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Chapter 6

Functions, Records and 
Compatibility in the λN 
Calculus

Laurent Dami

Abstract    Subtyping, a fundamental notion for software reusability, establishes a
classification of data according to a compatibility relationship. This relationship is
usually associated with records. However, compatibility can be defined in other
situations, involving for example enumerated types or concrete data types. We
argue that the basic requirement for supporting compatibility is an interaction
protocol between software components using names instead of positions.
Based on this principle, an extension of the lambda calculus is proposed, which
combines de Bruijn indices with names. In the extended calculus various
subtyping situations mentioned above can be modelled; in particular, records
are encoded in a straightforward way. Compatibility is formally defined in terms
of an operational lattice based on observation of error generation. Unlike many
usual orderings, errors are not identified with divergence; as a matter of fact,
both are even opposite since they respectively correspond to the bottom and
top elements of the lattice. Finally, we briefly explore a second extension of the
calculus, providing meet and join operators through a simple operational
definition, and opening interesting perspectives for type checking and
concurrency.

6.1 Introduction

The lambda calculus is a widely used tool for studying the semantics of program
languages. However, there are at least two categories of programming features that
be modelled in the lambda calculus. One is concurrent programming, in which the non-
determinism introduced by operations taking place in parallel cannot be captur
lambda expressions. The other is subtyping, which plays a prominent role in object
ent Dami, “Functions, Records and Compatibility in the Lambda N Calculus,” Object-Oriented Software Composition, O. Nierstrasz 
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oriented systems, and is interesting for software reuse in general. Subtyping is bas
classification of data according to collections of valid operations; an operation val
one type is also valid for its subtypes. The term plug compatibility is sometimes used to
express this relationship. In the lambda calculus, functional application is the only o
tion, and provides no support for such a classification. Therefore, the lambda ca
must be extended to deal with subtyping: the common approach is to use records [9][10].
In this paper we argue that subtyping does not reduce to record systems. We prop
extended lambda calculus λN (lambda calculus with names) which can encode record
and therefore objects as well — but is more general since it also supports plug comp
ity on enumerated types and concrete data types. 

Our calculus is based on the observation that reusability in record systems is main
to the use of names for accessing fields, instead of positions in simple Cartesian products
the difference is important when considering extensibility. A product type can be exte
in one direction, by adding a new component in the last position: any projections va
the original product are still valid for the extended product. In that view, the type (Int × Int)
can be seen as a supertype of (Int × Int× Colour) . However, this ordering based on positio
can only have a tree structure. By contrast, an ordering based on names can be an
order. A well-known example is the ordering of various types of points in a record sy

Like Cartesian products, functions use positional information to identify parame
this is the basis for the currying property, which allows any function of n arguments to be
encoded as a hierarchy of n lambda abstractions, with one single argument at each abs
tion level. However, functions cannot be ordered in a tree structure: there is no plug
patibility relationship between a function with three arguments and a function with
two arguments. This can be illustrated with a simple example: consider the Church e
ing of Booleans and the not function in standard λ calculus[5]:

True = λt.λf.t
False = λt.λf.f
Not = λb.λt.λf.b f t

and imagine we now want a three-valued logic, with an unknown value. We must add a
new argument, and everything has to be recoded:

TrueU = λt.λf.λu.t
FalseU = λt.λf.λu.f
UnknownU= λt.λf.λu.u
NotU = λb.λt.λf.λu.b f t u

The new encoding is incompatible with the previous one. In particular, it does not 
sense to apply NotU to True: it can only be applied to TrueU. In a software reusability per-

2DPoint = (x: Int; y: Int)

3DPoint = (x: Int; y: Int; z: Int) 2DColouredPoint = (x: Int; y: Int; c: Colour)

3DColouredPoint = (x: Int; y: Int; z: Int; c: Colour)
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spective, this implies that any existing component producing True or False values needs to
be modified to be usable with the new logic.

In order to get a compatibility relationship on functions, we propose a simple exte
of the lambda calculus, inspired from records: functions are allowed to have mu
parameters at the same abstraction level, and those parameters are distinguished by th
name. It then becomes necessary to specify which name is being bound in a functio
plication, but this is precisely the basis for reusability and subtyping: binding more n
than those actually used by the function does no harm, and therefore a function with
ments (x y) is compatible with a function with arguments (x y z), because both can accep
a sequence of bindings on names x, y and z.

A consequence of this approach is that names participate in the semantics of fun
and it is no longer possible to consider lambda expressions modulo α-equivalence (re-
naming of bound variables). However, α-renaming is important in the standard lamb
calculus to avoid the well-known problem of name capture in substitutions. The diffi
is avoided by using de Bruijn indices [8] to indicate unambiguously the relationship b
tween an applied occurrence of a variable and its corresponding abstraction level, a
thermore using names to distinguish between multiple variables at the same abst
level. A variable, then, is a pair containing both a name and an index.The  λN encoding of
Booleans is:

True = λ (t, 0)
False = λ (f, 0)
Not = λλ (b, 1)(t→(f, 0))(f→(t, 0))!

For example, (t, 0) in True is a variable. The 0 index tells that this variable is bound by
closest abstraction level (the closest ‘λ’). The other component of the pair tells tha
among the parameters associated with that abstraction level, the one with name t is to be
chosen. Parameter binding is done through the notation a(x→b), where a and b are terms,
and x is a name. So in the Not function, the variable (b, 1), which refers to the outermost ab
straction level, receives two bindings on parameters t and f. The exclamation mark at the
end “closes” the sequence of bindings and removes an abstraction level.

As for the de Bruijn calculus, notation involving indices is convenient for mach
manipulations, but hard for humans to read. Fortunately, indices can be hidden eas
using a higher-level syntax with a simple translation function into the low-level repre
tation. This higher-level syntax will be used for all programming examples in this cha
while the low-level syntax is retained for presenting the semantics of the calculus. In
level syntax, the expressions above become:

True  = λ(t) t
False  = λ(f) f
Not = λ(b) λ(t, f) b(t→f)(f→t)!

Informally, the names in parenthesis following a λ are parameters, so now they are expl
itly declared instead of being implicitly recovered from indices. As an example of a 
vation, consider the application of Not to True:

Not(b→True)! = (λ(b) λ (t, f) b(t→f)(f→t)!) (b→λ(t) t)!
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The outermost binding on b is reduced, substituting the internal reference to b by True, and
removing b from the parameter list:

(λ() λ(t, f) (λ(t) t)(t→f)(f→t)!)!

Then, by reducing the outermost ‘!’, one abstraction level (one ‘λ’) is removed:

λ(t, f) (λ(t) t)(t→f)(f→t)!

The binding on t substitutes t by f and removes t from the parameter list:

λ(t, f) (λ() f)(f→t)!

The binding on f is simply dropped, because the abstraction to which it is applied haf
parameter:

λ(t, f) (λ() f)!

Finally, one ‘λ’ is removed because of the ‘!’:

λ(t, f) f

and although this final result declares both t and f as parameters instead of only f, it is
equivalent to False, because its translation into low-level syntax with indices is also λ(f, 0).

Now the interesting point about this calculus is that, in order to get an augmented
we just write:

Unknown = λ(u) u
NotU = λ(b) λ(t f u) b(t→f)(f→t)(u→u)!

Not is recoded (which is normal), but we can keep the original encodings of True and False.
This cannot be done in the standard lambda calculus, and is interesting for reusability: any
other module based on the original encoding is still compatible with our new logic
does not need modification. 

To the best of our knowledge, the idea of using names in a lambda calculus settin
not studied much in the literature. Two related systems are John Lamping’s unified system
of parameterization [19] and Garrigue and Aït-Kaci’s label-selective lambda calculus
[3][16]. However, both calculi treat names (or “labels”) and variables as orthogonal
cepts, whereas we unify them through the use of de Bruijn indices. 

6.2 A Lambda Calculus with Named Parameters

It is well known that names in the standard lambda calculus are only useful to exp
relationship between binding occurrences and applied occurrences of variables. On
relationship is established, i.e. with bound variables, names can be replaced by
names through α substitution, or can even be removed altogether: in [8] de Bruijn p
posed a modified lambda calculus in which variables are simply denoted by indices. A de
Bruijn index is a non-negative integer expressing the distance between an applied
rence of a variable and the abstraction level to which it refers. For example, the not func-
tion, written 

Not = λb.λt.λf.b f t
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in the standard calculus, becomes

Not = λλλ  2 0 1

in de Bruijn notation (here we start indices with 0, while some authors start with 1; th
ference is not significant). There is a straightforward translation from usual lambd
pressions to their de Bruijn version. The de Bruijn notation provides a canonical
representation: all α-equivalent lambda expressions have the same translation. Fur
more, the well-known problem of name capture is avoided. Both in standard and de Brui
calculi, each abstraction level (each ‘λ’) introduces exactly one variable. Our proposal
to allow several variables at the same abstraction level. To do so, de Bruijn indices a
tained, but in addition names are used to distinguish between different variables at 
same level. This section defines the calculus; the next section shows that this ext
provides support for plug-compatibility.

6.2.1 Abstract (Low-level) Syntax

Figure 6.1 presents the abstract syntax of λN. The language is built over a (finite) set o
names.

An abstraction corresponds to the traditional notion of abstraction. Like in the
Bruijn lambda calculus, abstractions need not introduce names for their paramete
connection between variables and their corresponding abstraction level directly c
from the indices associated with variables (see below).

A variable is a name together with a de Bruijn index. This means that an abstractio
have several parameters, all with the same index, which are distinguished by their
The index indicates the abstraction level (which ‘λ’) a variable is referring to: an index o
0 refers to the closest abstraction, and higher numbers refer to farther abstraction l

A bind operation partly corresponds to the usual notion of application. However, s
an abstraction may have several parameters, it is necessary to specify which of t
bound in the expression. Therefore the construct a(x->b) means: “bind b to the parameter

x, y, z ∈  Names
i, j ∈  Nat
a, b, ... ∈  Terms

a := λ a abstraction
| (x, i) variable
| a(x→b) bind operation
| a! close operation

Figure 6.1   Abstract syntax.
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with name x in a” , or, expressed differently: “substitute b for every occurrence of (x, 0) in
a (modulo index renumbering, as defined below)” . The parameters of an abstraction m
be bound separately, and in any order.

A close operation closes a sequence of bindings, and removes an abstraction lev
moves one ‘λ’).

Notions of parameters, free and bound variables are as in the de Bruijn calculus
mal definition is given in figure 6.2.

6.2.2 Reduction Rules

In the de Bruijn calculus, β-reduction involves some renumbering of indices: whene
the number of ‘λ’s above a subterm changes, its free variables have to be adapted i
sequence. One way to express it is 

(λa) b →β ↓0[a [0 := ↑0[b]]

where ‘↑ ’ (lift) is an operation incrementing all free variables by 1, ‘↓ ’ (unlift) is the re-
verse operation, and a[i := b] is the substitution of b for all occurrences of i in a (again
modulo index renumbering). 

The reduction rules for λN, given in figure 6.3, are very similar, since they also invo
index manipulation operations. There are two kinds of reductions, called bind reduction
(β) and close reduction (γ). Basically, the operations performed by β-reduction in the
standard lambda calculus have been split in two: binding reductions substitute valu
variables, and close reductions “remove the lambda” and unlift the result, i.e. they re
an abstraction level. The definitions for lifting and substitution operations are given i
ure 6.4

FVk((x, i)) = if i = k then {(x, i)} else {}
FVk(λa) = {(x, i) | (x, i+1) ∈ FVk+1(a)}
FVk(a(x→b)) = FVk(a) ∪  FVk(b) 
FVk(a!) = FVk(a) 

FV(a) = ∪
k ≥ 0 FVk(a)

parameters(λa) = FV0(a)

a closed ⇔ FV(a) = {}

Figure 6.2   Free and bound variables .
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Careful readers will have noticed that in λN we may need to unlift a 0 index, a situatio
which never occurs in the de Bruijn calculus. Consider de Bruijn’s β-reduction rule above:
all 0 indices are substituted in a, so the expression passed to ‘↓ ’ contains no 0 index. By
contrast, the λN expression (λ (x, 0))! reduces to ↓0[ (x, 0) ], which intuitively corresponds
to an error (we are trying to access a parameter that has not been bound). As a m
fact, in such situations the definition of ‘↓ ’ yields err, a specific term representing error
This will be discussed in detail in section 6.4; for the time being it suffices to know therr
is not an additional syntactic construct, but rather is defined as a usual term in th
guage, with the property that further binding or close operations on err  yield err  again.

A binding reduction can never introduce new parameters in an abstraction, becau
term passed in the substitution is lifted. Therefore if several successive bindings are
the final result does not depend on the order of the substitutions. This amounts to s
bindings are commutative, i.e. expressions of the form

 a(x→b)(y→c) and a(y→c)(x→b)
derive to the same thing, provided that x and y are different names. If x and y are the same

(λa)(x→b) →β λ(a[(x, 0) : = ↑0[b]])
(λa)! →γ ↓0[a]

Figure 6.3   Reduction rules.

Lifting/Unlifting 
↑k[(x, i)] = if (i < k) then (x, i) else (x, i+1)
↓k[(x, i)] = if (i < k) then (x, i) else if (i=k) then err  else (x, i-1)

 k [λa] = λ ( k+1 [a])
 k [a(x→b)] =  k [a](x→ k [b])
 k [a!] = ( k [a])! where ‘  ’ is either ‘↓ ’ or ‘↑ ’

err =def E(x→E)! where E = λλ  (x, 1)(x→(x, 1))!

Substitution
(y, j)[(x, i) := b] = if ((x, i) = (y,j)) then b else (y, j)
(λa) [(x, i) := b] = λ(a[(x, i+1) := ↑0[b]])
(a(y→c)) [(x, i) := b] = (a[(x, i) := b])(y→c[(x, i) := b])
(a!)[(x, i) := b] = (a[(x, i) := b])!

Figure 6.4   Lifting and substitution operations.
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name, all references to that name are substituted in the first binding, so the second 
is just ignored, and those bindings are not commutative.

6.2.3 Reduction Example

For illustrating the rules, we use again the expression Not(b→True)!. The derivation was
given in an informal way in the introduction, using high-level syntax (without indic
Here, the low-level syntax is used; at each step, the lambda and the bind or close op
involved in the next reduction step are underlined. 

1 (λλ (arg, 1) (true→(false, 0))(false→(true, 0))!)(arg→λ(true, 0))!
2 (λλ (λ(true, 0))(true→(false, 0))(false→(true, 0))!) ! 
3 λ (λ(true, 0))(true→(false, 0))(false→(true, 0))!
4 λ (λ(false, 1))(false→(true, 0))!
5 λ (λ(false, 1)) ! 
6 λ (false, 0)

The final result is False. Notice at line 4 that the binding of false simply gets eliminated:
this is because the abstraction (λ(false, 1)) has no parameter called false; it indeed uses a
variable with that name, but since the index is not 0 this is a free variable, not a para

 At some intermediate stages (e.g. at line 2) several reductions could occur; t
quence shown here corresponds to normal-order reduction (choosing leftmost outermos
redex first). It is therefore legitimate to ask whether a different reduction sequence 
yield the same result (whether the language is confluent). The answer is yes, and has been
established in [13]. So, as in the standard lambda calculus, results are independe
the reduction sequences through which they were obtained; furthermore, if an expr
does have a result, then the normal-order reduction strategy is guaranteed to yield 
sult (i.e. not to diverge). 

Notice that if we “forget” to supply an argument to Not before applying a close opera
tion, as in Not!, we have the reduction

(λλ (arg, 1) (true→(false, 0))(false→(true, 0))!) ! 
λ err  (true→(false, 0))(false→(true, 0))!
λ err  (false→(true, 0))!
λ err  ! 
λ err

which is equivalent to err, i.e. an error is produced. 

6.2.4 Higher-level Syntax

Indices were necessary for defining the calculus, but are difficult to read. In order to
practically with the calculus, we will use a higher-level syntax, given in figure 6.5
which the indices need not be explicitly written. There is a straightforward translatT
from this syntax into the original syntax, which is formally defined in figure 6.6. In 
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new notation, the parameters of an abstraction are declared as a list of names in parenthe
sis. A variable is written simply as a name: the index is recovered by looking for the c
abstraction which declares the same name. In case the same name is used at se
straction levels, and one wants to override the default variable matching scheme, th
of the variable can be preceded by a collection of backslashes. This tells the tran
function to start looking for a declaration, not at the next abstraction level, but one o
eral levels higher (according to the number of backslashes). The parameter list foll
a lambda can be empty, as in

λ() Not(arg→True)!

This is like a closure, i.e. a function that needs no arguments but is not evaluated yet (as-
suming a lazy interpretation as in section 6.4.1). Forcing evaluation is then done w
‘!’ operator.

The translation T from this syntax into the original syntax is like translating the stand
lambda calculus into de Bruijn notation (see [12]). The first argument to the trans
function is a set of currently declared variables; at each abstraction level this set is 
ed. The translation is defined for closed terms by taking the initially empty set of varia
Variables which are not declared at any level are translated into an error by the matchVar
function. As an example of a translation, consider the expression

v := x simple variable
|  \v “outer” variable

a := λ(x1 … xn) a abstraction
| v variable
| a(x→b) bind operation
| a! close operation

Figure 6.5   Higher-level syntax.

TV [λ(x1 … xn) a]  = λ (TV' [a])
where V' ={(x, i+1) |  (x, i) ∈  V} ∪  {(x1, 0), ..., (xn, 0)}

TV [\...\x ] = matchVar V  (x, i) where i is the number of ‘\’
TV [a(x→b)] = TV [a](x→ TV [b])
TV [a!] = (TV [a])!
matchVar V (x, i) = let J={j | (x, j) ∈ V, j ≥ i} in

if (J = {}) then err
else (x, min (J))

Figure 6.6   Translation function.
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λ(x y) λ(x z) x + y + z + \x + \y + \z + \\x

(assuming that infix addition is part of the language). After crossing the two abstra
levels, the set V of declared variables is

V={(x, 1), (y, 1), (x, 0), (z, 0)}

and therefore the translation is

λλ  (x, 0) + (y, 1) + (z, 0) + (x, 1) + (y, 1) + err  + err

This shows how the backslash can be used to distinguish between parameters w
same name, but at different levels. Notice that x and \x are different variables, while both
y and \y are translated into (y, 1), because there is no y parameter at the inner abstractio
level. Furthermore, both \z and \\x are translated into err, because no corresponding vari
ble declaration can be found.

6.3 The Calculus at Work

In this section we show how several common programming constructs are encodedλN.
To make the examples more appealing, we assume that integers, Booleans and
have been added to the language, with corresponding operations (integer arithmetiif ex-
pression, etc.). Such extensions are common for the lambda calculus and can be s
be conservative, i.e. expressions in the extended language are always convertible 
original language. As a matter of fact, an encoding of Booleans has been seen alrea
an encoding of integers is given in section 6.3.4. In consequence, the semantics of 
guage does not change. We start with a discussion on functions and recursion, just
a clearer map of the relationship between λN and the standard lambda calculus. Then 
specificity of λN, namely the encoding of extensible constructs, is demonstrated thr
enumerated types, concrete data types and records.

6.3.1 Functions

It can be seen easily that λN contains the usual lambda calculus. Any expression e of the
pure lambda calculus can be encoded in a straightforward way, by choosing a sing
trary name (say arg) to be associated with variables:

• Take the de Bruijn encoding of e.
• Replace every application MN by M(arg→N)!, i.e. a binding of arg  immediately fol-

lowed by a close operation.
• Replace every variable i by (arg , i).

For example, the lambda expression λf x y. f(x + y) has de Bruijn encoding λλλ  2(1+0) and
becomes here

λλλ (arg, 2)(arg→(arg, 1)+(arg, 0))!

which corresponds to 
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λ(arg) λ(arg) λ(arg) \\arg(arg→\arg+arg)!

in the higher-level notation. Now how does this compare to the expression:

λ(f x y) f(arg→(x+y))!

which intuitively seems more natural? In both formulations, the arguments can be b
and the final result evaluated. The difference appears with partial bindings. When
ments are declared at the same abstraction level, as we do in the second formulatio
can be bound separately, in any order, and even if all arguments are supplied, the i
expression is not evaluated until a close operation takes place. This can be usefu
will see later, for building lazy data structures. Furthermore, such functions are 
morphic, in the sense that any context which binds more arguments than just f, x and y will
accept this abstraction without generating an error. However, if we want to do partial
ings, leaving the other arguments open, the close operation cannot be inserted, wh
plies that we lose the currying property, i.e. the possibility to bind one single argumen
get in return another function over the remaining arguments. This is because usua
tional application corresponds here to a binding and a close operation. When writing a
function, there is therefore a choice to make about how to organize its argument
methodological issues involved in such choices have not been explored yet. Our c
in the coming examples are guided by some heuristics acquired during our vario
periences in using the system.

6.3.2 Recursion

A fixed-point operation over a functional λ(x)a yields a recursive function, as in the lamb
da calculus; however, the name x must be taken into account in the fixed-point operati
So for each name x we define a corresponding fixed-point operator

Yx = λ(x) (λ(x) \x(x→x(x→x)!)!)(x→ (λ(x) \x(x→x(x→x)!)!))!

This is like the usual combinator Y, specialized to bind name x. It can be checked that fo
f=λ(x)a we have

Yx(x→f)! →* f(x→Yx(x→f)!)!

In order to facilitate such recursive definitions we introduce some syntactic sug
expression with recursion over parameter x is written µ(x)a and is translated into

Yx(x→λ(x)a)!

With this extension we can write

 Factorial = µ(f) λ(arg) if (arg > 1) then arg*f(arg→(arg-1))! else 1

6.3.3 Extensible Enumerated Types and Case Selection

We already have seen an encoding of Boolean values, which is a simple enumerat
with two values. The approach can be generalized to n-ary enumerated types:



164 Functions, Records and Compatibility in the λN Calculus

. The

 of bind-

 orig-

ncrete
.
ructors.

ne as
ass the
tion be-
he case
on
Green = λ(green) green
Orange = λ(orange) orange
Red = λ(red) red

Each colour in the encoding above is a kind of identity function on a particular name
way to use such values is to perform case selection:

trafficLight = λ(colour) colour(green→Go)(orange→Stop)(red→Stop)!

Here we assume two defined driving actions Go and Stop. Depending on the colour, the
appropriate driving action is chosen. Observe that case selection is just a sequence
ings. The set of colours can be extended easily:

Blue = λ(blue) blue
Violet = λ(violet) violet
Yellow = λ(yellow) yellow

complement = λ(colour) colour(green→Red)(blue→Orange)(violet→Yellow)
(red→Green)(orange→Blue)(yellow→Violet)!

so the first three colours are “reused” here in a different context, without breaking the
inal encoding of trafficLight. As explained in the introduction, this can not be done in the
standard lambda calculus.

6.3.4 Extensible Concrete Data Types

A direct extension from previous section is the encoding of concrete data types. Co
data types are built through a finite number of constructors, which can take arguments
Functions using such data types then have to perform case selection over the const
We will consider the example of natural numbers, with two constructors:

Zero = λ(zero) zero
Succ = λ(n) λ(positive) positive(pred→n)!

The names zero and positive are used to distinguish constructors. Case selection is do
with enumerated types, except that constructors with arguments must be able to p
corresponding values to the function using the data type, so there must be a conven
tween the constructor and its users about which name to use for that purpose. In t
of Succ, the conventional name is pred. An example of using the data type is the additi
function:

Add = µ(add) λ(left right) left
(zero→right)
(positive→λ(pred) add(left→pred)(right→Succ(n→right)!)!)!

which proceeds by decomposition of the left argument.
The encoding can be extended easily to include negative numbers as well:

Pred= λ(n) λ(negative) negative(succ→n)!

Inc= λ(n) n(zero→Succ(n→n)!)(positive→Succ(n→n)!)(negative→λ(succ)succ)!

Dec= λ(n) n(zero→Pred(n→n)!)(positive→λ(pred)pred)(negative→Pred(n→n)!)!
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Add= µ(add) λ(left right)     left(zero→right)
(positive→λ(pred) add(left→pred)(right→Inc(n→right)!)!)
(negative→λ(succ) add(left→succ)(right→Dec(n→right)!)!)!

Again, functions using only positive numbers need not be recoded because of that exte
sion.

Generally speaking, the encoding of data types given here is pretty low-level. How
syntactic sugar for data type constructors and pattern matching, as in most moder
tional languages, could be added easily. 

6.3.5 Records 

A more interesting example of extensibility and polymorphism is the encoding of rec
We extend the syntax with a record constructor and a field selection operation; the
lation of these constructs is given in figure 6.7. The translation can be understood

easily through a comparison with the encoding of binary products (pairs) in the sta
lambda calculus:

(a, b) =  λsel. sel a b
fst =  λpair. pair (λfirst. λsecond. first)
snd =  λpair. pair (λfirst. λsecond. second)

The encoding of a pair is a function which takes a selector and then binds both member
of the pair to that selector. A selector is just a function taking two arguments and retu
one of them, so the fst projection function applies a selector which extracts the first ar
ment, while the snd function applies a selector which extracts the second argument. 
ilarly, a record in λN is a function which takes a selector, and binds all fields
corresponding named parameters in that selector. Since one abstraction level was
because of the sel argument, all internal fields are lifted in order to protect free variab
from being captured. A selector for field x is just an identity function on that name, so
field selection operation simply binds the appropriate selector to the sel argument of the
record. Here are some examples:

{x=5} = λ(sel) sel(x→5)!
{x=3 y=2} = λ(sel) sel(x→3)(y→2)!
{x=5}.x = (λ(sel) sel(x→5)!)(sel→(λ(x)x))! →* 5
{x=3 y=2}.x = (λ(sel) sel(x→3)(y→2)!)(sel→(λ(x)x))!→* 3
{x=3 y=2}.z = (λ(sel) sel(x→3)(y→2)!)(sel→(λ(z)z))!→* (λ(z)z)! → err

T [{x 1=a1 … xn=an}] = λ(sel) sel(x1→↑0[a1])…(xn→↑0[an])!
T [a.x] = a(sel→λ(x)x)!

Figure 6.7   Records
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We see that “.x” is a polymorphic operation that can be applied to any record containi
least an x field. 

The same encoding can support more general operations on records, like a form
ecute in context” operation, similar to quoted expressions in LISP or to the bloc
Smalltalk: for example an expression like

r.[x + y +z] = r(sel→λ(x y z)x + y + z)!

asks record r to add its fields x, y and z and return the result.
Moreover recursion can be used to get recursive records:

Seasons= µ(rec) { spring= {name=”spring” next= rec.summer}
summer= {name=”summer” next= rec.autumn}
autumn= {name=”autumn” next= rec.winter}
winter= {name=”winter” next= rec.spring}

}

so for example Seasons.autumn.next.next.name yields “spring”. Seasons can be seen as a
recursive record, but also as a memory with four locations. Expressions like rec.summer
work as “pointers” in the memory fixed by Seasons. Here we have a flat space of memo
locations, but the approach can be easily extended to define hierarchical memory 
with corresponding fixed-point operations at different levels. Pointers in the hierarc
space simply would use variables with different indices (using the ‘\’ syntax). 

6.3.6 Updatable Records (Memories)

The next step is to define updatable records, or, seen differently, writable memorie
can be done using the previous constructs, as pictured in figure 6.8. An updatable record is
a recursive function, with one named parameter for each field; internally it consist
simple record with a get field, which returns the internal values, and a set field, which re-

T [〈x1 … xn〉] = µ(rec)λ(x1 … xn) {
get={x1=x1 … xn=xn}
set={x1= λ(arg) rec(x1→arg)(x2→x2)…(xn→xn)!

…
xi= λ(arg) rec(x1→x1)…(xi→arg)…(xn→xn)!
…
xn= λ(arg) rec(x1→x1)…(xi→xi)…(xn→arg)!
}

}
T [〈x1=a1 … xn=an〉] = (T [〈x1 … xn〉] )(x1→a1)…(xn→an)!
T [a〈x := b〉] = a.set.x(arg→b)!

Figure 6.8   Updatable records.
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turns a record of update functions. An update function for field xi takes one argument arg,
and uses recursion to return the same updatable record, in which all fields are bo
their current values except the one being updated which takes the new value. Upd
record consists of selecting the appropriate update function, and binding the new v
its arg parameter. Functions using this encoding are naturally polymorphic: the func

ZeroX = λ(aRecord) aRecord〈x := 0〉

can be applied to any record containing an x field and returns the original record, with onl
field x being updated. 

Updatable records give full flexibility for modelling local state of objects and ob
identifiers. In languages using a flat domain of object identifiers, like Smalltalk or O
tive-C, each object would have its own updatable record, representing local state, an
all objects would be stored in a global record, representing the space of object iden
Some other languages have a more complex structure: for example in C++, an obj
be contained in the memory space of another object (so the implementation struct
flects the “has-a” relationship). Modelling such structures in λN would involve hierarchi-
cal updatable records, in which some fields contain sub-records.

6.3.7 Field Overwriting

The encoding presented in the previous subsection supports modification of an e
field, but not addition of new fields. An alternative approach to updatable records is to
sider field overwriting. Here is how it can be done:

r[x←a] = λ(sel) r(sel→sel(x→a))!

This creates a new record from r in which field x has value a, whether or not x was already
present in r. Observe that the encoding is based on the fact that the selector receive
parameter is immediately bound to a on name x, without a close operation, before being
passed to the record r. This explains why any binding on x in r will be ignored. Given a
field overwriting operation, it is possible to implement record concatenation “for fr
following Rémy’s technique [26]: one would start with an empty record

λ(sel) sel!

and then consider each record as a “record-modifying function”, adding the desired 
such functions can be combined by functional composition. 

6.4 Compatibility Relationship

Several examples of extensible and reusable constructs have been shown, but so
have no formal definition of a compatibility relationship. In this section such a rela
ship is studied, through an observational classification of λΝ expressions. In the standar
lambda calculus, the only observable property of terms is their termination beha
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errors never occur, since all values are functions. Here, we have seen that errors
generated during a computation, and therefore errors also represent a valuable o
tion. So, as a complement to the usual approximation ordering, which compares te
the basis of convergence, we also consider a compatibility ordering, comparing ter
the basis of error generation. This section is mainly inspired from operational orderi
Scott Smith’s work [28], who himself draws from a vast body of literature on observa
al relations (see for example [20][1]). However, Smith identifies errors with diverge
whereas we treat them as distinct observations.

6.4.1 Errors and Lazy Operational Semantics

Now it is time to justify our encoding of errors, as it was given in figure 6.4. The com
expression defining err  could be written, in high-level notation, as µ(x) λ() x, i.e. as an
abstraction without any parameters, containing itself. Such a term can consum
sequence of bind or close operations, but always reduces back to itself. In a cl
lambda calculus, a similar behaviour is displayed by the term

(λx.λy.xx)(λx.λy.xx)

which consumes any input without ever using it. Under a usual interpretation, this 
identified with the bottom element (divergence); however, in a lazy interpretation, 
comes the top element. Boudol [7] calls this an “ogre”, while Abramsky and Ong [1
“a term of order ∞”. Usually the “ogre” is not considered very interesting, because it d
not interact with its environment. However, this is precisely the behaviour of a run-tim
ror: once it occurs, the “continuation” of the program is ignored, and the final result 
error. So the ogre is a natural choice for representing run-time errors. In consequen
define in figure 6.9 a lazy convergence relation, where a⇓ b @ m means “a converges to b
in m steps of computation”. We simply write a⇓  if there are a', m such that a ⇓ a' @ m, and
a⇑ if ¬ (a⇓ ). 

λa ⇓ λ a @ 0

Figure 6.9   Convergence to weak normal form.

a(x→b) ⇓ λ (a' [(x, 0) := ↑0[b]]) @ m+1

a ⇓ λ a' @ m

a! ⇓ c @ m+n+1

a ⇓ λ b@ m ↓0[b] ⇓ c @ n
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Defini t ion 14  A term a is erroneous (written a?) iff it converges and any binding o
close operation on it yields an erroneous term again. Formally:

a? ⇔ a⇓ and (a!)? and ∀ b. (a(x→b))?

Another way to state this is to say that a is erroneous iff ∀ o, ao⇓ , where o is a
sequence of bind or close operations. We write a¿ whenever ¬ (a?). It is an easy
exercise to check that (err?).

6.4.2 Approximation and Compatibility

Defini t ion 15  The approximation ordering, written ≤⊥ , is

a ≤⊥  b ⇔  ∀ C[–]. C[a]⇓  ⇒ C[b]⇓  

where a context C[–] is a term with “holes”, which can be filled by another terma
through the context-filling operation C[a].

Defini t ion 16  The compatibility ordering, written ≤err, is

a ≤err b ⇔  ∀ C[–]. C[b]¿ ⇒ C[a]¿ 

Observe that here a and b are in reverse order in the implication. The first preord
states that whenever a converges, b also converges. The second preorder states 
whenever b does not generate an error, a does not either. It may seem strange th
these definitions are in opposite directions, but this corresponds to standard p
in semantic domains and subtype orderings. In semantic domains, the least d
element (representing the divergent program) is at the bottom, and more d
elements are higher up in the ordering. In type systems, the least defined type
of anything) is usually at the top, and more refined types are lower. It can be che
for example, that NotU ≤err  Not , i.e. our extended version of the not operation for a
three-valued logic, is indeed compatible with the not operation on Boolean value
only.

In [14] we have defined similar orderings for a pure lambda calculus with records
without extensible records), and we have shown that both orderings coincide, i.e. ap
ma and compatibility are the same when err  is chosen as the top element. The proof can
transposed to λN without difficulty. So we have a formal framework for reasoning not o
about equivalence of software components, as in usual semantics, but also abo
plug-compatibility relationships. Some consequences of this result are discussed
rest of this section.
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6.4.3 Lattice Structure

Define  ⊥  = µ(x) x. This is the divergent term [observe the difference with err  = µ(x) λ() x].
⊥ is smaller than any term: a divergent term never generates an error, and never red
a WNF in any relevant context. On the other hand, err  is a greatest element in both orde
ings, since it never diverges and is an error. This implies that the order is a lattice with top
element err  and bottom element ⊥.

The fact that we get a lattice is interesting in many respects. Lattices were orig
considered by Scott for solving domain equations. Then the presence of a top eleme
criticized, in particular by Plotkin [25], because this element fails to satisfy some intu
ly natural identities about the conditional function: for example we expect a phrase 

if  a then b else c

always to give either b or c; however, this does not hold when a is the top element, and it is
not clear then what the answer should be: it could be TOP itself, or it could be the 
bound of b and c, but none of these solutions seems to make sense in usual interpreta
Therefore the semantics community moved to algebraic CPO models instead of lat

Since our approach is purely operational, there is no reason here to argue for or 
a particular model. Nevertheless, it is worth noticing that the operational lattice has
natural properties. In particular, interpreting the top element as an error, it is quite n
that we should have

 if err  then b else c = err

The answer is neither b nor c, but this does not contradict our intuitive understanding
the conditional statement: if the first argument is an error, then the whole statemen
duces an error.

A more recent discussion about lattice models was written by Bloom [6], part
based on Plotkin’s previous work. Bloom supports the view that, despite the fact th
tices are mathematically more tractable than CPOs, they have several defects whe
as models for programming languages. One of his main criticisms to lattice models 
they are not single-valued: for example if we choose the second solution for the con
al statement above, namely

if  TOP then b else c = b  c

we get the upper bound of b and c, which, if not TOP itself, is a “multiple value”. Howeve
the justification for taking single-valuedness as an essential criterion is not strongly 
lished. Therefore Boudol [7] criticizes Bloom’s position, and argues that under a differ
notion of observation, multiple values make perfect sense. Parallel functions in Bou
paper yield a lattice model. Similarly, powerdomains used for modelling concurrency
have a lattice structure. These observations lead us to another extension of the c
which completes the operational structure by introducing all meets and joins. Full d
opment of these constructs would go beyond the scope of this paper; however, a b
petizer will be given.
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6.4.4 Meets and Joins

Figure 6.10 introduces two n-ary constructs called combination and alternation. The
reduction rules are exactly the same for both: any binding or close operation is s
distributed to the internal members. Therefore they can be seen as an array of non-c
nicating processors accepting common operations, in a kind of SIMD architecture
difference between combinations and alternations comes observationally from the d
tion of convergence: combinations converge if all their members converge, while alt
tions converge if at least one member converges. Since convergence is at the found
our approximation/compatibility relationship, we have the following properties:

• The combination is a glb (greatest lower bound, meet) operator.

• The alternation is a lub (least upper bound, join) operator.

This has many interesting applications, all related to various possible uses of sets of
values. 

The alternation operator can be interpreted to model non-determinism. A very s
proposal has been made by Boudol under the name parallel functions [7]. Boudol mainly
discusses the use of parallel functions for solving the full abstraction problem (relatin

  Syntax
a := ... |

&(a1 … an) | combination
|(a1 … an) | alternation

  Convergence

Figure 6.10   Combinations and alternations.

|(a1 … an)⇓ | (a1  … ai-1  b  ai+1…an)@m+1 

∃ ai. ai ⇓ b @ m

&(a1 … an)⇓ & (b1  … bn)@(m1+ … mn + 1)

∀ ai. ai ⇓ bi @ mi

θ(a1 … an)!⇓ a' @ m+1

θ(a1!… an!)⇓ a' @ m

θ(a1 … an)(x→b)⇓ a' @ m+1

θ(a1(x→b) … an(x→b))⇓ a' @ m

where θ is either ‘|’ or ‘&’
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operational ordering with the semantic ordering). Another application is concurr
modelling, where all possible outcomes of a computation are grouped together in an
nation, on which further processes can compute: in [13] we discuss an encoding of 
memory, processes and synchronization primitives using alternations. Yet another
bility is to interpret an alternation as a type, “containing” all its member terms. This o
very interesting perspectives for typing, since the notions of type membership and su
relationship are both captured by the approximation/compatibility ordering, and ther
values and types are merged into one single concept. Finally, since we deal with 
values we can directly apply Scott Smith’s results [28] for proving theorems like fi
point induction in a purely operational setting, without going to semantic domains. 

Applications of the combination construct, which in a sense is an “overdetermin
operator, are less intuitive. Remembering that err  is the top element, combinations can b
used to remove errors in a computation, by taking the lower bound of a set of value
can be applied for operations such as record concatenation [10][17]. Moreover, following
the idea of unifying types and values, combinations have the same properties asinter-
section types[4][24]. Interestingly, a connection between record concatenation and i
section types as also been proposed by John Reynolds in his Forsythe language[2

6.5 Conclusion

A lambda calculus with name-based interaction has been described. A few system
similar ideas have been mentioned in the introduction [19][16]; the original aspect oλN
is the unification of names with variables through the use of de Bruijn indices. Not o
this more practical; it also allows us to directly import most of the results establishe
the standard lambda calculus. Extensible functions in λN are a good basis for studyin
reusability mechanisms (in particular inheritance and subtyping), and the econo
constructs compares advantageously to other approaches based on records ([9][17
tensible methods [23]. 

The other extension (alternations and combinations) is perhaps more ventur
touches several hot research areas, like observational equivalences and full abstrac
lambda models [1], parallel functions [7], extensible records [17], and semantics o
currency. Most of these issues require further investigation. An exciting challenge is
how the π-calculus[21], also based on names, relates to λN.

The issue of typing was mentioned very briefly, and the development of a full type
ory for the calculus is under investigation [13][15]. Using the term ordering as a sem
basis for types seems a promising direction, and has some similarities with type th
based on the Curry–Howard isomorphism (identification of types with logical prop
tions)[29], in which the usual distinction between terms and types is also blu
Including name-based interaction in such theories would be a promising step towa
object-oriented logic, and would relate to what Aït-Kaci calls features [2]. Related to this,
the term ordering in  λN can be useful for object-oriented databases, since it gives a q
language for free! 
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Apart from those foundational issues, there are several practical directions in whic
work can be extended. One, which in fact was the original motivation for developin
calculus, is to use it for explaining the differences between various forms of inheri
and delegation in object-oriented languages. In addition, many other aspects of pro
ming languages, like modularity, state manipulation or restricted islands of memory
tions [18] can be studied in this framework. Ultimately, it is of course tempting to b
higher-level syntactic constructs on top of the calculus and make it a full program
language integrating these various aspects. 

Finally, it is worth considering implementation issues for this calculus, and perha
design a name-based abstract functional machine. As noted by Garrigue [16], nam
be translated into offsets in a machine implementation; however, their combination
de Bruijn indices probably raises some technical problems. Combinations and al
tions are more challenging. Evaluating a combination can be done by sequentially 
ating all of its members, but evaluating an alternation must be done in some fo
parallelism, to be consistent with our notion of WNF.
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