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Abstract One of the important advantages of the object-oriented design and
development methodology is the ability to reuse existing software modules.
However the introduction of many programming languages with different
syntax, semantics and/or paradigms has created the need for a consistent
inter-language interoperability support framework. We present a brief overview
of the most characteristic interoperability support methods and frameworks
allowing the access and reuse of objects from different programming
environments and focus on the interface bridging object-oriented
interoperability support approach.

3.1 Reusing Objects from Different Environments

One of the problems that people face when travelling from one country to another con-
cerns the operation of electric appliances, like electric razors and coffee machines. A per-
son living in Switzerland, for example, travelling to Germany will not be able to “plug in”
and use his coffee machine as he is used in doing when back home. The reason is simply
that the “interfaces” for connecting to the electricity distribution network, that is the plug
of the appliance and the wall socket, are different. Our traveller will need to employ a
small inexpensive adaptor in order to bridge the differences of the “interfaces”. But things
are not always that simple. If the same person is travelling to North America he will dis-
cover that not only is his (Swiss) plug different from the (North American) wall socket, but
also that the electricity voltage differs. Fortunately also in this case a simple solution ex-
ists: the use of a transformer that will convert the North American voltage (110 V) to the
Swiss standard (220 V).
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In object-oriented programming where the reuse of objects is highly encouraged we
face similar problems when we wish to access or reuse objects that are programmed in
different programming languages. A programmer implementing an application in C++
cannot easily (re)use (if at all) objects and code written in Smalltalk [5] or even replace,
without resorting to extensive reprogramming, a C++ object with some other one
performing the same function but under a different interface. What we need are concepts
similar to the electricity transformer and plug adaptor that will allow us to bridge the dif-
ferences between the interfaces and paradigms of objects programmed in different lan-
guages.

In general we can classify the problems of bridging the differences between objects into
three categories. The first category includes the computation differences between the ob-
jects, like the low-level data representations; the second category includes the syntactic
particularities of the object interfaces, like the operation names and the required parame-
ters; the third category includes the differences of the semantic and functional behaviour
of the objects, like the representation of a collection of objects as an array or as a linked
list. We will refer to the bridging of all these differences for the reuse and access of objects
written in one or more languages asittteroperabilitysupportproblem.

Interoperabilityis the ability of two or more entities, such as programs, objects, appli-
cations or environments, to communicate and cooperate despite differences in the imple-
mentation language, the execution environment or the model abstractions. The motivation
in the introduction of interoperability support between entities is the mutual exchange of
information and the use of resources available in other environments.

During the past few years several approaches have been taken for the introduction of in-
teroperability support. We classify these approaches in two ways. First depending on the
way that they solve the interface differences’ problem and second on the point at which the
interoperability support is handled.

For the first classification, interface differences, we identify two general categories:

» Theinterface bridgingapproaches bridge the differences between interfaces. They
are characterized by the notions of offered and requested interface and define an in-
terface transformation language. The interface transformation language requires the
existence of two interfaces and allows one to express how the offered (requested) in-
terface can be transformed to the requested (offered) interface. Note that the interface
transformation language is programming language dependent.

» Theinterface standardizatioapproaches standardize the interface under which a
service (functionality) is offered. They are characterized by an interface definition
language that allows one to express in a programming language independent way a
specific interface. From the abstract definition of an interface a compiler will produce
the necessary stub-interface in the implementation language selected. The compiler
will always generate the same stub-interface for the selected target programming
language.

For the second classification depending on the point at which interoperability support
is handled, we also identify two categories:
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» Theprocedure-oriented interoperabilitgpproaches that handle interoperability at
the point of the procedure call.

» Theobject-oriented interoperabilitppproaches that handle interoperability at the
point of the object.

In the rest of this chapter we present a brief overview of some representative projects
from different interoperability approaches, discussing their advantages and disadvantag-
es, and describe in detail the object-oriented interoperability approach of the Cell frame-
work [12].

3.2 Procedure-Oriented Interoperability

The problem of interface matching between offered and requested services has been iden-
tified by many researchers [6][15][18][21][22][25][26] as an essential factor for a high-
level interoperability in open systems (see also chapter 12). Nevertheless, most of the
approaches taken in the past are based on the remote procedure call (RPC) paradigm and
handle interoperability at the point of procedure call. We call this type of interoperability
support approacprocedure-oriented iteroperability (PQINn POI support it is assumed

that the functionality offered by the server’s procedures matches exactly the functionality
requested by the client. Thus the main focus of the interoperability suppoddaiiten

[21] of the actual parameters passed to the procedure call at the client side to the requested
procedures at the server side.

3.2.1 Interface bridging

An example of this approach is the one taken irPiglith system [21]. The basic as-
sumption of the approach is that the interface requested by the client (at the point of the
procedure call) and the interface offered by the server “fail to match exactly”. That is the
offered and requested parameters of the operation calls differ. A languagéltdiBicE

has been developed that allows programmers to declare how the actual parameters of a
procedure call should be rearranged and transformed in order to match the formal param-
eters of the target procedure. The supported parameter transformations include coercion
of parameters, e.g. five integers to an array of integers, parameter evaluation, e.g.the trans-
formation of the strings “male” and “female” to integer values, and parameter extensions,
i.e. providing default values for missing parameters. The types of the parameters that are
handled are basic data types (integers, strings, Booleans, etc.) and their aggregates (arrays
or structures of integers, characters, etc.). The programmer specifies the mapping between
the actual parameters at the client side and the formal parameters at the server side using
NIMBLE and the system will then automatically generate code that handles the transfor-
mations at run-time.
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3.2.2 Interface standardization

Whereas NIMBLE focuses on bridging the differences between the offered and requested
service interfaces, th@pecification Level Interoperability (SL3upport of théArcadia

project [25] focuses on the generation of interfaces in the local execution environment
through which services in other execution environments can be accessed. The major ad-
vantage of SLI is that it defines type compatibility in terms of the properties (specification)
of the objects and hides representation differences for both abstract and simple types. This
way SLI will hide, for example, the fact that a stack is represented as a linked list or as an
array, making its representation irrelevant to the interoperating programs sharing the
stack. In SLI the specifications of the types that are shared between interoperating pro-
grams are expressed in theifying Type ModglUTM) notation. UTM is a unifying mod-

el in the sensethat it is sufficient for describing those properties of an entity’s type that
are relevant from the perspective of any of the interoperating programs that share instanc-
es of that typ§25]. SLI provides a set of language bindings and underlying implementa-
tions that relate the relevant parts of a type definition given in the language to a definition
as given in the UTM. With SLI the implementer of a new service will need to specify the
service interface with UTM and provide any needed new type definitions for the shared
objects and language bindings that do not already exist. In doing so the user will be assist-
ed by theautomated assistance toolhich allow him or her to browse through the exist-

ing UTM definitions, language bindings and underlying implementations. Once a UTM
definition for a service has been definedab®mated generation towlill produce the
necessary interface in the implementation language selected plus any representation and
code needed to affect the implementation of object instances. This way the automated
generation tool will always produce the same interface specification from the same UTM
input. However, SLI can provide different bindings and implementations for the generated
interface allowing a service to be obtained from different servers on different environ-
ments, provided that they all have the same UTM interface definition.

An approach similar to SLI has been taken inGbenmon Object Request Broker
chitecture(lCORBA) [18] of the Object Management Group (OMG). The Object Request
Broker (ORB) provides interoperability between applications on different machines in
distributed environmeritd 8] and it is a common layer through which objects transpar-
ently exchange messages and receive replies. The interfaces that the client objects request
and the object implementations provide are described throughtéréace Definition
Language (IDL) IDL is the means by which a particular object implementation tells its
potential clients what operations are available and how they should be invoked. An inter-
face definition written in IDL specifies completely the interface and each operation’s
parameters. The IDL concepts are mapped accordingly to the client languages depending
on the facilities available in them. This way, given an IDL interface, the IDL compiler will
generate interface stubs for the client language through which the service can be accessed
using the predefined language bindings.
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3.2.3 Advantages and Disadvantages

Although the above approaches can provide interoperability support for a large number of
applications, they have a number of drawbacks that severely restrict their interoperability
support. The first drawback is the degeneration of the “interface” for which interoperabil-
ity support is provided to the level of a procedure call. A service is generally provided
through an interface that is composed of a set of interrelated procedures. What is of impor-
tance is not the actual set of the interface procedures but the overall functionality they pro-
vide. By reducing the interoperability “interface” to the level of a procedure call, the inter-
relation of the interface procedures is lost, since the interoperability support no longer sees
the service interface as a single entity but as isolated procedures. This will create problems
in approaches like Polylith’s that bridge the differences between the offered and requested
service interface, when there is no direct one-to-one correspondence between the inter-
face’s procedures (interface mismatch problem).

Interoperability approaches like SLI and CORBA, on the other hand, do not suffer from
the interface mismatch problem, since the client is forced to use a predefined interface.
Nevertheless, the enforcement of predefined interfaces (i.e. sets of procedures with
specified functionality) makes it very difficult to access alternative servers that provide the
same service under a different interface. This is an important interoperability restriction
since we can neither anticipate nor we can enforce in an open distributed environment the
interface through which a service will be provided. With the SLI and CORBA approaches,
the service’s interface must also be embedded in the client’s code. Any change in the serv-
er’s interface will result in changes in the client code.

Another restriction of the above interoperability approaches is that they require the
migration of the procedure parameters from the client’s environment to the server’s envi-
ronment. As a result oniyigratabletypes can be used as procedure parameters. These are
the basic data types (integers, strings, reals, etc.) and their aggregates (arrays, structures,
etc.), which we calllata typs. Composite non-migratable abstract types, like a database
or keyboard type, cannot be passed as procedure parameters. This nevertheless is a
reasonable restriction since the above approaches focus in interoperability support for
systems based on non-object-oriented languages where only data types can be defined.

The need for allowing non-migratable objects as parameters to operation calls was
identified in the CORBA and a special data type was introduced célject reference
CORBA object references are data types that encapsulate a handle to a (non-migratable)
object and are globally valid. However object references are a low level primitives which
must be explicitly referenced and de-referenced by the server and the client. A higher-
level primitive allowing direct access to object is clearly needed if we wish to have con-
sistent access in an object-oriented environment.

3.3 Object-Oriented Interoperability

Although procedure-oriented interoperability provides a good basis for interoperability
support between non-object-oriented language based environments, it is not well suited
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for a high level interoperability support for environments based on object-oriented lan-
guages. The reason is that in an object-oriented environment we cannot decompose an ob-
jectinto a set of independent operations and data and view them separately, since this will
mean loss of the object’s semantics. For example, a set of operations that draw a line, arec-
tangle and print characters on a screen, have a different meaning if they are seen independ-
ently or in the context of a window server object where the rectangle can represent a
window into which the characters that represent the user/machine interactions are printed.
In object-oriented environments it is the overall functionality of the object that is of impor-
tance and not the functionality of the independent operations. We call this type of interop-
erability where the semantics of the objects as a whole are presdyjeetioriented
interoperability(OOI).

3.3.1 Interface Bridging

An example of interface bridging in object-oriented interoperability is the one provided
by the Cell framework [12] (where the concept of OOl was also introduced). The Cell is a
framework for the design and implementation of “strongly distributed object-based sys-
tems”. The purpose of the Cell is to allow objects of different independent object-based
systems to communicate and access each other’s functionality regardless of possible in-
terface differences. That is, the same functionality can be offered with a different interface
from different objects found either on the same or on different environments. The bridging
of the interface differences is done via bhierface Adaption LanguadéAL). From the
specification given in the IAL a compiler generates the required stub objects that support
the requested interface and translate the incoming operation invocations to the invocations
of the target object interface.

A more detailed presentation of the Cell interoperability approach is given in section
3.5.

3.3.2 Interface Standardization

The most important example of interface standardization in object-oriented interoperabil-
ity is version 2 of CORBA. In contrast to the first version of CORBA, which was oriented
towards C and C procedure calls, the second version is oriented towards a C++ environ-
ment and objects. Otherwise the functionality of CORBA and the basic elements are the
same as described in section 3.2.2.

3.3.3 Summary

Object-oriented interoperability is a generalization of procedure-oriented interoperability
in the sense that it will use, at its lower levels, the mechanisms and notions of POI. How-
ever OOI has several advantages over POI. First of all it allows the interoperation of appli-
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cations in higher-level abstractions, like the objects, and thus supports a more reliable and
consistent interoperation. A second advantage is that it supports fast prototyping in appli-
cation development and experimentation with different object components from different
environments. The programmer can develop a prototype by reusing and experimenting
with different existing objects in remote (or local) environments without having to change
the code of the prototype when the reused object interfaces differ. A last advantage is that
since OOl is a generalization of POI, it can be used to provide interoperation between both
object-oriented and conventional (non-object-oriented) environments. Furthermore when
IB-OOI support is used for non-object-oriented environments it provides a more general
frame than POI and can also handle cases where the requested and offered service inter-
faces do not match.

In table 3.1 we give a summary of the different approaches presented above and their
position in the two classifications.

Procedure-oriented Object-oriented
interoperability (POI) | interoperability (OOI)
Interface standardization (IS) SLI, CORBA V. 1 CORBAWV. 2
Interface bridging (IB) NIMBLE Cell

Table 3.1 Classification of interoperability support approaches.

3.4 Comparison of Interoperability Support Approaches

The interface bridging approaches provide a more general solution than the interface
standardization approaches for the access and reuse of objects from different program-
ming environments since they do not enforce any specific interface. The application
designer can choose the interface that he wants to use for accessing a service and use it for
accessing not only the target server but also alternative servers offering the same service
under different interfaces.

Another advantage of the interface bridging approaches is that they make no assump-
tions about the existence and semantics of types in the interoperating environments. Each
type, even the simplest and most banal integer type, must be explicitly related to a type on
the remote environment. This way they provide flexibility in the interconnection of di-
verse environments based on different models and abstractions.

One of the disadvantage of the interface bridging approaches comes from the fact that
they do not enforce a common global representation model for expressing the interopera-
bility bindings. Each execution environment is free to choose its own language. As a result
the interoperability interface adaption specifications for a server need to be defined inde-
pendently by the programmer for each execution environment in an interface adaption
language that is specially tailored for the programming languages of the two environ-
ments. However, bilateral mappings can offer a higher flexibility when the interoperating
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languages support special features. For example, a common interface definition language,
like the CORBA IDL, does not include the notion dfansaction thus, even when the in-
teroperating languages support transactions, like Argus [16] and KAROS [4], their IDL-
based interoperation will not be able to use transactions.

Object-oriented interoperability and procedure-oriented interoperability approaches
cannot be directly compared since they are designed for different programming environ-
ments: the first for object-oriented environments and the second for non-object-oriented
environments. Nevertheless OOl is a generalization of POI using at its lower levels the
same mechanisms as POI. Thus the major advantage of OOl over POl is that it can be ap-
plied as well to both types of programming environments and serve as bridge between ob-
ject-oriented and non-object-oriented environments.

Although the interface bridging and interface standardization approaches are distinctin
the way they approach the interoperability problem, they are not exclusive. An interoper-
ability support system can very well support both approaches and give the programmers
maximum flexibility in the reuse and access of objects in different programming environ-
ments. As an example we can consider CORBA which is an interface standardization in-
teroperability support system. In a large CORBA-based open distributed system it will be
difficult for all service providers to agree on a common interface for the servers they de-
velop. As a result a number of different server interfaces will be available providing the
same or similar services. However, applications being developed to access a specific
server interface will not be able to access any other server even if the interface differences
are minor. In addition, since it is not possible to anticipate the interfaces of future servers,
applications will not be able to take advantage of newer, more advanced services. What is
needed is to introduce interface bridging interoperability support. This can be easily done
with the introduction of aimterface adaptiorservice that will allow a client to adapt its
requested service interface to a specific offered interface and dispatch the service requests
accordingly.

3.5 Interface Bridging — Object-Oriented
Interoperability

We identify two basic components necessary for the support and implementation of inter-
face bridging OOI (IB-OOl)interface adaptiorandobject mappinglnterface adaption
provides the means for defining the relations between types on different execution envi-
ronments based on their functionality abstraction, and object mapping provides the run-
time support for the implementation of the interoperability links.

3.5.1 Terminology

In the rest of this section we use the tefiant interfaceto specify the interface through
which the client wishes to access a service, and thesegrrar interfaceo specify the ac-
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tual interface of the server. In addition we will use the teoateto specify the execution
environment of an application (client or server), e.g. the Hybrid [7] execution environ-
ment or the Smalltalk [5] execution environment. In this sense a node can span over more
than one computer, and more than one node can coexist on the same computer. Although
we will assume that the client is in tloeal node and the server in tr@motenode, local

and remote nodes can very well be one and the same. By thesi@mmetewe mean the
operation call parameteasidthe returned values, unless we explicitly state differently.
Finally we should note that by the teuserwe mean the physical person who interacts

and maintains the interoperability support system.

3.5.2 Interface Adaption

In a strongly distributed environment [24] a given service will be offered by many servers
under different interfaces. As a result a client wishing to access a specific service from
more than one server will have to use a different interface for each server. Although we can
develop the client to support different interfaces for the accessed services, we might not
always be able to anticipate all possible interfaces through which a service can be offered,
or force service providers to offer their services via a specific interface. IB-OOI approach-
es this problem by handling all interface transformations, so that a client can use the same
interface to access all servers offering the same service. The interface adaption problem
consists of defining and realizing the bindings and transformations from the interface that
the client uses (requested interface), to the actual interface of the service (offered inter-
face).

Ideally we would like to obtain an automatic solution to the interface adaption problem.
Unfortunately in the current state of the art this is not possible. The reason is that we have
no way of expressing the semantics of the arbitrary functionality of a service or an opera-
tion in a machine-understandable form. In practice the best we can do is describe it in a
manual page and choose wisely a name so that some indication is given about the func-
tionality of the entity. Nevertheless, since nothing obliges us to choose meaningful names
for types, operations or their parameters, we cannot make any assumptions about the
meaning of these names. Furthermore even if the names are chosen to be meaningful, their
interpretation depends in the context in which they appear. For example a type named
Accounthas a totally different meaning and functionality when found in a banking envi-
ronment and when found in a system administrator’s environment. Thus any solution to
the interface adaption problem will require, at some point, human intervention since the
system can automatically deduce neither which type matches which, nor which operation
corresponds to which, or even which operation parameter corresponds to which between
two matching operations. What the system can do is assist the user in defining the bind-
ings, and generate the corresponding implementations.

We distinguish three phases in providing a solution to the interface adaption problem.

In the first phase, which we call thenctionality phasehe user specifies the type or types
on the remote environment providing the needed functionality (service). The system can
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assist the user in browsing the remote type hierarchy and retrieving information describ-
ing the functionality of the types. This information can be manual pages, information ex-
tracted from the type implementation or even usage examples.

In the second phase, which we callititerfacephase the user defines how the opera-
tions of the remote type(s) should be combined to emulate the functionality represented
by the client’s operations. This can a be a very simple task if there is a direct correspond-
ence between requested and offered operations, or a complicated one if the operations
from several remote types must be combined in order to achieve the needed result. As in
the functionality phase the system can assist the user by providing information regarding
the functionality of the operations.

The third phase is thgarameteiphase After specifying the correspondence between
the requested and remote interface operations the user will need to specify the parameters
of the remote operations in relation to the ones that will be passed in the local operation
call. This might require not only a definition of the correspondence between offered and
requested parameters, but also the introduction of adaption functions that will transform
or preprocess the parameters. The system can assist the user by identifying the types of the
corresponding parameters, reusing any information introduced in the past regarding the
relation between types and standard adaption functions, and prompt the user for any addi-
tional information that might be required.

3.5.2.1 Type Relations

In IB-OOI we distinguish three kinds of type relations, depending on how the local type
can be transformed to the remote type. Namely we éawivalent, translatedndtype
matchedypes.

Migrating an object from one node to another means moving both of its parts, i.e.data
and operations, to the remote node, while preserving the semantics of the object. However,
moving the object operations essentially means that a new object type is introduced on the
remote node. This case is presently of no interest to IB-OOI since we wish to support in-
teroperability through the reuse of existing types. Thus in IB-OOI, migrating an operation
call parameter object means moving the data and using them to initialize an instance of a
pre-existing equivalent type. This is a common case with data types, like integers, strings
and their aggregates, where the operations exist on all nodes and only the data need to be
moved. In IB-OO0I when this kind of a relation exists between a type of the local node and
a type of the remote node we say that the localxyipes arequivalentypeXx” on the re-
mote node.

Although data types are the best candidates for an equivalence relation, they are not the
only ones. Other non-data types can also exist for which an equivalent type can be found
on a remote node. For example, a raster image or a database type can have an equivalent
type on a remote node and only the image or database data need to be moved when migrat-
ing the object. In general, two types can be defined as equivalent if their semantics and
structure are equivalent and the transfer of the data of the object is sufficient to allow the
migration of their instances. In migrating an object to its equivalent on the remote node,
the IB-OOI support must handle the representation differences of the transferred data. In



Interface Bridging — Object-Oriented Interoperability 79

this sense thiype equivalencef IB-OOI corresponds t@presentation level interopera-
bility [25].

In an object-oriented environment we are more interested in the semantics of an object
rather than its structure and internal implementation. For example, consider the Hybrid
[17] typestring and the Cool[1] typeARRAY OF CHAR. In the general case the semantics
of the two types are different: thieing is a single object, while thRRAY OF CHAR is an
aggregation of independent objects. Nevertheless when in ComkRatY OF CHAR IS
used for representing a string, it becomes semantically equivalent and can be transformed
to a Hybridstring, although the structure, representation and interfaces of the two types are
different. In IB-OOlI this type relation is definedtgge translation

Translation of the local type to the remote type is done with a user-definable translation
function. This way the particularities of the semantic equivalence can be handled in a case-
specific way. The user can specify different translations according to the semantics of the
objects. For example, if the local node is a CooL node and the remote a Hybrid node, then
we can define two different translations forA®RAY OF CHAR — the first when thar-

RAY OF CHAR represents a character string and is translatedttmg@ and the second
when theARRAY OF CHAR represents a collection of characters that need to be treated in-
dependently and which is translated to a Hyhrial of integer (in Hybrid characters are
represented via integers).

Type translation can be compared to specification level interoperability, where the in-
teroperability support links the objects according to their specifications. Nevertheless,
type translation is more flexible than SLI since it allows multiple translations of the same
type according to the specific needs and semantics of the application.

A local type for which bindings to a remote type or types have been defined, as a solu-
tion to the interface adaption problem (i.e. bindings and transformations from the inter-
face that the client uses, to the actual interface of the service), is saigfe betchetb
the remote node. We can have two kinds of type matched types: multi-type matched and
uni-type matched types. Multi-type-matched types are the ones that are bound to more
that one type on the remote node, when for example one part of the requested functionality
is offered from one type and another part from a second type, and uni-type matched types
are the ones that are bound to a single type on the remote node.

The target of IB-OOlI is to allow access to objects on remote nodes. The basic assump-
tion being that the object in question cannot be migrated to the local node. However, the
access and use of the remote object will be done with the exchange of other objects in the
form of operation call parameters. The parameter objects can, in their turn, be migrated to
the remote node or not. Parameter objects that cannot be migrated to the remote node are
accessed on the local node via a type match, becoming themselves servers for objects on
the remote node.

Type relations are specific to the node for which they are defined and do not imply that
areverse type relation exists, or that they can be applied for another node. For example, if
the local node is a Hybrid node and the remote is a C++ node, the Hybrddigpe has

* Cool is a an object-oriented language designed and implemented in the ITHACA ESPRIT [20] project
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as equivalent in the C++ nodeian(integer) (Booleans in C++ are represented by inte-
gers), while the reverse is, in general, false.

3.5.2.2 ToType-Match or notto Type-Match?

Type matching is a general mechanism for interoperability support and can be used in all
cases in place of equivalence and translation of types. However, the existence of transla-
tion and equivalence of types is needed for performance reasons since accessing objects
through the node boundary is an expensive operation. If an object is to be accessed fre-
guently on the remote node, then it might be preferable to migrate it, either as equivalent
or translated type. For example, it is preferable to migrate “small” objects, like the data
types, rather than access them locally. Nevertheless the user always has the possibility of
accessing any object locally, even an integer if this is needed, as might be the case with an
integer that is stored at a specific memory address which is hard-wired to an external sen-
sor (like a thermometer) and which is continuously updated. This can be done by defining
a type match and using it in the parameter’s binding definitions.

A typical scenario we envisage in the development of an application with IB-OOI sup-
port is the following. The user (application programmer) will first define a set of type
matchings for accessing objects on remote nodes. These will be used in the development
of the application prototype. When the prototype is completed the user will measure the
performance of the prototype and choose for which types a local implementation is to be
provided. For these types an equivalency or translation relation will also be established,
possibly on both nodes, so that they can be migrated and accessed locally. This way the
performance of the prototype will be improved. This process can be repeated iteratively
until the performance gains are no longer justifiable by the implementation effort.

One of the major advantages of the IB-OOI approach is that in the above scenario the
application prototype will not be modified when local implementations of types are intro-
duced and the type relations change. The new type relations are introduced in the IB-OOI
support and do not affect the application programs.

3.5.3 Object Mapping

Whereas interface adaption maintains the static information of the interoperability tem-
plates, object mapping provides the dynamic support and implementation of the interop-
erability links. We distinguish two parts in object mapping: the static and the dynamic. The
static part of object mapping is responsible for the creation of the classes that implement
the interoperability links as specified by the corresponding type matching. The dynamic
part, on the other hand, is responsible for the instantiation and management of the objects
used during the interoperation.

* With the exception of a possible recompilation if dynamic linking is not supported.
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3.5.3.1 Inter-Classes and Inter-Objects

The essence of object mapping is to dynamically introduce in the local node the services
of servers found on other nodes. This, however, must be done in such way so that the ac-
cess of the services is done according to the local conventions and paradigms. In an object-
oriented node this will be achieved with the instantiation of a local object that represents
the remote server, which in IB-OOI we calliater-object An inter-object differs from a

proxy, as this is defined in [23], in three important respects. First in contrast with a proxy,
an inter-object and its server can belong to different programming and execution environ-
ments and thus they follow different paradigms, access mechanisms and interfaces. The
second difference is that while a proxy provides the only access point to the actual server,
i.e. the server can be acceseaty via its proxies, this is not the case with inter-objects.
Objects on the same node with the server can access it directly. An inter-object simply pro-
vides the gateway for accessing the server from remote nodes. Finally, while a proxy is
bound to a specific server, an inter-object can dynamically change its server or even access
more than one server, combining their services to appear as a single service on the local
node.

An inter-object is an instance of a type for which a type match has been defined. The
class (i.e. the implementation of a type) of the inter-object is created by the object mapper
from the type match information and we call itiater-classAn inter-class is generated
automatically by the object mapper and it includes all code needed for implementing the
links to the remote server or servers.

3.56.3.2 Dynamic Support of the Object Mapping

After the instantiation of an inter-object and the establishment of the links to the remote
server, the controlling application will start invoking the operations of the inter-object,
passing other objects as parameters. IB-OOI allows objects of any type to be used as
parameters at operation calls. The object mapper will handle the parameter objects
according to their type relations with the remote node. This way objects for which an
equivalent or translated type exists on the remote node will be migrated, while objects for
which a type match exists will be accessed through an inter-object on the remote node.

In the case where no type relation exists for the type of a parameter object, the object
mapper will invoke the type matcher and ask the user to provide a type relation. This way
type relations can be specified efficiently, taking into account the exact needs and circum-
stances of their use. In addition the dynamic definition of type relations during run-time
relieves the user from the task of searching the implementation type hierarchy for unde-
fined type relations. Also the incremental development and testing of a prototype becomes
easier since no type relations need to be defined for the parts of the prototype that are not
currently tested.

3.6 Interface Adaption

Expressing the relations and transformations between two (or more) interfaces can be
done using a language which we daterface Adaption Language (IAUAL, just like
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the existing interface definition languages (like the CORBA IDL) that allow the expres-
sion of an interface in an abstract language independent way, allows the expression of the
relations and transformations required for the adaption of one interface to another in an
abstract language independent way.

An IAL for the object-oriented interoperability support of the Cell framework proto-
type [8][9][11] was designed and implemented at the University of Geneva. The main goal
of the Cell framework is to allow the objects of a node transparently to access and use serv-
ices found on other heterogeneous nodes using the OOI support. IAL allows the user to ex-
press the interface relations between object types of the different nodes. The syntax of the
IAL is very similar to the Hybrid language syntax [7][10][17], in which the Cell prototype
was implemented.

In the rest of this section we give an overview of the implemented IAL using examples
for the adaption of interfaces between Hybrid object types and CooL [1] object types. A
complete description of IAL can be found in [13].

3.6.1 Type Relations

A type relation in IAL is defined for a specific remote cell which is identified by its name.
For the examples given below we assume that the local Hybrid cell is Agbnedell and

the remote CoolL cell is namedoLCell. The general syntax of a type relation on the Hy-
brid cell is

IdOfRemoteCell :: <TypeRelation> ;

where TypeRelation can be either equivalent, translated or type matched and
IdOfRemoteCell is the id of the remote cell, which in the case of the CooL cedhisCell.

3.6.1.1 Equivalent and Translated types
In both CooL and Hybrid, integers and Booleans are equivalent types. On the Hybrid cell
this is expressed as

CooLCell ::integer => INT ;
CooLCell :: boolean =>BOOL ;

Although the notion of atring exists in both languages, in CooL, strings are represented
as arrays of characters while in Hybrid theytsic data typed hus the relation between
them is of a translated type

CooLCell :: string +> ARRAY OF CHAR : string2arrayOfChar ;
In the CooL cell the corresponding definitions will be:

HybridCell :: INT => integer ;
HybridCell :: BOOL => boolean ;
HybridCell :: ARRAY OF CHAR +> string : arrayOfChar2string ;

In the definition of translated types we specify a translation function, like
string2arrayOfChar andarrayOfChar2string, which performs the data translation.
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type windowServer : abstract {
newWindow : (integer #{ : topLeftX #}, integer #{ : topLeftY #},
integer #{ : botRightX #}, integer #{ : botRightY #}) -> integer #{: windowId #} ;
newSquareWin : (integer #{ : topLeftX #}, integer #{ : topLeftY #}, integer #{ : side #} )
-> integer #{ : windowld #} ;
refreshDisplay : (display ) -> boolean ;
readCoordinates : ( mouse, keyboard, touchScreen, integer #{ : scaleFactor #} ) -> point ;
windowSelected : (mouse, keyboard, touchScreen ) -> integer ;

b

Figure 3.1 Hybrid type windowServer.

3.6.1.2 Type-Matched Types.
A type can be matched to either a single remote type or to a collection of remote types
(multi-type match For example, if we have on the local Hybrid cell a tylpgowServer,
which is matched to the typ@NDOW_CONTROL of the remote cell, the type match will
be expressed as

CooLCell :: windowServer -> WINDOW_CONTROL {<operation bindings>*} ;
while a multi-type match will be expressed as

CooLCell :: windowManager -> <WINDOW_CONTROL, SCREEN_MANAGER >

{ <operation bindings>} ;

When an object of the local nucleus in its attempt to access a service creates an instance
of a type-matched type (an inter-object), a corresponding instance of the target type will
be instantiated on the remote cell. However, there are cases where we do not want a new
instance to be created on the remote cell but we need to connect to an existing server. In
IAL this is noted with the addition @ at the of remote type name:

CooLCell :: personnel -> PERMANENT_PERSONEL_DB @ { <operation bindings>};

3.6.2 Description of the Running Example

In order to describe the IAL syntax we use as examples a Hybridityjp@Server and a
CooL typewINDOW_CONTROL. The HybridwindowServer defines in the Hybrid cell the
interface through which a window server is to be accessed (requested interface), while the
CooLWINDOW_CONTROL provides an implementation of a window server (offered inter-
face). For simplicity we assume that the operation names of the two types describe accu-
rately the functionality of the operations. That s, the operation nasn&dndow creates
a new window, while the operatigat_Position returns the position pointed to by the point-
ing devices.

The Hybrid typewindowServer (figure 3.1 has five operations. Operatiafesvwindow
andnewSquareWin return the id of the newly created window or zero in case of failure. Op-

* The syntax of the operation bindings is described in detail in section 3.6.3.
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TYPE WINDOW_CONTROL =

OBJECT

METHOD create_win ( IN botRightX : INT, IN botRightY : INT,
IN topLeftX : INT, IN topLeftY : INT, IN color : INT ) : INT

METHOD redisplay_all (IN display : DISPLAY) : INT
METHOD get_Position (IN inDevices : I0_DEVICES, IN scaling : INT) : POSITION
METHOD select_Window (IN position : POSITION) : INT

BODY

END OBJECT

Figure 3.2 Cool type WINDOW_CONTROL.

eration refreshDisplay returns true or false, signifying success or failure. Operation
readCoordinates returns the coordinates of the active point on the screen as read from the
pointing devices and operatiaimdowSelected returns the id of the currently selected win-
dow or zero if no window is selected.

The CooL typewINDOW_CONTROL (figure 3.2) has four methods. The methods
create_win andselect_Window return the id of the newly created window and of the window
into which the specific position is found,<k in case of an error. Methestlisplay_all re-
turns 0 or 1, signifying failure or success, and metieodPosition returns the position
pointed by the 1/0 devices (i.e. keyboard, mouse, touch-screen) as adapted by the scaling
factor.

3.6.3 Binding of Operations

Although typewINDOW_CONTROL provides all the functionality that typendowServer

requires, this is done via an interface different to the onesth@dwServer expects. In

general in the IAL we anticipate two levels of interface differences — first in the required
parameters (order, type, etc.) and second in the set of supported operations, i.e. different
number of operations with aggregated, segregated or sligliffigrent functionality. The
resolution of these differences corresponds to the parameter and interface phases of the in-
terface adaption definition.

3.6.3.1 Parameter Phase

Assuming that the functionality of the provided operation corresponds to the requested
functionality, the differences between the parameters passed to the local operation call
(offered parameters) and of the parameters required by the remote operation (requested
parameters) can fall into one or more of the following categories:

» Different order of parameter&or example, the first parameter of the local operation
might correspond to the second on the remote operation.

* The termis used loosely and it is up to the user to define what is a “slight” difference in functionality.
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+ Different representation of the information held by the paramEterexample a
boolean condition TRUE or FALSE can be represented locally by an integer while on
the remote operation the striffTqRUE” or “FALSE” might be expected.

+ Different semantic representation of the informatiéor. example if we have a Hy-
brid array with ten elements indexed from 10 to 19, an equivalent array in CooL will
be indexed 1 to 10. Thus an index, say 15, of the Hybrid array should be communi-
cated as 6 to the CooL cell.

« Different number of parametershe requested parameters might be more or less
than the offered ones. In this case the parameters offered might include all informa-
tion needed or more information might be required.

The IAL anticipates all the above differences and allows the user to specify the needed
transformations for handling them.

Migrated parameters

In our example we consider first the operatiengvindow andcreate_win which have the
same functionality specification. The bindinghef/window to create_win is expressed in
IAL as follows:

newWindow : create_win($3, $4, $1, $2, 17 ) *RET ;

OperatiomewWwindow offers four parameters which are identified by their position with a
positive integer ($1 to $4). Methackate_win will be called with these parameters trans-
posed. Its first parameter will be the third passedelayvindow, the second will be the
fourth and so on. The fifth parametetehte_win is an integer that specifies the colour of
the new window. This information does not exists in the offered parameters. Nevertheless,
in this case, we can use a default value using a integer literal, like in the example the
number 17. The returned value frorsate_win, noted aRET in IAL, is passed back to the
Hybrid cell and becomes the value thatwindow will return.

In the above operation binding definition we assume that a relation for the CooL and
Hybrid integers exists. That is we assume that on the Hybrid cell we have

CoolLCell ::integer => INT ;
and on the CoolL cell
HybridCell :: INT => integer ;

This way migration of the parameters and returned values will be handled automatically.

OperatiomewSquareWin does not exist in the interfaceWdfNDOW_CONTROL but its
functionality can be achieved by operatiente_win called with specific parameter val-
ues. That is we can have

newSquareWin : create_win (bottomRX($1, $3), bottomRY($2, $3), $1, $2, 17) * RET,;

where functionsottomRX andbottomRY are adaption functions. Adaption functions are
user-defined functions, private to the specific interface adaption. They provide the means
through which the user can adapt the offered parameters to a format compatible to the re-
guested parameters. They can be called with or without parameters. The parameters to be
passed to the adaption functions can be any of the offered parameters or even the result of
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another adaption function. In the type matching definition of the IAL the adaption func-
tions are included at the end of the interface adaption definition begeen@}. Thus
for the previous example we have the following adaption functions:

@{
bottomRX : (integer : topLeftX, side ) -> integer ;
{return (topLeftX + side) ;}
bottomRY : (integer : topLeftY, side ) -> integer ;
{return (topLeftY -side);}
@}

The adaption functions will be invoked locally (i.e. in our example, in the Hybrid cell)
and their result will be passed as parameter to the remotereat (win). An adaption
function is effectively a private operation of the inter-class and as such it can access its in-
stance variables or other operations.

Mapped Parameters

When the parameter cannot be migrated to the remote cell, i.e. when there is no corre-
sponding equivalent or translated type, it should be accessed on the local cell. This will be
done via anappingof a remote object to the local parameter according to an existing type
match. In our example this will need to be done forréfreshDisplay operation and
redisplay_all method.

The parameter passed rtireshDisplay iS an object of typeisplay which cannot be
migrated to the CooL cell. Thus it must be accessed on the Hybrid cell via a mapping on
the Cool cell. For this a type match must exist on the CooL cell to the Hydprig type.

HybridCell :: DISPLAY -> display{.... };
This way the binding akfreshDisplay toredisplay_all is expressed as
refreshDisplay : redisplay_all ($1 : display <- DISPLAY ) int2bool(RET) ;

meaning that the first parameter of the methddplay_all will be an object mapped to the
first parameter passed to the operatoashDisplay, according to the specified type match
on the CooL cell. In addition the returned valueedfsplay_all, which is an integer, is
transformed to a Boolean via the adaption fundti@bool which is defined as follows:

@{
int2bool : (integer : intval ) -> boolean ;
{return (intval ~=?0);}

@}
Multi-type mapped parameters
In IAL we also anticipate the case where the functionality of a type is expressed by the
composite functionality of more than one type on the remote cell. In our example this is

the case for the CooL typ® DEVICES, which corresponds to the composite functionality
of the Hybrid typesnouse, keyboard andtouchScreen.

HybridCell :: 10_DEVICES -> < keyboard @, mouse @, touchScreen @ >{...};
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Note that in this example the_DEVICES inter-object will be connected to the existing
keyboard, mouse andtouchScreen objects on the Hybrid cell.

The definition of multi-type match operation bindings is similar to that of single type
match bindings, but with the definition of the operation’s type. If, for example, we assume
that typelO_DEVICES has a methoekad_keyboard which corresponds to the operation
readinput of the Hybrid keyboard type, the binding would be expressed as

read_keyboard : keyboard.readlnput (...)"...;

In fact this syntax is the general syntax for the definition of an operation binding and can
be used in both single- or multi- type matchings. Nevertheless for simplicity in single-type
matchings the definition of the corresponding type can be omitted since there is only one
type involved.
In our example, the binding of the Hybrid operatiesiCoordinates to the operation
get_Position will be expressed as
readCoordinates : get_Position (

<$2, $1, $3 > : < keyboard, mouse, touchScreen > <- |0_DEVICES,
$4) RET

assuming that we have on the CooL cell the relation
HybridCell :: POSITION +> point ;

3.6.3.2 Interface Phase
When defining the operation bindings between two types from different environments
there will be cases where the functionality of the local operation is an aggregation of the
functionality of more than one remote operation. Adapting a requested operation interface
to an offered one might require anything from simple combinations of the operations up
to extensive programming. In order to simplify the user’s task, IAL allows the definition
of simple operation combinations in the type match specification. For example, the func-
tionality of the Hybrid operatiowindowSelected can be obtained with the combination of
the CooL methodget_Position andselect Window. The operation binding is thus:

windowSelected : select_Window (WINDOW_CONTROL.get_Position (

<$2, $1, $3 > : < keyboard, mouse, touchScreen ><-0_DEVICES, $4)) *RET;

This defines that the methgek_Position will first be called on the remote CoolL cell and
its result will not be returned to the calling Hybrid cell but it will be used as the first param-
eter to theselect_Window method. Since the result of the:_Position method is not re-
turned to the Hybrid cell, there is no need for a type relation of the Coob®Og&EON to
exist on the Hybrid cell.

3.7 Object Mapping

Whereas interface adaption provides the means to express in an implementation lan-
guage-independent way the relations between heterogeneous interfaces, object mapping
provides the required language-dependent run-time interoperability support. The first task
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Figure 3.3 Object mapping.

of object mapping is to generate from the interface adaption specifications the inter-
classes at the client side. Instances of an inter-class provide the client with the requested
service interface and their principal task is to forward the operation invocation to the target
server according to the specified interface transformations and adaptions.

In the following we describe the functionality of object mapping via the previously de-
scribed example of interface adaption between the Hylingbwserver and the CooL
WINDOW_CONTROL. In figure 3.3 we present the binding between the operations of the
Hybrid inter-object and the CooL server and describe the actions taken when an operation
of the windowServer inter-object is called. For our example we consider the operation
readCoordinates, which is called with four parameters —kegboard object, anouse object,

a touchScreen object and amteger (figure 3.4) — and which is bound to the method
get_Position.

readCoordinates : get_Position (
<$2, $1, $3 > : < keyboard, mouse, touchScreen > <- |0_DEVICES,
$4) RET

From the four parameters passed to operattiCoordinates, the first threekeyboard,
mouse andtouchScreen) cannot be migrated to the CooL cell but must be accessed locally
via a multi-type match of the CooL typ® DEVICES. The fourth parameter is an integer
for which an equivalent type exists on the CooL cell and thus it can be migrated to it. The
object mapping server will thus instantiate on the CooL cell two objects: an inter-object of
typelO_DEVICES connected to the Hybrid objects/board, mouse andtouchScreen, and
anINT object initialized to the value of the integer parameter (figure 3.5).
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Figure 3.5 Parameter transfer.

When the transfer of the parameters has been completed the object mapping server will
proceed with the invocation of the remote operation. The opetgtidrosition will be in-
voked with theo_DEVICES inter-object and theNT object (figure 3.6) as parameters. The
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Figure 3.6 Remote operation invocation.

result, an object of typrOSITION, will then need to be returned to the Hybrid caller. Be-
cause for the CooL tyOSITION there exists a translation to the Hybrid tgpat, the
object mapping server will instantiate an object of gg»& on the Hybrid cell which will

be initialized to the translated value of H@SITION object. This object will be the result
returned to the caller of theadCoordinates operation.

During the transfer of parameters the object mapping server might encounter a type for
which no type relation has been defined. For example, it might be that on the CooL cell
there is no type relation for the tyyge DEVICES. In this case when the instantiation of an
|IO_DEVICES inter-object is requested, the type-matching server will dynamically request
the definition of the type match. The user will be required to define on the fly a type match
for thelO_DEVICES type. Once this is done the object-mapping server will resume the
transfer of the parameters. This way an application can be started even without any type
relations defined. The object-mapping server will prompt the user to define all needed type
relations during the first run of the application.

3.8 Conclusions and Research Directions

One of the important advantages of object-oriented design and development methodology
is the ability to reuse existing software modules. However, the introduction of many pro-
gramming languages with different syntaxes, semantics and paradigms severely restricts
the reuse of objects programmed in different programming languages. Althdgb
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solutions can be given to solve specific inter-language reuse cases, different interoperabil-
ity support methods provide the framework for consistent inter-language access and reuse
of objects.

We classify the interoperability support approaches in two ways: first depending on the
way that they solve the problem of the different interfaces, and second on the point at
which the interoperability support is handled. For the first classification we distinguish the
interface standardizatioapproaches, which standardize the interface under which a serv-
ice (functionality) is offered, and theterface bridgingapproaches, which bridge the
differences between interfaces. For the second classification we distingusbdbe
dure-oriented interoperabilitapproaches, which handle interoperability at the point of
the procedure call, and tbbject-oriented interoperabilitgpproaches, which handle in-
teroperability at the point of the object.

From the above approaches the interface bridging object-oriented interoperability
(IB-OO0I) approach is the most flexible one since it does not impose predefined interfaces
and can be applied equally well to both object-oriented and non-object-oriented environ-
ments. The Cell framework, which we describe in detail, provides an example of the
IB-OOI approach.

Because the IB-OOI is by no means incompatible with other interoperability approach-
es, its ideas and concepts can be incorporated into other interoperability frameworks, e.g.
the CORBA, and significantly enhance their openness and interoperability support. Fur-
thermore the flexibility and generality of the IB-OOI ideas can provide a framework for
the solution of software integration and software evolution problems related to legacy
systems.

3.8.1 Openness of Interoperability Platforms

One of the major disadvantages of existing interoperability frameworks, the most promi-
nent of which is CORBA, is that they arl®sed to themselveEhat is, client and server
applications interacting via the interoperability platform must be implemented making
use the specific platform interfaces. As a result, taking CORBA as an example, existing
applications cannot be incorporated in the CORBA “world” (non-CORBA clients cannot
use CORBA services, and non-CORBA servers cannot offer their services to CORBA
clients), nor can CORBA applications be moved to a non-CORBA environment.

Designing an interface adaption service for CORBA that will allow C++, for example,
client applications to access CORBA services via their IDL interface will significantly en-
hance the openness and acceptability of CORBA and will allow almost any application to
take advantage of the services CORBA offers.

3.8.2 Interoperability and Legacy System Migration

One of the major problems that companies are facing due to the rapid advances of the com-
puter software and hardware technologies is the migration of their legacy systems to a new
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platform. Most of the given solutions aadhoccase-dependent solutions; only recently

has some kind of methodology started appearing [2][3]. However, although the problem
of legacy system migration is in effect an interoperability problem, it has not been recog-
nized as such. The reason is that most of the work and research done in the area of inter-
operability support focuses on the interoperability support of new applications using the
interface standardization approach and does not consider existing legacy applications.

A prominent framework for the support of legacy system migration can be provided
with the interface bridging object-oriented interoperability (IB-OOI) approach. A smooth
incremental migration of a legacy system can be achieved by identifying its components
and their interfaces and using an IB-OOI support to replace the legacy components with
new ones, which most probably have a different interface [14]. This way new components
can be incrementally added to the system without affecting the remaining legacy ones.
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Annex |: Interface Adaption Language

typeMatchDef
typeMatch

remoteTypes
remoteTypelList
typeMatchSpec
adaptDefList
operMatchList
operMatch
remoteOpDef
argMatchList
argMatch

returnValDef

localArgldList
localTypelList
localArgld

localType
remoteType
remoteOpName
remoteCellld
transFunction
adaptFunct

Program

: remoteCellld ;" typeMatch *;’

: localType ‘->’ remoteTypes typeMatchSpec

| localType ‘=>' remoteType [ “;’ transFunction ]
| localType ‘+>’ remoteType [ ' transFunction ]
: ‘<’ remoteTypeList >’

: remoteType ['@'] [, remoteTypeList]

. {’ operMatchList '}’ [ adaptDefList ]

D '@{ Program '@}’ [adaptDefList]

: operMatch [operMatchList]

: localOpName ‘' remoteOpDef ‘('argMatchList ‘)’ ‘N returnValDef *;’
: remoteType ‘.’ remoteOpName

: argMatch [',” argMatchList]

: localArgld

| adaptFunct ‘(" localArgld ‘)’

| localArgld “’ localType ‘<-’ remoteType

| ‘<’ localArgldList >’ ' ‘<’ localTypeList >’ ‘<-’ remoteType
| remoteOpDef ‘(" argMatchList ‘)’

"RET

| adaptFunct ‘(" RET Y’

| RET “’ localType ‘->' remoteType

. localArgld ['," localArgldList]

: localType [ ‘," localTypeList]

D '$'SMALL_INTEGER
| INTEGER_LITERAL

: STRING
: STRING
: STRING
: STRING
: STRING
: STRING

: Program code in Native Language.
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Annex Il: Type Match Definition Example

CooLCell :: windowServer -> WINDOW_CONTROL {
newWindow : create_win($3, $4, $1, $2, 17 ) * RET ;
newSquareWin : create_win ( bottomRX($1, $3), bottomRY ($2, $3), $1, $2, 17)
ANRET ;
refreshDisplay : redisplay_all ( $1 : display <- DISPLAY ) ” int2bool(RET) ;
readCoordinates : get_Position
(< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- |I0_DEVICES,
$4)~RET
windowSelected : select Window (
WINDOW_CONTROL.get_Position
(<$%$2, 31, $3 > : < keyboard, mouse, touchScreen > <- |0_DEVICES, 1)
) "RET;
}
@f{
bottomRX : (integer : topLeftX, side ) -> integer ;
{ return (topLeftX + side ) ; }

bottomRY : (integer : topLeftY, side ) -> integer ;
{ return (topLeftY - side ) ;}

int2bool : ( integer : intval ) -> boolean ;

{

return (intval ~=? 0) ;

}
@},
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