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Chapter 8

Managing Class Evolution in 
Object-Oriented Systems

Eduardo Casais

Abstract    Software components developed with an object-oriented language
undergo considerable reprogramming before they become reusable for a wide
range of applications or domains. Tools and methodologies are therefore
needed to cope with the complexity of designing, updating and reorganizing
class collections. We present a typology of techniques for controlling change in
object-oriented systems, illustrate their functionality with selected examples and
discuss their advantages and limitations. 

8.1 Object Design and Redesign

8.1.1 The Problem

Nowadays, it is generally assumed that the mechanisms provided by object-oriente
guages — namely classification, encapsulation, inheritance and delayed bindi
together with a comprehensive set of interactive programming tools, provide the 
functionality required for the large-scale production of highly reusable software co
nents. However, software developers working with an object-oriented system ar
quently led to modify extensively or even to reprogram supposedly reusable classes
they fully suit their needs. This problem has been documented during the design of t
fel [31] and Smalltalk [21] hierarchies, the construction of user interfaces [20], the d
opment of libraries for VLSI-design algorithms [2], and the development of ob
oriented frameworks for operating systems [23]. 

The first difficulty with object-oriented development is achieving a correct in
modelling of an application domain. Because of the variety of mechanisms provid
object-oriented languages, the best choice for representing a real-world entity in te
classes is not always readily apparent. The problem is compounded by the versat
the inheritance mechanism, which can serve to denote specialization relationships
rdo Casais, “Managing Class Evolution in Object-Oriented Systems,” Object-Oriented Software Composition, O. Nierstrasz and D. 
ritzis (Eds.), pp. 201-244, Prentice Hall, 1995. 
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company).  This work is protected by copyright and 

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only.  It is not 
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall.  All other 
s reserved.
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force typing constraints, or to share implementations. Inadequate inheritance stru
missing abstractions in a hierarchy, overly specialized components or deficient 
modelling may seriously impair the reusability of a class collection. Such defects m
eliminated through an evolutionary process to improve the robustness and the reus
of a library [20][22]. 

Even when a class collection embodies stable abstractions that have been reus
cessfully a number of times, repeated reorganizations of the library may still be una
able. Paradoxically, the high degree of reusability of a library may cause it to un
major reorganizations when developers attempting to take advantage of its functio
stretch its range of application to new domains, thus imposing additional constrain
the library and invalidating the assumptions that drove its original design. 

Software reuse also raises complex integration issues when teams of progra
share classes that do not originate from a common, compatible hierarchy. Classe
require significant adaptations, like reassigning inheritance dependencies or ren
properties, to be exchanged between different environments. 

8.1.2 The Solutions

Among the approaches that have been proposed in recent years to control evolu
object-oriented systems, we identify the following general categories: 

• Tailoring consists in slightly adapting class definitions when they do not lead to
subclassing. Most object-oriented languages provide built-in constructs for ma
limited adjustments on class hierarchies. 

• Surgery. Every possible change to a class can be defined in terms of specific, 
tive update operations. Maintaining the consistency of a class hierarchy require
the consequences of applying these primitives be precisely determined. 

• Versioning enables teams of programmers to record the history of class mod
tions during the design process, to control the creation and dissemination of so
components, and to coordinate the modelling of variants in complex applicatio
mains. 

• Reorganization of a class library is needed after significant changes are made 
like the introduction or the suppression of classes. Reorganization procedures 
formation on “good” library structures to discover imperfections in a hierarchy
to suggest alternative designs. 

A second problem, related to class evolution, is that instances must be update
their representation is modified. Restarting a program and discarding existing insta
not always feasible, since objects may be involved in running applications and ma
tain useful, long-lived information. This is especially true for environments implemen
persistent objects. We consider in detail three techniques to tackle this issue: 

• Change avoidance consists in preventing any impact from class modifications on
isting instances, for example by restricting the kind of changes brought to clas
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• Conversion physically transforms objects affected by a class change so that they
form to their new class definition. 

• Filtering hides the differences between objects belonging to several variants o
same class by encapsulating instances with an additional software layer that e
their normal properties. 

The remainder of the chapter explains the principles behind these approaches, re
when appropriate to the research prototypes or industrial products that implement
and illustrating their functionality with simple examples. 

8.2 Class Tailoring

8.2.1 Issues

Quite often, object-oriented programming does not follow the ideal scenario where s
classes, extended with additional attributes, naturally give rise to new object descrip
Inherited variables and methods do not necessarily satisfy all the constraints which
to be enforced in specialized subclasses [9]. Typically, one prefers an optimized i
mentation of a method to the general and inefficient algorithm defined in a super
Similarly, a variable with a restricted range may be more appropriate than one adm
any value. Tailoring mechanisms alleviate these problems by allowing the programm
replace unwanted characteristics from standard classes with properties better su
new applications. 

8.2.2 Language Mechanisms

Object-oriented languages have always provided simple constructs for tailoring cl
We present here an overview of the tailoring mechanisms provided by the Eiffel lang
[30]. Similar mechanisms are available in many other programming languages. 

• Renaming is the simplest way to effectively modify a class definition. Renamed 
iables and methods can no longer be referred to by their previous identifier, bu
keep all their remaining properties, like their type or their argument list. 

• Redefinition enables the programmer to actually alter the implementation o
tributes. The body of a method may be replaced with a different implementati
special undefine clause in Eiffel 3 allows the programmer to turn an inherited met
into a deferred definition in a subclass. Eiffel also allows the type of inherited 
ables, parameters and function results to be redeclared, provided the new t
compatible with the old one. Finally, the pre- and post-conditions of a method
be redefined, as long as the new pre-condition (or the new post-condition) is w
(or stronger) than the original one. 
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• Interfaces are not statically defined in Eiffel. An attribute declared as private 
superclass may be made accessible in a subclass; conversely, a previously
attribute may be excluded from the subclass interface. 

The following excerpt from the Eiffel 2.1 library illustrates the use of these various
loring mechanisms. Notice the changes in class interfaces, the redefinition of the va
parent and the renaming and overriding of the operations for creating tree objects.

--
-- Trees where each node has a fixed number of children (The number of children is
-- arbitrary but cannot be changed once the node has been created).
--
class  FIXED_TREE [T] 

export
start, finish, is_leaf, arity, child, value, change_value, node_value, 
change_node_value, first_child, last_child, position, parent, first, last, 
right_sibling, left_sibling, duplicate, is_root, islast, isfirst, go, go_to_child, 
delete_child, change_child, attach_to_parent, change_right, change_left,
wipe_out

inherit
…

feature
parent : FIXED_TREE [T];
Create (n : INTEGER; v : T) is …

-- Create node with node_value v and n void children.
end ; -- Create
…

end -- class FIXED_TREE

--
-- Binary trees.
--
class  BINARY_TREE [T] 

export
start, finish, is_leaf, arity, child, value, change_value, node_value, 
change_node_value, left, right, has_left, has_right, has_both, has_none, 
change_left_child, change_right_child

inherit
FIXED_TREE [T] 
rename

Create as fixed_Create, first_child as left, last_child as right 
redefine

parent 
feature

parent : like  Current ;
Create (v : T) is  

-- Create tree with single node of node value v
do

fixed_Create (2, v)
ensure

node_value = v;



 

Class Tailoring 205

        

ges to
d class
lled in
class,
d dis-
tually re-

e any
riginal,

  

. The
herit-
 han-
s into
object-
ilers. 

sible
riented
ology.
cures
in every
 may
nature
ltered,
 where
cels the

ized
e type

. Unfor-
design
right.Void and  left.Void
end ; -- Create
…

end -- class BINARY_TREE [T]

Sometimes, adaptations cannot be limited to local class adjustments; global chan
the hierarchy are required. Objective-C provides a mechanism where a user-define
can “pose” as any other class in the hierarchy [33]. When the “posing” class is insta
the system, it shadows the original definition. Objects depending on the “posed” 
whether by inheritance or by instantiation, do not have to be changed; the metho
patching scheme guarantees that a message sent to an object of the posed class ac
sults in invoking a procedure in a posing object. The posing class may overrid
method of the posed class and define additional operations; it has access to all o
now shadowed, properties. 

8.2.3 Evaluation

Tailoring techniques are useful in performing small adjustments on a class collection
overriding of inherited attributes enables the programmer to escape from a rigid in
ance structure that is not always well-suited to application modelling. It facilitates the
dling of exceptions locally and does not require the factoring of common propertie
numerous intermediate classes. Tailoring mechanisms correspond to constructs of 
oriented languages; consequently, they can be implemented efficiently within comp

On the other hand, overreliance on tailoring may quickly lead to incomprehen
structures overloaded with special cases, which are, as far as persistent object-o
systems are concerned, difficult to manage efficiently with current database techn
Introducing exceptions in a hierarchy destroys its specialization structure and obs
the dependencies between classes since a property cannot be assumed to hold 
object derived from a particular definition. Renaming and interface redeclaration
completely break down the standard type relations between classes. When sig
compatibility is not respected, or when the semantics of a method can be radically a
polymorphism becomes impossible; an instance of a class may no longer be used
an instance of a superclass is allowed. Changing attribute representations also can
benefits of code sharing provided by inheritance. 

If tailoring is allowed, one must be wary of developing a collection of disorgan
classes. Exceptions should not only be accommodated, but also integrated into th
hierarchy when they become too numerous to be considered as special cases [10]
tunately, the techniques we have described in this section do not really help detect 
flaws in object descriptions. 
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8.3 Class Surgery

8.3.1 Issues

Whenever changes are brought to the modelling of an application domain, correspo
modifications must be applied to the classes representing real-world concepts. 
operations disturb a class hierarchy much more profoundly than tailoring: instead of
riding some inherited properties when new subclasses are defined, the structure of e
classes themselves must be revised. Because of the multiple connections betwee
descriptions, care has to be taken so that the consistency of the hierarchy is guaran

This problem also arises in the area of object-oriented databases, where it has b
tensively investigated [3][4][27][32][35]. There, the available methods determine
consequences of class changes on other definitions and on existing instances, as
that possible integrity violations can be avoided. These methods can be broken dow
a number of steps: 

1. The first step consists of determining a set of integrity constraints that a clas
lection must satisfy. For example, all instance variables should bear distinct n
no loops are allowed in the hierarchy, and so on. 

2. A taxonomy of all possible updates is then established. These changes conc
structure of classes, like “add a method”, or “rename a variable”; they may als
fer to the hierarchy as whole, as with “delete a class” or “add a superclass to a 

3. For each of these update categories, a precise characterization of its effects
class hierarchy is given and the conditions for its application are analyzed. In
eral, additional reconfiguration procedures have to be applied in order to pre
schema invariants. It is for example illegal to delete an attribute from a class C if this
attribute is really inherited from a superclass of C. If the attribute can be deleted, 
must also be recursively dropped from all subclasses of C.

4. Finally, the effects of schema changes are reflected on the persistent store; in
belonging to modified classes are converted to conform to their new descripti

We base our discussion on class surgery mainly on the research performed aro
object-oriented database systems GemStone, ORION, O2 and OTGen, although evolu
tionary capabilities based on this technique have been proposed for many other sy
We defer the description of instance conversion techniques to the section on chang
agation. 

8.3.2 Schema Invariants

Every class collection contains a number of integrity constraints that must be main
across schema changes. These constraints, generally called schema invariants in 
ature, impose a certain structure on class definitions and on the inheritance graph.
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• Representation invariant. This constraint states that the properties of an object 
tributes, storage format, etc.) must reflect those defined by its class. 

• Inheritance graph invariant. The structure deriving from inheritance dependenc
is restricted to form a connected, directed acyclic graph (so that classes may 
cursively inherit from themselves), possibly restricted to be a tree, and having a
a special predefined class usually called OBJECT. 

• Distinct name invariant. All classes, methods and variables must be distinguishe
a unique name. 

• Full inheritance invariant. A class inherits all attributes from its superclasses, exc
those that it explicitly redefines. Naming conflicts occurring because of multipl
heritance are resolved manually, or by applying some default precedence sche

• Distinct origin invariant. No repeated inheritance is admissible in ORION and O2: an
attribute inherited several times via different paths appears only once in a clas
resentation. 

• Type compatibility invariant. The type of a variable (or of a method argument) re
fined in a subclass must be consistent with its domain as specified in the supe
In all systems this means that the new type must be a subclass of the original o

• Type variable invariant. The type of each instance variable must correspond 
class in the hierarchy. 

• Reference consistency invariants. GemStone guarantees that there are no dang
references to objects in the database; instances can only be deleted when the
longer accessible. OTGen requires that two references to the same object 
modification also point to the same entity after modification.

Schema invariants supported by four object-oriented database systems are summ
in table 8.1. 

8.3.3 Primitives for Class Evolution

Updates to a schema are assigned to a relevant category in a predetermined tax
Every definition affected by these modifications must then be adjusted. If the inva
properties of the inheritance hierarchy cannot be preserved, the transformation of th
structure is rejected. Schema evolution taxonomies are compared in table 8.2. 

• The insertion of an attribute, whether it is a variable or a method, is an operation t
must be propagated to all subclasses of the class where it is initially applied, in
to preserve the full inheritance invariant. When a naming or a type compatibility
flict occurs, or when the signature of the new method does not match the signa
other methods with the same name related to it via inheritance, one either disa
the operation (as in O2 and GemStone), or resorts to conflict resolution rules. In
systems, instances of all modified schemas are assigned an initial value for th
ditional variables that is either specified by the user or the special nil value.
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. 
• Deleting an attribute is allowed only if the variable or method is not inherited. B
cause of the full inheritance and representation invariants, the attribute must a
dropped from all subclasses of the definition where it is originally deleted. If a 
class, or the class itself, inherits another variable or a method with the same
through another inheritance path, this new attribute replaces the deleted on
course, all instances lose their values for deleted attributes. O2 forbids the suppres-
sion of attributes if the operation results in naming conflicts or in type mismat
with other attributes. 

• Attribute renaming is forbidden if the operation gives rise to ambiguities in the cl
or in its subclasses, or, in GemStone, if the attribute is inherited. 

• The type of a variable (or of a method argument) can rarely be arbitrarily mod
because of the subtype relations imposed by the compatibility invariant. In OR
and GemStone, the domain of a variable can be generalized. GemStone also a
variable to be specialized, except if the new domain causes a compatibility vio
with a redefinition in a subclass. Operations that are neither specializations no
eralizations are not supported; moreover, type changes are not propagated 
classes. Instances violating new type constraints have their variables reset to nil. 

• Properties like the default value of a variable or the body of a method can al
modified. Changing the origin of an attribute is an operation supported only in 
ON. It serves to override default inheritance precedence rules and is logically
dled as a suppression followed by the insertion of an attribute. In addition, OR
provides operations to update shared variables and special aggregation links.

• Adding a class to an existing hierarchy is a fundamental operation for object-orie
programming, and, as such, it appears in all systems examined here. Conne

Schema invariants GemStone O2 ORION OTGen

Representation ✓

Inheritance graph ✓ ✓ ✓ ✓

Distinct name ✓ ✓ ✓

Full inheritance ✓ ✓ ✓ ✓

Distinct origin ✓ ✓

Type compatibility ✓ ✓ ✓ ✓

Type variable ✓

Reference consistency ✓ ✓

Table 8.1 Schema invariants of four object-oriented database systems. Some 
constraints (like the representation invariant) are implicit in most models
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new class to the leaves of a hierarchy is trivial — possible conflicts cause
multiple inheritance are solved with standard precedence rules. GemStone allo
inserting a class in the middle of an inheritance graph, provided the new class
not initially define any property: this basic template may be subsequently augm

Scope of change GemStone O2 ORION

Instance variables

add a variable ✓ ✓ ✓

remove a variable ✓ ✓ ✓

rename a variable ✓ ✓ ✓

redefine the type of a variable ✓ ✓ ✓

change the inheritance origin ✓

change the default value ✓

modify other kinds of variables ✓

Methods

add a method ✓ ✓

remove a method ✓ ✓

rename a method ✓ ✓

redefine the signature ✓

change the code ✓ ✓

change the inheritance origin ✓

Classes

add a class ✓ ✓ ✓

remove a class ✓ ✓ ✓

rename a class ✓ ✓

modify other class properties ✓

Inheritance links

add a superclass to a class ✓ ✓

remove a superclass ✓ ✓

change superclass precedence ✓

Table 8.2   A comparison of schema evolution taxonomies. 
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by applying the attribute manipulation primitives described in the preceding pa
With O2, a new class may be connected to only one superclass and one subcl
tially. The definition must specify how inherited attributes are superseded, and
redeclarations must comply with subtyping compatibility rules. 

• Removing a class causes inheritance links to be reassigned from the class’s s
classes to its subclasses. All instance variables that have the deleted class as th
are assigned the suppressed class’s superclass as their new domain. GemS
sumes that a class which is being discarded no longer defines any property a
no associated instances exist in the database. O2 forbids class deletion if it results in
dangling references in other definitions, if instances belonging to the class still 
or if the deletion leaves the inheritance graph disconnected. 

• Renaming a class is allowed only if the new identifier is unique among all cla
names in the inheritance hierarchy. As with attributes, each object model may 
supplementary class properties, such as the indexable classes in GemStone, a
corresponding manipulation primitives. 

• Adding a superclass to a schema is illegal if the inheritance graph invariant canno
preserved. In particular, no circuits may be introduced in a hierarchy. The c
quences of this operation are analogous to those of introducing attributes in a 

• The deletion of a class S from the list of superclasses of a class C must not leave the
inheritance graph disconnected. O2 provides a parameterized modification primitiv
that enables the programmer to choose where to link a class that has becom
pletely disconnected from the inheritance graph (by default, it is connected toOB-
JECT). One may also specify whether the attributes acquired through the suppr
inheritance link are preserved and copied to the definition of C. In most other sys-
tems, if S is the unique superclass of C, inheritance links are reassigned to point fro
the immediate superclasses of S to C. In the other cases, C just loses one of its super
classes; no redirection of inheritance dependencies is performed. Of cours
properties of S no longer pertain to the representation of C, nor to those of its sub-
classes. The primitives for suppressing attributes from a class are applied to c
the definition of all classes and instances affected by this change. 

• Reordering inheritance dependencies results in effects similar to those of changin
the precedence of inherited attributes. 

8.3.4 Completeness, Correctness and Complexity

Three issues have to be addressed to ensure that class surgery captures interesting
ities: 

• Completeness: does the set of proposed operations actually cover all possibilitie
schema modifications? 

• Correctness: do these operations really generate class structures that satisfy all 
rity constraints? 
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• Complexity: is it possible to detect violations of schema invariants and subsequ
regenerate a schema conforming to these invariants in an efficient way? 

The first two problems have been studied in the context of the ORION methodo
where it has been demonstrated that a subset of its class transformation primitives e
the desired qualities of completeness and, partially, of correctness. In contrast, the
Stone approach does not strive for completeness; only meaningful operations that
implemented without undue restrictions or loss of performance are provided. An int
ing result is provided by the O2 approach, where it is shown that although a set of basic
date operations may be complete at the schema level (i.e. all changes to a class h
can be derived from a composition of these essential operations), this same set ma
complete at the instance level, when changes are carried out on objects and not on 
For example, renaming an attribute is equivalent to deleting the attribute and then re
ducing it with its new name; if the same sequence of operations is applied to a varia
an object, the information stored in the attribute is lost. 

Ensuring correctness of class changes is much more difficult than it appears 
sight. Since a method implementation may depend on other methods and variable
cannot consider the deletion of one attribute in isolation. This operation may hav
reaching consequences if an attribute is excluded from a class interface. Similarly,
ducing a new method in a class may raise problems because the code of the meth
refer to attributes that are not yet present in the class definition and because of im
changes in the scope of attributes. If the method supersedes an inherited routin
classes referring to the previous method may become invalid. Not surprisingly, mai
ing behavioural consistency across schema changes is an undecidable problem
Dataflow analysis techniques, like those that are used by some compilers to check f
violations in object-oriented programs, can help detect the parts of the code that b
unsafe because of schema updates, but they are typically pessimistic and might reje
programs as incorrect [14]. Enriching the set of schema invariants to detect more (s
tical) inconsistencies requires careful selection to avoid turning an efficient test proc
for constraint satisfiability into an NP, or even an undecidable problem [26][39]. As a
sequence, all aforementioned systems capture relatively simple structural constrain
their schema invariants and give little support to update methods upon class alte
[41]. 

8.3.5 Evaluation

Decomposing all class modifications into update primitives and determining the c
quences of these operations has several advantages. During class design, this a
helps developers detect the implications of their actions on the class collection and
tain consistency within class specifications. During application development, it guide
propagation of schema changes to individual instances. For example, renaming
stance variable, changing its type or specifying a new default value usually has no i
on an application using the modified class. Introducing or discarding attributes (var
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or methods), on the other hand, generally leads to changes in programs and requ
reorganization of the persistent store — although the conversion procedure can 
ferred in some situations. 

Depending on its modelling capabilities and on the integrity constraints, an ob
oriented programming environment may provide different forms of class surgery.
easy to envision a system where class definitions are first retrieved with a class b
and then modified with a structured editor where each editing operation correspon
schema manipulation primitive like those of ORION or GemStone [32]. Such an env
ment would nevertheless fall short of providing fully adequate support for the desig
evolution processes. Class surgery forms a solid and rigorous framework for de
“well-formed” class modifications. In this respect, it improves considerably over un
trolled manipulations of class hierarchies that are more or less the rule with current o
oriented programming environments. But, it limits its scope to local, primitive kind
class evolution. It gives no guidance as to when the modifications should be perf
and does not deal with the global management of multiple, successive class chang
ried out during software development. 

8.4 Class Versioning

8.4.1 Issues

Ensuring that class modifications are consistent is not enough; they must also be 
out in a disciplined fashion. This is of utmost importance in environments where a nu
of programmers collectively reuse and adapt classes developed by their peers mad
able in a shared repository of software components. The early experiences with the
talk system demonstrated that the lack of a proper methodology for controllin
extensions and alterations brought to the standard class library quickly resulted in a
trous situation. The incompatibilities between variants of the same class hierarchy
sufficient to hinder the further exchange of software, or at least to severely reduce it
ability. 

In the case of single-user environments, the exploratory way of programming ad
ted by the proponents of the object-oriented approach requires some support so th
ware developers may correct their mistakes by reverting to a previous stable
configuration. When experimenting with several variants of the same class, to test 
ficiency of different algorithms, for example, care has to be taken to avoid mixing up
definitions and dependencies. 

Because adhoc techniques do not scale well for large, distributed programming e
ronments, current approaches favour a structured organization of software develo
and a tighter control of evolution based on class versioning. Versioning basically co
in checkpointing successive and in principle consistent states of a class structure. T
ation and manipulation of versions raises complex issues: 
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• How is version management organized with respect to software development?

• How does one distinguish between different versions of the same class? 

• What are the circumstances that justify the creation of new versions, and how 
operation carried out? 

• What can be done to handle the relations between different and perhaps incom
versions? 

8.4.2 The Organization of Version Management

An environment for version management is divided into several distinct working sp
each one providing a specific set of privileges and capabilities for manipulating diff
kinds of versions [15][24]. Three such domains are generally recognized in the litera

• A private working space supports the development activities of one programme
information stored in the programmer’s private environment, in particular the 
ware components he or she is currently designing or modifying, is not accessi
other users. 

• All classes and data produced during a project are stored in a corresponding d
that is placed under the responsibility of a project administrator. They are made
able to all people cooperating in the project, but remain hidden from other u
since they cannot yet be considered as tested and validated. 

• A public domain contains all released classes from all projects, as well as da
their status. This information is visible to all users of the system. 

It is natural to associate one kind of version with each working space: 

• Released versions appear in the public domain. They are considered immutab
can therefore neither be updated nor deleted, although they may be copied an
rise to new transient versions. 

• Working versions exist in project domains and possibly private domains. The
considered stable and cannot be modified, but they can be deleted by their own
the project administrator or the user of a private domain. Working versions are
moted to released versions when they are installed in the public repository; the
give rise to new transient versions. 

• A transient version is derived from any other kind of version. It belongs to the
who created it and it is stored in his or her private domain. Transient versions c
updated, deleted and promoted to working versions.

The principal characteristics of version types are summarized in table 8.3.
A typical scenario begins when a project is set up to build a new application. The

grammers engaged in the development, copy from the public repository class defin
they want to reuse or modify for the project. These definitions are added to their priva
vironments as transient versions. Each programmer individually updates these clas
perhaps creates other definitions (via usual subclassing techniques) in the domain a
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tional transient versions. In order to try different designs for the same class, or to sa
result of the programming activity, programmers may derive new transient versions
those they is currently working on, while simultaneously promoting the latter to wor
versions. When a programmer achieves a satisfactory design for a software compon
or she installs it as a working version in the project domain. Of course, these workin
sions can subsequently be copied by colleagues and give rise to new transient ver
their respective environments. Once software components have reached a good s
maturity in terms of reliability and design stability, they are released by the project ad
istrator and made publicly available in the central repository.

Since all operations for version derivation and freezing are done concurrently, c
algorithms are required to ensure that the system remains consistent. Fortunately,
dates are applied to local, transient objects, and not directly to global, shared defin
As a consequence, concurrency control does not have to be as elaborate as tra
database transaction mechanisms and can use simpler checkin/checkout or op
locking techniques.

Characteristics of version types Transient Working Released

Location

public domain ✓

project domain ✓

private domain ✓ ✓

Admissible operations 

update ✓

delete ✓ ✓

Origin 

from a transient version by derivation promotion

from a working version by derivation promotion

from a released version by derivation

Table 8.3 Principal characteristics of version types. Some systems consider only 
kinds of versions (transient and released) and two levels of domains (pr
and public) for managing their visibility. 
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8.4.3 Version Identification

Class identity is an essential problem to deal with. It is no longer enough to refer to a
ware component by its name, since it might correspond to multiple variants of the
class. An additional version number, and possibly a domain name, must be provi
identify a component unambiguously [24]. When the version number is absent from
erence, a default class is assumed. Typical choices for resolving the dynamic bind
version references include: 

• The very first version of the class referred to. 

• Its most recent version. The idea behind this decision is that this version can b
sidered the most up-to-date definition of a class. This is a good solution to bin
sion references in interactive queries in object-oriented databases. 

• Its most recent version at the time the component which made the reference w
ated. This is the preferred option for dealing with dynamic references in class d
tions. 

• A default class definition specified by the administrator in charge of the domain.
definition, called a generic version, can be coerced to be any element in a versio
ivation history. 

The default version is first searched for in the domain where the reference is in
discovered to be unresolved; the hierarchy of domains is then inspected upward u
appropriate definition is found. Thus, to bind an incomplete reference to a class ma
project domain (i.e. a reference consisting only in the class name, without addition
formation), the system first examines the class hierarchy in the current domain; if th
main does not contain the class definition referred to, the search proceeds in the
repository. No private domain is inspected, for stable versions are not allowed to re
transient versions that could be in the process of being revised. Similarly, dynamic
ences to classes in the public domain cannot be resolved by looking for unrelease
ponents in a project domain. Naturally, dynamic binding can be resolved at the leve
private domain for all classes pertaining to it. 

If only the most recent version gives rise to new versions, there is in principle no
for a complex structure to keep track of the history of classes: their name and v
number suffice to determine their relationship to each other. The situation where ve
ing is not sequential, i.e. where new versions derive from any previous version, re
that the system record a hierarchy of versions somewhat similar to the traditiona
herarchy. When a version is copied or installed in a domain, the programmer de
where to connect it in the derivation hierarchy. AVANCE provides an operation to m
several versions of the same class. With this scheme, the derivation history takes th
of a directed acyclic graph [8]. 

The information on derivation dependencies is generally associated with the ge
version of a class version set. Version management systems like IRIS and AVANC
plement a series of primitives for traversing and manipulating derivation graphs [5
Programmers can thus retrieve the predecessors and the successors of a particular
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obtain the first or the most recent version of a class on a particular derivation path;
their status (transient, released, date of creation, owner); determine which version w
id at a certain point in the past and bind a reference to it; freeze or derive new version

The management of versions and related data obviously entails a significant stora
processing overhead. This is why in most systems one is required to explicitly indica
classes are versionable by making them subclasses of a special class from which 
herit their properties of versions — that is often called Version, as in AVANCE and IRIS. 

8.4.4 Versioning and Class Evolution

It is evidently impossible to delegate full responsibility to the system for determi
when a transient version should be frozen and a new transient one created, or if a c
nent should be released. Such actions must be based on design knowledge that is b
tered by the software developers themselves. Thus, the automatic generation 
versions triggered by update operations on object definitions is a scheme that has
limited application in practice. 

Another difficulty arises because of the superimposition of versioning on the inh
ance graph. For example, when creating a new variant for a class should one deri
versions for the entire tree of subclasses attached to it as well? A careful analysis
differences between two successive versions of the same class gives some direct
handling this problem [8]. 

• If the interface of a class is changed, then new versions should be created for al
es depending on it, whether by inheritance (i.e. its subclasses) or by delegatio
classes containing variables whose type refers to the now modified definition).

• If only non-public parts are changed, like the methods visible only to subcla
(such methods are called “protected methods” in C++), the type of its variables,
inheritance structure, then versioning can be limited to its existing subclasses.

• If only method implementations are changed, no new versions for other class
required; this kind of change is purely internal and does not affect other definit

For reasons analogous to those exposed above, some approaches prefer to avo
ducing a possibly large number of new versions automatically and rely instead on a
ual procedure for re-establishing the consistency of the inheritance hierarchy. The
whose programs reference the class that has been updated are simply notified
change and warned that the references may be invalid. Two strategies are com
adopted to do this: either a message is directly sent to the user, or the classes refe
the modified object definition are tagged as invalid. In the latter case, class version
stamps are frequently used to determine the validity of references [15]. Thus, a
should never have a “last modification” date that exceeds the “approved modifica
date of the versions referring to it. When this situation occurs, the references to the
are considered inconsistent, since recent adaptations have been carried out on the
nent, but have not yet been acknowledged on its dependent classes. It is up to the p
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Building consistent configurations of classes and instances, and maintaining com
bility between entities belonging to different versions is a major issue and an ob
oriented system should provide support for dealing with this aspect of version ma
ment. Application developers may want to view objects instantiated from previous 
versions as if they originated from the currently stable version, or they may want to
hibit objects from older versions from referring to instances of future variants. We
scribe in more detail how to achieve these effects in the section devoted to u
propagation. 

8.4.5 Evaluation

Versioning is an appealing approach for managing class development and evolutio
cording the history of class modifications during the design process has several be
It enables the programmer to try different paths when modelling complex applicatio
mains and it helps avoid confusion when groups of people are engaged in the prod
of a library of common, interdependent classes. Versioning also appears useful
keeping track of various implementations of the same component for different sof
environments and hardware platforms. Besides, the hierarchical decomposition 
programming environment into workspaces, the attribution of precise responsibilit
their administrators, and the possibilities afforded by this kind of organization (e.g
separation of the long-term improvement of reusable components from the short-te
velopment of new applications) are considered to be particularly valuable for incre
the quality and efficiency of object-oriented programming [38]. 

The main drawback of versioning techniques resides in the considerable overhea
impose on the development environment. Programmers have to navigate through 
terconnected structures, the traditional inheritance hierarchy and the version deri
graph. They have to take into account a greater set of dependencies when desi
class. The system must store all information needed for representing versions and t
ciprocal links, and implement notification. Moreover, methods for version manage
still lack some support for design tasks: at what point does a version stop being a v
of an existing class to become a completely different object definition? 

In spite of their overhead, class and object versioning techniques have proved
uable in important application domains like CAD/CAM, VLSI design and office inf
mation systems. They have therefore been integrated into several object-or
environments, including Orwell [38], AVANCE [7], ORION [3] and IRIS [19]. 
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8.5 Class Reorganization

8.5.1 Issues

The lessons drawn from the construction of collections of reusable classes have le
formulation of some principles that serve to improve object-oriented libraries [22]. 

The first principle is to make sure that components are really polymorphic. This c
achieved in a number of ways:

• Adopt a uniform terminology for related classes and standardize the methods
ing up their interface [31]. 

• Eliminate code that explicitly checks the type of an object. Rather than introdu
case statements to execute some actions on the basis of an object’s class, one
invoke a standard message in the object and let it carry out the appropriate act

• Decrease the number of arguments in a method, either by splitting the metho
several simpler procedures, or by creating a class to represent a group of arg
that often appear together. A method with a reduced number of parameters is
likely to bear a signature similar to some other method in a different class. Both 
ods may then be given the same name, thus increasing interface standardizat

A second set of rules aims to increase the degree of abstraction and generality o
es: 

• Factorize behaviour common to several classes into a shared superclass. Int
abstract classes (with deferred methods) if convenient, to avoid attribute red
tions. 

• Minimize the accesses to variables to reduce the dependency of methods on
ternal class representation [29]. This can be achieved by resorting to special 
sors instead of referring directly to variables. 

• Ensure that inheritance links express clear semantic relationships such as spe
tion, or even better, relationships with known mathematical properties like conf
ance or imitation [40]. 

Finally, reorganizations should improve the modularization of functionality in a
brary: 

• Split large classes into smaller, cohesive classes that are more resilient to cha

• Separate groups of methods that do not interact. Such sets of methods rep
either totally independent behaviour or different views of the same object, whic
perhaps better represented by distinct classes. 

• Uncouple methods from global attributes or internal class properties by sending
sages to parameters instead of to self or to instance variables. 

These guidelines are very general; the problem is therefore to formulate these em
rules rigorously and to make them amenable to a subsequent automation. 
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8.5.2 Refactoring

8.5.2.1 Issues and Techniques
Refactoring is an approach that extends basic class surgery primitives with adv
redesign mechanisms [23]. Refactoring is based on an object model that is spec
tailored to represent and manipulate the rich structure of components developed w
object-oriented programming language. The schema invariants of class surgery a
tended with additional constraints for preserving behaviour, and the precondition
modification operations are made more precise or more restrictive to avoid introd
behaviour and referential inconsistencies in a class collection. The approach propo
[34] is intended to support refactoring specifically for C++ libraries. Four important o
ations are discussed in detail. 

• Distributing the functionality of a class over multiple subclasses by splitting meth
along conditional statements. Let us consider a hypothetical class that chec
rights of users to access a system during weekends and normal working days:

class  ACCESS-CONTROL
methods

CheckPrivileges
begin

-- some general code …
if  date = Sunday or  date = Saturday then

-- restricted access on week-ends …
else  

-- usual checks during normal working days …
end-if  

end  CheckPrivileges; …
end ; 

ACCESS-CONTROL is specialized in as many classes as there are branches 
CheckPrivileges method; CheckPrivileges is itself decomposed so that, in each su
class, it contains only the code corresponding to one branch of the original c
tional statement. The common part of all CheckPrivileges variants is left in ACCESS-
CONTROL. 

class  ACCESS-CONTROL
methods

CheckPrivileges
begin

-- some general code …
end  CheckPrivileges; …

end ;

class  CONTROL-WEEK-END
inherit  ACCESS-CONTROL;
methods

CheckPrivileges
begin

super .CheckPrivileges;
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-- restricted access on week-ends …
end  CheckPrivileges; …

end ; 

class  CONTROL-WORKING-DAYS
inherit ACCESS-CONTROL;
methods

CheckPrivileges
begin

super .CheckPrivileges;
-- usual checks during normal working days …

end  CheckPrivileges;
end ;

• Creating an abstract superclass. This operation analyses two classes, extrac
common properties, which are placed in a new component, and then makes bo
tial classes subclasses of the new definition. The extraction of similarities bet
two classes is not performed automatically and relies on heuristics to detect co
structures in method signatures and implementations. Additional renaming of v
bles and methods, reordering of method parameters and transformations of m
implementations may be carried out to achieve a satisfactory result. However
trary to the incremental reorganization algorithm described in section 8.5.4.3, r
toring does not propagate through the inheritance graph. 

• Transforming an inheritance relation into a part-of relation. The following exam
shows a class SYMBOL-TABLE that inherits functionality from HASH-TABLE. 

class  HASH-TABLE
methods 

Insert …
Delete …

end ; 

class  SYMBOL-TABLE
inherit  HASH-TABLE; …
end ;

Rather than being a subclass of HASH-TABLE, SYMBOL-TABLE can refer to an
instance of HASH-TABLE via a part-of relation. This requires severing the inhe
ance link between both classes, introducing a variable of type HASH-TABLE in SYM-
BOL-TABLE, and adding a series of procedures in SYMBOL-TABLE for delegating the
invocations of methods previously inherited from HASH-TABLE to this new variable.
In our simplified example, the refactoring does not change the superclass. In
eral, it may be necessary to introduce special operations in the superclass to 
sulate accesses to its variables, and to change the methods declared in the s
so that they manipulate these variables through these operations. 

class  SYMBOL-TABLE
variables

store : HASH-TABLE; …
methods
 Insert (…)
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 begin
 store.Insert (…);
 end  Insert;
 Delete (…)

begin
store.Delete (…); 

end  Delete; …
end ;

• Reshuffling attributes among classes. This operation is intended to improve th
sign of classes representing aggregations, where a component of an aggregat
only belong to or be referred to by one object. Redistributing variables denotin
gregation elements in a behaviour-preserving way is feasible only when se
strong conditions on referencing patterns are satisfied. References to the mi
variables are updated or replaced with invocations to appropriate accessors. 

8.5.2.2 Evaluation
Refactoring is one of the most interesting approaches for providing software deve
with high-level, intuitive operations supporting complex redesign activities. Refacto
embodies some of the empirical guidelines derived from actual experience with
evolution; it would therefore be appealing to integrate such a toolkit of operations 
editing and browsing environment. This approach is not without limitations though
decision to carry out specific refactorings, the optimization goals and the selection 
classes to modify are left entirely up to the programmer. Thus, refactoring exhibi
same shortcomings as class surgery. The automatic approaches discussed in the fo
sections are based on systematic strategies that are probably more adequate in the
of large, complex libraries. As with any other restructuring method, refactoring face
tractability problems when trying to achieve all possible transformations or to pre
behaviour. For example, all interesting situations where a method could be split a
subclasses cannot be detected, and, in fact, the conditional expressions conside
only of a very elementary nature. 

8.5.3 Restructuring Interattribute Dependencies

8.5.3.1 Issues
Avoiding unnecessary coupling between classes and reducing interattribute depend
are two important prerequisites for well-designed objects. Two major issues have to
dressed: 

• What are the inferior or “harmful” dependencies?

• How can unsafe expressions be automatically replaced with adequate constru

A possible solution to this problem has been proposed by Lieberherr et al. [29] under
the name of “Law of Demeter”, together with a small set of techniques for mechan
transforming object definitions so that they comply with this law [12]. 
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8.5.3.2 The Law of Demeter
The Law of Demeter distinguishes three types of interattribute dependencies and
corresponding categories of relationships between class definitions: 

• A class C1 is an acquaintance class of method M in class C2, if M invokes a method
defined in C1 and if C1 does not correspond to the class of an argument of M, to the
class of a variable of C2, to C2 itself, or to a superclass of the aforementioned class

• A class C1 is a preferred-acquaintance class of method M in C2, if C1 corresponds to
the class of an object directly created in M or to the class of a global variable used
M. 

• A class C1 is a preferred-supplier class of method M in C2, if M invokes a method
defined in C1, and if C1 corresponds to the class of a variable of C2, or to the class of
an argument of M, to C2 itself, to a superclass of the aforementioned classes, or
preferred-acquaintance class of M. 

The “class form” of the law states that methods may only access entities belong
their preferred-supplier classes. The “object form” of the law does not consider the c
a method depends on, but rather the objects this method sends messages to. In this
a preferred-supplier object is an instance that is either a variable introduced by th
where the method is defined, or an argument passed to the method, or an object cre
the method, or the pseudo-variable self (identifying the object executing the method). Th
“object form” of the law prohibits references to instances that are not preferred-sup
of a method. In its weak version, the law considers the classes of inherited variables (o
variables themselves, in the “object form” of the law) as legitimate preferred-supp
The strict version does not consider the classes of inherited variables (or inherited 
bles) as legitimate preferred-suppliers. 

8.5.3.3 Application and Examples
We illustrate the main reorganization aspects dealt with by the Demeter approach
group of simple object descriptions [12][29]. Let us consider the following partial c
definitions: 

class  LIBRARY 
variables

Catalog : CATALOG; …
methods  

Search-book (title : STRING) returns  LIST [BOOK] 
begin 

books-found : LIST [BOOK]; 
books-found := Catalog.Microfiches.Search-book (title); 
books-found.Merge (Catalog.Optical-Disk.Search-book (title));
return  (books-found); 

end  Search-book; …
end ; 

class  CATALOG
variables

Optical-Disk : CD-ROM; 
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Microfiches : MICROFICHE; …
end ; 

class  CD-ROM 
variables 

Book-References : FILE [BOOK]; …
methods

Search-book (title : STRING) returns  LIST [BOOK]
begin

book : BOOK; 
books-found : LIST [BOOK]; 
books-found.New (); 
Book-References.First (); 
loop 

exit  when  Book-References.End (); 
book := Book-References.Current (); 
if  title.Equal (book.Title) then 

books-found.Add (book) 
end-if ; 
Book-References.Next (); 

end loop ; 
return  (books-found); 

end  Search-book; …
end ; 

class  MICROFICHE 
variables

Book-References : FICHES [BOOK]; …
methods

Search-book (title : STRING) returns  LIST [BOOK] …
end ; 

class  BOOK 
variables 

Title : STRING; …
end ; 

These definitions obviously do not conform to the law: the method Search-book in
LIBRARY accesses internal components of Catalog (the attributes Microfiches and Optical-
Disk); it sends messages to these variables and receives as a result objects that ar
components of LIBRARY nor instances of a preferred-supplier class of LIBRARY. We also
note that the algorithm for retrieving all references stored on the optical disk manipu
the internal structure of books to find whether their title matches a specific search crit

It is clear that the details of scanning microfiche and CD-ROM files to find a partic
reference should be delegated to the CATALOG class. This makes the querying methods
LIBRARY immune to alterations in the internal structure of the catalogue — for exa
the replacement of the microfiches with an additional CD-ROM file. In doing so, we 
to take care that LIST [BOOK], the type of the result of methods Search-book in MICROFICHE
and CD-ROM, is not a preferred-supplier of CATALOG. The introduction of the auxiliary
method Merge-refs in CATALOG solves this problem and makes the dependency betw
classes CATALOG and LIST [BOOK] explicit. Finally, ensuring the proper encapsulation
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acces-
BOOK objects requires that their variables be manipulated through special-purpose 
sors; CD-ROM is adjusted accordingly. 

class  LIBRARY
variables

Catalog : CATALOG; …
methods  

Search-book (title : STRING) returns  LIST [BOOK]
begin

return  (Catalog.Search-book (title)); 
end  Search-book; …

end ;

class  CATALOG
variables

Microfiches : MICROFICHE;
Optical-Disk : CD-ROM; …

methods
Search-book (title : STRING) returns  LIST [BOOK]

begin
return  (self .Merge-refs (Microfiches.Search-book (title),

 Optical-Disk.Search-book (title)));
end  Search-book; 

Merge-refs (microfiche-refs : LIST [BOOK]; cd-rom-refs : LIST [BOOK])
returns  LIST [BOOK]
begin

return  (microfiche-refs.Merge (cd-rom-refs));
end  Merge-refs; …

end ; 

class  CD-ROM
variables

Book-References : FILE [BOOK]; …
methods

Search-book (title : STRING) returns  LIST [BOOK]
begin

books-found : LIST [BOOK];
books-found.New ();
Book-References.First ();
loop

exit  when  Book-References.End ();
if  title.Equal (self .RefTitle (Book-References.Current ()))
then  books-found.Add (Book-References.Current ());
end-if ;
Book-References.Next ();

end loop ;
return  (books-found); 

end  Search-Book;
RefTitle (reference : BOOK) returns  STRING

begin
return  (reference.Get-Title);
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end  GetRefTitle; …
end ;

class  BOOK
variables

Title : STRING; …
methods

Get-Title returns  STRING
begin

return  (Title);
end  Get-Title; …

end ;

8.5.3.4 Evaluation
The Law of Demeter nicely captures some issues dealing with encapsulation
coupling; although a fully formal model that would mathematically justify its underly
assumptions is still lacking [36], its application to the design of modular class librarie
been found to be beneficial [29]. However, putting the Law of Demeter into practice r
several difficulties [36]. It cannot be completely enforced with languages, such as C
or Smalltalk, that allow expressions to be constructed dynamically and then execu
run-time. In general, the “class form” of the law does not seem to be fully effective fo
typed languages; since objects are untyped, violations of the law cannot be discove
a static inspection of the source code, but must be monitored during program execu

As far as typed languages are concerned, applying the Demeter principles is not 
straightforward either. First, there are some special cases where the spirit of the L
Demeter is violated, although all the dependencies formally respect all the Demete
stated in section 8.5.3.2. Fortunately, such anomalies are rare and occur only in ve
trived situations. More importantly, the law requires significant enhancements and 
mulation to handle language peculiarities correctly; for example, translating the la
Demeter into equivalent terms for C++ is far from trivial, because of the hybrid mod
this language and the need to take constructs like friend functions into account. 

8.5.4 Restructuring Inheritance Hierarchies

8.5.4.1 Issues
A frequent problem during the design of inheritance hierarchies is that programmers
look intermediate abstractions needed for establishing clean subclassing depend
and develop components too specialized to be effectively reusable. Several appr
have been proposed to automate the detection and correction of such defects in inhe
hierarchies. They are distinguished by the way they address a few fundamental iss

• What is the scope of the reorganization applied to an inheritance graph?

• What are the criteria driving the reorganization?

• What properties are preserved across reorganizations?
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The differences between inheritance reorganization methods are best summari
grouping these approaches into global and incremental reorganization techniques.

8.5.4.2 Global Reorganization
Global reorganization approaches produce optimal inheritance graphs, without at
redundancy and with a minimum number of classes and inheritance links, from pre-
ing hierarchies (figure 8.1). These techniques can be fully automated. They work glo
analyzing and recasting an entire class collection at a time. 

The approach proposed in the context of the Demeter project is based on a form
that distinguishes between abstract classes, which can be inherited but not insta
and concrete classes, which can be instantiated but cannot be used as superclasse
correspond to the vertices in a graph. The edges of the graph denote either inherita
lationships between classes, or part-of relationships between classes and their (typ
tributes [28]. This model forms the basis for global reorganization algorithms whose

Figure 8.1 Reorganizing a redundant, non-connected hierarchy (1); capital letters 
represent attributes. (2): after applying the Demeter algorithm; (3): after 
applying the algorithm described in [12]. Class c2 is the concrete 
counterpart of abstract class c1; similar definitions are merged in (3), but not 
in (2). Class c4 is preserved in (3), but considered as superfluous in (2).
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is to optimize the structural characteristics of an inheritance graph (i.e. to minimiz
number of classes and relations in a library). Redefinitions and attribute structures a
taken into account. The formal properties of these algorithms have been investigated
tail [28]: 

• Transforming a hierarchy to suppress redundant part-of edges, i.e. forcing clas
inherit common attributes from a shared superclass, is in P. 

• Minimizing the overall number of edges is NP-complete. When the final hierarchy i
actually a tree, efficient (polynomial) algorithms exist for optimizing the hierarc

A different method is based on an object model that allows classes to inherit from
crete superclasses [12]. The corresponding algorithm proceeds by flattening all cla
initions present in a hierarchy, then factoring out common structures, relinking all 
definitions through inheritance, and finally eliminating redundant inheritance links
auxiliary class definitions. Contrary to the Demeter approach, this algorithm does
serve all definitions that actually differ in the library before the reorganization, it take
definitions into account and it can be tailored to avoid repeated inheritance in the
hierarchy. 

None of the global algorithms deal with interattribute dependencies or with the pr
vation of behavioural properties. Global algorithms do not always produce identic
sults because of their varying assumptions and goals — as is shown clearly in figur

8.5.4.3 Incremental Reorganization
Adding a subclass is a major step in the development of an object-oriented library
ranting an evaluation, and possibly an improvement of the hierarchy. The evaluatio
be restricted to the relationships between the new class and its superclasses, and
organization can be limited to the location where the new class is introduced. The 
mental factorization algorithm proposed in [11] is driven by the analysis of redefin
patterns between a new class and its superclasses. It attempts to optimize the inh
graph within reason while keeping the disturbances to the original library to a minim
Behavioural properties can be maintained to a certain extent and classes presen
hierarchy before the reorganization are not deleted [12]. The algorithm transforms a
archy automatically to eliminate unwanted subclassing patterns, to pinpoint places r
ing redesign and to discover missing abstractions. It can take into account renami
structural transformations similar to those discussed in 8.5.2. 

The incremental reorganization algorithm extracts the properties shared by s
classes and isolates them in a new, common superclass. Figure 8.2 shows a fragme
Eiffel library where class CIRCLE inherits from ELLIPSE. This subclassing operation is ac
companied by a partial replacement of ELLIPSE’s behaviour. Simultaneously, CIRCLE
changes its superclass’s interface in a way that corresponds neither to a restriction 
would be expected in a specialization relationship) nor to an extension (characteri
subtyping relationships). A transformation of the hierarchy eliminates this unnatura
classing pattern by inserting an intermediate definition containing the properties com
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to both CIRCLE and ELLIPSE, and by making these two classes subclasses of the new
iliary node. 

In more complex situations, the factorization propagates as high up in a hierarch
needed to eliminate unwanted subclassing patterns and introduces auxiliary defi
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Figure 8.2   Factorizing inheritance relationships.
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Figure 8.3 The new class c4 rejects attributes B and C from c3; this triggers an 
incremental reorganization of the hierarchy whose final result is depicted in (3).
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(figure 8.3). 

8.5.4.4 Application of Incremental Reorganization
The incremental reorganization algorithm of [11] is one of the rare approaches w
effectiveness has been quantitatively assessed on the basis of large-scale expe
involving the reorganization of versions 2.1 and 2.3 of the Eiffel library (98 and 500 c
es respectively). Starting from an empty hierarchy, Eiffel classes were added one 
to the library, triggering incremental reorganizations whenever redefinition pat
amounting to the rejection of inherited methods were detected (figure 8.4). This 
brought to light several interesting results [13]:

• A large majority (63%) of the problems uncovered by the reorganization algor
were caused by the utilization of inheritance for code sharing and by an inade
modularization of functionality leading to other improper subclassing relationsh

• In 21% of the cases, the outcome of the reorganization corresponds to wha
would expect from a manual redesign of the library. The restructuring patterns 
incremental algorithm closely match empirical observations on the evolutio
object-oriented libraries [2], as well as small-scale reorganizations of a limited
set of the Smalltalk hierarchy [17]. 

Figure 8.4 Restructuring the Eiffel 2.3 library. A few groups of classes responsible for 
clustered reorganizations are highlighted. Overall, the incremental 
factorization of Eiffel 2.3 adds 166 auxiliary definitions to the library. 
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• In 33% of the cases, the incremental algorithm detects, but is not able to co
many actual design problems in a library that are best solved by other kinds 
organizations, such as transforming inheritance links into part-of relationships

• The algorithm is also useful for evaluating and comparing the quality of ob
oriented libraries, especially when it is combined with other incremental techni
that are sensitive to naming patterns [13]

8.5.4.5 Evaluation
Global reorganizations are a prerequisite when the goal is to put a hierarchy into a “n
form” free from redundancy. However, global revisions may thoroughly transform 
brary. The results are therefore difficult to grasp and to utilize, particularly with libra
comprising hundreds of classes. Incremental factorization, on the other hand, lim
scope to the inheritance paths leading to one new class — an approach that also gu
better performance in an interactive environment. Besides, it is doubtful that a glob
organization can achieve significant results without additional processing to extra
structural similarities between class interfaces or method signatures that are h
because of diverging naming and programming conventions [31][34]. Maintaining be
ioural properties is a problem with both global and incremental reorganiza
[6][12][39] and, anyway, many design problems cannot be solved through adjustme
subclassing relationships alone. Inheritance reorganization techniques must there
enhanced with other methods such as refactoring to support redesign activities effe
Automatic approaches are nevertheless essential to reduce the search space for 
operations on large libraries to a manageable size before applying interactive, user
surgery or refactoring operations. 

8.6 Change Avoidance

8.6.1 Confining the Effects of Evolution

In principle, modifications of class specifications must be propagated to objects ins
ated on the basis of old definitions, so as to maintain the overall consistency of the s
Nevertheless, in many cases instances need not be updated or enhanced when th
is modified. Detecting when these situations arise is important, since one can then
the inconvenience of change propagation without giving up system consistency. 

Change avoidance is easily combined with class tailoring. Tailoring operations ar
ried out only for the purpose of defining additional subclasses; no matter how inh
properties are overridden, the modifications appear and take effect only at the leve
subclasses performing the redeclarations. New classes obviously have no associ
stances, so there is no need to care about filtering or conversion procedures. Thus,
oriented systems avoid updating instances when subclassing operations are consi
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Several other evolution primitives exhibit no side-effects and can safely be ap
without reorganizing running applications. Among the surgery operations listed in se
8.3.3, the following have no consequences on object structures: 

• Renaming classes, methods and variables only affects the description of class
the structure of instances, although this may not always be true for programs th
plicitly manipulate class or attribute names. 

• Changing the default value of a variable or a shared slot has no effect on inst
since these values pertain to the class definitions, not to the objects themselve

• The implementation of a method can be changed freely; the code is associat
kept with a class definition, to be shared among all individual instances. 

• Because no arbitrary changes to the domain of variables and arguments are a
one can guarantee that the values stored within existing objects remain comp
with their new type. 

8.6.2 Physical Structures

A technique for confining the effects of class evolution consists of uncoupling the lo
object model from its physical representation, so that instances may be implement
way immune to change. Transposed files exhibit such desirable characteristics [18

In traditional database systems, the state of an object (i.e. the set of all its variab
usually stored in one record (methods are shared and stored in a separate area). Ev
of a hierarchy is associated with a file which is used as a persistent storage space fo
tities, with each record of a file containing the state of a particular entity (figure 8.5). W
a variable is added to a class definition, additional space must be allocated for the
sponding class and its subclasses; the instances affected by the modification are
quently copied into the new storage zones. When a variable is suppressed from a
special procedures are required for reclaiming unused storage space, a process tha
ally entails unloading and reloading entire class extents. 

Transposed files associate one file with each variable of a class. Each record c
the value of the variable for a particular instance. The complete representation of a c
thus spread among several files. One reconstitutes the state of an object by first ac
the values of its various variables in their respective files, and then grouping them to
in the main memory for processing. All values for the variables of an object are sto
records located at the same rank in the various files; this is made possible by derivi
rank directly from the identifier assigned to every object in the system. A simple sc
is to use a pair 〈class-identifier, rank〉 to identify objects. Because file management syste
generally allocate disk space not by records but by blocks, a level of indirection is n
to access the value of a variable. On the other hand, such a structure facilitates the in
of objects whose identifiers are not strictly sequentially determined (blocks corres
ing to unused identifiers need not be reserved), and the release of space after the la
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 The di-
associated with a particular block is deleted. Resource waste is therefore reduced.
agram of figure 8.6 represents the simplified structure of a transposed file. 

Figure 8.5   Traditional storage technique for a hypothetical EMPLOYEE class. 

class  EMPLOYEE
variables

Name : STRING;
Salary : INTEGER;
Function : STRING;

…
end ;

Mucius Scaevola 5100 Programmer

Julius Nepos 8300 Project Leader

…

Titus Livius 7600 Analyst

File: EMPLOYEE

Figure 8.6 Using a transposed file organization for storing class EMPLOYEE. 
Rank 2 contains all information relative to employee “Julius Nepos”, 
rank 215 the data relative to “Titus Livius”. No instance corresponds 
to ranks 7–9, so the corresponding block is not allocated.
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Transposed files provide an efficient kernel for implementing many of the class su
primitives described in section 8.3.3, for example: 

• Adding a variable to a class does not require reformatting the existing recor
make room for the new attribute. Instead, an additional file is reserved to conta
supplementary variable that is initialized to some default value, such as nil or 0, for
existing instances. 

• Suppressing a variable is achieved by deleting the corresponding file and retu
all the space it occupies to the system. No compaction of the database is requ

• A subclass definition comprises all its superclass files plus some additional file
reorganization of the hierarchy results in the destruction of the subclass, all file
the attributes it introduces are deleted, but not those corresponding to the varia
its superclass. All instances of the subclass automatically become members
superclass, without one having to execute any procedure to save, reformat and
fer the objects from one class to the other. The class-identifier part of all object identi-
fiers must nevertheless be updated to remain consistent across changes.

Transposed files have proved very useful in domains such as statistical and econo
information systems. They have therefore been implemented in special-purpose da
systems geared towards supporting these categories of applications. Their applica
semantic and object-oriented database systems is currently a field of active researc

8.7 Conversion

8.7.1 Issues

Transforming all entities whose class has been modified seems like the most natu
proach to dealing with change propagation. This technique implies that instance
physically updated so that their structure matches the description of the class they 
to. Two important requirements must be met:

• Because there is in general not a direct or a unique correspondence between 
new class definitions, care has to be taken to avoid losing information. 

• The conversion process has to be organized in such a way that it interferes as 
possible with normal system operations. 

A consequence of the first requirement is that ad hoc reconfiguration procedures hav
to be programmed to accompany automatic conversion processes whose capabi
preserve the semantics of an application domain are evidently limited. The seco
quirement forces all conversion procedures to behave as atomic transactions (trans
tions must be applied completely to the objects involved in the conversion) and puts 
restrictions on their duration. 
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8.7.2 Instance Transformation

CLOS provides a good example of how automatic conversion can be enhanced by t
grammer to take supplementary integrity constraints into account [25]. Conversion
performed according to the rules listed in table 8.4. CLOS deletes from objects 

tributes that have been deleted in their class, including their associated accessor m
it adds and initializes those attributes that have been introduced in the class definitio
adapts the attributes whose status has passed from shared to local (or vice versa
conversions are carried out by a standard function called update-instance-for-redefined-
class that is inherited by every class in a hierarchy and can be customized by the pro
mer. Arguments such as the list of attributes added to the class, or the list of attribut
carded from the class or converted from local to shared, with their original value
passed to this function. This allows the programmer to take proper actions to corre
augment the default restructuring and reinitialization procedures provided by CLOS
thus to determine freely the mapping from an old to a new object schema.

The OTGen system provides a similar kind of functionality for transforming insta
affected by a class modification, although this capability is presented to the user th
a table-driven interface rather than as a programming feature attached to the inhe
hierarchy [27]. A table lists all class definitions whose instances have to be converte
suggests default transformations that apply, which can of course be overridden or e
ed by the user. The transformation operations possible with OTGen are as follows:

• Transfer objects which belong to the old class definition to the new database
changed objects are simply copied from a database to another. 

• Delete objects from the database if their class has been deleted. 

• Initialize the variables of an object. When the old and new types of a variable a
compatible, the default action taken by OTGen consists of assigning the nil value to

Old slot New slot 

shared local none

shared preserved preserved discarded

local initialized preserved discarded

none initialized initialized —

Table 8.4 Default conversions carried out by CLOS on objects after a class 
modification. A slot corresponds to a variable. Preserved slot values are
untouched. Discarded slots are removed and their values are lost. Initial
slots are assigned a value determined by the class the instance belong
This table is reproduced from [25].
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the variable. The user can override the standard behaviour of the system by pro
its own initial values. 

• Change local variables to shared variables. 

• Perform context-dependent changes. One may initialize variables based on pr
information stored in the objects, or partition the instances from a class into two
categories based on the information they contain. 

• Move information between classes, for example by shuffling variables among c
es, without losing associated information. 

• Introduce new objects for classes created while updating the hierarchy and init
their variables on the basis of information already stored in the database. 

Providing a framework to handle the most common transformations certainly eas
task of the programmer. It is difficult, however, to guarantee that such a predetermin
of primitives effectively covers all possibilities for object conversion. When complex
aptations cannot be expressed with these operations, one is eventually forced to r
special-purpose routines.

8.7.3 Immediate and Delayed Conversion

A major constraint with conversion concerns the time at which objects must be t
formed. 

Immediate conversion consists in transforming all objects at once, as soon as the
sponding class modifications are committed. This solution does not find much favo
practice, because it may entail the full unloading and reloading of the persistent 
store, and long service interruptions if a significant number of entities have to be co
ed. On the other hand, this technique provides ample opportunities for optimizing the
age and access paths to objects as part of the conversion process. Immediate co
has been implemented in the GemStone object-oriented database system [35]. 

Lazy conversion consists in adapting instances on an individual basis, but only 
they are accessed for the first time after a class modification. This method does no
the drawbacks of system shutdown imposed by immediate conversion at the pr
degraded response time when instances are initially accessed after a class modifi
Lazy conversion requires keeping track of the status of each object. When succ
revisions are carried out on the same class, the system must record each associa
version procedure, to be able to transform objects that are referenced after a long pe
inactivity. Lazy conversion is nevertheless an appealing approach for applications
short-lived instances that are rapidly garbage-collected and therefore do not even n
be converted. This technique has been proposed as the standard mechanism for C
version of the O2 system implements both techniques [41], applying immediate con
sion to instances present in main memory at the time of the modification and resor
lazy conversion for objects residing in secondary storage [4]. 
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8.7.4 Evaluation

Conversion, and in particular lazy conversion, is a very attractive technique for prop
ing changes in an object-oriented system. It requires the programming of transform
functions, even when the environment supports automatic conversion, but there 
other alternatives for resolving intricate compatibility conflicts. When the conversio
instances is infeasible, scope restriction techniques borrowed from the filtering app
may prove helpful. 

8.8 Filtering

8.8.1 Issues

Under some circumstances, one may not need to physically convert instances, b
they have become obsolete due to class modification, or because they represent in
tion that is not allowed to be modified for legal reasons, like accounting records. In
situations, it is preferable to ensure a partial compatibility between old and new o
schemas, so that an application may still use them, but without striving to make the
fectly interchangeable. 

Filtering (or screening) is a general framework for dealing with this problem. It is m
often used in combination with version management. This can be done by wrapping
ware layer around objects. The layer intercepts all messages sent to the enclosed
these messages are then handled according to the object’s version, to make it con
the current or to a previous class description, or to cause an exception to pop up w
application uses an object with an unsuitable definition. Three major issues must be
ined with this approach: 

• How does one characterize the degree of compatibility between class versions
• How can one map instances from a class version to another? 
• How far can a filtering mechanism hide class changes from the users? 

8.8.2 Version Compatibility

Fundamentally, filtering is a mechanism for viewing entities of a certain class versi
if they belonged to another version of the same class. From the predecessor–succe
lationship between versions, we identify two types of compatibility [1]: 

• A version Ci is backwards compatible with an earlier version Cj if all instances of Cj

can be used as if they belonged to Ci. 
• A version Ci is forwards compatible with a later version Cj if all instances of Cj can

be used as if they belonged to Ci. 
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In the first case, applications can use old instances as if they originated from new
nitions. With the second form of compatibility, old programs can manipulate entities
ated on the basis of later versions. 

Each class C is associated with the partial ordering of versions { Ci }. We assume that,
at any point in time, some Ci is considered the valid version of class C. Building on these
definitions, we say that a class version Ci is consistent with respect to version Dj of another
class D (C ≠ D) if one of the following conditions is satisfied [1]: 

• Dj was the currently valid version of D when Ci was committed. This is the usual si
uation; Ci references up-to-date, contemporaneous properties of D. 

• Dk was the currently valid version of D when Ci was committed, Dj is a later version
of D, and Dk is forwards compatible with Dj. Here Ci references an obsolete defin
tion of D, but the forwards compatibility property allows it to work with instanc
created according to the new schema. 

• Dk was the currently valid version of D when Ci was committed, Dj is an earlier ver-
sion of D, and Dk is backwards compatible with Dj. Here Ci is supposed to manipulate
an up-to-date representation of D; thanks to the backwards compatibility, it is neve
theless able to use instances generated from old versions. 

8.8.3 Filtering Mechanisms

The operations that cause problems when invoked on a non-compatible object can b
sified in a limited number of categories. For example, deleting a method generates 
violations when an object attempts to invoke the deleted method. These effects ar
marized in table 8.5. 

A simple way to deal with this problem is to replace each access primitive with a ro
specifically programmed to perform the mapping between different class structures.
for each variable that violates compatibility constraints, one provides a procedure th
turns the variable’s value, and another procedure for changing its value. These proc
perform various transformations, like mapping the variable to a set of other attribute
For example, if the “birthday” attribute of a person class has been replaced with an
variable, one has to provide the following procedures to ensure backwards compati

• A read accessor that determines the age of a person based on the time elap
tween the recorded birthday and the current date. 

• A write accessor that stores the age of a person as a birthday, computed on th
of the current date and the age given as argument to the accessor. 

Similarly, one must define two symmetrical operations to guarantee forwards com
bility. More generally, one can define so-called substitute functions for carrying out 
mappings between objects with different structures as follows: 

• A substitute read function RCijA(I) is given an instance I of version i of class C. It
maps the values of a group of attributes from this object to a valid value of attribA
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of version j of C. In other words, it makes instances of class version Ci appear as if
they contained the attribute A of class version Cj for reading operations. 

• A substitute write function WCijA(I,V) is given an instance I of version i of class C,
and a value V for attribute A of Cj. It maps the value V into a set of values for a group
of attributes defined in Ci. In other words, this function makes instances of class 
sion Ci appear as if they could store information in attribute A, although this informa-
tion is actually recorded in other variables. 

A second approach favours the use of handlers to be invoked before or after a failed
to the attribute they are attached to, a technique that has been implemented in t
CORE system [37]. Pre-handlers typically take over when attempting to access a
existent attribute, or when trying to assign an illegal value to it. A pre-handler may pe
a mapping like those carried out by the substitute functions, coerce its argument to 
value, or simply abort the operation. A post-handler is activated when an illegal va
returned to the invoking object; a common behaviour in this case consists in retur
default value. 

Scope of change Compatibility Consequences

add a variable backwards undefined variable in old objects

delete a variable forwards undefined variable in new objects

extend variable type backwards writing illegal values into old objects

forwards reading unknown data from new objects

restrict variable type forwards writing illegal values into new objects

backwards reading unknown data from old objects

add a method backwards undefined method in old objects

delete a method forwards undefined method in new objects

extend argument type backwards passing illegal values to old objects

forwards getting unknown data from new objects

restrict argument type forwards passing illegal values to new objects

backwards getting unknown data from old objects

change argument list backwards and forwards similar to dropping and adding a meth

Table 8.5 Consequences of class changes. The middle column indicates which k
compatibility is affected by a modification, the right column describes th
exceptions raised when accessing an object from the old or the new cla
definition. 
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8.8.4 Making Class Changes Transparent

Where should filters be defined? As originally stated, the technique based on hand
quires global modifications in all versions of the same class [37]. More precisely, 

• Whenever an attribute is added to a class, pre-handlers for the attribute must be
duced in all other versions of the class. 

• Pre-handlers must be added to a version that suppresses attributes of a class.
• When a version extends the domain of an attribute, corresponding pre- and

handlers must be introduced in all other versions of the class.
• When the domain of an attribute is restricted, the class version redeclaring t

tribute type must be wrapped with a pre-handler and a post-handler. 
This solution is rather inelegant: it requires that old class definitions be adjusted

flect new developments and leads to a combinatorial explosion of handler complex
The model of substitute functions allows one to exploit the derivation history for m

ping between versions that have no direct relationships. Thus, one can map a versioCi to
another version Cj if there exist either substitute functions for them (RCijX, WCijX, where
X denotes an attribute of Cj), or a succession of substitute functions that transitively ap
to them (i.e. there are substitute functions for mapping between Ci and Ck, then Ck and Cl

and eventually Cl and Cj for example). Depending on compatibility properties, one c
even relate class definitions placed in different derivation paths in a version hierarch
thermore, substitute functions are defined only in the newer versions; previous clas
nitions remain unchanged. 

When compatibility between versions cannot be achieved, one may install sco
strictions that isolate objects pertaining to different definitions from each other: 

• A forward scope restriction makes instances from a new version inaccessible to
jects from older versions. 

• A backward scope restriction makes instances from older versions unreachable fr
objects of more recent versions. 

Scope restrictions and compatibility relationships make it possible to partition a 
extension in such a way that operations may be applied to any object regardless of
sion. Naturally, interoperability decreases with such a scheme, since the entities fro
ferent versions of the same class can no longer be referred to and accessed as me
one large pool of objects. 

8.8.5 Evaluation

Screening has been implemented in some systems, but its application scope there
bly reduced. ORION does not immediately convert instances affected by a class cha
as to avoid reorganizing the database [3]. When an instance is fetched, and befor
tributes are accessed, deleted variables are made inaccessible (after, if needed, th
cal destruction of the objects they refer to). Default values are automatically suppl
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account for the introduction of new properties. Rearrangements of inheritance patte
reflected by hiding unwanted properties and supplying default values for new inherit
tributes. 

From our discussion, it appears that filtering cannot fulfil its objective of making c
changes transparent without considerable complexity and overhead. The progra
must not only develop a series of special-purpose functions for mapping between th
iants of a class, but must also accept a degradation of application performance a
handlers accumulate, replacing the originally simple and efficient accessors. In pra
this complexity does not appear fully warranted. With lazy conversion, for example
has also to define ad hoc procedures for transforming entities from one version to anot
but these procedures are called only once for every object. Their execution is theref
as expensive as the systematic run-time checks and exception raising implied by sc
techniques. On the positive side, filtering provides a rigorous framework for defining
dealing with compatibility issues, and it is most adequate during prototyping, when
modifications may be cancelled just after being tested. Recent approaches provi
proved mechanisms derived from database views that encompass filtering techniqu
that can also be suitable as modelling tools during application development [16].

8.9 Conclusion

Object-oriented development reveals its iterative nature as successive stages of su
ing, class modification and reorganization allow software engineers to build increas
general and robust classes. We therefore expect object-oriented CASE systems
advantage of the large spectrum of tools and techniques available to manage the 
aspects of class evolution (see table 8.6).

It is appealing to envision an environment where software engineers build new c
out of reusable components, tailor them to suit their needs, and launch exploratory
mental reorganizations to detect the places in their code most likely to require furth

Approach Actual impact
on instances

In charge of controlling
change propagation

Implementation

change avoidance

confinement logical system side-effect free operations

storage structures physical system transposed files

conversion physical programmer conversion routines

filtering logical programmer handlers/wrappers

Table 8.6   The main characteristics of change propagation techniques.
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visions. Software developers may then refine the outcome of automatic reorganiz
with class surgery primitives and perhaps embark on comprehensive refactoring act
The results of different reorganizations and their subsequent adjustments are kept
sions of the hierarchy, that can be further modified, tested, debugged and possib
celled by the programmers (see table 8.7). Filtering makes it possible to te
correctness of various class definitions without having to carry out numerous conver
When a satisfactory design for a new component and its related classes is achieve
be frozen and publicly released as the new version of the class library, while the othe
porary versions are discarded. If necessary, instances from modified classes can 
definitely converted to conform to their new definitions.

Some approaches have been partially implemented and already appear, albeit i
tion, in some object-oriented systems; we hope that integrated tools suitable for su
ing class evolution in industrial and commercial environments will become availab
the near future.

Approach Scope Phase in library
development

Enforced properties

tailoring  attributes;
interfaces

extension syntactical constraints

surgery  attributes;
inheritance links;
classes

redesign schema invariants

versioning classes extension configuration consistency

reorganization

refactoring classes;
 attributes; 
method structures;
inheritance links

redesign schema invariants; 
preservation of behaviour

interattribute
dependencies

method structures redesign preservation of behaviour

inheritance
(global)

classes;
inheritance links

redesign preservation of class structures;
global optimality of hierarchy

inheritance
(incremental)

classes;
inheritance links;
interfaces;
method structures

extension preservation of class structures;
local optimality of hierarchy;
preservation of behaviour

Table 8.7 The main characteristics of evolution management techniques. Attribute
refer to methods as well as to variables; method structures correspond t
signature and the implementation of methods. 
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