value to the sender,
combination of the above cases. The internal state of an object stored in its instance
bles and how it reacts to messages is assumed to be hidden from other objects.

Although we qualify TSOM as object-oriented, the notion of inheritance is not pa
it. TSOM is the object-based part of the specification model presented in [2] and [3
shall not discuss any further the absence of inheritance in TSOM. However, the inte
reader is referred to [2] where the notions of role and role playing can replace,
specification level, the notion of inheritance.

We distinguish between elementary objects and composite objects. The difference be-
tween the two kinds of objects lies in the definition of their structural aspects. An ele
tary object is defined independently of other objects. A composite object consi
references to one or several elementary objects or composite objects. When a com
object o references an object z we say that z is a component of o. Note that a composite
object is not the exclusive owner of its components. A component may be shared a
several composite objects.

Objects are instantiated from classes. A class definition comprises the following i

• Public messages, which can be sent to and received from an instance of the clas
indicate whether a message is to be sent to (incoming message) or received from (out-
going message) an instance, the message identifier is suffixed with a left ← or
right → arrow respectively. In an object-oriented system, the effect of an incom
message defined in a class C would be implemented by an operation defined in C. The
effect of an outgoing message msg of C is expected to be implemented by an ope
tion defined in another class C´. The definition of msg as outgoing message in C sim-
ply affirms that an instance of C will send message msg to an instance of C´.

• Attributes of an instance o store values representing either abstract states or sim
characteristic aspects which o wishes advertise to other objects. Each attribute is
sociated with a finite domain from which it can be assigned values. For exampl
class CAR two attributes can be defined, speed and engine_status with associated do-
mains {stopped, moving_slowly, moving_fast} and {turned_on, turned_off} respectively.

• Public constraints describe the set of legal sequences of public messages an
tribute-value assignments.

The Specification of Temporal Properties 133

e

d its
 out-

com-

 im-

efini-

er of
ion of

lass

off and
sages
l per-
iously

-
he basis
 mod-
 asyn-
hnique
ng an
b-

.

• Components identify the parts of a composite object. Each component κ is associat-
ed with a class C, noted κ: C, requiring the value of κ to be a reference to an instanc
of C.

• Component messages which can be exchanged between the composite object an
components. As with public messages we distinguish between incoming and
going component messages.

• Component constraints describe the set of legal sequences of public messages,
ponent messages and attribute-value assignments.

• Implementation is the part of the class definition containing the various programs
plementing the behaviour of instances of the class.

All items listed above, with the exception of attributes, should be present in the d
tion of a composite object class. Items components, component messages and component
constraints are absent from the class definition of elementary objects. In the remaind
this section we will describe in more detail each of the above items with the except
the implementation item.

5.3.1 Public Messages

An example of a class definition of elementary objects is given in figure 5.4. C
CTRL_TOWER models the control tower of an airport. Public messages req_take_off and
req_land have been defined as incoming messages. They model requests for taking
landing which can be addressed to the control tower by some object. Mes
perm_take_off and perm_land have been defined as outgoing messages. They mode
missions for taking off and landing which are granted to those objects that had prev
made a corresponding request to the control tower.

In most object-oriented systems it is recommended for suppliers of classes to hide out-
going messages of objects from their clients* . We decided to allow the definition of outgo
ing messages in an object’s interface to ease the design of objects cooperating on t
of asynchronous communication. Indeed, many real-world situations are naturally
elled as a collection of objects asynchronously communicating between them. Thus
chronous communication has been reported as an important object cooperation tec
which should be directly supported by object-oriented design methodologies. Defini
outgoing message msg for an object o implies that o is expected to cooperate with some o
ject z which defines msg as an incoming message and to which o will send msg. Most often,
o is informed which object will be the receiver of msg, by assigning the oid of z to some
parameter of an incoming message of o.

The ability to include outgoing messages among public messages of a class C does not
imply that all messages exchanged with an instance o of C have to be defined as public

* For a class C, we use the term supplier for naming the person who has defined and implemented C. We
use the term client for indicating the person or object using the services of C.

134 A Temporal Perspective of Composite Objects

ave
n has

lass

g PTL.

tween
either
e two

is de-

t a time
nce of
unsat-
Only messages that are part of the interface of o should be included in the list of public
messages. For example, assuming that o is an instance of CTRL_TOWER, the four public
messages defined in class CTRL_TOWER are all meaningful for clients of o. The imple-
mentation of o could use a hidden component, plane_list, having the functionality of type
LIST. The usefulness of plane_list would be to represent the list of aeroplanes that h
made a request for taking off or landing and for which the corresponding permissio
not been yet granted. In contrast with the collection of public messages of CTRL_TOWER,
messages exchanged between o and plane_list, like insert_into_list and delete_from_list, are
meaningless for clients of o and should not appear in the list of public messages of c
CTRL_TOWER.

5.3.2 Public Constraints

Public constraints associated with a class are specified in a language resemblin
More precisely, for a class C, we associate with each public message p an atomic proposi-
tion p in PTL. We model the fact that a public incoming (outgoing) message p is sent to (re-
ceived from) an instance of C at time-point t by associating with t a world where p is
satisfied. Mapping messages to atomic propositions implies that the distinction be
incoming and outgoing messages is essentially informative for the user since it is n
captured nor enforced in PTL. However, the relevance for distinguishing between th
kinds of messages will be fully appreciated when the notion of composite object
scribed in detail.

Concerning the specification of constraints we assume that only one message a
can be sent to or received from an object. In other words, in each world of a seque
worlds we require that exactly one atomic proposition is satisfied and all others are

class CTRL_TOWER {
public messages

req_take_off ←, req_land ←,
perm_take_off →, perm_land →

public constraints
req_take_off ∨ req_land;
❑ (req_take_off ⇒ (◊ perm_take_off));
❑ (req_land ⇒ (◊ perm_land));

implementation
req_take_off (perm_receiver: oid, …)
{ … };
req_land (perm_receiver: oid, …)
{ … };
…

}

Figure 5.4 Class CTRL_TOWER modelling the lifecycle of a control tower of an airport.

The Specification of Temporal Properties 135

t is

-

er

poral

rate
e
ned

f
nders
PTL and
e are
mposite
ith the

spec-

he re-
sage
isfied. Assuming that n messages msgi are defined in a class, the above requiremen
expressed in PTL with the formula:

 Public constraints defined in class CTRL_TOWER (figure 5.4) formally describe the be
haviour of a control tower. Let o be an instance of CTRL_TOWER. The first constraint says
that the first message to be sent to o must be either req_take_off or req_land. The second con-
straint says that whenever message req_take_off is sent to o, then sometime in the future
message perm_take_off will be received from o. The last constraint says that whenev
message req_land is sent to o, then sometime in the future message perm_land will be re-
ceived from o. Figure 5.5 shows two sequences of public messages satisfying the tem
constraints defined in class CTRL_TOWER.

Class CTRL_TOWER constitutes an example of a class definition expecting to coope
with its clients on the basis of asynchronous communication. Indeed, an instanco of
CTRL_TOWER will send message perm_land to those objects whose oid has been assig
to some parameter, e.g. perm_receiver, of the incoming message req_land. Similarly, the
parameter perm_receiver of req_take_off will be used for determining the receivers o
perm_take_off messages. Note, however, that the above relationships involving se
and receivers of messages, and parameters of messages cannot be described in
therefore they cannot be explicitly specified in the constraint definition language w
proposing. They have to be annotated as comments. Nevertheless, in the case of co
objects (see below), messages exchanged with internal components are prefixed w
identifier of the involved component, thus allowing at least some form of constraint
ification on internal messages.

Whether public constraints associated with a class are or are not violated is t
sponsibility of both the supplier and the client. For example, not receiving mes
perm_take_off from an instance CTRL_TOWER after having sent message req_take_off is the

❑ ((∨ msgk) ∧ (∧ ¬ (msgi ∧ msgj))
 1 ≤ k ≤ n 1 ≤ i ≠ j ≤ n

perm_take_off

req_take_off

req_land

perm_land perm_take_off

perm_land

(a)

(b)

req_take_off

req_land

req_land

perm_land

req_take_off

perm_take_off

Figure 5.5 Sequences of public and state messages relative to the class CTRL_TOWER.

136 A Temporal Perspective of Composite Objects

ming

a
s com-
s
traints
h
nately,
l time
con-

public
ecify
e sim-

ome-
 local
ula
r-
responsibility of the supplier. Consider now the class definition PLANE (figure 5.6),
modelling the lifecycle of an aeroplane. Its public constraints require the two inco
messages take_off and land to be sent to an instance o of PLANE alternately, the first mes-
sage being take_off. In this case it is the responsibility of the client to ensure that take_off
and land messages will be send to o in the specified order.

5.3.3 Shifting from Local Time to Global Time

Public constraints specify the temporal behaviour of an object o in local time, i.e.
time-points are identified with messages that are sent to and received from o. However, the
specification of public constraints in local time does not take into account that o may
cooperate with a collection of objects. More precisely, o may become a component of
composite object, the various cooperating objects being the composite object and it
ponents. In that case, between any pair of messages defined in o, one or several message
defined in other cooperating objects may be interleaved. In other words, public cons
of o should have been specified in global time in which case time-points are identified wit
messages that are sent to and received from any of the cooperating objects. Fortu
constraints specified in local time can be easily transformed to constraints in globa
in such a way that their initial meaning is “preserved.” The transformation of public
straints from local time to global time is called universalization and will be formally de-
scribed in subsection 5.4.2.1. There are two reasons for preferring the definition of
constraints in local time rather than the definition in global time. First, it is easier to sp
constraints in local time than in global time, and second, the resulting constraints ar
pler and easier to understand.

Even though the universalization of constraints preserves their initial meaning, s
times the user wishes to specify a constraint directly in global time rather than in
time. TSOM provides the user with such a facility. Enclosing a formula or a subformf
within angle brackets “<” and “>” excludes f from the transformation process of unive
salization.

class PLANE {
public messages

land ←, take_off ←;
public constraints

take_off;
❑ (take_off ⇒ (❍ land));
❑ (land ⇒ (❍ take_off));

implementation
 …

}

Figure 5.6 Specification of class PLANE.

The Specification of Temporal Properties 137

cility
 con-

l
ersion.

e

e

dabil-
en we
ertaken

ute
Let us elucidate with an example of both the usefulness for providing the above fa
and the meaning of “preserves” in the definition of universalization. Consider the
straint ❑ (p ⇒ ❍ q) defined in a class C requiring every message p to be immediately fol-
lowed by message q. The universalization of the above constraint would require after p, the
next message among those defined in C to be q, yet permitting zero or more messages msgi
to be interleaved between p and q, provided that messages msgi have not been defined in C.
Thus when specifying a formula ❑ (p ⇒ ❍ q) in public constraints, its meaning in globa
time would be the second one, i.e. the meaning corresponding to its universalized v
However, specifying the constraint ❑ <(p ⇒ ❍ q)> will ensure, even in global time, that
every message p be immediately followed by message q, without allowing any message b
interleaved between p and q.

5.3.4 Attributes

Figure 5.7 presents a more elaborate version of the class PLANE presented in subsection
5.3.2 (figure 5.6). Its definition includes an attribute pl_status with associated domain {op-
erational, maintenance}. Value maintenance is assigned to pl_status during a maintenance
period for the aeroplane. Value operational assigned to pl_status indicates that the aeroplan
can travel.

The main reason for providing attributes in class definitions is to enhance the rea
ity of constraints and ease their specification. Indeed, attributes are very useful wh
want to express the fact that one or several actions on a particular object can be und
depending on the current values of one or several attributes of that object.

Let o be an instance of PLANE. The first of the public constraints says that the attrib
pl_status should be assigned either the value operational or the value maintenance* . The sec-
ond constraint says that whenever o receives message take_off the value of pl_status should

class PLANE {
attributes

pl_status: {operational, maintenance};
public messages

land ←, take_off ←;
public constraints

pl_status := (operational ∨ maintenance);
❑ (take_off ⇒ ((pl_status == operational) ∧ ❍ land));
❑ (land ⇒ (● take_off ∧ ❍ ((pl_status := maintenance) ∨ take_off)));
❑ ((pl_status == maintenance) ⇒ (❍ (pl_status := operational)));

implementation
 …

}

Figure 5.7 Enhanced version of class definition PLANE.

138 A Temporal Perspective of Composite Objects

eriod.

te with

s a
t
ort-

t

der and
 two ob-
defined
m-

he class
. The

plane

a

be operational and the next message to be sent to o should be land. The third constraint says
that o may receive message land if the previous message received is take_off. In addition,
whenever message land is received, then either the next message to be sent to o should be
take_off or the attribute pl_status should be assigned the value maintenance. In other words,
after a flight the aeroplane can either continue travelling or begin a maintenance p
The last constraint says that if the value of attribute pl_status is maintenance, then the next
action should be the assignment of value operational to pl_status.

In order to treat attributes and messages within the same framework we associa
each value val belonging in the domain of attribute at a message assign_at_val. Let us call
these messages assignment messages. Sending the assignment message assign_at_val to
an object o models the assignment of value val to the attribute at of o. Thus, whenever an
assignment of the form at := val appears within constraint definitions, it is intended a
shorthand for the assignment message identifier assign_at_val. In addition, whenever a tes
equality of the form at == vali appears within constraint definitions it is intended as a sh
hand for the formula

where {val1, …, valn} is supposed to be the domain associated with at. This expresses tha
at a given instant the current value of attribute at is vali.

What differentiates an assignment message from a public message is that the sen
receiver of an assignment message should be the same object. It is not possible for
jects to exchange any assignment message, which implies that values of attributes
in an object o can only be updated by o itself. Attribute-value updates constitute an exa
ple where the supplier of a class C is responsible for providing an implementation of C that
satisfies the temporal order of attribute assignment defined in C’s public constraints.

Figure 5.8 shows two sequences of public and assignment messages relative to t
PLANE. The first is a legal sequence satisfying the temporal constraints in figure 5.7
second is an illegal sequence since message take_off follows the assignment of value main-
tenance to attribute pl_status thus violating the second and fourth public constraints.

5.3.5 Components

An example of a class definition of a composite object modelling the flight of an aero
is given in figure 5.9. Class FLIGHT contains three components: pl, ctt and ctl. Component
pl is constrained to be assigned an instance of PLANE modelling the aeroplane making
trip. Components ctt and ctl are constrained to be assigned instances of CTRL_TOWER.

* If y is an attribute with associated domain {x1, …, xn} then
y := (x1 ∨ … ∨ xk) with k ≤ n is a shorthand for y := x1 ∨ … ∨ y := xk and
y == (x1 ∨ … ∨ xk) with k ≤ n is a shorthand for y == x1 ∨ … ∨ y == xk

“ :=” is used for assigning a value to an attribute
“==” is the test-equal-value operator

(◆ assign_at_vali) ∧ (¬ (∨ assign_at_valj) S assign_at_vali)
 1 ≤ i ≠ j ≤ n

The Specification of Temporal Properties 139

es off

ts,
-
a mes-
es

-
ublic
ment.
nt of the
s; they
lf and

rol tow-

ed
c-
et
They represent the control towers of airports from which the plane respectively tak
and lands.

Even though an object w may be a shared component of several composite objecw

cannot be referenced from two different components κ1 and κ2 of the same composite ob
ject. Indeed, PTL does not permit us to distinguish whether the sender or receiver of
sage referenced by components κ1 and κ2 is the same object or not. Thus TSOM assum
that different components of a composite object reference distinct objects.

Let us call the environment of a composite object o the set of all objects existing at a giv
en point in time excluding o and its components. Public messages, attributes and p
constraints are considered to be the interface of a composite object for its environ
Public messages are exchanged between the composite object and the environme
composite object. Public constraints may not contain component message identifier
describe the behaviour of a composite object as if the communication between itse
its components has been filtered out. For example, an instance o of FLIGHT may receive
messages start_flight and displ_report from its environment. The effect of the start_flight

message would be to set up a cooperation between the aeroplane and the two cont
ers necessary for an aeroplane to make a trip. The effect of the displ_report message would
be to display a complete report once the flight has been completed. Messages start_flight

and displ_report can be sent to o depending on the current abstract state of o. Domain values
of attribute fl_status model the various abstract states of o, which are: comp_pb when there
is a problem encountered with some of o’s components and the flight cannot be carri
out; ready when there is no problem with any of o’s components and the coordination pro
ess between components can be started; started when the plane has taken off but not y
landed; completed when the plane has landed.

take_off land take_off land land take_off

take_off land take_off

(a)

(b)

assign_
pl_status_

assign_
pl_status_

operational

operational

assign_
pl_status_
maintenance

Figure 5.8 Sequences of public and state messages relative to the class PLANE
((a) legal sequence; (b) illegal sequence).

140 A Temporal Perspective of Composite Objects

ponents.
is
the
xam-

-

5.3.6 Component Messages

Component messages are exchanged between the composite object and its com
The definition of each component message msg should indicate the component which
the sender or receiver of msg. This is achieved by prefixing the message identifier with
component identifier and separating the two identifiers with the character “$”. For e
ple, the definition of component message ctt$req_take_off means that message req_take_off
can be sent from an instance of FLIGHT to component ctt. In addition, assuming the com
ponent definition κ: C, each incoming (outgoing) component message κ$msg, should
match an outgoing (incoming) public message msg defined in class C. For example, for the
definition of the incoming component message ctl$perm_land ← in class FLIGHT, the

class FLIGHT {
attributes

fl_status: {comp_pb, ready, started, completed};
public messages

start_flight ←, displ_report ←
public constraints

fl_status := (ready ∨ comp_pb)
❑ (start_flight ⇒

[(fl_status == ready) ∧ ❍ ((fl_status := started) ∧
 ((fl_status == started) U (fl_status := completed)))]);

❑ (displ_report ⇒ (fl_status == completed));
❑ ((fl_status == (completed ∨ pl_maintenance)) ⇒

¬ (fl_status := (started ∨ comp_pb ∨ ready ∨ completed)));
components

ctt: CTRL_TOWER;
ctl: CTRL_TOWER;
pl: PLANE;

component messages
ctt$req_take_off →, ctt$perm_take_off ←,
ctl$req_land →, ctl$perm_land ←,
pl$take_off →, pl$land →;

component constraints
…

implementation
perm_take_off(sender: oid, …)
{ … };
perm_land(sender: oid, …)
{ … };
…

}

Figure 5.9 Class FLIGHT modelling the flight of an aeroplane.

The Specification of Temporal Properties 141

ass

d
n to the
 com-
 pa-

nt

ages

x-

ssages
 the en-
ject is
nts of
us that
cies in-
d with

muni-

ge

-
 com-
 to
posite
essage
outgoing message perm_land → should appear in the list of public messages of cl
CTRL_TOWER.

Implementing a component incoming message κ$msg would require certifying that the
sender of msg is κ, therefore necessitating a comparison between the sender’s oid anκ’s
oid. However, in most object-oriented systems, the sender of a message is not know
receiver of the message. A simple solution for identifying the sender of an incoming
ponent message κ$msg ← would be the assignment of the sender’s oid to a particular
rameter of msg. In particular, for any outgoing public message msg defined in a class C, it
would be a good practice to anticipate a parameter for the sender of msg. Indeed, a com-
ponent definition κ: C in a class CC enables the definition of the incoming compone
message κ$msg ←. The implementation of msg in CC needs the oid of the sender of msg.
An example of the above strategy is illustrated with the implementation of mess
perm_take_off and perm_land in class FLIGHT (Figure 5.9). Message perm_take_off
(perm_land) uses the parameter sender for identifying the sender of the message while e
pecting instances of CTRL_TOWER to assign their oid to sender when sending
perm_take_off (perm_land).

5.3.7 Component Constraints

Component constraints specify the legal sequences of public and component me
exchanged between the composite object, components of the composite object and
vironment of the composite object. For all component messages the composite ob
involved either as sender or receiver. A direct communication between two compone
a composite object cannot be defined. From the above restriction it becomes obvio
a composite object acts as a coordinator for its components. Temporal dependen
volving different components must be described by means of messages exchange
the composite object. Component constraints in figure 5.10 describing the com
cation between an instance o of FLIGHT and o’s components pl, ctl and ctt, constitute an
example of such a dependency.

The first component constraint requires attribute fl_status to be initialized either with
value ready or pl_maintenance depending on the value assigned to the attribute pl_status of
component pl. More precisely, fl_status will be initialized to ready (comp_pb) if pl_status is
assigned value operational (maintenance). The second constraint says that messa
start_flight may be sent to o if the current value of fl_status is ready. In addition, if start_flight
is sent to o then the next instant component message req_take_off should be sent to compo
nent ctt from the composite object. The purpose of the communication between the
posite object and component ctt is to grant permission to take off. Once the permission
take off is granted, the command to take off for the aeroplane is issued from the com
object. This is expressed by the third component constraint. It says that whenever m
perm_take_off is received from component ctt, then the next message to be sent is take_off
with sender the composite object and receiver pl. In addition, attribute fl_status is assigned
value started immediately after message pl$take_off has been sent to pl. The fourth and fifth

142 A Temporal Perspective of Composite Objects

ite ob-
es-

t mes-

. In

hat

nent
ite ob-
ust be
g the
po-

raints

y.
f

bjects.
component constraints specify an analogous communication between the compos
ject and component ctl. More precisely, the fourth constraint requires that component m
sage req_land to be sent to ctl sometime in the future after the value of fl_status is started.
The fifth constraint specifies that once the permission to land is granted (componen
sage perm_land is sent to the composite object from component ctl), the command to land
(component message pl$land) for the aeroplane is issued from the composite object
addition, for indicating that the aeroplane has landed the value completed is assigned to
attribute fl_status. The sixth constraint says that message disp_report may be sent to o if the
current value of fl_status is completed. Finally, the last component constraint ensures t
once fl_status has been assigned one of the values comp_pb or completed it cannot be later
updated.

Let us now clarify the rationale for introducing both public constraints and compo
constraints in composite object class definitions. To test consistency of a compos
ject’s specification, the specification of the temporal behaviour of its components m
taken into account. As we will describe in the next section, this is achieved by testin
satisfiability of the logical conjunction of public constraints of components and com
nent constraints of the composite object. Taking the conjunction of public const
without regard to component constraints of a component v of a composite object o permits
irrelevant details of the eventual composition of v from other objects to be abstracted awa
If o is in turn a component of a composite object z, the satisfiability of the conjunction o
component constraints of z and public constraints of o should be tested in order to confirm
either the consistency or inconsistency of z’s specifications.

Figure 5.11 depicts the use of public and component constraints for composing o
Ovals represent class definitions. An edge labelled κ connecting a class C with a class C´

class FLIGHT {
...

component constraints
((pl$pl_status == operational) ⇒ (fl_status := ready)) ∧

((¬ (pl$pl_status == operational)) ⇒ (fl_status := comp_pb));

❑ (start_flight ⇒ ((fl_status == ready) ∧ ❍ ctt$req_take_off));
❑ (ctt$perm_take_off ⇒ ❍ (pl$take_off ∧ ❍ (fl_status := started)));

❑ ((fl_status == started) ⇒ ◊ ctl$req_land)));
❑ (ctl$perm_land ⇒ ❍ (pl$land ∧ ❍ (fl_status := completed)));

❑ (displ_report ⇒ (fl_status == completed));
❑ ((fl_status == (completed ∨ pl_maintenance)) ⇒

¬ (fl_status := (started ∨ comp_pb ∨ ready ∨ completed)));
…

}

Figure 5.10 Component constraints of class FLIGHT.

The Specification of Temporal Properties 143

f

ints of
at for

inated
n

indicates that component κ: C´ is defined within the definition of C. For class C4 the con-
junction of component constraints of C4 with public constraints of classes C1, C2 and C3
should be made. Then for the composition of C6 the conjunction of public constraints o
classes of C4 and C5 with the component constraints of C6 should be made.

The above schema of object composition requires public and component constra
the same object to be related by some compatibility rule. In fact, we must ensure th
any sequence σ satisfying component constraints there exists a sequence σ´ of public mes-
sages satisfying public constraints such that when component messages are elim
from σ we get a sequence identical to σ´. We will call the above compatibility rule betwee
component constraints and public constraints of the same composite object the corre-

Component constraints

Public constraints Public constraints Public constraints

Public constraints

C1 C2 C3

C4

C5

C6

...

. . .

κ4
κ5

κ1 κ2 κ3

Component constraints
Public constraints

Component constraints
Public constraints

C4 composition =

C6 composition = public - constraints - C 4 ∧

public - constraints - C 5

component - constraints - C 6 ∧

public - constraints - C 1 ∧

public - constraints - C 2 ∧ public - constraints - C 3

component - constraints - C 4 ∧

Figure 5.11

Using public and component constraints to compose objects.

144 A Temporal Perspective of Composite Objects

 the

ne or
ages. In
 local
osite
ntified

 con-

d,

es-

 in

t
ect its
 more

).

h

spondence property

. The correspondence property requires us to verify the validity of
formula:

component constraints

⇒

universalized

public constraints

The universalization of public constraints is necessary for taking into account that o
several component messages can be interleaved between any pair of public mess
other words the universalization of public constraints corresponds to a shift from
time to global time. In this case time-points in local time are identified with the comp
object’s public and assignment messages whereas time-points in global time are ide
with the composite object’s component, public, and assignment messages.

5.4 Verification

To verify the consistency of object specifications we make the following assumptions
cerning the object model of TSOM. Each class

C

 owns an infinite number of oids. An oid

o

 becomes an instance of

C

 when it receives the predefined message

create_C

. An instance

o

 of

C

 is deleted when

o

 receives the predefined message

delete_C

. The deletion of

o

 is
modelled by restricting

o

 to only be able to accept

delete_C

 messages.

5.4.1 Verification of Elementary Objects

The consistency of a class definition

C

, from which elementary objects are instantiate

can be verified by giving as input to the satisfiability algorithm the formula:

(

¬

 (delete_C

∨

 m

1

 ∨

… ∨

 m

n

)

U

 create_C)

∧

(4.1)

❑

 (create_C

 ⇒

 ❍ public_constraint_C) ∧ (4.2)
❑ (create_C ⇒ (❍ ❑ ¬ create_C)) ∧ (4.3)

❑ (delete_C ⇒ ❍ delete_C) (4.4)
In the previous formula m1, …, mn is assumed to be the set of public and assignment m
sages defined in C* . public_constraint_C stands for the conjunction of constraints defined
class C. Conjunct (4.1) says that no public message nor the delete_C message can be sen
to an object prior to its creation. Conjunct (4.2) says that after the creation of an obj
public constraints must be verified. Conjunct (4.3) forbids an object to be created
than once. Finally conjunct (4.4) ensures that after accepting a delete_C message, an ob-
ject will then only be able to accept further delete_C messages.

For a class C we will name LCpublic_C† the conjunction of (4.1), (4.2), (4.3) and (4.4
The output of the satisfiability algorithm corresponding to the formula LCpublic_C deter-
mines the consistency of C. If no graph is produced, the definition of C is inconsistent. If a
satisfiability graph is produced, the definition of C is consistent. This satisfiability grap

* Assignment messages are indirectly defined via attribute definitions.
† LCpublic stands for lifecycle according to public constraints.

Verification 145

e sent to

 situa-
pond-
ints.

s. The
r part

ed to

-

o-
then represents all legal sequences of public and assignment messages that can b
and received from an instance of C.

5.4.2 Verification of Composite Objects

To describe the verification of a composite object’s specification let us assume the
tion presented in figure 5.12. An object is depicted by a rectangle. A rectangle corres
ing to an elementary object is labelled with a formula describing its public constra
Rectangles corresponding to composite objects are divided into two horizontal part
upper part is used for listing the public constraints of the composite object. The lowe
is used for listing the list of component messages and component constraints.

A grey arrow connecting two rectangles is drawn when the two objects are assum
exchange messages. A black arrow connecting two rectangles x and y, leaving x and lead-
ing to y, is drawn when y is a component of x. Thus co in figure 5.12 is assumed to be a com
posite object having two components χ and ξ. Let components χ and ξ be assigned
instances of classes C1 and C2 respectively. co is assumed to be an instance of CC.

Component constraints of co say that the first message to be sent to co must be the public
message start. Immediately after the reception of start, messages p and q should be sent to
components χ and ξ alternately, starting with a p message. Public constraints of comp
nents are very simple. Component χ expects always to receive message p. Component ξ
expects always to receive either message q or message r.

❑ p

❑ (q ∨ r)

component messagesco: CC

χ

: C

1

 ξ : C 2

Environment of co

…

component constraints
 start

∧

❍

(

χ

$p

 ∧

 ❑

((

χ

$p

 ∧

 ❍

ξ

$q)

∨

(

ξ

$q

 ∧

 ❍

χ

$p)))

 χ

$p,

ξ

$q

Figure 5.12

A composite object and component specifications.

146 A Temporal Perspective of Composite Objects

o give
ents’

ts

sages
n-

he last

t

erely
enefit

exity
g sit-

t-

ld

en as
 ad-
t of the

The basic idea for testing the consistency of a composite object’s specification is t
as input to the satisfiability algorithm the conjunction of the object’s and its compon
specifications. If a class definition

CC

 contains the definitions of components

κ

i: Ci

,

i

 =

1

,

 …

,

n

, the input to the satisfiability algorithm would be the formula:

LCpublic_C

1

∧

… ∧

 LCpublic_C

n

∧

 LCcomponent_CC

∧

(4.5)

(¬

 create_CC

 U

 create_C

1

)

∧ …

∧ (¬

 create_CC

 U

 create_C

n

)

 ∧

(4.6)

❑

 (¬ (s1 ∨ … ∨ sj)) (4.7)
Conjuncts LCpublic_C1, …, LCpublic_Cn specify lifecycles corresponding to componen
κ i: Ci, i = 1, …, n, respectively. Conjunct LCcomponent_CC* specifies the lifecycle of the
composite object and stands for the formula:

(¬ (delete_C ∨ m1 ∨ … ∨ mn) U create_CC) ∧
❑ (create_CC ⇒ ❍ component_constraint_CC) ∧

❑ (create_CC ⇒ (❍ ❑ ¬ create_CC)) ∧
❑ (delete_CC ⇒ ❍ delete_CC) ∧

where m1, …, mn is assumed to be the list of public, assignment and component mes
defined in CC and component_constraint_CC stands for the conjunction of component co
straints defined in CC. Conjuncts ¬ create_CC U create_Ci, i = 1, …, n, say that all compo-
nents must have been created before the creation of the composite object. T
conjunct says that component messages not defined in CC cannot be exchanged. Thus, si,
i = 1, …, j, are all such messages identifiers of the form κ$msg such that the componen
definition κ: C appears in CC, msg is a public message defined in C and κ$msg does not
appear in the list of component messages of CC.

The constraint on component creation we have expressed with conjunct (4.6) is m
introduced for expository reasons. Its omission would not represent any significant b
for the description of object lifecycles at the specification level but additional compl
for the various formulas formalizing the notions we are proposing. Indeed, modellin
uations where an object z could be created either before or after a composite object o and
then z be assigned to a component of o requires the introduction of lengthy and complica
ed formulas.

For the composite object co in figure 5.12, the input to the satisfiability algorithm wou
be the formula:

LCpublic_C1 ∧ LCpublic_C2 ∧ LCcomponent_CC ∧ (4.8)
(¬ create_CC U create_C1) ∧ (¬ create_CC U create_C2) ∧ (4.9)

❑ (¬ ξ$r) (4.10)
Conjuncts LCpublic_C1, LCpublic_C2 and LCcomponent_CC correspond to components χ,
ξ and to the composite object co respectively.

However, the conjunctions of formulas (4.5), (4.6) and (4.7) cannot be directly giv
input to the satisfiability algorithm. A number of transformations must be applied in
vance. The rationale for these transformations and their exact nature is the subjec

* LCcomponent stands for lifecycle according to component constraints.

Verification 147

ically,

ect’s
bility
ll legal

the com-
t of the

ed on

ject and

e

-

t

 the

ed
following subsections. The various transformations can be carried out automat
meaning that the whole verification process can be automated.

The output of the algorithm will determine the consistency of the composite obj
specification. If no graph is produced, the specification is inconsistent. If a satisfia
graph is produced, the specification is consistent. The graph produced represents a
sequences of public, assignment and component messages exchanged between
posite object, the various components of the composite object and the environmen
composite object.

5.4.2.1 Transformations on Component Definitions
In this subsection we describe the various transformations that should be perform
conjuncts LCpublic_C1, …, LCpublic_Cn of formula (4.5).

Message Renaming

To achieve the matching between component messages defined for a composite ob
public messages of component κ: Ci each message msg appearing within conjunct
LCpublic_Ci of (4.5) should be renamed κ$msg. Thus, if a class specification contains th
component definitions κ1: C and κ2: C (i.e. both components κ1 and κ2 are associated
with the same class C), the component which is the sender or receiver of msg can be distin-
guished since msg is renamed either κ1$msg or κ2$msg. The formula resulting from that
transformation will be named κ$LCpublic_Ci. For example, according to the public con
straints of component χ in figure 5.12, χ$LCpublic_C1 stands for the formula:

(¬ (χ$delete_C1 ∨ χ$p) U χ$create_C1) ∧
❑ (χ$create_C1 ⇒ ❍ ❑ χ$p) ∧

❑ (χ$create_C1 ⇒ (❍ ❑ ¬ χ$create_C1)) ∧
❑ (χ$delete_C1 ⇒ ❍ χ$delete_C1)

Sharing Components

To take into account that component κ: Ci may be shared between the composite objec co
and the environment of co, each message κ$msg within the conjunct κ$LCpublic_Ci,
should be replaced by the formula:

κ$msg ∨ env$κ$msg (4.11)

Messages exchanged between a component and the environment (named environment
messages) are prefixed with “env$”. Messages exchanged between a component and
composite object are not renamed. Replacing a message κ$msg with the formula (4.11)
implies that the sender or receiver of a message msg could be either co or an object from
the environment of co. The resulting formula from that transformation is nam
env$κ$LCpublic_Ci.

For example, for component χ in figure 5.12, env$χ$LCpublic_C1 would stand for the
formula:

148 A Temporal Perspective of Composite Objects

ore only
he send-
essage

ot
he

jects.

sts of
(¬ (χ$delete_C1 ∨ env$χ$delete_C1 ∨ χ$p ∨ env$χ$p) U env$χ$create_C1) ∧
❑ (env$χ$create_C1 ⇒ ❍ ❑ (χ$p ∨ env$χ$p)) ∧

❑ (env$χ$create_C1 ⇒ (❍ ❑ ¬ env$χ$create_C1)) ∧
❑ ((χ$delete_C1 ∨ env$χ$delete_C1) ⇒ ❍ (χ$delete_C1 ∨ env$χ$delete_C1))

Recall that assignment messages cannot be exchanged between objects. Theref
environment-assignment messages can exist since a composite object cannot be t
er of an assignment message to any of its components. Thus, any assignment m
κ$msg should be simply renamed env$κ$msg. In addition, the composite object cann
send a creation message to a component κ: C, since components should exist before t
creation of the composite object. Therefore any κ$create_C must be simply renamed
env$κ$create_C.

Universalization of Public Constraints of Components

Let us assume that m1, …, mn is the collection of public messages defined in a class C and
that κ: C is a component definition appearing in a class definition for composite ob
Then we introduce the following shorthand expressions:

public_msg_C ≡ m1 ∨ … ∨ mn ∨ delete_C

κ$public_msg_C ≡ κ$m1 ∨ … ∨ κ$mn ∨ κ$delete_C

env$κ$public_msg_C ≡ env$κ$m1 ∨ … ∨ env$κ$mn ∨ env$κ$delete_C

κ$env_pub_msg_C ≡ κ$public_msg ∨ env$κ$public_msg ∨ κ$create_C

The rationale for the universalization of conjunct env$κ$LCpublic_C corresponding to
component κ: C has been described in subsection 5.3.1. The universalization consi
the following transformations:

replace p by ¬ κ$env_pub_msg_C U p
replace ❍ f by ¬ κ$env_pub_msg_C U (κ$env_pub_msg_C ∧ ❍ f)
replace ● f by ¬ κ$env_pub_msg_C S (κ$env_pub_msg_C ∧ ● f)

where p is an atomic proposition and f a wff of PTL appearing within env$κ$LCpublic_C.
Applying the universalization of env$χ$LCpublic_C1 we will obtain the following for-

mula:

(¬((¬ χ$env_pub_msg_C1 U
(χ$delete_C1 ∨ env$χ$delete_C1 ∨ χ $p ∨ env$χ$p)) U

(¬ χ$env_pub_msg_C1 U env$χ$create_C1)) ∧

❑ (¬ χ$env_pub_msg_C1 U env$χ$create_C1 ⇒
(¬ χ$env_pub_msg_C1 U

(χ$env_pub_msg_C1 ∧
❍ ❑ (¬ χ$env_pub_msg_C1 U (χ$p ∨ env$χ$p))))) ∧

❑ (¬ χ$env_pub_msg_C1 U env$χ$create_C1 ⇒
(¬ χ$env_pub_msg_C1 U

(χ$env_pub_msg_C1 ∧
❍ ❑ (¬ χ$env_pub_msg_C1 U ¬ env$χ$create_C1)))) ∧

Verification 149

-
 pair of
er the

ndence
w-

idity of
❑ ((¬ χ$env_pub_msg_C1 U (χ$delete_C1 ∨ env$χ$delete_C1)) ⇒
(¬ χ$env_pub_msg_C1 U

(χ$env_pub_msg_C1 ∧
❍ (¬ χ$env_pub_msg_C1 U (χ$delete_C1 ∨ env$χ$delete_C1))))))

In the above formula we have used the equivalence:
f U (f1 ∨ f2) ⇔ (f U f1) ∨ (f U f2)

while χ$env_pub_msg_C1 is the shorthand for the formula:
 χ$delete_C1 ∨ env$χ$delete_C1 ∨ χ $p ∨ env$χ$p ∨ env$χ$create_C1

5.4.2.2 Universalization of Component Constraints of Composite
Objects

Let us assume that q1, …, qp are the various component messages defined in a classCC.
Then we introduce the following shorthand expressions:

component_msg_CC ≡ q1 ∨ … ∨ qp
msg_CC ≡ public_msg_CC ∨ component_msg_CC ∨ create_CC

The universalization of conjunct LCcomponent_CC in (4.5) is required to take into ac
count that one or several environment messages may be interleaved between a
component, assignment or public messages in which the composite object is eith
sender or the receiver. The universalization of LCcomponent_CC consists of the following
transformations:

replace p by ¬ msg_CC U p
replace ❍ f by ¬ msg_CC U (msg_CC ∧ ❍ f)
replace ● f by ¬ msg_CC S (msg_CC ∧ ● f)

where p is an atomic proposition and f a wff of PTL appearing within LCcomponent_CC.

5.4.2.3 Verification of the Correspondence Property
According to the shorthand expressions we have already introduced, the correspo
property for a class CC for composite objects is easily formalized by requiring the follo
ing formula to be valid:

component_constraint_CC ⇒ (universalization of public_constraint_CC)

The universalization of public_constraint_CC consists of the following transformations:
replace p by ¬ public_msg_CC U p
replace ❍ f by ¬ public_msg_CC U (public_msg_CC ∧ ❍ f)
replace ● f by ¬ public_msg_CC S (public_msg_CC ∧ ● f)

where p is an atomic proposition and f a wff of PTL appearing within public_constraint_CC.
As an example consider a composite object for which one public message p and one

component message κ$q have been defined, the formula ❑ p being its public constraint
and the formula

❑ ((p ∧ ❍ κ$q) ∨ (κ$q ∧ ❍ p))

its component constraint. The correspondence property requires us to test the val
the formula:

150 A Temporal Perspective of Composite Objects

eri-

poral
 tem-
 con-
een a
s if the
cribed
 on the

en the
tions
ject in
g the

mes-
ss

PTL
ies
ation

delling
ur ap-
itrary
e nest-
ompo-
e fact
troduce
. Final-
 In our
tions.

se-
aints.
st and
SOM

ves for
g the
❑ ((p ∧ ❍ κ$q) ∨ (κ$q ∧ ❍ p)) ⇒ ❑ (¬ p U p)

Using the satisfiability algorithm of PTL, the validity of the above formula is easily v
fied.

5.5 Concluding Remarks

We have presented a formal approach, founded on PTL, for the description of tem
aspects of an object’s behaviour and its composition with other objects. An object’s
poral properties are specified by means of a collection of component and public
straints. The former specify the temporal order of messages exchanged betw
composite object and its components. The latter specify the behaviour of an object a
communication between it and its internal components has been filtered out. We des
an automated procedure for verifying the consistency of object specifications based
satisfiability algorithm of PTL.

A significant source of influence for the various ideas we have presented has be
work of Manna and Wolper who investigated the composition of synchronized collec
of concurrent processes [17]. For Manna and Wolper a process specification (an ob
our approach) consists of a collection of PTL formulas (public constraints) describin
temporal order of its input/output communication operations (incoming/outgoing
sages). The consistency of a concurrent system consisting of a synchronizer proceS (a
composite object) communicating with a collection of processes Pi, 1 ≤ i ≤ n (components
of a composite object), is verified by giving as input to the satisfiability algorithm of
the composition of S and Pi specifications. Even though one may find strong similarit
concerning both the behaviour specification of a process (object) and the verific
procedure for consistency, the two approaches are characterized by different mo
prerequisites and divergent objectives. An important prerequisite emphasized in o
proach is the ability of specifying composite objects having a nested structure of arb
depth (composite objects having components that are other composite objects). Th
ed structure of composite objects necessitated the distinction between public and c
nent constraints and the validation of the correspondence property. In addition, th
that an object may be a shared component of several composite objects led us to in
“env” messages. None of the above modelling issues have been investigated in [17]
ly, there is an important distinction concerning the objectives of the two approaches.
approach we ended up with a procedure for verifying an object’s temporal specifica
In [17] the satisfiability graph corresponding to the composition of S and Pi specifications
is further used for deriving the synchronization parts of code of S and the Pi’s. More pre-
cisely, for each process, Pi and S, Manna and Wolper derive from the set of all possible
quences of communication operations a subset which satisfies the specified constr

Several improvements can be envisaged for TSOM along various directions. Fir
foremost, there is a need for providing the specifier with assistance for translating T
specifications into some object-oriented language. Assessing the various alternati
providing higher-level assistance than that of guidelines, we ended up investigatin

References 151

ould
rt the
for ob-
pects of
scrip-
 is dif-
d for
ing ob-
.
ving
pon
ws ex-

g the
cifica-
ating
ow-

iency
e the
ther

esis

r Ev-

tation
-

chro-
eventuality of enriching an existing object-oriented language with constructs that w
directly support most of the notions integrated in TSOM. Further evidence to suppo
validity of this approach is given by Nierstrasz (see chapter 4). There, a type system
ject-oriented languages is proposed which enables users to describe temporal as
object behaviour and provides rules for analyzing the type-consistency of such de
tions. Even though the formalism upon which that type system has been developed
ferent from PTL, it is likely that most of the ideas and results could also be applie
PTL. Thus, the proposed type system could serve as the starting point for enhanc
ject-oriented languages with constructs directly supporting most of TSOM’s notions

Another important direction along which additional efforts are necessary for impro
TSOM concerns the verification procedure. The satisfiability algorithm of PTL, u
which the verification procedure is based, may generate a number of nodes that gro
ponentially with the number of temporal operators of the input formula. By operatin
algorithm the way we have described, i.e. applying the algorithm to each object spe
tion separately and not to the composition of all constraints of those objects particip
in a whole part-of hierarchy, the size of input formulas is considerably minimized. H
ever, the exponential nature of the satisfiability algorithm still remains a serious effic
handicap for its computer implementation. Restricted forms of PTL may reduc
number of nodes of the satisfiability algorithm to polynomial size [10]. However, whe
such restrictions of PTL are still suitable for TSOM remains to be investigated.

References

[1] Constantin Arapis, “Temporal Specifications of Object Interactions,” Proceedings Third Internation-
al Workshop on Foundations of Models and Languages for Data and Objects, Aigen, Austria, Sept.
1991, pp. 15–35.

[2] Constantin Arapis, “Dynamic Evolution of Object Behaviour and Object Cooperation,” Ph.D. th
no 2529, Centre Universitaire d’Informatique, University of Geneva, 1992.

[3] Constantin Arapis, “A Temporal Logic Based Approach for the Description of Object Behaviou
olution,” Journal of Annals of Mathematics and Artificial Intelligence, vol. 7, 1993, pp. 1–40.

[4] Grady Booch, Object-Oriented Design with Applications, Benjamin/Cummings, 1991.

[5] Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2nd edn., Prentice-Hall, Englewood
Cliffs, 1991.

[6] Peter Coad and Edward Yourdon, Object-Oriented Design, Prentice Hall, Englewood Cliffs, 1991.

[7] Brad Cox, Object-Oriented Programming An Evolutionary Approach, Addison Wesley, Reading,
Mass., 1987.

[8] Vicki De Mey, Betty Junod, Serge Renfer, Marc Stadelmann and Ino Simitsek, “The Implemen
of Vista — A Visual Scripting Tool,” in Object Composition, ed. Dennis Tsichritzis, Centre Univer
sitaire d’Informatique, University of Geneva, June 1991, pp. 31–56.

[9] Allen Emerson and Edmund Clarke, “Using Branching Time Temporal Logic to Synthesize Syn
nization Skeletons,” Science of Computer Programming, vol. 2, 1982, pp. 241–266.

[10] Allen Emerson, Tom Sadler and Jai Srinivasan, “Efficient Temporal Reasoning,” Proceedings 16th
ACM Symposium on Principles of Programming Languages, 1989, pp. 166–178.

152 A Temporal Perspective of Composite Objects

f Fair-

Com-

= Ap-
i-

tation
[11] Dov Gabbay, Amir Pnueli, Saharon Shelah and Jonathan Stavi, “On the Temporal Analysis o
ness,” Proceedings 7th ACM Symposium on Principles of Programming Languages, 1980, pp. 163–
173.

[12] Adele Goldberg and David Robson, Smalltalk-80: The Language and its Implementation, Addison-
Wesley, Reading, Mass., 1983.

[13] David Harel, “On Visual Formalisms,” Communications of the ACM, vol. 31, no. 5, May 1988, pp.
514–530.

[14] Richard Helm, Ian Holland and Dipayan Gangopadhyay, “Contracts: Specifying Behavioural
positions in Object-Oriented Systems,” Proceedings of the ECOOP/OOPSLA Conference, Ottawa,
Oct. 1990, pp. 169–180.

[15] Ivar Jacobson, Object-Oriented Software Engineering, Addison-Wesley, Reading, Mass., 1992.

[16] Orna Lichtenstein and Amir Pnueli, “The Glory of The Past,” Proceedings of the Workshop on Logic
of Programs, Brooklyn, Lecture Notes in Computer Science, vol. 193, Springer-Verlag, 1985, pp. 97–
107.

[17] Zohar Manna and Pierre Wolper, “Synthesis of Communicating Process,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 6, no. 1, June 1984, pp. 68–93.

[18] Bertrand Meyer, Object-oriented Software Construction, Prentice Hall, 1988.

[19] Oscar Nierstrasz, Dennis Tsichritzis, Vicki De Mey and Marc Stadelmann, “Objects + Scripts
plications,” in Object Composition, ed. Dennis Tsichritzis, Centre Universitaire d’Informatique, Un
versity of Geneva, June 1991, pp. 11–29.

[20] James Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling
and Design, Prentice Hall, 1991.

[21] Sally Shlaer and Stephen Mellor, OBJECT LIFECYCLES: Modeling the World in States, Prentice
Hall, Englewood Cliffs, NJ, 1992.

[22] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, Mass., 1986.

[23] Anthony Wassermann, P. Pircher and R. Muller, “The Object-Oriented Structured Design No
for Software Design Representation,” IEEE Computer, vol. 23, no. 3, March 1990, pp. 50–63.

[24] Rebecca Wirfs-Brock, Brian Wilkerson and Laurent Wiener, Designing Object-Oriented Software,
Prentice Hall, Englewood Cliffs, NJ, 1990.

	A Temporal Perspective of Composite Objects
	5.1 Introduction
	5.1.1 Specifying Temporal Aspects of Object Behaviour
	5.1.2 Design Choices for TSOM
	5.1.3 Layout

	5.2 Propositional Temporal Logic
	5.2.1 Syntax of PTL
	5.2.2 Semantics of PTL

	5.3 The Specification of Temporal Properties
	5.3.1 Public Messages
	5.3.2 Public Constraints
	5.3.3 Shifting from Local Time to Global Time
	5.3.4 Attributes
	5.3.5 Components
	5.3.6 Component Messages
	5.3.7 Component Constraints

	5.4 Verification
	5.4.1 Verification of Elementary Objects
	5.4.2 Verification of Composite Objects

	5.5 Concluding Remarks

