Chapter 5

A Temporal Perspective of
Composite Objects

Constantin Arapis

Abstract Forthe development of object-oriented applications, the description
of temporal aspects of object behaviour often turns out to be animportant issue.
We present a collection of notions and concepts intended for the description of
the temporal order in which messages are sent to and received from an object.
We also propose notions for the description of the temporal order of messages
exchanged between cooperating objects related with parf-of relationships.
Using propositional temporal logic as the underlying formalism of our approach,
we show how to verify the consistency of object specifications.

5.1 Introduction

The increasing popularity of object-oriented systems [7] [12] [18] [22] over the past dec-
ade, within both the research and commercial/industrial computer science communities,
have promoted the use of the object-oriented approach for requirements analysis and sys-
tem design. Thus, several object-oriented analysis and design methodologies [4] [5] [6]
[15] [20] [21] [23] [24] are currently available to assist the early phases of the object-ori-
ented application development process.

An important activity during object-oriented design often turns out to be the description
of temporal aspects of object behaviour. Indeed, the design of many applications may con-
tain objects whose behaviour exhibits important temporal traits. As Booch states [4] “for
some objects, this time ordering of operations is so pervasive that we can best formally
characterize the behaviour of an object in terms of a finite state machine.” It must be
stressed that even for applications which are not designed for processing temporal infor-
mation, their development requires several objects whose behaviour exhibits important
temporal aspects. Yet the description of temporal properties of objects, either considered
in isolation or in cooperation with other objects, is not exclusively relevant to concurrent
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environments. Often, the description of temporal properties of objects is deemed critical
and even mandatory in sequential environments.

5.1.1 Specifying Temporal Aspects of Object Behaviour

A number of object-oriented design methodologies [4] [20] [21] integrate notions and
concepts for the description of temporal properties of objects. We will caértiporal
componenbf an object-oriented design method the collection of notions and concepts
intended for the description of temporal aspects of object behaviour. The underlying for-
malisms upon which the various temporal components of object-oriented design method-
ologies are founded are finite state machines (FSMs) or extensions of FSMs [13]. The
preponderance of FSMs over other formalisms is attributed to the following two reasons:
first, FSMs are easy to understand, and second, a FSM can be easily depicted by means of
a state transition diagram.

In general, object-oriented design methodologies use FSMs in the following way: a
FSMM, models temporal aspects of the behaviour of an instance ofclassisitions of
M. are labelled with operations that an instanae isfexpected to carry out. States/f
correspond to the various possible states of an instagcé ofansition o, labelled,
from states; to states,, models the fact that operatipean be requested of an instance
of C when the current state @fs s;. After p is carried out, the current stateodfecomes
so. Thus, by means of FSMs, temporal aspects of object behaviour are ultimately de-
scribed in terms of sequences of paksié, operation).

Note that the role of the temporal component of an object-oriented design methodology
is limited to the description of sequences of operations and state transitions of objects. The
temporal component is not designed for specifying how an object will carry out an opera-
tion. In addition, the design and integration of a temporal component within an
object-oriented design methodology should guarantee harmonious synergy between the
various other parts of the methodology. The above requirement suggests that the temporal
component should be complementary and orthogonal to the fundamental principles of the
object-oriented approach.

We will present a temporal component which has been designed independently of any
design methodology and is founded on the theory of propositional temporal logic (PTL).
The aim of the temporal component is to enhance existing design methodologies lacking
or offering limited support for the description of temporal properties of objects. We shall
introduce the temporal component in terms of a specification model called the Temporal
Specification Object Model (TSOM). The specification model blends fundamental
notions of the object-oriented approach and temporal notions, thus illustrating the de-
pendence and/or orthogonality existing between them.

In contrast with temporal components founded on FSMs, TSOM emphasizes the de-
scription of temporal properties of an objedh terms of sequences of messages which
are sentto and received frenThus, the user is not compelled to devise states that are not
necessarily relevant to the description of an object’s behaviour and whose only purpose is



Introduction 125

to complete the FSM under development. However, TSOM provides the conegpt of
tribute by means of which the user may introduce states he considers relevant for the de-
scription of an object’s behaviour and may also describe the various conditions that should
be verified for enabling state transitions to occur.

Another important point that TSOM emphasizes is the description of the temporal order
of messages exchanged between a collection of cooperating objects refsgeabye-
lationships. The temporal order of messages exchanged between a composite object and
its constituent objects provides a temporal perspective of what has been called the behav-
ioural composition of objects. Promoted as a fundamental feature of object-oriented
design methodologies, behavioural composition consists of combining and coordinating
the functionality of existing objects to create new objects [8] [14] [19]. A composite object
in TSOM encapsulates and coordinates a collection of objects that cooperate in order to
reach some goal or perform some task. The composite object plays the role of a coordina-
tor taking into account the various temporal properties and constraints specified for
constituent objects. Furthermore, TSOM enables an incremental specification of object
coordination. In particular, a composite object may become a constituent of another
composite object, which in turn may become a constituent of another composite object,
and so on.

5.1.2 Design Choices forTSOM

First and foremost, let us justify our decision for TSOM to be founded on a formal theory
rather than developing a temporal component founded on some informal basis, for exam-
ple a natural language. Establishing a formal basis upon which a temporal component is
founded permits us not only to test the consistency of the various notions it integrates but
also to test the consistency of user-provided specifications. Indeed, the early detection and
correction of design errors is critical for the whole application development activity. Fail-
ing to correct design errors causes their harmful effects to be amplified and disseminated
throughout the subsequent stages of the application development process.

From a number of candidate formalisms the language of PTL appears as the most suit-
able formalism for TSOM. Indeed, temporal properties can be very easily specified by
means of PTL formulas. Formalisms like FSMs and Petri nets have been characterized as
low level in the following sense: by means of FSMs and Petri nets we can specify how a
system operates and then verify which properties are satisfied by the modelled system. In
temporal logic the contrary is done. The desirable properties of a system are specified first.
A system satisfying the specified properties is derived subsequently.

Another important argument in favour of PTL is the fact that it has been used as a foun-
dation for various investigations performed in the area of concurrent systems, concerning
the synthesis of a collection of parallel communicating processes [9] [17]. Synthesis of
communicating processes bears many similarities with object behaviour composition: the
collection of communicating processes can be seen as a collection of cooperating objects
which should be synchronized in order to perform a particular task. We have borrowed the
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main ideas proposed for synthesizing communicating processes from [17] whilst we have
adapted and tailored them when necessary to meet our specific needs.

We have acknowledged the verification of specifications to be an important and even a
mandatory activity of the design process. However, verifying specifications is in general
a difficult and lengthy process carrieak without computer assistance. Automated sup-
port for the verification of specifications, relieving users from laborious and error-prone
procedures, has been selected among the most important requirements. An appealing
property of PTL is the existence of algorithms for testing the satisfiability of a temporal
logic formula [2] [16] [17]. These algorithms may be used in a straightforward manner to
provide an automated procedure for verifying the consistency of object specifications.
The decidability of PTL outweighed substantial arguments for choosing a more powerful
formalism, in particular predicate temporal logic [1]. Since the satisfiability test of predi-
cate temporal logic is no longer decidable the design of an automated procedure for veri-
fying specifications could be seriously compromised.

5.1.3 Layout

In the following section we provide a brief introduction to the temporal logic system we
shall be using. In section 5.3 we describe the specification of temporal properties of ob-
jects in TSOM. Section 5.4 presents the verification procedure of object specifications.
The last section presents our concluding remarks.

5.2 Propositional Temporal Logic

PTL is an extension of propositional logic (PL) in which atomic propositions have
time-varying truth value assignments. The time-varying truth value assignment is ob-
tained by associating each time-point withrald. A world is a particular interpretation

in the sense of classical PL. Thus, the truth value of an atomic prop@saionstant

would be the truth value assigneatio the world associated with

Several temporal logical systems have been developed. They differ in the properties at-
tributed to time, i.e. whether it is discrete or continuous, with or without start or end points,
or viewed as containing linear or branching past and future. The logical system we shall
use considers time to be discrete, with a starting point, and linear [11].

Another important extension characterizing PTL is the collection of temporal operators
which, in addition to the usual operators of PL, are used for forming PTL formulas. Dif-
ferent collections of temporal operators may be encountered depending on the logical sys-
tem used. The logical system we have chosen to use has the following temporal operators:

(0f called thealwaysin thefuture operator, meaning thats satisfied in the
current and all future worlds,

* We say that an atomic propositipror a formuld is satisfied in a world if p orf is assigned the truth
valuetrue inw.
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Of called theeventuallyin thefuture operator, meaning thats satisfied in
the current or in some future world,

[0 f called thenextoperator, meaning thais satisfied in the next world,

f; U f, called theuntil operator, meaning that eithfgris satisfied in the current
and all future worlds of is satisfied in the current and all future worlds
until the world wher, is satisfied.

The first three operators are unary, while the last is binary. Note that éottihegpera-
tor we do not clainf, will eventually be satisfied in some future world. The above opera-
tors deal only with future situations. We can extend the system with symmetric operators
for the past:

mf called thealwaysin the pastoperator, meaning thais satisfied in the
current and all previous worlds,

O0f called theeventuallyin thepastoperator, meaning thais satisfied in the
current or in some past world,

e i  called thepreviousoperator, meaning that the current world is not the
starting point andlis satisfied in the previous world,

» f called theweak-previousperator, meaning that eithfes satisfied in the
previous world or the current world is the starting point; the weak
previous operator has no symmetric future operator and has been
included because of our assumption that time has a starting point,

f; Sf, called thesinceoperator, meaning that eithgris satisfied in the current
and all past worlds dy is satisfied in the current and all past worlds since
the world whert, was satisfied.

Figure 5.1 illustrates the meaning of each temporal operator over the tinte Axis
time-pointt which is labelled with a PTL formutaneans thatis satisfied at Operators
until andsince require two alternative time axes for representing their meaning, so each
pair of time axes is enclosed within a rectangular box.

5.2.1 Syntax of PTL

Given:
1. P={p1,py, p3, ...} the set of atomic propositions
2. non-temporal operators; [, [, 0, =
3. temporal operator&!, ¢, [0,U,m,[1,e,»,S
formulas are formed as follows:
1. An atomic proposition is a formula.
2. Iffy andf, are formulas then

(f1), —fq, f1 Ofy, £ Ofy, 1 O £, f; < f, are formulas, and
0 f,0f, O fp, fp Ufy, mfq, £y, @ f1, 0§, f; STy are formulas.

3. Every formulais obtained by application of the above two rules.
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Figure 5.1 The meaning of temporal operators over the time axis.
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Examples of well-formed formulas (wff) of PTL include:

0 ((p Oa) O)

O@e0 Ua)

O (rU (p Ua))
The first wff says that in all time-points eitheandq are satisfied oris satisfied. The
second wff says that for any time-pajpitn whichp is satisfiedg must have been satisfied
in some time-point, t < t,. The last wif says that from the next time-pajgi; eitherr is
satisfied for all time-points= tyey; Or there exists a time-poiRty g, th og 2 thext» Where
q Upis satisfied and for alltpex; <t <ty pg, r is satisfied.

5.2.2 Semantics of PTL

The time-varying truth value assignment of atomic propositions and the time-based mean-
ing attributed to temporal operators leads to a definition of the notion of satisfiability
where the truth or falsity of PTL formulas is evaluated over sequences of worlds. To be
more precise, let =wg, wq, wy, ws, ... be aninfinite sequence of worlds, eaghl w be-
ing an element of the powers&tw the set of all worlds areithe set of atomic proposi-
tions.
The satisfiability of a formulain a worldw; C'w of a sequence is denoted by

(o, w;) £f and can be deduced by the following rules:

(0, w) Ep iff pOw

(O, w) i p iff  pOw

(o,w) e f; Of, iff  (o,w) £ fpand O, w) E fp

(o,w) Efy Ofp iff (o,w)Efor@O,w)Ef

(0, w)) E —fy iff not (o, w;) £ fy

(o,wy) £ 110 5 iff (o,w)E (—f) Of

(O w) Efr= fp it (0,w) e (0 1) O(R0 )

(c,w)eOfy iff Ojj2i (O,w)Ef

(c,w)EOf iff Ojj=i (O,w)Ef

(oow)elf iff (0,wi)Ef

(0, w) T Uty iff eitherOj,j=i, (0,w) Ef

orlj,jzi, (0, w) E f andU k, i <k <j, (0, wy) F f1

(C.w)emify iff Ojos<j<i(O,w)Ef

(c,w)eOf iff Oj,0<j<i, (O, wEf

(o,w) e f iff i>0and@,wq)Ef;

(o,w) E »fq iff i>0and@wiq)Ef,ori=0

(o,w) £ Sf, iff eitherOj,0<j<i, (o, wj) Efi

orJj,o0<j<i, (o,wj) EfoandUdk, j<k<i, (0, wy) E f1
A formulaf isinitially satisfiedor simplysatisfiedby a sequence iff (o, wg) E f. A

formulaf is satisfiableff there exists a sequence satisfyin§uch a sequence isredel
of . A formula isvalid iff it is satisfiable by all possible sequences.
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In order to check the satisfiability of PTL formulas we can use one of the tableau-based
algorithms presented in [2] [16] or [17]. Such algorithms we will satiisfiability algo-
rithms The algorithm takes as input a formekand outputs a graph representing all mod-
els satisfyingr. Such a graph we will callsatisfiability graph If F is not satisfiable the
algorithm signals that it is unable to produce a graph.

The main idea of the algorithm presented in [2] consists of building up the satisfiability
graph in the following way. Start with an initial node labelled with the input formélar
the initial node and all other nodes the following procedure is applied until no more nodes
remain unprocessed. The formula labelling a nodedecomposed into disjunctive nor-
mal form, each disjunct being of the form:

current-instant-formula O O next-instant-formula O ® previous-instant-formula

The previous-instant-formula specifies what should have been verified the previous
time-point. For any nodr” from which an edge points ta the formula labellingy

should satisfyprevious-instant-formula. Otherwise nodel and all edges pointing t®
should be deleted. Thext-instant-formula specifies what should be verified the next time
point. LetN"” be the node labelled witlext-instant-formula. If there exists no node labelled

with next-instant-formula then a new node” is created with labekxt-instant-formula. Then

an edge fromN toN"" labelled withcurrent-instant-formula is introduced in the graph. The
current-instant-formula specifies what should be verified the current time-point and is
always a formula of PL. Thus edges are labelled with formulas of PL while nodes are
labelled with formulas of PTL. The following remark ensures that the process stops. When
transforming a formulainto disjunctive normal form, each conjunct within a disjunct is

a conjunction of either subformulasfafr negated subformulas ofThus the maximum
number of nodes that possibly will be generated equals the number of formulas that are
conjunctions of either subformulasrbr negated subformulas ef

Given a satisfiability graph corresponding to a forniyla possible modegl of F is
identified by traversing the graph. Initiallyis empty. Starting at the initial node, each
time an edge is traversed, a world satisfying the formula labelling that edge is concatenat-
ed to the sequence of worlds forming the madéh general, several worlds may satisfy
a formula but a single world should be chosen to be concatenatebhiather words, a
formula labelling an edge identifies a worldof some modegli. The formula labelling
each node identifies the rest of the sequence of worjdgiwdt iswj, 1, wj;o, ... Note that
the graph produced from the satisfiability algorithm may not be minimal in the sense that
the models of the input formula could be identified with a graph with less nodes and edges

The satisfiability graph corresponding to the formuiigp [(g) O O r)is shown in fig-
ure 5.2. Each node is divided into two parts: the lower part of the node contains the formula
in disjunctive normal form equivalent to the formula labelling the upper part of the node.
The node drawn with a thick line is the initial node. Note thatuhent-instant-formula is
missing from the second disjunct of the formula labelling the lower part of the initial node.
In such cases any non-contradictory PL formula can be takencagé¢heinstant-formula.
We use the symbal to denote any non-contradictory PL formula. The various worlds sat-
isfying the formulas labelling the edges of the satisfiability graph are:
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Figure 5.2 Satisfiability graph corresponding to the formulal ((p Oq) O O r).
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Figure 5.3  Sequences (a) and (b) satisfy O((p Oq) O 0On);
Sequence (c) does not satisfy O((p O g) O O)).

ek {at {r}, {p,r} {a }] satisfy the formula~ (p Oq),
{r} {p,th{a.rh{p ar] satisfy the formular,
[{r} {p.r} {a. 1] satisfy the formula~ (p Oq) Or,

{p} {at{rh{p.a}, {p. 7}, {ar},{p.qr}] satisfy

Each world is represented by enclosing within curly brackets the atomic propositions hav-

ing truth valuarue and assuming that all other propositions have truth ¥atee

Figure 5.3 shows three sequences of worlds relative to the foriq(ddlq) O [ r).
Sequences (a) and (b) satisfy the formlifg [1q) (I [ r). Sequence (c) does not satisfy
O ((p Og) O O r). The world which causes the sequence to be excluded from the set of
models of] ((p Oq) O O r) is the third one in which the atomic propositidsinot satis-

fied while in the previous world the formulal(lq) was satisfied.
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5.3 The Specification of Temporal Properties

In TSOM objects are intended for modelling the various entities of an application. Each
object is associated with a unique object identifier (oid) permitting one to identify the
object independently of its behaviour and the values of its instance variables. An object
communicates with other objects by sending and receiving messages. Messages sent from
an object (sender) to another object (receiver) may be interpreted as requests for the re-
ceiver to perform some task or simply as requests to send back some information to the
sender. The reaction of the receiver may result in a modification of its internal state, a
number of messages being sent to other objects, the return of a value to the sender, or some
combination of the above cases. The internal state of an object stored in its instance varia-
bles and how it reacts to messages is assumed to be hidden from other objects.

Although we qualify TSOM as object-oriented, the notion of inheritance is not part of
it. TSOM is the object-based part of the specification model presented in [2] and [3]. We
shall not discuss any further the absence of inheritance in TSOM. However, the interested
reader is referred to [2] where the notions of role and role playing can replace, at the
specification level, the notion of inheritance.

We distinguish betweeslementary objectasndcomposite object§ he difference be-
tween the two kinds of objects lies in the definition of their structural aspects. An elemen-
tary object is defined independently of other objects. A composite object consists of
references to one or several elementary objects or composite objects. When a composite
objecto references an objecive say that is acomponentf o. Note that a composite
object is not the exclusive owner of its components. A component may be shared among
several composite objects.

Objects are instantiated from classes. A class definition comprises the following items:

» Public messagesvhich can be sent to and received from an instance of the class. To
indicate whether a message is to be seimtoning messager received fromdut-
going messagean instance, the message identifier is suffixed with alefr
right — arrow respectively. In an object-oriented system, the effect of an incoming
message defined in a classould be implemented by an operation definezl ithe
effect of an outgoing messageg of C is expected to be implemented by an opera-
tion defined in another class. The definition ofnsg as outgoing messagedrsim-
ply affirms that an instance ofwill send messagesg to an instance af'.

 Attributesof an instance store values representing either abstract states or simply
characteristic aspects whighvishes advertise to other objects. Each attribute is as-
sociated with a finite domain from which it can be assigned values. For example, in a
classCAR two attributes can be definegeed andengine_status with associated do-
mains {stopped, moving_slowly, moving_fast} and {turned_on, turned_off} respectively.

» Public constraintdescribe the set of legal sequences of public messages and at-
tribute-value assignments.
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» Componentgentify the parts of a composite object. Each compdhenassociat-
ed with a class, noted: C, requiring the value of to be a reference to an instance
of C.

» Component messagesich can be exchanged between the composite object and its
components. As with public messages we distinguish between incoming and out-
going component messages.

» Component constraintiescribe the set of legal sequences of public messages, com-
ponent messages and attribute-value assignments.

» Implementatiols the part of the class definition containing the various programs im-
plementing the behaviour of instances of the class.

All items listed above, with the exception of attributes, should be present in the defini-
tion of a composite object class. IteamnponentTomponent messagasdcomponent
constraintsare absent from the class definition of elementary objects. In the remainder of
this section we will describe in more detail each of the above items with the exception of
theimplementationtem.

5.3.1 Public Messages

An example of a class definition of elementary objects is given in figure 5.4. Class
CTRL_TOWER models the control tower of an airport. Public messageske_off and

req_land have been defined as incoming messages. They model requests for taking off and
landing which can be addressed to the control tower by some object. Messages
perm_take_off andperm_land have been defined as outgoing messages. They model per-
missions for taking off and landing which are granted to those objects that had previously
made a corresponding request to the control tower.

In most object-oriented systems it is recommendesidppliersof classes to hide out-
going messages of objects from thudiients . We decided to allow the definition of outgo-
ing messages in an object’s interface to ease the design of objects cooperating on the basis
of asynchronous communication. Indeed, many real-world situations are naturally mod-
elled as a collection of objects asynchronously communicating between them. Thus asyn-
chronous communication has been reported as an important object cooperation technique
which should be directly supported by object-oriented design methodologies. Defining an
outgoing messagesg for an object implies thab is expected to cooperate with some ob-
jectz which definesisg as an incoming message and to whialill sendmsg. Most often,
o is informed which object will be the receivernadg, by assigning the oid afto some
parameter of an incoming message.of

The ability to include outgoing messages among public messages of@atessnot
imply that all messages exchanged with an instarafec have to be defined as public.

* For a clas<C, we use the tersupplierfor naming the person who has defined and implemet¥de
use the terralientfor indicating the person or object using the servic€x of
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class CTRL_TOWER {
public messages
req_take off —,req_land —,
perm_take off -, perm_land -
public constraints
req_take off Oreq_land,;
O (req_take_off O (¢ perm_take_off));
O (reqg_land O (¢ perm_land));
implementation
req_take_off (perm_receiver: oid, ...)
{.-}
req_land (perm_receiver: oid, ...)

{...h

Figure 5.4 Class CTRL_TOWER modelling the lifecycle of a control tower of an airport.

Only messages that are part of the interfacesttould be included in the list of public
messages. For example, assumingdhsitan instance afTRL_TOWER, the four public
messages defined in classRL_TOWER are all meaningful for clients of The imple-
mentation ob could use a hidden componasine_list, having the functionality of type

LIST. The usefulness giane_list would be to represent the list of aeroplanes that have
made a request for taking off or landing and for which the corresponding permission has
not been yet granted. In contrast with the collection of public messagesLOfTOWER,
messages exchanged betwe@mdplane_list, like insert_into_list anddelete_from_list, are
meaningless for clients ofand should not appear in the list of public messages of class
CTRL_TOWER.

5.3.2 Public Constraints

Public constraints associated with a class are specified in a language resembling PTL.
More precisely, for a clags we associate with each public mesgage atomic proposi-
tionp in PTL. We model the fact that a public incoming (outgoing) megsagent to (re-
ceived from) an instance af at time-pointt by associating with a world where is
satisfied. Mapping messages to atomic propositions implies that the distinction between
incoming and outgoing messages is essentially informative for the user since it is neither
captured nor enforced in PTL. However, the relevance for distinguishing between the two
kinds of messages will be fully appreciated when the notion of composite object is de-
scribed in detail.

Concerning the specification of constraints we assume that only one message at a time
can be sent to or received from an object. In other words, in each world of a sequence of
worlds we require that exactly one atomic proposition is satisfied and all others are unsat-
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Figure 5.5 Sequences of public and state messages relative to the class CTRL_TOWER.

isfied. Assuming that messagesisg; are defined in a class, the above requirement is
expressed in PTL with the formula:

0 ((ODmsgy) O( 0= (msg; D msg;))

1<k<n 1<i#j<n

Public constraints defined in claseRL_TOWER (figure 5.4) formally describe the be-
haviour of a control tower. Letbe an instance @fTRL_TOWER. The first constraint says
that the first message to be semntriaust be eitheeq_take_off orreq_land. The second con-
straint says that whenever messagetake_off is sent ta, then sometime in the future
messageerm_take_off will be received fromo. The last constraint says that whenever
messageeq_land is sent ta, then sometime in the future messagen_land will be re-
ceived frono. Figure 5.5 shows two sequences of public messages satisfying the temporal
constraints defined in clas¥RL_TOWER.

ClassCTRL_TOWER constitutes an example of a class definition expecting to cooperate
with its clients on the basis of asynchronous communication. Indeed, an instafnce
CTRL_TOWER will send messagerm_land to those objects whose oid has been assigned
to some parameter, eggrm_receiver, of the incoming messageg_land. Similarly, the
parametemperm_receiver Of req_take_off will be used for determining the receivers of
perm_take_off messages. Note, however, that the above relationships involving senders
and receivers of messages, and parameters of messages cannot be described in PTL and
therefore they cannot be explicitly specified in the constraint definition language we are
proposing. They have to be annotated as comments. Nevertheless, in the case of composite
objects (see below), messages exchanged with internal components are prefixed with the
identifier of the involved component, thus allowing at least some form of constraint spec-
ification on internal messages.

Whether public constraints associated with a class are or are not violated is the re-
sponsibility of both the supplier and the client. For example, not receiving message
perm_take_off from an instanceTRL_TOWER after having sent message_take_off is the
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class PLANE {
public messages
land —, take off —;
public constraints
take off;
O(take_off O (O land));
O(land O (O take_off));
implementation

Figure 5.6 Specification of class PLANE.

responsibility of the supplier. Consider now the class definfioxNE (figure 5.6),
modelling the lifecycle of an aeroplane. Its public constraints require the two incoming
messagetke_off andland to be sent to an instane®f PLANE alternately, the first mes-
sage beingpke_off. In this case it is the responsibility of the client to ensureadkatoff
andiand messages will be senddan the specified order.

5.3.3 Shifting from Local Time to Global Time

Public constraints specify the temporal behaviour of an objentlocal time i.e.
time-points are identified with messages that are sent to and receivedifowever, the
specification of public constraints in local time does not take into account thay
cooperate with a collection of objects. More preciselyjay become a component of a
composite object, the various cooperating objects being the composite object and its com-
ponents. In that case, between any pair of messages defined@or several messages
defined in other cooperating objects may be interleaved. In other words, public constraints
of o should have been specifiedjiobal timein which case time-points are identified with
messages that are sent to and received from any of the cooperating objects. Fortunately,
constraints specified in local time can be easily transformed to constraints in global time
in such a way that their initial meaning is “preserved.” The transformation of public con-
straints from local time to global time is callediversalizatiorand will be formally de-
scribed in subsection 5.4.2.1. There are two reasons for preferring the definition of public
constraints in local time rather than the definition in global time. First, it is easier to specify
constraints in local time than in global time, and second, the resulting constraints are sim-
pler and easier to understand.

Even though the universalization of constraints preserves their initial meaning, some-
times the user wishes to specify a constraint directly in global time rather than in local
time. TSOM provides the user with such a facility. Enclosing a formula or a subfarmula
within angle brackets “<” and “>” excludefrom the transformation process of univer-
salization.
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class PLANE {
attributes
pl_status: {operational, maintenance};
public messages
land —, take off —;
public constraints
pl_status := (operational [Imaintenance);
O(take_off 0 ((pl_status == operational) 10 land));
O(land O (e take_off (10 ((pl_status := maintenance) [Itake_off)));
O((pl_status == maintenance) O (O (pl_status := operational)));
implementation

Figure 5.7 Enhanced version of class definition PLANE.

Let us elucidate with an example of both the usefulness for providing the above facility
and the meaning of “preserves” in the definition of universalization. Consider the con-
straintl (p O O q) defined in a class requiring every messageao beimmediatelyfol-
lowed by message The universalization of the above constraint would requiremgties
next messagemong those defined @to beg, yet permitting zero or more messages;
to be interleaved betweerandq, provided that messagesg; have not been definedadn
Thus when specifying a formuld(p O O q) in public constraints, its meaning in global
time would be the second one, i.e. the meaning corresponding to its universalized version.
However, specifying the constraint<(p [ [0 g)> will ensure even in global timethat
every messagebeimmediatelyfollowed by message without allowing any message be
interleaved betweegnandg.

5.3.4 Attributes

Figure 5.7 presents a more elaborate version of therilasiE presented in subsection
5.3.2 (figure 5.6). Its definition includes an attriqutetatus with associated domaing-
erational, maintenance}. Value maintenance is assigned tgl_status during a maintenance
period for the aeroplane. Valogerational assigned tpl_status indicates that the aeroplane
can travel.

The main reason for providing attributes in class definitions is to enhance the readabil-
ity of constraints and ease their specification. Indeed, attributes are very useful when we
want to express the fact that one or several actions on a particular object can be undertaken
depending on the current values of one or several attributes of that object.

Leto be an instance GLANE. The first of the public constraints says that the attribute
pl_status should be assigned either the valpeational or the valuenaintenance” . The sec-
ond constraint says that wheneveeceives messagse_off the value ofl_status should
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beoperational and the next message to be sentdioould beand. The third constraint says
thato may receive messaged if the previous message receivedhie_off. In addition,
whenever messagnd is received, then either the next message to be seshtauld be
take_off Or the attribute@l_status should be assigned the vatgintenance. In other words,
after a flight the aeroplane can either continue travelling or begin a maintenance period.
The last constraint says that if the value of attriputgatus is maintenance, then the next
action should be the assignment of valpational to pl_status.

In order to treat attributes and messages within the same framework we associate with
each valueal belonging in the domain of attribudea messagassign_at_val. Let us call
these messagessignment messagé&ending the assignment messag@yn_at_val to
an objecb models the assignment of vakaeto the attributet of o. Thus, whenever an
assignment of the forma :=val appears within constraint definitions, it is intended as a
shorthand for the assignment message ident#fsgin_at_val. In addition, whenever a test
equality of the fornat == val; appears within constraint definitions it is intended as a short-
hand for the formula

(U assign_at_val) U (= (Dassign_at_val;) S assign_at_val)
1<i#j<n

where {al;, ..., val,} is supposed to be the domain associated avithhis expresses that
at a given instant the current value of attritauis val;.

What differentiates an assignment message from a public message is that the sender and
receiver of an assignment message should be the same object. Itis not possible for two ob-
jects to exchange any assignment message, which implies that values of attributes defined
in an object can only be updated hyitself. Attribute-value updates constitute an exam-
ple where the supplier of a classs responsible for providing an implementatio dfiat
satisfies the temporal order of attribute assignment defirgsl jrublic constraints.

Figure 5.8 shows two sequences of public and assignment messages relative to the class
PLANE. The first is a legal sequence satisfying the temporal constraints in figure 5.7. The
second is an illegal sequence since mesakgeff follows the assignment of valuein-
tenance to attributepl_status thus violating the second and fourth public constraints.

5.3.5 Components

An example of a class definition of a composite object modelling the flight of an aeroplane
is given in figure 5.9. ClagtIGHT contains three componengs:ctt andctl. Component

pl is constrained to be assigned an instanca®fE modelling the aeroplane making a
trip. Componentstt andctl are constrained to be assigned instancesrRf_TOWER.

* If yis an attribute with associated domaxq {..., x,} then
y = (Xq O... Ox) with k< nis a shorthand fgr:=x, O... Oy := x,and
y == (X1 O... Ox,) with k< nis a shorthand fgr==x, O... Oy == X,
“:="is used for assigning a value to an attribute
“=="|s the test-equal-value operator
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alssign_

pl_status_

operatiorial take_off land  take_off land  take_off land

a | | | [ | [ | [ | [ |

@ I 1 1 1 1 1 1 -
assign_ assign
pl_status_ take_off  land pl_s?atﬁs_ take_off
operational maintenance

b L 1 1 1 1 1 1

(b) I 1 1 1 1 1 1 o

Figure 5.8  Sequences of public and state messages relative to the class PLANE
((a) legal sequence; (b) illegal sequence).

They represent the control towers of airports from which the plane respectively takes off
and lands.

Even though an objeat may be a shared component of several composite olyects,
cannot be referenced from two different componeptndk, of the same composite ob-
ject. Indeed, PTL does not permit us to distinguish whether the sender or receiver of a mes-
sage referenced by componexisndk,, is the same object or not. Thus TSOM assumes
that different components of a composite object reference distinct objects.

Let us call thenvironmenbf a composite objeotthe set of all objects existing at a giv-
en point in time excluding and its components. Public messages, attributes and public
constraints are considered to be the interface of a composite object for its environment.
Public messages are exchanged between the composite object and the environment of the
composite object. Public constraints may not contain component message identifiers; they
describe the behaviour of a composite object as if the communication between itself and
its components has been filtered out. For example, an instaficé&IGHT may receive
messagestart_flight anddispl_report from its environment. The effect of tkart_flight
message would be to set up a cooperation between the aeroplane and the two control tow-
ers necessary for an aeroplane to make a trip. The effectiaftheport message would
be to display a complete report once the flight has been completed. Messadesit
anddispl_report can be sent todepending on the current abstract state Dbmain values
of attributefl_status model the various abstract states,afhich arecomp_pb when there
is a problem encountered with somesfcomponents and the flight cannot be carried
out;ready when there is no problem with anyotf components and the coordination proc-
ess between components can be stasteded when the plane has taken off but not yet
landedcompleted when the plane has landed.
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class FLIGHT {
attributes
fl_status: {comp_pb, ready, started, completed};
public messages
start_flight —, displ_report —
public constraints
fl_status := (ready Ocomp_pb)
O (start_flight O
[(fl_status ==ready) OO ((fl_status := started) O
((fl_status == started) U (fl_status := completed)))]);
O (displ_report O (fl_status == completed));
O ((fl_status == (completed Opl_maintenance)) O
- (fl_status := (started Clcomp_pb Oready [lcompleted)));
components
ctt: CTRL_TOWER;
ctl: CTRL_TOWER,;
pl: PLANE;
component messages
ctt$req_take_off -, ctt$perm_take_off —,
cti$req_land -, cti$perm_land —,
pl$take_off —, pl$land - ;
component constraints

implementation
perm_take off(sender: oid, ...)

{.}
perm_land(sender: oid, ...)

{.k

Figure 5.9 Class FLIGHT modelling the flight of an aeroplane.

5.3.6 Component Messages

Component messages are exchanged between the composite object and its components.
The definition of each component messagg should indicate the component which is

the sender or receiveragg. This is achieved by prefixing the message identifier with the
component identifier and separating the two identifiers with the character “$”. For exam-
ple, the definition of component messaieq_take_off means that messageg_take_off

can be sent from an instancerofGHT to componenétt. In addition, assuming the com-
ponent definitiork: C, each incoming (outgoing) component mess&giesg, should

match an outgoing (incoming) public messaggdefined in class. For example, for the
definition of the incoming component messag&erm_land — in classFLIGHT, the
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outgoing messageerm_land — should appear in the list of public messages of class
CTRL_TOWER.

Implementing a component incoming messagesg would require certifying that the
sender ofnsg isK, therefore necessitating a comparison between the sender’s &d and
oid. However, in most object-oriented systems, the sender of a message is not known to the
receiver of the message. A simple solution for identifying the sender of an incoming com-
ponent messagesmsg — would be the assignment of the sender’s oid to a particular pa-
rameter ofnsg. In particular, for any outgoing public messagg defined in a class, it
would be a good practice to anticipate a parameter for the senay. dhdeed, a com-
ponent definitiork: C in a clascC enables the definition of the incoming component
messag&smsg . The implementation afisg in CC needs the oid of the sendemneh.

An example of the above strategy is illustrated with the implementation of messages
perm_take_off and perm_land in classFLIGHT (Figure 5.9). Messageerm_take_off
(perm_land) uses the paramet&nder for identifying the sender of the message while ex-
pecting instances OCTRL_TOWER to assign their oid tesender when sending
perm_take_off (perm_land).

5.3.7 Component Constraints

Component constraints specify the legal sequences of public and component messages
exchanged between the composite object, components of the composite object and the en-
vironment of the composite object. For all component messages the composite object is
involved either as sender or receiver. A direct communication between two components of
a composite object cannot be defined. From the above restriction it becomes obvious that
a composite object acts as a coordinator for its components. Temporal dependencies in-
volving different components must be described by means of messages exchanged with
the composite object. Component constraints in figure 5.10 describing the communi-
cation between an instaneef FLIGHT ando’s component$l, ctl andctt, constitute an
example of such a dependency.

The first component constraint requires attributgatus to be initialized either with
valueready or pl_maintenance depending on the value assigned to the attriputeatus of
componenpl. More preciselyfl_status will be initialized toready (comp_pb) if pl_status iS
assigned valueperational (maintenance). The second constraint says that message
start_flight may be sent toif the current value df status iSready. In addition, ifstart_flight
is sent tw then the next instant component messegeake_off should be sent to compo-
nentctt from the composite object. The purpose of the communication between the com-
posite object and componaerttis to grant permission to take off. Once the permission to
take off is granted, the command to take off for the aeroplane is issued from the composite
object. This is expressed by the third component constraint. It says that whenever message
perm_take_off iS received from componettt, then the next message to be setaikis off
with sender the composite object and receiven addition, attributé_status is assigned
valuestarted immediately after messag@take_off has been sent po The fourth and fifth
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class FLIGHT {

component constraints
((pI$pl_status == operational) O (fl_status :=ready)) O
((= (pl$pl_status == operational)) O (fl_status := comp_pb));

O (start_flight O ((fl_status ==ready) OO ctt$req_take_off));
O (ctt$perm_take_off O O (pl$take_off OO (fl_status := started)));

O ((fl_status == started) O ¢ ctl$req_land)));
O (cti$perm_land O O (pl$land OO (fl_status := completed)));

O (displ_report O (fl_status == completed));
O ((fl_status == (completed Opl_maintenance)) O
- (fl_status := (started Ocomp_pb Oready Llcompleted)));

Figure 5.10 Component constraints of class FLIGHT.

component constraints specify an analogous communication between the composite ob-
jectand component. More precisely, the fourth constraint requires that component mes-
sagereg_land to be sent totl sometime in the future after the valueiaftatus is started.

The fifth constraint specifies that once the permission to land is granted (component mes-
sageperm_land is sent to the composite object from comporgnthe command to land
(component messagesland) for the aeroplane is issued from the composite object. In
addition, for indicating that the aeroplane has landed the vatygeted is assigned to
attributefl_status. The sixth constraint says that mess#ige report may be sent toif the

current value ofi_status is completed. Finally, the last component constraint ensures that
oncefl_status has been assigned one of the vatiwes_pb or completed it cannot be later
updated.

Let us now clarify the rationale for introducing both public constraints and component
constraints in composite object class definitions. To test consistency of a composite ob-
ject’s specification, the specification of the temporal behaviour of its components must be
taken into account. As we will describe in the next section, this is achieved by testing the
satisfiability of the logical conjunction of public constraints of components and compo-
nent constraints of the composite object. Taking the conjunction of public constraints
without regard to component constraints of a componefrd composite objeotpermits
irrelevant details of the eventual compositionfwbm other objects to be abstracted away.

If o is in turn a component of a composite obgethe satisfiability of the conjunction of
component constraints oind public constraints efshould be tested in order to confirm
either the consistency or inconsistency'®tpecifications.

Figure 5.11 depicts the use of public and component constraints for composing objects.
Ovals represent class definitions. An edge lab#&lednnecting a classwith a clas<’
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Public constraints
Component constraints

Public constraints
Component constraints

Public constraints
Component constraints

Public constraints Public constraints Public constraints

C, composition = component -constraints -C, O public -constraints -C4; O

public -constraints -C, Opublic -constraints -Cs

Cg composition = component -constraints -Cg [public -constraints -C, O
public -constraints -Cs

Figure 5.11 Using public and component constraints to compose objects.

Indicates that componekit C” is defined within the definition @. For class, the con-
junction of component constraints@f with public constraints of classes, C, andCj
should be made. Then for the compositioggthe conjunction of public constraints of
classes of, andcs with the component constraints@f should be made.

The above schema of object composition requires public and component constraints of
the same object to be related by some compatibility rule. In fact, we must ensure that for
any sequenae satisfying component constraints there exists a sequoentpublic mes-
sages satisfying public constraints such that when component messages are eliminated
from o we get a sequence identicattoWe will call the above compatibility rule between
component constraints and public constraints of the same composite objemtréhe
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spondence propertyhe correspondence property requires us to verify the validity of the
formula:

component constraints [1 universalized public constraints

The universalization of public constraints is necessary for taking into account that one or
several component messages can be interleaved between any pair of public messages. In
other words the universalization of public constraints corresponds to a shift from local
time to global time. In this case time-points in local time are identified with the composite
object’s public and assignment messages whereas time-points in global time are identified
with the composite object’s component, public, and assignment messages.

5.4 Verification

To verify the consistency of object specifications we make the following assumptions con-
cerning the object model of TSOM. Each clagsvns an infinite number of oids. An oid

o becomes an instance®ivhen it receives the predefined messagee_C. An instance

o of C is deleted when receives the predefined messagete_C. The deletion 0b is
modelled by restricting to only be able to acceglete_C messages.

5.4.1 \Verification of Elementary Objects

The consistency of a class definitionfrom which elementary objects are instantiated,
can be verified by giving as input to the satisfiability algorithm the formula:

(- (delete_C Omq ... Omy) U create_C) [ 4.1)
] (create_C [ [ public_constraint_C) [J (4.2)
O (create_ C O ((I0 = create_C)) O (4.3)

[ (delete_C [0 [ delete_C) 4.4)

In the previous formulay,, ..., m, is assumed to be the set of public and assignment mes-
sages defined i . public_constraint_C stands for the conjunction of constraints defined in
classc. Conjunct (4.1) says that no public message natdlbee_C message can be sent
to an object prior to its creation. Conjunct (4.2) says that after the creation of an object its
public constraints must be verified. Conjunct (4.3) forbids an object to be created more
than once. Finally conjunct (4.4) ensures that after acceptisigt@ C message, an ob-
ject will then only be able to accept furtlielete_C messages.

For a class we will nameLcpublic_c' the conjunction of (4.1), (4.2), (4.3) and (4.4).
The output of the satisfiability algorithm corresponding to the formzgablic_C deter-
mines the consistency of If no graph is produced, the definitionaik inconsistent. If a
satisfiability graph is produced, the definitioncak consistent. This satisfiability graph

*  Assignment messages are indirectly defined via attribute definitions.
Tt LCpublic stands for lifecycle according to public constraints.
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co: CC| component messages
X$p. £$q
component constraints
start 00 (Xx$p OO0 ((x$p D0 &$q) O (ESq OO X$p)))
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X:Ci|l Op Environment of co

Figure 5.12 A composite object and component specifications.

then represents all legal sequences of public and assignment messages that can be sent to
and received from an instancef

5.4.2 \Verification of Composite Objects

To describe the verification of a composite object’s specification let us assume the situa-
tion presented in figure 5.12. An object is depicted by a rectangle. A rectangle correspond-
ing to an elementary object is labelled with a formula describing its public constraints.
Rectangles corresponding to composite objects are divided into two horizontal parts. The
upper part is used for listing the public constraints of the composite object. The lower part
is used for listing the list of component messages and component constraints.

A grey arrow connecting two rectangles is drawn when the two objects are assumed to
exchange messages. A black arrow connecting two rectarayelg, leavingx and lead-
ing toy, is drawn whegis a component of Thusco in figure 5.12 is assumed to be a com-
posite object having two componergsandé,. Let component¥ and§ be assigned
instances of classes andc, respectivelyco is assumed to be an instanceof

Component constraints af say that the first message to be seet toust be the public
messagetart. Immediately after the receptionsudrt, messaggsandg should be sent to
component¥ and¢ alternately, starting with@message. Public constraints of compo-
nents are very simple. Compon&néxpects always to receive messpgéomponent
expects always to receive either messpgemessage
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The basic idea for testing the consistency of a composite object’s specification is to give
as input to the satisfiability algorithm the conjunction of the object’s and its components’
specifications. If a class definitiatC contains the definitions of componemtsc;,
i=1, ..., n, the input to the satisfiability algorithm would be the formula:

LCpublic_Cq U ... OLCpublic_Cp []LCcomponent_CC [ (4.5)
(- create_CC U create_Cq) L1.. [~ create_CC U create_C)) [J (4.6)
O (sp O... Osp) 4.7)

Conjuncts.Cpublic_Cq, ..., LCpublic_C, specify Iifecycles* corresponding to components
Ki: Cj,i =1, ..., n, respectively. ConjuneiCcomponent_CC specifies the lifecycle of the
composite object and stands for the formula:
(= (delete_C Omy O... Omp) U create_cC) [
[ (create_CcC [ [1 component_constraint_CC) [
[ (create_cc [ ([IJ = create_CC)) [
[ (delete_ccC [0 [ delete_cC) [

wherem,, ..., m, is assumed to be the list of public, assignment and component messages
defined incC andcomponent_constraint_CC stands for the conjunction of component con-
straints defined ioC. Conjuncts- create_CC U create_Cj,i =1, ..., n, say that all compo-
nents must have been created before the creation of the composite object. The last
conjunct says that component messages not defirietidannot be exchanged. Thss,
i=1,...,]j, are all such messages identifiers of the fe$msg such that the component
definitionk: C appears irtC, msg is a public message defineddrand k$msg does not
appear in the list of component messagesoof

The constraint on component creation we have expressed with conjunct (4.6) is merely
introduced for expository reasons. Its omission would not represent any significant benefit
for the description of object lifecycles at the specification level but additional complexity
for the various formulas formalizing the notions we are proposing. Indeed, modelling sit-
uations where an objectould be created either before or after a composite abgaut
thenz be assigned to a componend oéquires the introduction of lengthy and complicat-
ed formulas.

For the composite objegi in figure 5.12, the input to the satisfiability algorithm would
be the formula:

LCpublic_C4 ULCpublic_C, [JLCcomponent_CC [ (4.8)
(= create_CC U create_Cq) [{— create_CC U create_C») [ (4.9)
O (- &sn) (4.10)

Conjuncts.Cpublic_C, LCpublic_C, andLCcomponent_CC correspond to componerxs
¢ and to the composite objectrespectively.

However, the conjunctions of formulas (4.5), (4.6) and (4.7) cannot be directly given as
input to the satisfiability algorithm. A number of transformations must be applied in ad-
vance. The rationale for these transformations and their exact nature is the subject of the

* LCcomponent stands for lifecycle according to component constraints.
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following subsections. The various transformations can be carried out automatically,
meaning that the whole verification process can be automated.

The output of the algorithm will determine the consistency of the composite object’s
specification. If no graph is produced, the specification is inconsistent. If a satisfiability
graph is produced, the specification is consistent. The graph produced represents all legal
sequences of public, assignment and component messages exchanged between the com-
posite object, the various components of the composite object and the environment of the
composite object.

5.4.2.1 Transformations on Component Definitions

In this subsection we describe the various transformations that should be performed on
conjuncts.Cpublic_Cq, ..., LCpublic_C, of formula (4.5).

Message Renaming

To achieve the matching between component messages defined for a composite object and
public messages of componekit C; each messagesg appearing within conjunct
LCpublic_C; of (4.5) should be renam&smsg. Thus, if a class specification contains the
component definitiong,: C andk,: C (i.e. both components,; andk, are associated

with the same clasy), the component which is the sender or receivesgtan be distin-

guished sincensg is renamed eithaq;$msg or K,$msg. The formula resulting from that
transformation will be nameid$LCpublic_C;. For example, according to the public con-
straints of componenin figure 5.12X$LCpublic_C4 stands for the formula:

(= (X$delete_Cq O X$p) U X$create_Cq) O
0 (X$create_Cq O 0O 0 X$p) O
O (X$create_Cq O (10 = X$create_Cq)) U
O (X$delete_Cq O O X$delete_Cq)

Sharing Components

To take into account that compon&nic; may be shared between the composite object
and the environment afo, each messag€smsg within the conjunctks$LCpublic_C;,
should be replaced by the formula:

K$msg [Jenv$K$msg (4.11)

Messages exchanged between a component and the environment émaireunent
messaggsare prefixed withénvs”. Messages exchanged between a component and the
composite object are not renamed. Replacing a megsagg with the formula (4.11)
implies that the sender or receiver of a messagecould be eitheto or an object from

the environment ofo. The resulting formula from that transformation is named
env$K$LCpublic_C;.

For example, for componejtin figure 5.12env$X$LCpublic_C4 would stand for the
formula:
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(= (x$delete_Cq [envsyPdelete_Cq I x$p Denvsx$p) U envsx$Sereate_Cq) [
O (envsx$ereate_Cq O O O (x$p Denvex$p)) U
O (env$x$ereate_Cq O ((IJ - envgx$ereate_Cq)) O
O ((x$delete_Cq OenvsyPdelete_Cq) O O (x$delete_Cq Oenvsy$delete_Cq))

Recall that assignment messages cannot be exchanged between objects. Therefore only
environment-assignment messages can exist since a composite object cannot be the send-
er of an assignment message to any of its components. Thus, any assignment message
K$msg should be simply renamedv$K$msg. In addition, the composite object cannot
send acreation message to a componert, since components should exist before the
creation of the composite object. Therefore afigreate_C must be simply renamed
env$k$create C.

Universalization of Public Constraints of Components

Let us assume that, ..., m, is the collection of public messages defined in a dassl
that K: C is a component definition appearing in a class definition for composite objects.
Then we introduce the following shorthand expressions:

public_msg_C = mq .. O my UOdelete_C

K$public_msg_C =  K$mq U.. O K$mp, UKs$delete_C
env$Ks$public_msg_C =  env$K$mq [L.. [ env$K$m, LenvKsdelete_C
K$env_pub_msg C =  K$public_msg [lenv$K$public_msg [1KS$create C

The rationale for the universalization of conjuast$K$LCpublic_C corresponding to
componenk: C has been described in subsection 5.3.1. The universalization consists of
the following transformations:

replace P by - Ks$env_pub_msg CUp
replace O f by - Ks$env_pub_msg_C U (K$env_pub_msg_C [0 f)
replace o f by - K$env_pub_msg_C S (K$env_pub_msg_C [l e f)

wherep is an atomic proposition amd wif of PTL appearing withianv$K$LCpublic_C.

Applying the universalization afv$x$LCpublic_C; we will obtain the following for-
mula:

(=((= xs$env_pub_msg_cq U
(Xx$delete_C1 Oenvsx$delete_Cq L $p DenvsyxPp)) U
(= X$env_pub_msg_Cq U env$x$create_Cq)) O

O (= x$env_pub_msg_C4q U env$x$create_Cq [
(= X$env_pub_msg_Cq U
(x$env_pub_msg_Cq O
O O (= x$env_pub_msg_Cq U (x$p Uenv$x$p))))) U

O (= x$env_pub_msg_Cq U env$x$create_Cq [
(= x$env_pub_msg_Cq U
(x$env_pub_msg_Cq O
[ (- x$env_pub_msg_Cq U = env$x$create_C1)))) U
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O ((—= x$env_pub_msg_Cq U (x$delete_Cq Oenvsx$delete_Cq)) O
(= x$env_pub_msg_Cq U
(x$env_pub_msg_Cq O
O (= x$env_pub_msg_Cq U (x$delete_Cq Oenv$x$delete_C1))))))

In the above formula we have used the equivalence:
fU(fL Of) =« (Uf) OFUL)
while x$env_pub_msg_C, is the shorthand for the formula:
X$delete_Cq Uenvsx$delete_Cq LK $p Denvex$p Lenvsx$ereate_Cq

5.4.2.2 Universalization of Component Constraints of Composite
Objects

Let us assume that, ..., g, are the various component messages defined in aodass
Then we introduce the following shorthand expressions:

component_msg_CC qp L. O dp

msg_CC public_msg_CC [lcomponent_msg_CC [lcreate_CC

The universalization of conjuncCcomponent_CC in (4.5) is required to take into ac-
count that one or several environment messages may be interleaved between a pair of
component, assignment or public messages in which the composite object is either the
sender or the receiver. The universalizationaabmponent_CC consists of the following
transformations:

replace p by - msg_ccUp
replace O f by - msg_cc U msg_cc 0 f)
replace e f by - msg_CCS(msg_cCcle f)

wherep is an atomic proposition and wif of PTL appearing withinCcomponent_CC.

5.4.2.3 Verification of the Correspondence Property

According to the shorthand expressions we have already introduced, the correspondence
property for a classc for composite objects is easily formalized by requiring the follow-

ing formula to be valid:

component_constraint_CC [ (universalization opublic_constraint_CC)
The universalization gfublic_constraint_CC consists of the following transformations:

replace P by - public_msg_CcC U p
replace 0 f by = public_msg_CC U (public_msg_ccC [0 f)
replace o f by - public_msg_CC S (public_msg_CC [ e f)

wherep is an atomic proposition and wff of PTL appearing withipublic_constraint_CC.
As an example consider a composite object for which one public mgsaageone
component messagesq have been defined, the formlla being its public constraint
and the formula
U ((p U0 K$qg) LI (K$g 1L p))
its component constraint. The correspondence property requires us to test the validity of
the formula:
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O U0 K$g) O(K$sg D0 p)y 0 O (= pUp)
Using the satisfiability algorithm of PTL, the validity of the above formula is easily veri-
fied.

5.5 Concluding Remarks

We have presented a formal approach, founded on PTL, for the description of temporal
aspects of an object’s behaviour and its composition with other objects. An object’s tem-
poral properties are specified by means of a collection of component and public con-
straints. The former specify the temporal order of messages exchanged between a
composite object and its components. The latter specify the behaviour of an object as if the
communication between it and its internal components has been filtered out. We described
an automated procedure for verifying the consistency of object specifications based on the
satisfiability algorithm of PTL.

A significant source of influence for the various ideas we have presented has been the
work of Manna and Wolper who investigated the composition of synchronized collections
of concurrent processes [17]. For Manna and Wolper a process specification (an object in
our approach) consists of a collection of PTL formulas (public constraints) describing the
temporal order of its input/output communication operations (incoming/outgoing mes-
sages). The consistency of a concurrent system consisting of a synchronizergfacess
composite object) communicating with a collection of proce®ses i < n (components
of a composite object), is verified by giving as input to the satisfiability algorithm of PTL
the composition of andp; specifications. Even though one may find strong similarities
concerning both the behaviour specification of a process (object) and the verification
procedure for consistency, the two approaches are characterized by different modelling
prerequisites and divergent objectives. An important prerequisite emphasized in our ap-
proach is the ability of specifying composite objects having a nested structure of arbitrary
depth (composite objects having components that are other composite objects). The nest-
ed structure of composite objects necessitated the distinction between public and compo-
nent constraints and the validation of the correspondence property. In addition, the fact
that an object may be a shared component of several composite objects led us to introduce
“env’ messages. None of the above modelling issues have been investigated in [17]. Final-
ly, there is an important distinction concerning the objectives of the two approaches. In our
approach we ended up with a procedure for verifying an object’s temporal specifications.
In [17] the satisfiability graph corresponding to the compositi@enfdr; specifications
is further used for deriving the synchronization parts of codeaoid ther;'s. More pre-
cisely, for each process,ands, Manna and Wolper derive from the set of all possible se-
guences of communication operations a subset which satisfies the specified constraints.

Several improvements can be envisaged for TSOM along various directions. First and
foremost, there is a need for providing the specifier with assistance for translating TSOM
specifications into some object-oriented language. Assessing the various alternatives for
providing higher-level assistance than that of guidelines, we ended up investigating the
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eventuality of enriching an existing object-oriented language with constructs that would
directly support most of the notions integrated in TSOM. Further evidence to support the
validity of this approach is given by Nierstrasz (see chapter 4). There, a type system for ob-
ject-oriented languages is proposed which enables users to describe temporal aspects of
object behaviour and provides rules for analyzing the type-consistency of such descrip-
tions. Even though the formalism upon which that type system has been developed is dif-
ferent from PTL, it is likely that most of the ideas and results could also be applied for
PTL. Thus, the proposed type system could serve as the starting point for enhancing ob-
ject-oriented languages with constructs directly supporting most of TSOM'’s notions.

Another important direction along which additional efforts are necessary for improving
TSOM concerns the verification procedure. The satisfiability algorithm of PTL, upon
which the verification procedure is based, may generate a number of nodes that grows ex-
ponentially with the number of temporal operators of the input formula. By operating the
algorithm the way we have described, i.e. applying the algorithm to each object specifica-
tion separately and not to the composition of all constraints of those objects participating
in a whole part-of hierarchy, the size of input formulas is considerably minimized. How-
ever, the exponential nature of the satisfiability algorithm still remains a serious efficiency
handicap for its computer implementation. Restricted forms of PTL may reduce the
number of nodes of the satisfiability algorithm to polynomial size [10]. However, whether
such restrictions of PTL are still suitable for TSOM remains to be investigated.
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