Chapter 6

Functions, Records and
Compatibility in the AN
Calculus

Laurent Dami

Abstract Subtyping, a fundamental notion for software reusability, establishes a
classification of data according to a compatibility relationship. This relationship is
usually associated with records. However, compatibility can be defined in other
situations, involving for example enumerated types or concrete data types. We
argue that the basic requirement for supporting compatibility is an interaction
protocol between software components using names instead of posifions.
Based on this principle, an extension of the lambda calculus is proposed, which
combines de Bruijn indices with names. In the extended calculus various
subtyping situations mentioned above can be modelled; in particular, records
are encoded in a straightforward way. Compatibility is formally defined in terms
of an operational laftice based on observation of error generation. Unlike many
usual orderings, errors are not identified with divergence; as a matter of fact,
both are even opposite since they respectively correspond to the bottom and
top elements of the lattice. Finally, we briefly explore a second extension of the
calculus, providing meet and join operators through a simple operational
definition, and opening interesting perspectives for type checking and
concurrency.

6.1 Infroduction

The lambda calculus is a widely used tool for studying the semantics of programming
languages. However, there are at least two categories of programming features that cannot
be modelled in the lambda calculus. Oneascurrent programmingn which the non-
determinism introduced by operations taking place in parallel cannot be captured by
lambda expressions. The othersightyping which plays a prominent role in object-
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oriented systems, and is interesting for software reuse in general. Subtyping is based on a
classification of data according to collections of valid operations; an operation valid for
one type is also valid for its subtypes. The tptag compatibilityis sometimes used to
express this relationship. In the lambda calculus, functional application is the only opera-
tion, and provides no support for such a classification. Therefore, the lambda calculus
must be extended to deal with subtyping: the common approach isézosis[9][10].

In this paper we argue that subtyping does not reduce to record systems. We propose an
extended lambda calculdbl (lambda calculus with names) which can encode records —
and therefore objects as well — but is more general since it also supports plug compatibil-
ity on enumerated types and concrete data types.

Our calculus is based on the observation that reusability in record systems is mainly due
to the use ohamedor accessing fields, insteadpafsitionsn simple Cartesian products;
the difference is important when considering extensibility. A product type can be extended
in one direction, by adding a new component in the last position: any projections valid for
the original product are still valid for the extended product. In that view, thé@rypent)
can be seen as a supertyp@rok Intx Colour) . However, this ordering based on positions
can only have a tree structure. By contrast, an ordering based on nhames can be any partial
order. A well-known example is the ordering of various types of points in a record system:

/ 2DPoint = (x: Int; y: Int)\

3DPoint = (x: Int; y: Int; z: Int) 2DColouredPoint = (x: Int; y: Int; c: Colour)

N

Like Cartesian products, functions use positional information to identify parameters;
this is the basis for thaurrying property, which allows any function nfarguments to be
encoded as a hierarchyrdbmbda abstractions, with one single argument at each abstrac-
tion level. However, functions cannot be ordered in a tree structure: there is no plug-com-
patibility relationship between a function with three arguments and a function with only
two arguments. This can be illustrated with a simple example: consider the Church encod-
ing of Booleans and theotfunction in standard calculus[5]:

3DColouredPoint = (x: Int; y: Int; z: Int; c: Colour) /

True = AtAfRt
False = AtAfRf
Not =  AbAtAfbft

and imagine we now want a three-valued logic, withugknownvalue. We must add a
new argument, and everything has to be recoded:

Truey = AtAfAut
Falsey, =  AtAfAuf
Unknowny=  AtAfAu.u
Noty, =  AbAtAfAu.bftu

The new encoding is incompatible with the previous one. In particular, it does not make
sense to applyoty to True: it can only be applied toue. In a software reusability per-



Introduction 155

spective, this implies that any existing component produeirgr False values needs to
be modified to be usable with the new logic.

In order to get a compatibility relationship on functions, we propose a simple extension
of the lambda calculus, inspired from records: functions are allowed to have multiple
parameterat the same abstraction leyahd those parameters are distinguished by their
name. It then becomes necessary to specify which name is being bound in a functional ap-
plication, but this is precisely the basis for reusability and subtyping: binding more names
than those actually used by the function does no harm, and therefore a function with argu-
ments X y) is compatible with a function with argumentsy(3, because both can accept
a sequence of bindings on namegandz.

A consequence of this approach is that names participate in the semantics of functions,
and it is no longer possible to consider lambda expressions mwekgaivalence (re-
naming of bound variables). Howevarrenaming is important in the standard lambda
calculus to avoid the well-known problem of name capture in substitutions. The difficulty
is avoided by usinde Bruijn indice48] to indicate unambiguously the relationship be-
tween an applied occurrence of a variable and its corresponding abstraction level, and fur-
thermore using names to distinguish between multiple variables at the same abstraction
level. A variable, then, is a pair containing both a name and an indexN'eecoding of
Booleans is:

True =  A(t,0)
False = A0
Not = A (b, 1)t 0)(f (t 0))!

For example(t, 0) in True is a variable. The 0 index tells that this variable is bound by the
closest abstraction level (the closes). The other component of the pair tells that,
among the parameters associated with that abstraction level, the one withis e
chosen. Parameter binding is done through the not@txerb), wherea andb are terms,
andxis a name. So in theot function, the variablg, 1), which refers to the outermost ab-
straction level, receives two bindings on parametansif. The exclamation mark at the
end “closes” the sequence of bindings and removes an abstraction level.

As for the de Bruijn calculus, notation involving indices is convenient for machine
manipulations, but hard for humans to read. Fortunately, indices can be hidden easily, by
using a higher-level syntax with a simple translation function into the low-level represen-
tation. This higher-level syntax will be used for all programming examples in this chapter,
while the low-level syntax is retained for presenting the semantics of the calculus. In high-
level syntax, the expressions above become:

At

A f

A(D) A(t, f) b(t - f)(f - 1)!

Informally, the names in parenthesis followingare parameters, so now they are explic-
itly declared instead of being implicitly recovered from indices. As an example of a deri-
vation, consider the applicationxdét to True:

Not(b—True)t =  (Ab) A (t, ) b(t—f)F-1)!) (b - A(t) t)!

True
False
Not
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The outermost binding dmis reduced, substituting the internal referendgxptrue, and
removingb from the parameter list:

AQ A ) AW DE-H(E-1)!)!
Then, by reducing the outermost ‘", one abstraction level @hé&‘removed:
A(t, f) A D) t)(t - (- 1!
The binding ort substitutes$ by f and removesfrom the parameter list:
At, ) A H(F-1)!
The binding orf is simply dropped, because the abstraction to which it is applied has no
parameter:
A(t, f) A !
Finally, one A’ is removed because of the ‘!":
A, f
and although this final result declares bo#mdf as parameters instead of ofyt is
equivalent taralse, because its translation into low-level syntax with indices is\ism).
Now the interesting point about this calculus is that, in order to get an augmented logic,
we just write:
A(u)u
A(b) A(tfu) b(t - f)(f - t)(u - u)!

Not is recoded (which is normal), but we can keep the original encodings ahdralse.
This cannot be done in the standard lambda calculus, and is interestaug&dility. any
other module based on the original encoding is still compatible with our new logic and
does not need modification.

To the best of our knowledge, the idea of using names in a lambda calculus setting was
not studied much in the literature. Two related systems are John Lamypiiiigd system
of parameterizatiorj19] and Garrigue and Ait-Kacilsbel-selective lambda calculus
[3][16]. However, both calculi treat names (or “labels”) and variables as orthogonal con-
cepts, whereas we unify them through the use of de Bruijn indices.

Unknown
NOtU

6.2 A Lambda Calculus with Named Parameters

It is well known that names in the standard lambda calculus are only useful to express a
relationship between binding occurrences and applied occurrences of variables. Once that
relationship is established, i.e. with bound variables, names can be replaced by other
names through substitution or can even be removed altogether: in [8] de Bruijn pro-
posed a modified lambda calculus in which variables are simply denatetidss A de

Bruijn index is a hon-negative integer expressing the distance between an applied occur-
rence of a variable and the abstraction level to which it refers. For examplet finec-

tion, written

Not =  AbAtAfbft
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X, Y, zLI Names
I, ] O Nat
a, b, ..0Terms

a = Aa abstraction
| (x, 1) variable
| a(x-b) bind operation
| al close operation

Figure 6.1 Abstract syntax.

in the standard calculus, becomes
Not = AMA201

in de Bruijn notation (here we start indices with 0, while some authors start with 1; the dif-
ference is not significant). There is a straightforward translation from usual lambda ex-
pressions to their de Bruijn version. The de Bruijn notation provideananical
representation: ati-equivalent lambda expressions have the same translation. Further-
more, the well-known problem aame captures avoided. Both in standard and de Bruijn
calculi, each abstraction level (eadF) introduces exactly one variable. Our proposal is

to allowseveralvariables at the same abstraction level. To do so, de Bruijn indices are re-
tained, but in additiomamesare used to distinguish between different variables at the
same level. This section defines the calculus; the next section shows that this extension
provides support for plug-compatibility.

6.2.1 Abstract (Low-level) Syntax

Figure 6.1 presents the abstract syntaxfThe language is built over a (finite) set of
names.

An abstractioncorresponds to the traditional notion of abstraction. Like in the de
Bruijn lambda calculus, abstractions need not introduce names for their parameters: the
connection between variables and their corresponding abstraction level directly comes
from the indices associated with variables (see below).

A variableis a name together with a de Bruijn index. This means that an abstraction can
have several parameters, all with the same index, which are distinguished by their name.
The index indicates the abstraction level (whi¢ha variable is referring to: an index of
0 refers to the closest abstraction, and higher numbers refer to farther abstraction levels.

A bind operatiorpartly corresponds to the usual notion of application. However, since
an abstraction may have several parameters, it is necessary to specify which of them is
bound in the expression. Therefore the consaixetb) means: “bind to the parameter
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FVi((x, 1)) = ifi=kthen{(x, i)} else {}
FVi(Aa) = AKX, +1) TRV (@)}
FV(a(x-b)) = FVi(@UOFVi(b)

FVk(a') = FVk(a)

FV(a) = ;EO FV(a)
parameteré\a) = FV(a)

aclosed = FV(@={

Figure 6.2 Free and bound variables .

with namexina”, or, expressed differently: “substitltéor every occurrence ok(0) in
a(modulo index renumbering, as defined belawhe parameters of an abstraction may
be bound separately, and in any order.

A close operatiortloses a sequence of bindings, and removes an abstraction level (re-
moves oneX’).

Notions of parameters, free and bound variables are as in the de Bruijn calculus; a for-
mal definition is given in figure 6.2.

6.2.2 Reduction Rules

In the de Bruijn calculugi-reduction involves some renumbering of indices: whenever
the number ofX’s above a subterm changes, its free variables have to be adapted in con-
sequence. One way to expressiitis

(Aa)b  —pg tgfaf0:=1[b]]

where %’ (lift) is an operation incrementing all free variables byi1,(unlift) is the re-
verse operation, argi := b] is the substitution db for all occurrences dafin a (again
modulo index renumbering)

The reduction rules forN, given in figure 6.3, are very similar, since they also involve
index manipulation operations. There are two kinds of reductions, tatiédeduction
(B) andclose reduction(y). Basically, the operations performed Byeduction in the
standard lambda calculus have been split in two: binding reductions substitute values for
variables, and close reductions “remove the lambda” and unlift the result, i.e. they remove
an abstraction level. The definitions for lifting and substitution operations are given in fig-
ure 6.4
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(Aa)(x-b)  —p Aal(x, 0) : =t g[b]])
(Aa)! ~y ‘old]

Figure 6.3 Reduction rules.

Lifting/Unlifting

(X, 1)] = if (i<Kk)then (x, i) else (x, i+1)

Lil(x, 1] = if (i<Kk) then (x, i) else if (i=k) theerr else (x, i-1)
Oy [Aa] = Ak lal)

Uy [a(x-b)] = Uxlal(x- D [b])

O [al] = (Og[a)! where' [ is either' 1 " or ‘1’
err  =gef E(X-E)! whereg = A\ (X, 1)(X-(x, 1))!
Substitution

(¥, DI, 1) :=b]

(Aa) [(x, 1) :=b]
(@(y-c)) [(x, ) :=b]
@)I(x, i) :=b]

if (x, 1) = (v.])) then b else (y, ))
A@[(x, i+1) :=1[b]])

(@l(x, i) := b])(y~ c[(x, i) := b])
(@[(x, i) = b])!

Figure 6.4 Lifting and substitution operations.

Careful readers will have noticed thahid we may need to unlift a O index, a situation
which never occurs in the de Bruijn calculus. Consider de Br{gjresluction rule above:
all 0 indices are substituted @ so the expression passed ftbcontains no 0 index. By
contrast, th&N expressioriA (x, 0))! reduces ta g[ (x, 0) ], which intuitively corresponds
to an error (we are trying to access a parameter that has not been bound). As a matter of
fact, in such situations the definition of yieldserr, a specific term representing errors.
This will be discussed in detail in section 6.4; for the time being it suffices to knaa that
is not an additional syntactic construct, but rather is defined as a usual term in the lan-
guage, with the property that further binding or close operatioas gielderr again.

A binding reduction can never introduce new parameters in an abstraction, because the
term passed in the substitution is lifted. Therefore if several successive bindings are done,
the final result does not depend on the order of the substitutions. This amounts to say that
bindings are commutatiyee. expressions of the form

a(x-b)(y-c) and a(y-c)(x-b)
derive to the same thing, provided tkaindy aredifferent namedf x andy are the same
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name, all references to that name are substituted in the first binding, so the second binding
is justignored, and those bindings are not commutative.

6.2.3 Reduction Example

For illustrating the rules, we use again the expresseop - True)!. The derivation was
given in an informal way in the introduction, using high-level syntax (without indices).
Here, the low-level syntax is used; at each step, the lambda and the bind or close operation
involved in the next reduction step are underlined.
(A (arg, 1) (true - (false, 0))(false - (true, 0))!)(arg — A(true, 0))!
(AA (A(true, 0))(true — (false, 0))(false - (true, 0))!)_L
A (A(true, 0))(true — (false, 0))(false - (true, 0))!
A (A(false, 1))(false - (true, 0))!
A (A (false, 1))
A (false, 0)
The final result isalse. Notice at line 4 that the binding fafse simply gets eliminated:
this is because the abstractiatialse, 1)) hasno parameter calletdise; it indeed uses a
variable with that name, but since the index is not O this is a free variable, not a parameter.
At some intermediate stages (e.g. at line 2) several reductions could occur; the se-
guence shown here correspondsdomal-orderreduction (choosing leftmost outermost
redex first). It is therefore legitimate to ask whether a different reduction sequence would
yield the same result (whether the language is confluent). The angegiisd has been
established in [13]. So, as in the standard lambda calculus, results are independent from
the reduction sequences through which they were obtained; furthermore, if an expression
does have a result, then the normal-order reduction strategy is guaranteed to yield that re-
sult (i.e. not to diverge).
Notice that if we “forget” to supply an argumenia before applying a close opera-

tion, as iNNot!, we have the reduction

(AA (arg, 1) (true - (false, 0))(false - (true, 0))!)_L

A err (true - (false, 0))(false - (true, 0))!

A err (false - (true, 0))!

Aerr !

Aerr

which is equivalent terr, i.e. an error is produced.

OO, WNBE

6.2.4 Higher-level Syntax

Indices were necessary for defining the calculus, but are difficult to read. In order to work
practically with the calculus, we will use a higher-level syntax, given in figure 6.5, in
which the indices need not be explicitly written. There is a straightforward tranglation
from this syntax into the original syntax, which is formally defined in figure 6.6. In this
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vV = X simple variable
| \v “outer” variable
a = AX;...Xpa abstraction
| % variable
| a(x-b) bind operation
| al close operation

Figure 6.5 Higher-level syntax.

TvIMX .. x)al = A(Ty[a])
where V' ={(x, i+1) | (x,)0V} O{(x4,0), ..., Ok, 0)}

Ty [\...\x] = matchVawv (x, i) wherei is the number of

Ty [a(x-b)] = Tyl[al(x- Ty [b])

Ty [al] = (T [a])!

matchVvarv (x, i) let J={j| (x, )OOV, j=i}in
if(J={}) thenerr

else (xmin (J))

Figure 6.6 Translation function.

new notation, the parameters of an abstractiodeskredas a list of names in parenthe-
sis. A variable is written simply as a name: the index is recovered by looking for the closest
abstraction which declares the same name. In case the same name is used at several ab-
straction levels, and one wants to override the default variable matching scheme, the name
of the variable can be preceded by a collection of backslashes. This tells the translation
function to start looking for a declaration, not at the next abstraction level, but one or sev-
eral levels higher (according to the number of backslashes). The parameter list following
alambda can be empty, as in

A() Not(arg - True)!
This is like a closure, i.e. a function that needs no arguments butagatoated yet (as-
suming a lazy interpretation as in section 6.4.1). Forcing evaluation is then done with the
‘I operator.

The translatiom from this syntax into the original syntax is like translating the standard
lambda calculus into de Bruijn notation (see [12]). The first argument to the translation
function is a set of currently declared variables; at each abstraction level this set is updat-
ed. The translation is defined for closed terms by taking the initially empty set of variables.
Variables which are not declared at any level are translated into an errontgtthé/ar
function. As an example of a translation, consider the expression
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AXY) A(XZ) X +y+2z+\x+\y +\z +\\x

(assuming that infix addition is part of the language). After crossing the two abstraction
levels, the setV of declared variables is

V={(x, 1), (v, 1), (x, 0), (z, 0)}
and therefore the translation is
A (X, 0) + (y, 1) + (z,0) + (x, 1) + (y, 1) + err +err

This shows how the backslash can be used to distinguish between parameters with the
same name, but at different levels. Notice ¥ed k are different variables, while both

y and y are translated intg,(1), because there is g@arameter at the inner abstraction
level. Furthermore, botlz and \k are translated inter, because no corresponding varia-

ble declaration can be found.

6.3 The Calculus at Work

In this section we show how several common programming constructs are encdded in

To make the examples more appealing, we assume that integers, Booleans and strings
have been added to the language, with corresponding operations (integer arithenetic,
pression, etc.). Such extensions are common for the lambda calculus and can be shown to
be conservative, i.e. expressions in the extended language are always convertible into the
original language. As a matter of fact, an encoding of Booleans has been seen already, and
an encoding of integers is given in section 6.3.4. In consequence, the semantics of the lan-
guage does not change. We start with a discussion on functions and recursion, just to give
a clearer map of the relationship betwadhand the standard lambda calculus. Then the
specificity ofAN, namely the encoding of extensible constructs, is demonstrated through
enumerated types, concrete data types and records.

6.3.1 Functions

It can be seen easily thell contains the usual lambda calculus. Any expressaijrihe
pure lambda calculus can be encoded in a straightforward way, by choosing a single arbi-
trary name (sayrg) to be associated with variables:

» Take the de Bruijn encoding ef

* Replace every application MN by M¢ - N)!, i.e. a binding oarg immediately fol-
lowed by a close operation.

* Replace every variabléy (arg, i).

For example, the lambda expressikry. f(x + y) has de Bruijn encoding\A 2(1+0) and
becomes here

AA (arg, 2)(arg - (arg, 1)+(arg, 0))!
which corresponds to
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A(arg) A(arg) A(arg) \arg(arg — \arg+arg)!
in the higher-level notation. Now how does this compare to the expression:

A(fxy) f(arg - (x+y))!
which intuitively seems more natural? In both formulations, the arguments can be bound
and the final result evaluated. The difference appears with partial bindings. When argu-
ments are declared at the same abstraction level, as we do in the second formulation, they
can be bound separately, in any order, and even if all arguments are supplied, the internal
expression is not evaluated until a close operation takes place. This can be useful, as we
will see later, for building lazy data structures. Furthermore, such functions are poly-
morphic, in the sense that any context which binds more arguments tHaxguasly will
accept this abstraction without generating an error. However, if we want to do partial bind-
ings, leaving the other arguments open, the close operation cannot be inserted, which im-
plies that we lose the currying property, i.e. the possibility to bind one single argument and
get in return another function over the remaining arguments. This is because usual func-
tional application corresponds here to a bindind a close operation. When writing a
function, there is therefore a choice to make about how to organize its arguments. The
methodological issues involved in such choices have not been explored yet. Our choices
in the coming examples are guided by some heuristics acquired during our various ex-
periences in using the system.

6.3.2 Recursion

A fixed-point operation over a functiongl)a yields a recursive function, as in the lamb-
da calculus; however, the nammust be taken into account in the fixed-point operation.
So for each nanewe define a corresponding fixed-point operator

Yo = A AX) XX = XX = X)X > (AKX) X(X - X(X - Xx)))!
This is like the usual combinator Y, specialized to bind narfteean be checked that for
f=A(X)awe have
Yy(X-0) = f(X= Yy (x-HH!
In order to facilitate such recursive definitions we introduce some syntactic sugar: an
expression with recursion over parametierwrittenp(x)a and is translated into

Y, (X = A(x)a)!
With this extension we can write
Factorial = M(f) A(arg) if (arg > 1) then arg*f(arg - (arg-1))! else 1

6.3.3 Extensible Enumerated Types and Case Selection

We already have seen an encoding of Boolean values, which is a simple enumerated type
with two values. The approach can be generalizaeeary enumerated types:
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Green = A(green) green
Orange = A(orange) orange
Red = A(red)red

Each colour in the encoding above is a kind of identity function on a particular name. The
way to use such values is to perfarase selectian

trafficLight = A(colour) colour(green — Go)(orange — Stop)(red - Stop)!

Here we assume two defined driving acticGesandstop. Depending on the colour, the
appropriate driving action is chosen. Observe that case selection is just a sequence of bind-
ings. The set of colours can be extended easily:

Blue = A(blue) blue
Violet = A(violet) violet
Yelow = A(yellow) yellow

complement = A(colour) colour(green — Red)(blue - Orange)(violet - Yellow)
(red - Green)(orange - Blue)(yellow - Violet)!

so the first three colours are “reused” here in a different context, without breaking the orig-
inal encoding ofrafficLight. As explained in the introduction, this caot be done in the
standard lambda calculus.

6.3.4 Extensible Concrete Data Types

A direct extension from previous section is the encoding of concrete data types. Concrete
data types are built through a finite numbecafstructors which can take arguments.
Functions using such data types then have to perform case selection over the constructors.
We will consider the example of natural numbers, with two constructors:

A(zero) zero
A(n) A(positive) positive(pred - n)!

Zero
Succ

The namesero andpositive are used to distinguish constructors. Case selection is done as
with enumerated types, except that constructors with arguments must be able to pass the
corresponding values to the function using the data type, so there must be a convention be-
tween the constructor and its users about which name to use for that purpose. In the case
of Succ, the conventional namepgd. An example of using the data type is the addition
function:
Add = M(add) A(left right) left

(zero - right)

(positive — A(pred) add(left - pred)(right — Succ(n - right)!)!)!
which proceeds by decomposition of the left argument.

The encoding can be extended easily to include negative numbers as well:

Pred= A(n) A(negative) negative(succ - n)!
Inc= A(n) n(zero - Succ(n - n)!)(positive - Succ(n - n)!)(negative — A(succ)succ)!
Dec= A(n) n(zero - Pred(n - n)!)(positive - A(pred)pred)(negative — Pred(n - n)!)!
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Add= l(add) A(left right) left(zero - right)
(positive — A(pred) add(left - pred)(right - Inc(n - right)!)!)
(negative - A(succ) add(left - succ)(right - Dec(n - right))!)!

Again, functions using only positive numbers naetbe recoded because of that exten-
sion.

Generally speaking, the encoding of data types given here is pretty low-level. However,
syntactic sugar for data type constructors and pattern matching, as in most modern func-
tional languages, could be added easily.

6.3.5 Records

A more interesting example of extensibility and polymorphism is the encoding of records.
We extend the syntax with a record constructor and a field selection operation; the trans-
lation of these constructs is given in figure 6.7. The translation can be understood more

A(sel) sel(% - 1 o[aq]). .- (Xp~ 1 olan])!
a(sebA(x)x)!

T[{x1=ag ... Xy=an}]
T[a.x]

Figure 6.7 Records

easily through a comparison with the encoding of binary products (pairs) in the standard
lambda calculus:

(a,b)=  Asel.selab
fst= Apair. pair (Afirst. Asecond. first)
snd = Apair. pair (Afirst. Asecond. second)

The encoding of a pair is a function which takeglactorand then binds both members

of the pair to that selector. A selector is just a function taking two arguments and returning
one of them, so thist projection function applies a selector which extracts the first argu-
ment, while thesndfunction applies a selector which extracts the second argument. Sim-
ilarly, a record inAN is a function which takes a selector, and binds all fields to
corresponding named parameters in that selector. Since one abstraction level was added
because of theelargument, all internal fields are lifted in order to protect free variables
from being captured. A selector for fields just an identity function on that name, so a

field selection operation simply binds the appropriate selector sethegument of the

record. Here are some examples:

{x=5} = A(sel)sel(x-5)!

{x=3y=2} = A(sel) sel(x-3)(y-2)!

{x=5}.x = (A(sel) sel(x - 5)!)(sel - (A(X)x))! >+ 5

{x=3 y=2}.x = (A(sel) sel(x-3)(y - 2))(sel - (AX)xX)! -+ 3

{x=3y=2}.z = (A(sel)sel(x-3)(y-2))(sel- (A(2)2)! -+ (A@2)2)! - er
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TIXg ] = preCh(Xy ... %) {
get={X;=Xq ... Xn;=Xp}
set={x;=A(arg) rec(% - arg)(% - Xo)...(Xn-Xp)"
x|: A(arg) rec(d-Xq)...(Xj—arg)...(%, - Xp)!

xn= A(arg) rec(d - Xyp)...(Xj - X;)...(X,—arg)!

}
}
T[X1=8 ... Xp=a,0) = (T[E ... DX -a)...(Xp- &)!
T[ax:=b]] = a.set.x(argb)!

Figure 6.8 Updatable records.

We see thatx”is a polymorphic operation that can be applied to any record containing at
least arxfield.

The same encoding can support more general operations on records, like a form of “ex-
ecute in context” operation, similar to quoted expressions in LISP or to the blocks of
Smalltalk: for example an expression like

r[x+y+z] = r(sel - A(xy z)x +y +z)!

asks record to add its fieldg, y andz and return the result.
Moreover recursion can be used to get recursive records:

Seasons= [(rec) { spring=  {name="spring” next=rec.summer}
summer= {name="summer” next=rec.autumn}
autumn= {name="autumn” next= rec.winter}
winter= {name="winter” next= rec.spring}

}

so for exampleseasons.autumn.next.next.name yields “spring”.Seasons can be seen as a
recursive record, but also as a memory with four locations. Expressions: lékenmer

work as “pointers” in the memory fixed Bgasons. Here we have a flat space of memory
locations, but the approach can be easily extended to define hierarchical memory spaces
with corresponding fixed-point operations at different levels. Pointers in the hierarchical
space simply would use variables with different indices (using the ‘\’ syntax).

6.3.6 Updatable Records (Memories)

The next step is to define updatable records, or, seen differently, writable memories. This
can be done using the previous constructs, as pictured in figuia Gi8datable record is

a recursive function, with one named parameter for each field; internally it consists of a
simple record with getfield, which returns the internal values, ars#ield, which re-
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turns a record of update functions. An update function forxjeékes one argumeatg,

and uses recursion to return the same updatable record, in which all fields are bound to
their current values except the one being updated which takes the new value. Updating a
record consists of selecting the appropriate update function, and binding the new value to
its arg parameter. Functions using this encoding are naturally polymorphic: the function

ZeroX = A(aRecord) aRecordX := 00

can be applied tanyrecord containing axfield and returns the original record, with only
field x being updated.

Updatable records give full flexibility for modelling local state of objects and object
identifiers. In languages using a flat domain of object identifiers, like Smalltalk or Objec-
tive-C, each object would have its own updatable record, representing local state, and then
all objects would be stored in a global record, representing the space of object identifiers.
Some other languages have a more complex structure: for example in C++, an object can
be contained in the memory space of another object (so the implementation structure re-
flects the “has-a” relationship). Modelling such structuradNinvould involve hierarchi-
cal updatable records, in which some fields contain sub-records.

6.3.7 Field Overwriting

The encoding presented in the previous subsection supports modification of an existing
field, but not addition of new fields. An alternative approach to updatable records is to con-
sider field overwriting. Here is how it can be done:

r[x < a] = A(sel) r(sel - sel(x - a))!

This creates a new record franm which fieldx has valu@, whether or nat was already
present irr. Observe that the encoding is based on the fact that the selector received as a
parameter is immediately bounda@n namex, without a close operatigrefore being
passed to the recordThis explains why any binding onin r will be ignored. Given a

field overwriting operation, it is possible to implement record concatenation “for free”,
following Rémy’s technique [26]: one would start with an empty record

A(sel) sel!

and then consider each record as a “record-modifying function”, adding the desired fields;
such functions can be combined by functional composition.

6.4 Compatibility Relationship

Several examples of extensible and reusable constructs have been shown, but so far we
have no formal definition of a compatibility relationship. In this section such a relation-
ship is studied, through an observational classificatiaiNaxpressions. In the standard
lambda calculus, the only observable property of terms is their termination behaviour:
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alh a @m
Aa[ha@0 a(x-b) A (@' [(x, 0) :=1[b]]) @ m+1
al\ b@m Lolb] Oc @n

aldc @m+n+1

Figure 6.9 Convergence to weak normal form.

errors never occur, since all values are functions. Here, we have seen that errors can be
generated during a computation, and therefore errors also represent a valuable observa-
tion. So, as a complement to the usual approximation ordering, which compares terms on
the basis of convergence, we also consider a compatibility ordering, comparing terms on
the basis of error generation. This section is mainly inspired from operational orderings in
Scott Smith’s work [28], who himself draws from a vast body of literature on observation-

al relations (see for example [20][1]). However, Smith identifies errors with divergence,
whereas we treat them as distinct observations.

6.4.1 Errors and Lazy Operational Semantics

Now it is time to justify our encoding of errors, as it was given in figure 6.4. The complex
expression definingrr could be written, in high-level notation, g&) A() x, i.e. as an
abstraction without any parameters, containing itself. Such a term can consume any
sequence of bind or close operations, but always reduces back to itself. In a classical
lambda calculus, a similar behaviour is displayed by the term

(AXAY.XX)(AX.AY.XX)

which consumes any input without ever using it. Under a usual interpretation, this is just
identified with the bottom element (divergence); however, in a lazy interpretation, it be-
comes the top element. Boudol [7] calls this an “ogre”, while Abramsky and Ong [1] say
“aterm of ordero”. Usually the “ogre” is not considered very interesting, because it does
notinteract with its environment. However, this is precisely the behaviour of a run-time er-
ror: once it occurs, the “continuation” of the program is ignored, and the final result is the
error. So the ogre is a natural choice for representing run-time errors. In consequence, we
define in figure 6.9 a lazy convergence relation, wagbs@ m means a converges tb

in msteps of computation”. We simply wraélif there area’, msuch that [Ja' @m,and

adJif = (ab).
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Definition 14 Atermaiserroneougwrittena?) iff it converges and any binding or
close operation on it yields an erroneous term again. Formally:

a? = aland @)? anddb. (a(x-b))?

Another way to state this is to say tlaais erroneous iffJo, aol], where ois a
sequence of bind or close operations. We vagevhenever (a?). It is an easy
exercise to check thatr(?).

6.4.2 Approximation and Compatibility

Definition 15 Theapproximation orderingwritten<p, is
asgb = [OC[-]. C[a]HO C[b]O

where acontextC[—] is a term with “holes”, which can be filled by another tarm
through the context-filling operation C[a].

Definition 16 Thecompatibility orderingwritten<,,, is
agg, b < 0OC[-]. C[b]¢O Clale,

Observe that her@andb are in reverse order in the implication. The first preorder
states that whenevarconvergesh also converges. The second preorder states that
whenevetb does not generate an errailoes not either. It may seem strange that
these definitions are in opposite directions, but this corresponds to standard practice
in semantic domains and subtype orderings. In semantic domains, the least defined
element (representing the divergent program) is at the bottom, and more defined
elements are higher up in the ordering. In type systems, the least defined type (type
of anything) is usually at the top, and more refined types are lower. It can be checked,
for example, thallot, <., Not , i.e. our extended version of thet operation for a
three-valued logic, is indeed compatible with tize operation on Boolean values

only.

In [14] we have defined similar orderings for a pure lambda calculus with records (but
without extensible records), and we have shown that both orderings coincide, i.e. approxi-
ma and compatibility are the same wheris chosen as the top element. The proof can be
transposed tdN without difficulty. So we have a formal framework for reasoning not only
about equivalence of software components, as in usual semantics, but also about their
plug-compatibility relationships. Some consequences of this result are discussed in the
rest of this section.
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6.4.3 Lattice Structure

Define 0= u(x) x. This is the divergent terfobserve the difference withr = pu(x) A() x].

[is smaller than any term: a divergent term never generates an error, and never reduces to
a WNF in any relevant context. On the other hands a greatest element in both order-

ings, since it never diverges and is an error. This implies that the ordattiseavith top
elemenerr and bottom element

The fact that we get a lattice is interesting in many respects. Lattices were originally
considered by Scott for solving domain equations. Then the presence of a top element was
criticized, in particular by Plotkin [25], because this element fails to satisfy some intuitive-
ly natural identities about the conditional function: for example we expect a phrase like

if athen belse ¢

always to give eithdrorc; however, this does not hold whers the top element, and itis

not clear then what the answer should be: it could be TOP itself, or it could be the upper
bound ofb andc, but none of these solutions seems to make sense in usual interpretations.
Therefore the semantics community moved to algebraic CPO models instead of lattices.

Since our approach is purely operational, there is no reason here to argue for or against
a particular model. Nevertheless, it is worth noticing that the operational lattice has some
natural properties. In particular, interpreting the top element as an error, it is quite natural
that we should have

if err then belse c=err

The answer is neithérnorc, but this does not contradict our intuitive understanding of
the conditional statement: if the first argument is an error, then the whole statement pro-
duces an error.

A more recent discussion about lattice models was written by Bloom [6], partially
based on Plotkin’s previous work. Bloom supports the view that, despite the fact that lat-
tices are mathematically more tractable than CPOs, they have several defects when used
as models for programming languages. One of his main criticisms to lattice models is that
they are not single-valued: for example if we choose the second solution for the condition-
al statement above, namely

if TOP then belse c=b u ¢

we get the upper boundlofindc, which, if not TOP itself, is a “multiple value”. However,

the justification for taking single-valuedness as an essential criterion is not strongly estab-
lished. Therefore Boudol [£}iticizes Bloom’s position, and argues that under a different
notion of observation, multiple values make perfect sense. Parallel functions in Boudol’s
paper yield a lattice model. Similarly, powerdomains used for modelling concurrency also
have a lattice structure. These observations lead us to another extension of the calculus
which completes the operational structure by introducing all meets and joins. Full devel-
opment of these constructs would go beyond the scope of this paper; however, a brief ap-
petizer will be given.
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Syntax
v é;kal e ) |I combination
(3 ... &) | alternation
Convemgence
(5.3 Ub @m
(& ... 800 (& ... .1 b g41...87)@m+1
Oag. g Uby @m
&@;j ... )& (by ... bp@m+ ... m,+ 1)
B(ay(x-b) ... g(x-b))Da'@ m B(a!... a)Ua'@ m
B(a ... )(x-b)Da' @ m+1 O( ... )!0a" @ mrl
wheref is eithe ‘| or ‘&

Figure 6.10 Combinations and alternations.

6.4.4 Meets and Joins

Figure 6.10 introduces two-ary constructs calledombinationand alternation. The
reduction rules are exactly the same for both: any binding or close operation is simply
distributed to the internal members. Therefore they can be seen as an array of non-commu-
nicating processors accepting common operations, in a kind of SIMD architecture. The
difference between combinations and alternations comes observationally from the defini-
tion of convergence: combinations converge if all their members converge, while alterna-
tions converge if at least one member converges. Since convergence is at the foundation of
our approximation/compatibility relationship, we have the following properties:

» The combination is glb (greatest lower bound, meet) operator.
» The alternation is kb (least upper bound, join) operator.

This has many interesting applications, all related to various possible usets aff
values.

The alternation operator can be interpreted to model non-determinism. A very similar
proposal has been made by Boudol under the panadiel functiond7]. Boudol mainly
discusses the use of parallel functions for solving the full abstraction problem (relating the
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operational ordering with the semantic ordering). Another application is concurrency
modelling, where all possible outcomes of a computation are grouped together in an alter-
nation, on which further processes can compute: in [13] we discuss an encoding of shared
memory, processes and synchronization primitives using alternations. Yet another possi-
bility is to interpret an alternation as a type, “containing” all its member terms. This opens
very interesting perspectives for typing, since the notions of type membership and subtype
relationship are both captured by the approximation/compatibility ordering, and therefore
values and types are merged into one single concept. Finally, since we deal with sets of
values we can directly apply Scott Smith’s results [28] for proving theorems like fixed-
point induction in a purely operational setting, without going to semantic domains.
Applications of the combination construct, which in a sense is an “overdeterministic”
operator, are less intuitive. Remembering #hais the top element, combinations can be
used to remove errors in a computation, by taking the lower bound of a set of values. This
can be applied for operations sucleg®rd concatenatiofl0][17]. Moreover, following
the idea of unifying types and values, combinations have the same propeirnies-as
section typgg][24]. Interestingly, a connection between record concatenation and inter-
section types as also been proposed by John Reynolds in his Forsythe language[27].

6.5 Conclusion

A lambda calculus with name-based interaction has been described. A few systems using
similar ideas have been mentioned in the introduction [19][16]; the original aspeddt of

is the unification of names with variables through the use of de Bruijn indices. Not only is
this more practical; it also allows us to directly import most of the results established for
the standard lambda calculus. Extensible functioddNirare a good basis for studying
reusability mechanisms (in particular inheritance and subtyping), and the economy of
constructs compares advantageously to other approaches based on records ([9][17]) or ex-
tensible methods [23].

The other extension (alternations and combinations) is perhaps more venturing. It
touches several hot research areas, like observational equivalences and full abstraction for
lambda models [1], parallel functions [7], extensible records [17], and semantics of con-
currency. Most of these issues require further investigation. An exciting challenge is to see
how thert-calculus[21], also based on names, relatasito

The issue of typing was mentioned very briefly, and the development of a full type the-
ory for the calculus is under investigation [13][15]. Using the term ordering as a semantic
basis for types seems a promising direction, and has some similarities with type theories
based on the Curry—Howard isomorphism (identification of types with logical proposi-
tions)[29], in which the usual distinction between terms and types is also blurred.
Including name-based interaction in such theories would be a promising step towards an
object-oriented logic, and would relate to what Ait-Kaci dalldureq2]. Related to this,
the term ordering i\N can be useful for object-oriented databases, since it gives a query
language for free!



References 173

Apart from those foundational issues, there are several practical directions in which this
work can be extended. One, which in fact was the original motivation for developing the
calculus, is to use it for explaining the differences between various forms of inheritance
and delegation in object-oriented languages. In addition, many other aspects of program-
ming languages, like modularity, state manipulation or restricted islands of memory loca-
tions [18] can be studied in this framework. Ultimately, it is of course tempting to build
higher-level syntactic constructs on top of the calculus and make it a full programming
language integrating these various aspects.

Finally, it is worth considering implementation issues for this calculus, and perhaps to
design a name-based abstract functional machine. As noted by Garrigue [16], names can
be translated into offsets in a machine implementation; however, their combination with
de Bruijn indices probably raises some technical problems. Combinations and alterna-
tions are more challenging. Evaluating a combination can be done by sequentially evalu-
ating all of its members, but evaluating an alternation must be done in some form of
parallelism, to be consistent with our notion of WNF.
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