
r con-
 A per-
 in”
 simply
plug
loy a
hings
l dis-
, but
n ex-
o the

Dimi
Tsich
Repr
may
othe
right
Chapter 3

Interoperation of
Object-Oriented
Applications

Dimitri Konstantas

Abstract One of the important advantages of the object-oriented design and
development methodology is the ability to reuse existing software modules.
However the introduction of many programming languages with different
syntax, semantics and/or paradigms has created the need for a consistent
inter-language interoperability support framework. We present a brief overview
of the most characteristic interoperability support methods and frameworks
allowing the access and reuse of objects from different programming
environments and focus on the interface bridging object-oriented
interoperability support approach.

3.1 Reusing Objects from Different Environments

One of the problems that people face when travelling from one country to anothe
cerns the operation of electric appliances, like electric razors and coffee machines.
son living in Switzerland, for example, travelling to Germany will not be able to “plug
and use his coffee machine as he is used in doing when back home. The reason is
that the “interfaces” for connecting to the electricity distribution network, that is the
of the appliance and the wall socket, are different. Our traveller will need to emp
small inexpensive adaptor in order to bridge the differences of the “interfaces”. But t
are not always that simple. If the same person is travelling to North America he wil
cover that not only is his (Swiss) plug different from the (North American) wall socket
also that the electricity voltage differs. Fortunately also in this case a simple solutio
ists: the use of a transformer that will convert the North American voltage (110 V) t
Swiss standard (220 V).
tri Konstantas, “Interoperation of Object-Oriented Applications,” Object-Oriented Software Composition, O. Nierstrasz and D.
ritzis (Eds.), pp. 69-95, Prentice Hall, 1995.
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. It is not
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
s reserved.

70 Interoperation of Object-Oriented Applications

d we
med in
C++
lace,
 one
ncepts
 dif-
nt lan-

ts into
the ob-
ntactic
rame-

aviour
 linked
bjects

ppli-
 imple-
ivation
ge of

n of in-
on the
ich the

s:

hey
 an in-
es the
ed) in-
terface

h a
ition
 way a
duce
mpiler
ming

pport
In object-oriented programming where the reuse of objects is highly encourage
face similar problems when we wish to access or reuse objects that are program
different programming languages. A programmer implementing an application in
cannot easily (re)use (if at all) objects and code written in Smalltalk [5] or even rep
without resorting to extensive reprogramming, a C++ object with some other
performing the same function but under a different interface. What we need are co
similar to the electricity transformer and plug adaptor that will allow us to bridge the
ferences between the interfaces and paradigms of objects programmed in differe
guages.

In general we can classify the problems of bridging the differences between objec
three categories. The first category includes the computation differences between
jects, like the low-level data representations; the second category includes the sy
particularities of the object interfaces, like the operation names and the required pa
ters; the third category includes the differences of the semantic and functional beh
of the objects, like the representation of a collection of objects as an array or as a
list. We will refer to the bridging of all these differences for the reuse and access of o
written in one or more languages as the interoperability support problem.

Interoperability is the ability of two or more entities, such as programs, objects, a
cations or environments, to communicate and cooperate despite differences in the
mentation language, the execution environment or the model abstractions. The mot
in the introduction of interoperability support between entities is the mutual exchan
information and the use of resources available in other environments.

During the past few years several approaches have been taken for the introductio
teroperability support. We classify these approaches in two ways. First depending
way that they solve the interface differences’ problem and second on the point at wh
interoperability support is handled.

For the first classification, interface differences, we identify two general categorie

• The interface bridging approaches bridge the differences between interfaces. T
are characterized by the notions of offered and requested interface and define
terface transformation language. The interface transformation language requir
existence of two interfaces and allows one to express how the offered (request
terface can be transformed to the requested (offered) interface. Note that the in
transformation language is programming language dependent.

• The interface standardization approaches standardize the interface under whic
service (functionality) is offered. They are characterized by an interface defin
language that allows one to express in a programming language independent
specific interface. From the abstract definition of an interface a compiler will pro
the necessary stub-interface in the implementation language selected. The co
will always generate the same stub-interface for the selected target program
language.

For the second classification depending on the point at which interoperability su
is handled, we also identify two categories:

Procedure-Oriented Interoperability 71

at

he

ojects
antag-
rame-

n iden-
igh-
 of the
igm and
bility

nality

quested

-
 of the
is the

ers of a
aram-
ercion

e trans-
ions,
at are
 (arrays

etween
e using

nsfor-
• The procedure-oriented interoperability approaches that handle interoperability
the point of the procedure call.

• The object-oriented interoperability approaches that handle interoperability at t
point of the object.

In the rest of this chapter we present a brief overview of some representative pr
from different interoperability approaches, discussing their advantages and disadv
es, and describe in detail the object-oriented interoperability approach of the Cell f
work [12].

3.2 Procedure-Oriented Interoperability

The problem of interface matching between offered and requested services has bee
tified by many researchers [6][15][18][21][22][25][26] as an essential factor for a h
level interoperability in open systems (see also chapter 12). Nevertheless, most
approaches taken in the past are based on the remote procedure call (RPC) parad
handle interoperability at the point of procedure call. We call this type of interopera
support approach procedure-oriented iteroperability (POI). In POI support it is assumed
that the functionality offered by the server’s procedures matches exactly the functio
requested by the client. Thus the main focus of the interoperability support is the adaption
[21] of the actual parameters passed to the procedure call at the client side to the re
procedures at the server side.

3.2.1 Interface bridging

An example of this approach is the one taken in the Polylith system [21]. The basic as
sumption of the approach is that the interface requested by the client (at the point
procedure call) and the interface offered by the server “fail to match exactly”. That
offered and requested parameters of the operation calls differ. A language called NIMBLE
has been developed that allows programmers to declare how the actual paramet
procedure call should be rearranged and transformed in order to match the formal p
eters of the target procedure. The supported parameter transformations include co
of parameters, e.g. five integers to an array of integers, parameter evaluation, e.g.th
formation of the strings “male” and “female” to integer values, and parameter extens
i.e. providing default values for missing parameters. The types of the parameters th
handled are basic data types (integers, strings, Booleans, etc.) and their aggregates
or structures of integers, characters, etc.). The programmer specifies the mapping b
the actual parameters at the client side and the formal parameters at the server sid
NIMBLE and the system will then automatically generate code that handles the tra
mations at run-time.

72 Interoperation of Object-Oriented Applications

ested

ment
jor ad-
tion)
s. This
 as an
g the
g pro-

that
tanc-
nta-
nition
 the

hared
 assist-
t-
TM

ion and
mated
 UTM
rated
iron-

est
s in
ar-
 request

 its
 inter-
ion’s
ending
 will
cessed
3.2.2 Interface standardization

Whereas NIMBLE focuses on bridging the differences between the offered and requ
service interfaces, the Specification Level Interoperability (SLI) support of the Arcadia
project [25] focuses on the generation of interfaces in the local execution environ
through which services in other execution environments can be accessed. The ma
vantage of SLI is that it defines type compatibility in terms of the properties (specifica
of the objects and hides representation differences for both abstract and simple type
way SLI will hide, for example, the fact that a stack is represented as a linked list or
array, making its representation irrelevant to the interoperating programs sharin
stack. In SLI the specifications of the types that are shared between interoperatin
grams are expressed in the Unifying Type Model (UTM) notation. UTM is a unifying mod-
el in the sense “that it is sufficient for describing those properties of an entity’s type
are relevant from the perspective of any of the interoperating programs that share ins
es of that type”[25]. SLI provides a set of language bindings and underlying impleme
tions that relate the relevant parts of a type definition given in the language to a defi
as given in the UTM. With SLI the implementer of a new service will need to specify
service interface with UTM and provide any needed new type definitions for the s
objects and language bindings that do not already exist. In doing so the user will be
ed by the automated assistance tools which allow him or her to browse through the exis
ing UTM definitions, language bindings and underlying implementations. Once a U
definition for a service has been defined the automated generation tool will produce the
necessary interface in the implementation language selected plus any representat
code needed to affect the implementation of object instances. This way the auto
generation tool will always produce the same interface specification from the same
input. However, SLI can provide different bindings and implementations for the gene
interface allowing a service to be obtained from different servers on different env
ments, provided that they all have the same UTM interface definition.

An approach similar to SLI has been taken in the Common Object Request Broker Ar-
chitecture (CORBA) [18] of the Object Management Group (OMG). The Object Requ
Broker (ORB) “provides interoperability between applications on different machine
distributed environments”[18] and it is a common layer through which objects transp
ently exchange messages and receive replies. The interfaces that the client objects
and the object implementations provide are described through the Interface Definition
Language (IDL). IDL is the means by which a particular object implementation tells
potential clients what operations are available and how they should be invoked. An
face definition written in IDL specifies completely the interface and each operat
parameters. The IDL concepts are mapped accordingly to the client languages dep
on the facilities available in them. This way, given an IDL interface, the IDL compiler
generate interface stubs for the client language through which the service can be ac
using the predefined language bindings.

Object-Oriented Interoperability 73

ber of
ability
abil-
ided
impor-
y pro-
ter-
r sees
blems

uested
e inter-

 from
rface.
s with
e the

iction
ent the
hes,

e serv-

e the
 envi-
e are
uctures,
ase
ss is a

ort for
fined.
s was

atable)
hich
igher-
 con-

bility
suited
3.2.3 Advantages and Disadvantages

Although the above approaches can provide interoperability support for a large num
applications, they have a number of drawbacks that severely restrict their interoper
support. The first drawback is the degeneration of the “interface” for which interoper
ity support is provided to the level of a procedure call. A service is generally prov
through an interface that is composed of a set of interrelated procedures. What is of
tance is not the actual set of the interface procedures but the overall functionality the
vide. By reducing the interoperability “interface” to the level of a procedure call, the in
relation of the interface procedures is lost, since the interoperability support no longe
the service interface as a single entity but as isolated procedures. This will create pro
in approaches like Polylith’s that bridge the differences between the offered and req
service interface, when there is no direct one-to-one correspondence between th
face’s procedures (interface mismatch problem).

Interoperability approaches like SLI and CORBA, on the other hand, do not suffer
the interface mismatch problem, since the client is forced to use a predefined inte
Nevertheless, the enforcement of predefined interfaces (i.e. sets of procedure
specified functionality) makes it very difficult to access alternative servers that provid
same service under a different interface. This is an important interoperability restr
since we can neither anticipate nor we can enforce in an open distributed environm
interface through which a service will be provided. With the SLI and CORBA approac
the service’s interface must also be embedded in the client’s code. Any change in th
er’s interface will result in changes in the client code.

Another restriction of the above interoperability approaches is that they requir
migration of the procedure parameters from the client’s environment to the server’s
ronment. As a result only migratable types can be used as procedure parameters. Thes
the basic data types (integers, strings, reals, etc.) and their aggregates (arrays, str
etc.), which we call data types. Composite non-migratable abstract types, like a datab
or keyboard type, cannot be passed as procedure parameters. This neverthele
reasonable restriction since the above approaches focus in interoperability supp
systems based on non-object-oriented languages where only data types can be de

The need for allowing non-migratable objects as parameters to operation call
identified in the CORBA and a special data type was introduced called object reference.
CORBA object references are data types that encapsulate a handle to a (non-migr
object and are globally valid. However object references are a low level primitives w
must be explicitly referenced and de-referenced by the server and the client. A h
level primitive allowing direct access to object is clearly needed if we wish to have
sistent access in an object-oriented environment.

3.3 Object-Oriented Interoperability

Although procedure-oriented interoperability provides a good basis for interopera
support between non-object-oriented language based environments, it is not well

74 Interoperation of Object-Oriented Applications

 lan-
e an ob-
his will
, a rec-
epend-

sent a
rinted.
por-
terop-

ided
ll is a
 sys-
ased
ible in-
rface

dging

pport
ations

ction

rabil-
ted

nviron-
re the

bility
 How-
 appli-
for a high level interoperability support for environments based on object-oriented
guages. The reason is that in an object-oriented environment we cannot decompos
ject into a set of independent operations and data and view them separately, since t
mean loss of the object’s semantics. For example, a set of operations that draw a line
tangle and print characters on a screen, have a different meaning if they are seen ind
ently or in the context of a window server object where the rectangle can repre
window into which the characters that represent the user/machine interactions are p
In object-oriented environments it is the overall functionality of the object that is of im
tance and not the functionality of the independent operations. We call this type of in
erability where the semantics of the objects as a whole are preserved object-oriented
interoperability (OOI).

3.3.1 Interface Bridging

An example of interface bridging in object-oriented interoperability is the one prov
by the Cell framework [12] (where the concept of OOI was also introduced). The Ce
framework for the design and implementation of “strongly distributed object-based
tems”. The purpose of the Cell is to allow objects of different independent object-b
systems to communicate and access each other’s functionality regardless of poss
terface differences. That is, the same functionality can be offered with a different inte
from different objects found either on the same or on different environments. The bri
of the interface differences is done via the Interface Adaption Language (IAL). From the
specification given in the IAL a compiler generates the required stub objects that su
the requested interface and translate the incoming operation invocations to the invoc
of the target object interface.

A more detailed presentation of the Cell interoperability approach is given in se
3.5.

3.3.2 Interface Standardization

The most important example of interface standardization in object-oriented interope
ity is version 2 of CORBA. In contrast to the first version of CORBA, which was orien
towards C and C procedure calls, the second version is oriented towards a C++ e
ment and objects. Otherwise the functionality of CORBA and the basic elements a
same as described in section 3.2.2.

3.3.3 Summary

Object-oriented interoperability is a generalization of procedure-oriented interopera
in the sense that it will use, at its lower levels, the mechanisms and notions of POI.
ever OOI has several advantages over POI. First of all it allows the interoperation of

Comparison of Interoperability Support Approaches 75

le and
 appli-
erent
enting
nge

 is that
n both
 when
neral
ce inter-

d their

erface
gram-
ation
use it for
service

sump-
. Each

ype on
f di-

ct that
opera-
 result
 inde-
ption
iron-

ating
cations in higher-level abstractions, like the objects, and thus supports a more reliab
consistent interoperation. A second advantage is that it supports fast prototyping in
cation development and experimentation with different object components from diff
environments. The programmer can develop a prototype by reusing and experim
with different existing objects in remote (or local) environments without having to cha
the code of the prototype when the reused object interfaces differ. A last advantage
since OOI is a generalization of POI, it can be used to provide interoperation betwee
object-oriented and conventional (non-object-oriented) environments. Furthermore
IB-OOI support is used for non-object-oriented environments it provides a more ge
frame than POI and can also handle cases where the requested and offered servi
faces do not match.

In table 3.1 we give a summary of the different approaches presented above an
position in the two classifications.

3.4 Comparison of Interoperability Support Approaches

The interface bridging approaches provide a more general solution than the int
standardization approaches for the access and reuse of objects from different pro
ming environments since they do not enforce any specific interface. The applic
designer can choose the interface that he wants to use for accessing a service and
accessing not only the target server but also alternative servers offering the same
under different interfaces.

Another advantage of the interface bridging approaches is that they make no as
tions about the existence and semantics of types in the interoperating environments
type, even the simplest and most banal integer type, must be explicitly related to a t
the remote environment. This way they provide flexibility in the interconnection o
verse environments based on different models and abstractions.

One of the disadvantage of the interface bridging approaches comes from the fa
they do not enforce a common global representation model for expressing the inter
bility bindings. Each execution environment is free to choose its own language. As a
the interoperability interface adaption specifications for a server need to be defined
pendently by the programmer for each execution environment in an interface ada
language that is specially tailored for the programming languages of the two env
ments. However, bilateral mappings can offer a higher flexibility when the interoper

Procedure-oriented
interoperability (POI)

Object-oriented
interoperability (OOI)

Interface standardization (IS) SLI, CORBA v. 1 CORBA v. 2

Interface bridging (IB) NIMBLE Cell

Table 3.1 Classification of interoperability support approaches.

76 Interoperation of Object-Oriented Applications

guage,

 IDL-

ches
viron-
iented
ls the
 be ap-
en ob-

inct in
oper-
mers

iron-
ion in-
ill be
y de-

g the
pecific
rences
rvers,
hat is

 done
s
equests

 inter-

 envi-
e run-
languages support special features. For example, a common interface definition lan
like the CORBA IDL, does not include the notion of a transaction; thus, even when the in-
teroperating languages support transactions, like Argus [16] and KAROS [4], their
based interoperation will not be able to use transactions.

Object-oriented interoperability and procedure-oriented interoperability approa
cannot be directly compared since they are designed for different programming en
ments: the first for object-oriented environments and the second for non-object-or
environments. Nevertheless OOI is a generalization of POI using at its lower leve
same mechanisms as POI. Thus the major advantage of OOI over POI is that it can
plied as well to both types of programming environments and serve as bridge betwe
ject-oriented and non-object-oriented environments.

Although the interface bridging and interface standardization approaches are dist
the way they approach the interoperability problem, they are not exclusive. An inter
ability support system can very well support both approaches and give the program
maximum flexibility in the reuse and access of objects in different programming env
ments. As an example we can consider CORBA which is an interface standardizat
teroperability support system. In a large CORBA-based open distributed system it w
difficult for all service providers to agree on a common interface for the servers the
velop. As a result a number of different server interfaces will be available providin
same or similar services. However, applications being developed to access a s
server interface will not be able to access any other server even if the interface diffe
are minor. In addition, since it is not possible to anticipate the interfaces of future se
applications will not be able to take advantage of newer, more advanced services. W
needed is to introduce interface bridging interoperability support. This can be easily
with the introduction of an interface adaption service that will allow a client to adapt it
requested service interface to a specific offered interface and dispatch the service r
accordingly.

3.5 Interface Bridging — Object-Oriented
Interoperability

We identify two basic components necessary for the support and implementation of
face bridging OOI (IB-OOI): interface adaption and object mapping. Interface adaption
provides the means for defining the relations between types on different execution
ronments based on their functionality abstraction, and object mapping provides th
time support for the implementation of the interoperability links.

3.5.1 Terminology

In the rest of this section we use the term client interface to specify the interface through
which the client wishes to access a service, and the term server interface to specify the ac-

Interface Bridging — Object-Oriented Interoperability 77

iron-
r more
lthough

tly.
ts

rvers
 from
e can
ht not
ffered,
ach-
 same

roblem
e that
 inter-

lem.
e have
pera-
 it in a
e func-
ames

out the
ful, their
amed
nvi-
ion to
e the
ration
tween
 bind-

blem.
s

m can
tual interface of the server. In addition we will use the term node to specify the execution
environment of an application (client or server), e.g. the Hybrid [7] execution env
ment or the Smalltalk [5] execution environment. In this sense a node can span ove
than one computer, and more than one node can coexist on the same computer. A
we will assume that the client is in the local node and the server in the remote node, local
and remote nodes can very well be one and the same. By the term parameter we mean the
operation call parameters and the returned values, unless we explicitly state differen
Finally we should note that by the term user we mean the physical person who interac
and maintains the interoperability support system.

3.5.2 Interface Adaption

In a strongly distributed environment [24] a given service will be offered by many se
under different interfaces. As a result a client wishing to access a specific service
more than one server will have to use a different interface for each server. Although w
develop the client to support different interfaces for the accessed services, we mig
always be able to anticipate all possible interfaces through which a service can be o
or force service providers to offer their services via a specific interface. IB-OOI appro
es this problem by handling all interface transformations, so that a client can use the
interface to access all servers offering the same service. The interface adaption p
consists of defining and realizing the bindings and transformations from the interfac
the client uses (requested interface), to the actual interface of the service (offered
face).

Ideally we would like to obtain an automatic solution to the interface adaption prob
Unfortunately in the current state of the art this is not possible. The reason is that w
no way of expressing the semantics of the arbitrary functionality of a service or an o
tion in a machine-understandable form. In practice the best we can do is describe
manual page and choose wisely a name so that some indication is given about th
tionality of the entity. Nevertheless, since nothing obliges us to choose meaningful n
for types, operations or their parameters, we cannot make any assumptions ab
meaning of these names. Furthermore even if the names are chosen to be meaning
interpretation depends in the context in which they appear. For example a type n
Account has a totally different meaning and functionality when found in a banking e
ronment and when found in a system administrator’s environment. Thus any solut
the interface adaption problem will require, at some point, human intervention sinc
system can automatically deduce neither which type matches which, nor which ope
corresponds to which, or even which operation parameter corresponds to which be
two matching operations. What the system can do is assist the user in defining the
ings, and generate the corresponding implementations.

We distinguish three phases in providing a solution to the interface adaption pro
In the first phase, which we call the functionality phase, the user specifies the type or type
on the remote environment providing the needed functionality (service). The syste

78 Interoperation of Object-Oriented Applications

scrib-
n ex-

a-
ented
pond-
rations
t. As in
arding

en
meters
ration
d and
sform
es of the
ng the
y addi-

 type

.data
wever,
 on the
ort in-
ation
ce of a
trings

ed to be
e and

 not the
 found
uivalent
 migrat-

cs and
w the

node,
ata. In
assist the user in browsing the remote type hierarchy and retrieving information de
ing the functionality of the types. This information can be manual pages, informatio
tracted from the type implementation or even usage examples.

In the second phase, which we call the interface phase, the user defines how the oper
tions of the remote type(s) should be combined to emulate the functionality repres
by the client’s operations. This can a be a very simple task if there is a direct corres
ence between requested and offered operations, or a complicated one if the ope
from several remote types must be combined in order to achieve the needed resul
the functionality phase the system can assist the user by providing information reg
the functionality of the operations.

The third phase is the parameter phase. After specifying the correspondence betwe
the requested and remote interface operations the user will need to specify the para
of the remote operations in relation to the ones that will be passed in the local ope
call. This might require not only a definition of the correspondence between offere
requested parameters, but also the introduction of adaption functions that will tran
or preprocess the parameters. The system can assist the user by identifying the typ
corresponding parameters, reusing any information introduced in the past regardi
relation between types and standard adaption functions, and prompt the user for an
tional information that might be required.

3.5.2.1 Type Relations
In IB-OOI we distinguish three kinds of type relations, depending on how the local
can be transformed to the remote type. Namely we have equivalent, translated and type
matched types.

Migrating an object from one node to another means moving both of its parts, i.e
and operations, to the remote node, while preserving the semantics of the object. Ho
moving the object operations essentially means that a new object type is introduced
remote node. This case is presently of no interest to IB-OOI since we wish to supp
teroperability through the reuse of existing types. Thus in IB-OOI, migrating an oper
call parameter object means moving the data and using them to initialize an instan
pre-existing equivalent type. This is a common case with data types, like integers, s
and their aggregates, where the operations exist on all nodes and only the data ne
moved. In IB-OOI when this kind of a relation exists between a type of the local nod
a type of the remote node we say that the local type X has an equivalent type X´ on the re-
mote node.

Although data types are the best candidates for an equivalence relation, they are
only ones. Other non-data types can also exist for which an equivalent type can be
on a remote node. For example, a raster image or a database type can have an eq
type on a remote node and only the image or database data need to be moved when
ing the object. In general, two types can be defined as equivalent if their semanti
structure are equivalent and the transfer of the data of the object is sufficient to allo
migration of their instances. In migrating an object to its equivalent on the remote
the IB-OOI support must handle the representation differences of the transferred d

Interface Bridging — Object-Oriented Interoperability 79

 object
ybrid

cs

formed
s are

lation
 case-
 of the
e, then

d in-

e in-
less,
ame

 solu-
inter-

d and
 more
onality
 types

sump-
er, the
s in the
ted to
ode are
jects on

ly that
ple, if

roject
this sense the type equivalence of IB-OOI corresponds to representation level interopera-
bility [25].

In an object-oriented environment we are more interested in the semantics of an
rather than its structure and internal implementation. For example, consider the H
[17] type string and the CooL* [1] type ARRAY OF CHAR. In the general case the semanti
of the two types are different: the string is a single object, while the ARRAY OF CHAR is an
aggregation of independent objects. Nevertheless when in CooL an ARRAY OF CHAR is
used for representing a string, it becomes semantically equivalent and can be trans
to a Hybrid string, although the structure, representation and interfaces of the two type
different. In IB-OOI this type relation is defined as type translation.

Translation of the local type to the remote type is done with a user-definable trans
function. This way the particularities of the semantic equivalence can be handled in a
specific way. The user can specify different translations according to the semantics
objects. For example, if the local node is a CooL node and the remote a Hybrid nod
we can define two different translations for an ARRAY OF CHAR — the first when the AR-
RAY OF CHAR represents a character string and is translated to a string, and the second
when the ARRAY OF CHAR represents a collection of characters that need to be treate
dependently and which is translated to a Hybrid array of integer (in Hybrid characters are
represented via integers).

Type translation can be compared to specification level interoperability, where th
teroperability support links the objects according to their specifications. Neverthe
type translation is more flexible than SLI since it allows multiple translations of the s
type according to the specific needs and semantics of the application.

A local type for which bindings to a remote type or types have been defined, as a
tion to the interface adaption problem (i.e. bindings and transformations from the
face that the client uses, to the actual interface of the service), is said to be type matched to
the remote node. We can have two kinds of type matched types: multi-type matche
uni-type matched types. Multi-type-matched types are the ones that are bound to
that one type on the remote node, when for example one part of the requested functi
is offered from one type and another part from a second type, and uni-type matched
are the ones that are bound to a single type on the remote node.

The target of IB-OOI is to allow access to objects on remote nodes. The basic as
tion being that the object in question cannot be migrated to the local node. Howev
access and use of the remote object will be done with the exchange of other object
form of operation call parameters. The parameter objects can, in their turn, be migra
the remote node or not. Parameter objects that cannot be migrated to the remote n
accessed on the local node via a type match, becoming themselves servers for ob
the remote node.

Type relations are specific to the node for which they are defined and do not imp
a reverse type relation exists, or that they can be applied for another node. For exam
the local node is a Hybrid node and the remote is a C++ node, the Hybrid type boolean has

* CooL is a an object-oriented language designed and implemented in the ITHACA ESPRIT [20] p

80 Interoperation of Object-Oriented Applications

te-

d in all
ransla-
 objects
ed fre-

ivalent
 data
ibility of
 with an
al sen-
fining

 sup-
type
opment
re the
 to be
ished,
ay the
tively

rio the
ntro-
-OOI

 tem-
terop-
. The
ement
amic

objects
as equivalent in the C++ node an int (integer) (Booleans in C++ are represented by in
gers), while the reverse is, in general, false.

3.5.2.2 To Type-Match or not to Type-Match?

Type matching is a general mechanism for interoperability support and can be use
cases in place of equivalence and translation of types. However, the existence of t
tion and equivalence of types is needed for performance reasons since accessing
through the node boundary is an expensive operation. If an object is to be access
quently on the remote node, then it might be preferable to migrate it, either as equ
or translated type. For example, it is preferable to migrate “small” objects, like the
types, rather than access them locally. Nevertheless the user always has the poss
accessing any object locally, even an integer if this is needed, as might be the case
integer that is stored at a specific memory address which is hard-wired to an extern
sor (like a thermometer) and which is continuously updated. This can be done by de
a type match and using it in the parameter’s binding definitions.

A typical scenario we envisage in the development of an application with IB-OOI
port is the following. The user (application programmer) will first define a set of
matchings for accessing objects on remote nodes. These will be used in the devel
of the application prototype. When the prototype is completed the user will measu
performance of the prototype and choose for which types a local implementation is
provided. For these types an equivalency or translation relation will also be establ
possibly on both nodes, so that they can be migrated and accessed locally. This w
performance of the prototype will be improved. This process can be repeated itera
until the performance gains are no longer justifiable by the implementation effort.

One of the major advantages of the IB-OOI approach is that in the above scena
application prototype will not be modified when local implementations of types are i
duced* and the type relations change. The new type relations are introduced in the IB
support and do not affect the application programs.

3.5.3 Object Mapping

Whereas interface adaption maintains the static information of the interoperability
plates, object mapping provides the dynamic support and implementation of the in
erability links. We distinguish two parts in object mapping: the static and the dynamic
static part of object mapping is responsible for the creation of the classes that impl
the interoperability links as specified by the corresponding type matching. The dyn
part, on the other hand, is responsible for the instantiation and management of the
used during the interoperation.

* With the exception of a possible recompilation if dynamic linking is not supported.

Interface Adaption 81

rvices
 the ac-
 object-
sents

roxy,
viron-
s. The

server,
ts.
ly pro-
oxy is
 access
e local

. The
apper

g the

mote
ject,
sed as
bjects
h an
ts for

ode.
 object
s way
ircum-
-time
unde-
comes
 are not

an be
3.5.3.1 Inter-Classes and Inter-Objects
The essence of object mapping is to dynamically introduce in the local node the se
of servers found on other nodes. This, however, must be done in such way so that
cess of the services is done according to the local conventions and paradigms. In an
oriented node this will be achieved with the instantiation of a local object that repre
the remote server, which in IB-OOI we call an inter-object. An inter-object differs from a
proxy, as this is defined in [23], in three important respects. First in contrast with a p
an inter-object and its server can belong to different programming and execution en
ments and thus they follow different paradigms, access mechanisms and interface
second difference is that while a proxy provides the only access point to the actual
i.e. the server can be accessed only via its proxies, this is not the case with inter-objec
Objects on the same node with the server can access it directly. An inter-object simp
vides the gateway for accessing the server from remote nodes. Finally, while a pr
bound to a specific server, an inter-object can dynamically change its server or even
more than one server, combining their services to appear as a single service on th
node.

An inter-object is an instance of a type for which a type match has been defined
class (i.e. the implementation of a type) of the inter-object is created by the object m
from the type match information and we call it an inter-class. An inter-class is generated
automatically by the object mapper and it includes all code needed for implementin
links to the remote server or servers.

3.5.3.2 Dynamic Support of the Object Mapping
After the instantiation of an inter-object and the establishment of the links to the re
server, the controlling application will start invoking the operations of the inter-ob
passing other objects as parameters. IB-OOI allows objects of any type to be u
parameters at operation calls. The object mapper will handle the parameter o
according to their type relations with the remote node. This way objects for whic
equivalent or translated type exists on the remote node will be migrated, while objec
which a type match exists will be accessed through an inter-object on the remote n

In the case where no type relation exists for the type of a parameter object, the
mapper will invoke the type matcher and ask the user to provide a type relation. Thi
type relations can be specified efficiently, taking into account the exact needs and c
stances of their use. In addition the dynamic definition of type relations during run
relieves the user from the task of searching the implementation type hierarchy for
fined type relations. Also the incremental development and testing of a prototype be
easier since no type relations need to be defined for the parts of the prototype that
currently tested.

3.6 Interface Adaption

Expressing the relations and transformations between two (or more) interfaces c
done using a language which we call Interface Adaption Language (IAL). IAL, just like

82 Interoperation of Object-Oriented Applications

res-
n of the
r in an

to-
 goal
e serv-
r to ex-
x of the
pe

ples
es. A

me.

y-

and

id cell

nted

like
the existing interface definition languages (like the CORBA IDL) that allow the exp
sion of an interface in an abstract language independent way, allows the expressio
relations and transformations required for the adaption of one interface to anothe
abstract language independent way.

An IAL for the object-oriented interoperability support of the Cell framework pro
type [8][9][11] was designed and implemented at the University of Geneva. The main
of the Cell framework is to allow the objects of a node transparently to access and us
ices found on other heterogeneous nodes using the OOI support. IAL allows the use
press the interface relations between object types of the different nodes. The synta
IAL is very similar to the Hybrid language syntax [7][10][17], in which the Cell prototy
was implemented.

 In the rest of this section we give an overview of the implemented IAL using exam
for the adaption of interfaces between Hybrid object types and CooL [1] object typ
complete description of IAL can be found in [13].

3.6.1 Type Relations

A type relation in IAL is defined for a specific remote cell which is identified by its na
For the examples given below we assume that the local Hybrid cell is named HybridCell and
the remote CooL cell is named CooLCell. The general syntax of a type relation on the H
brid cell is

IdOfRemoteCell :: <TypeRelation> ;

where TypeRelation can be either equivalent, translated or type matched
IdOfRemoteCell is the id of the remote cell, which in the case of the CooL cell is CooLCell.

3.6.1.1 Equivalent and Translated types
In both CooL and Hybrid, integers and Booleans are equivalent types. On the Hybr
this is expressed as

CooLCell :: integer => INT ;
CooLCell :: boolean => BOOL ;

Although the notion of a string exists in both languages, in CooL, strings are represe
as arrays of characters while in Hybrid they are basic data types. Thus the relation between
them is of a translated type

CooLCell :: string +> ARRAY OF CHAR : string2arrayOfChar ;

In the CooL cell the corresponding definitions will be:

HybridCell :: INT => integer ;
HybridCell :: BOOL => boolean ;
HybridCell :: ARRAY OF CHAR +> string : arrayOfChar2string ;

In the definition of translated types we specify a translation function,
string2arrayOfChar and arrayOfChar2string, which performs the data translation.

Interface Adaption 83

 types

ll

nstance
e will
t a new
rver. In

ile the
er-
 accu-

t-

Op-
3.6.1.2 Type-Matched Types.
A type can be matched to either a single remote type or to a collection of remote
(multi-type match). For example, if we have on the local Hybrid cell a type windowServer,
which is matched to the type WINDOW_CONTROL of the remote cell, the type match wi
be expressed as

CooLCell :: windowServer -> WINDOW_CONTROL {<operation bindings>*} ;

while a multi-type match will be expressed as
CooLCell :: windowManager -> < WINDOW_CONTROL, SCREEN_MANAGER >

{ <operation bindings>} ;

When an object of the local nucleus in its attempt to access a service creates an i
of a type-matched type (an inter-object), a corresponding instance of the target typ
be instantiated on the remote cell. However, there are cases where we do not wan
instance to be created on the remote cell but we need to connect to an existing se
IAL this is noted with the addition of @ at the of remote type name:

CooLCell :: personnel -> PERMANENT_PERSONEL_DB @ { <operation bindings>} ;

3.6.2 Description of the Running Example

In order to describe the IAL syntax we use as examples a Hybrid type windowServer and a
CooL type WINDOW_CONTROL. The Hybrid windowServer defines in the Hybrid cell the
interface through which a window server is to be accessed (requested interface), wh
CooL WINDOW_CONTROL provides an implementation of a window server (offered int
face). For simplicity we assume that the operation names of the two types describe
rately the functionality of the operations. That is, the operation named newWindow creates
a new window, while the operation get_Position returns the position pointed to by the poin
ing devices.

The Hybrid type windowServer (figure 3.1) has five operations. Operations newWindow
and newSquareWin return the id of the newly created window or zero in case of failure.

* The syntax of the operation bindings is described in detail in section 3.6.3.

type windowServer : abstract {
newWindow : (integer #{ : topLeftX #}, integer #{ : topLeftY #},

 integer #{ : botRightX #}, integer #{ : botRightY #}) -> integer #{: windowId #} ;
newSquareWin : (integer #{ : topLeftX #}, integer #{ : topLeftY #}, integer #{ : side #})

-> integer #{ : windowId #} ;
refreshDisplay : (display) -> boolean ;
readCoordinates : (mouse, keyboard, touchScreen, integer #{ : scaleFactor #}) -> point ;
windowSelected : (mouse, keyboard, touchScreen) -> integer ;

} ;

Figure 3.1 Hybrid type windowServer.

84 Interoperation of Object-Oriented Applications

tion
m the
-

ds
ow

 scaling

ired
ifferent

f the in-

ested
on call
uested

ion

ity.
eration refreshDisplay returns true or false, signifying success or failure. Opera
readCoordinates returns the coordinates of the active point on the screen as read fro
pointing devices and operation windowSelected returns the id of the currently selected win
dow or zero if no window is selected.

The CooL type WINDOW_CONTROL (figure 3.2) has four methods. The metho
create_win and select_Window return the id of the newly created window and of the wind
into which the specific position is found, or −1 in case of an error. Method redisplay_all re-
turns 0 or 1, signifying failure or success, and method get_Position returns the position
pointed by the I/O devices (i.e. keyboard, mouse, touch-screen) as adapted by the
factor.

3.6.3 Binding of Operations

Although type WINDOW_CONTROL provides all the functionality that type windowServer
requires, this is done via an interface different to the one that windowServer expects. In
general in the IAL we anticipate two levels of interface differences — first in the requ
parameters (order, type, etc.) and second in the set of supported operations, i.e. d
number of operations with aggregated, segregated or slightly* different functionality. The
resolution of these differences corresponds to the parameter and interface phases o
terface adaption definition.

3.6.3.1 Parameter Phase
Assuming that the functionality of the provided operation corresponds to the requ
functionality, the differences between the parameters passed to the local operati
(offered parameters) and of the parameters required by the remote operation (req
parameters) can fall into one or more of the following categories:

• Different order of parameters. For example, the first parameter of the local operat
might correspond to the second on the remote operation.

* The term is used loosely and it is up to the user to define what is a “slight” difference in functional

TYPE WINDOW_CONTROL =
OBJECT

METHOD create_win (IN botRightX : INT, IN botRightY : INT,
 IN topLeftX : INT, IN topLeftY : INT, IN color : INT) : INT

METHOD redisplay_all (IN display : DISPLAY) : INT
METHOD get_Position (IN inDevices : IO_DEVICES, IN scaling : INT) : POSITION
METHOD select_Window (IN position : POSITION) : INT

BODY
...
END OBJECT

Figure 3.2 CooL type WINDOW_CONTROL.

Interface Adaption 85

ile on

 will
muni-

ess
orma-

eeded

h a
s-

of
eless,
le the

L and

cally.

-

re
eans

 the re-
rs to be
esult of
• Different representation of the information held by the parameter. For example a
boolean condition TRUE or FALSE can be represented locally by an integer wh
the remote operation the string “TRUE” or “FALSE” might be expected.

• Different semantic representation of the information. For example if we have a Hy-
brid array with ten elements indexed from 10 to 19, an equivalent array in CooL
be indexed 1 to 10. Thus an index, say 15, of the Hybrid array should be com
cated as 6 to the CooL cell.

• Different number of parameters. The requested parameters might be more or l
than the offered ones. In this case the parameters offered might include all inf
tion needed or more information might be required.

The IAL anticipates all the above differences and allows the user to specify the n
transformations for handling them.

Migrated parameters

In our example we consider first the operations newWindow and create_win which have the
same functionality specification. The binding of newWindow to create_win is expressed in
IAL as follows:

newWindow : create_win($3, $4, $1, $2, 17) ̂ RET ;

Operation newWindow offers four parameters which are identified by their position wit
positive integer ($1 to $4). Method create_win will be called with these parameters tran
posed. Its first parameter will be the third passed by newWindow, the second will be the
fourth and so on. The fifth parameter of create_win is an integer that specifies the colour
the new window. This information does not exists in the offered parameters. Neverth
in this case, we can use a default value using a integer literal, like in the examp
number 17. The returned value from create_win, noted as RET in IAL, is passed back to the
Hybrid cell and becomes the value that newWindow will return.

In the above operation binding definition we assume that a relation for the Coo
Hybrid integers exists. That is we assume that on the Hybrid cell we have

CooLCell :: integer => INT ;

and on the CooL cell

HybridCell :: INT => integer ;

This way migration of the parameters and returned values will be handled automati
Operation newSquareWin does not exist in the interface of WINDOW_CONTROL but its

functionality can be achieved by operation create_win called with specific parameter val
ues. That is we can have

 newSquareWin : create_win (bottomRX($1, $3), bottomRY($2, $3), $1, $2, 17) ̂ RET;

where functions bottomRX and bottomRY are adaption functions. Adaption functions a
user-defined functions, private to the specific interface adaption. They provide the m
through which the user can adapt the offered parameters to a format compatible to
quested parameters. They can be called with or without parameters. The paramete
passed to the adaption functions can be any of the offered parameters or even the r

86 Interoperation of Object-Oriented Applications

unc-

ell)

 its in-

 corre-
 will be
 type

ing on

h

y the
his is
ity
another adaption function. In the type matching definition of the IAL the adaption f
tions are included at the end of the interface adaption definition between @{ and @}. Thus
for the previous example we have the following adaption functions:

@{
bottomRX : (integer : topLeftX, side) -> integer ;

{ return (topLeftX + side) ; }

bottomRY : (integer : topLeftY, side) -> integer ;
{ return (topLeftY - side) ; }

@}

The adaption functions will be invoked locally (i.e. in our example, in the Hybrid c
and their result will be passed as parameter to the remote call (create_win). An adaption
function is effectively a private operation of the inter-class and as such it can access
stance variables or other operations.

Mapped Parameters

When the parameter cannot be migrated to the remote cell, i.e. when there is no
sponding equivalent or translated type, it should be accessed on the local cell. This
done via a mapping of a remote object to the local parameter according to an existing
match. In our example this will need to be done for the refreshDisplay operation and
redisplay_all method.

The parameter passed to refreshDisplay is an object of type display which cannot be
migrated to the CooL cell. Thus it must be accessed on the Hybrid cell via a mapp
the CooL cell. For this a type match must exist on the CooL cell to the Hybrid display type.

HybridCell :: DISPLAY -> display { } ;

This way the binding of refreshDisplay to redisplay_all is expressed as

refreshDisplay : redisplay_all ($1 : display <- DISPLAY) ̂ int2bool(RET) ;

meaning that the first parameter of the method redisplay_all will be an object mapped to the
first parameter passed to the operation refreshDisplay, according to the specified type matc
on the CooL cell. In addition the returned value of redisplay_all, which is an integer, is
transformed to a Boolean via the adaption function int2bool which is defined as follows:

@{
int2bool : (integer : intval) -> boolean ;

{ return (intval ~=? 0); }
@}

Multi-type mapped parameters

In IAL we also anticipate the case where the functionality of a type is expressed b
composite functionality of more than one type on the remote cell. In our example t
the case for the CooL type IO_DEVICES, which corresponds to the composite functional
of the Hybrid types mouse, keyboard and touchScreen.

HybridCell :: IO_DEVICES -> < keyboard @, mouse @, touchScreen @ > { ... } ;

Object Mapping 87

g

ype
ume
n

d can
-type
ly one

ents
of the
erface
ns up
ition
 func-
f

d
ram-

n lan-
apping

st task
Note that in this example the IO_DEVICES inter-object will be connected to the existin
keyboard, mouse and touchScreen objects on the Hybrid cell.

The definition of multi-type match operation bindings is similar to that of single t
match bindings, but with the definition of the operation’s type. If, for example, we ass
that type IO_DEVICES has a method read_keyboard which corresponds to the operatio
readInput of the Hybrid keyboard type, the binding would be expressed as

read_keyboard : keyboard.readInput (...) ̂ ... ;

In fact this syntax is the general syntax for the definition of an operation binding an
be used in both single- or multi- type matchings. Nevertheless for simplicity in single
matchings the definition of the corresponding type can be omitted since there is on
type involved.

In our example, the binding of the Hybrid operation readCoordinates to the operation
get_Position will be expressed as

readCoordinates : get_Position (
< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES,

 $4) ̂ RET

assuming that we have on the CooL cell the relation

HybridCell :: POSITION +> point ;

3.6.3.2 Interface Phase
When defining the operation bindings between two types from different environm
there will be cases where the functionality of the local operation is an aggregation
functionality of more than one remote operation. Adapting a requested operation int
to an offered one might require anything from simple combinations of the operatio
to extensive programming. In order to simplify the user’s task, IAL allows the defin
of simple operation combinations in the type match specification. For example, the
tionality of the Hybrid operation windowSelected can be obtained with the combination o
the CooL methods get_Position and select_Window. The operation binding is thus:

windowSelected : select_Window (WINDOW_CONTROL.get_Position (
< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES, $4)) ̂ RET ;

This defines that the method get_Position will first be called on the remote CooL cell an
its result will not be returned to the calling Hybrid cell but it will be used as the first pa
eter to the select_Window method. Since the result of the get_Position method is not re-
turned to the Hybrid cell, there is no need for a type relation of the CooL type POSITION to
exist on the Hybrid cell.

3.7 Object Mapping

Whereas interface adaption provides the means to express in an implementatio
guage-independent way the relations between heterogeneous interfaces, object m
provides the required language-dependent run-time interoperability support. The fir

88 Interoperation of Object-Oriented Applications

inter-
uested
target

 de-

f the
eration
tion

d

cally
r

t. The
ect of
of object mapping is to generate from the interface adaption specifications the
classes at the client side. Instances of an inter-class provide the client with the req
service interface and their principal task is to forward the operation invocation to the
server according to the specified interface transformations and adaptions.

In the following we describe the functionality of object mapping via the previously
scribed example of interface adaption between the Hybrid WindowServer and the CooL
WINDOW_CONTROL. In figure 3.3 we present the binding between the operations o
Hybrid inter-object and the CooL server and describe the actions taken when an op
of the windowServer inter-object is called. For our example we consider the opera
readCoordinates, which is called with four parameters — a keyboard object, a mouse object,
a touchScreen object and an integer (figure 3.4) — and which is bound to the metho
get_Position.

readCoordinates : get_Position (
< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES,
$4) ̂ RET

From the four parameters passed to operation readCoordinates, the first three (keyboard,
mouse and touchScreen) cannot be migrated to the CooL cell but must be accessed lo
via a multi-type match of the CooL type IO_DEVICES. The fourth parameter is an intege
for which an equivalent type exists on the CooL cell and thus it can be migrated to i
object mapping server will thus instantiate on the CooL cell two objects: an inter-obj
type IO_DEVICES connected to the Hybrid objects keyboard, mouse and touchScreen, and
an INT object initialized to the value of the integer parameter (figure 3.5).

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

newWindow
create_win

redisplay_all

get_Position

windowServer

WINDOW_CONTROL

select_Window

newSquareWin
refreshDisplay

readCoordinates
windowSelected

Inter-Object

Figure 3.3 Object mapping.

Object Mapping 89

ver will

e

When the transfer of the parameters has been completed the object mapping ser
proceed with the invocation of the remote operation. The operation get_Position will be in-
voked with the IO_DEVICES inter-object and the INT object (figure 3.6) as parameters. Th

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

windowServer
WINDOW_CONTROL

get_Position

readCoordinates

keyboard

mouse

touchScreen

integer

Figure 3.4 Operation call forwarding.

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

windowServer
WINDOW_CONTROL

get_Position

readCoordinates

IO_DEVICES
keyboard

mouse

touchScreen

integer

INT

Figure 3.5 Parameter transfer.

90 Interoperation of Object-Oriented Applications

e-

t

pe for
L cell
n
uest
atch

 the
y type
d type

dology
 pro-

estricts
result, an object of type POSITION, will then need to be returned to the Hybrid caller. B
cause for the CooL type POSITION there exists a translation to the Hybrid type point, the
object mapping server will instantiate an object of type point on the Hybrid cell which will
be initialized to the translated value of the POSITION object. This object will be the resul
returned to the caller of the readCoordinates operation.

During the transfer of parameters the object mapping server might encounter a ty
which no type relation has been defined. For example, it might be that on the Coo
there is no type relation for the type IO_DEVICES. In this case when the instantiation of a
IO_DEVICES inter-object is requested, the type-matching server will dynamically req
the definition of the type match. The user will be required to define on the fly a type m
for the IO_DEVICES type. Once this is done the object-mapping server will resume
transfer of the parameters. This way an application can be started even without an
relations defined. The object-mapping server will prompt the user to define all neede
relations during the first run of the application.

3.8 Conclusions and Research Directions

One of the important advantages of object-oriented design and development metho
is the ability to reuse existing software modules. However, the introduction of many
gramming languages with different syntaxes, semantics and paradigms severely r
the reuse of objects programmed in different programming languages. Although adhoc

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

windowServer
WINDOW_CONTROL

get_Position

keyboard

mouse

touchScreen

readCoordinates

IO_DEVICES

INT

Figure 3.6 Remote operation invocation.

Conclusions and Research Directions 91

erabil-
 reuse

n the
int at
h the
erv-

e

 of
-

bility
rfaces
viron-
f the

ach-
s, e.g.
. Fur-
 for
gacy

romi-

king
isting
not
RBA

ple,
 en-
ion to

e com-
 a new
solutions can be given to solve specific inter-language reuse cases, different interop
ity support methods provide the framework for consistent inter-language access and
of objects.

We classify the interoperability support approaches in two ways: first depending o
way that they solve the problem of the different interfaces, and second on the po
which the interoperability support is handled. For the first classification we distinguis
interface standardization approaches, which standardize the interface under which a s
ice (functionality) is offered, and the interface bridging approaches, which bridge th
differences between interfaces. For the second classification we distinguish the proce-
dure-oriented interoperability approaches, which handle interoperability at the point
the procedure call, and the object-oriented interoperability approaches, which handle in
teroperability at the point of the object.

From the above approaches the interface bridging object-oriented interopera
(IB-OOI) approach is the most flexible one since it does not impose predefined inte
and can be applied equally well to both object-oriented and non-object-oriented en
ments. The Cell framework, which we describe in detail, provides an example o
IB-OOI approach.

Because the IB-OOI is by no means incompatible with other interoperability appro
es, its ideas and concepts can be incorporated into other interoperability framework
the CORBA, and significantly enhance their openness and interoperability support
thermore the flexibility and generality of the IB-OOI ideas can provide a framework
the solution of software integration and software evolution problems related to le
systems.

3.8.1 Openness of Interoperability Platforms

One of the major disadvantages of existing interoperability frameworks, the most p
nent of which is CORBA, is that they are closed to themselves. That is, client and server
applications interacting via the interoperability platform must be implemented ma
use the specific platform interfaces. As a result, taking CORBA as an example, ex
applications cannot be incorporated in the CORBA “world” (non-CORBA clients can
use CORBA services, and non-CORBA servers cannot offer their services to CO
clients), nor can CORBA applications be moved to a non-CORBA environment.

Designing an interface adaption service for CORBA that will allow C++, for exam
client applications to access CORBA services via their IDL interface will significantly
hance the openness and acceptability of CORBA and will allow almost any applicat
take advantage of the services CORBA offers.

3.8.2 Interoperability and Legacy System Migration

One of the major problems that companies are facing due to the rapid advances of th
puter software and hardware technologies is the migration of their legacy systems to

92 Interoperation of Object-Oriented Applications

tly
blem

ecog-
of inter-
g the

ons.
ided
oth
nents
ts with
nents
es.

on,”

ms to

 In-
arch

on
per,

d,” in
of

ys-
DS ’93

 the-
platform. Most of the given solutions are adhoc case-dependent solutions; only recen
has some kind of methodology started appearing [2][3]. However, although the pro
of legacy system migration is in effect an interoperability problem, it has not been r
nized as such. The reason is that most of the work and research done in the area
operability support focuses on the interoperability support of new applications usin
interface standardization approach and does not consider existing legacy applicati

A prominent framework for the support of legacy system migration can be prov
with the interface bridging object-oriented interoperability (IB-OOI) approach. A smo
incremental migration of a legacy system can be achieved by identifying its compo
and their interfaces and using an IB-OOI support to replace the legacy componen
new ones, which most probably have a different interface [14]. This way new compo
can be incrementally added to the system without affecting the remaining legacy on

References

[1] Denise Bermek and Hugo Pickardt, “HooDS 0.3/00 Pilot Release Informati
ITHACA.SNI.91.D2#4, Deliverable of the ESPRIT Project ITHACA (2705), 28 Aug. 1991.

[2] Thomas J. Brando and Myra Jean Prelle, “DOMIS Project Experience: Migrating Legacy Syste
CORBA Environments,” Technical Report, The MITRE Corporation, Bedford, Mass., 1994.

[3] Michael L. Brodie and Michael Stonebraker, “DARWIN: On the Incremental Migration of Legacy
formation Systems,” DOM Technical Report, TR-0222-10-92-165, GTE Laboratories Inc., M
1993.

[4] Rachid Guerraoui, Programmation Repartie par Objets: Etudes et Propositions, Ph.D. thesis, Univer-
site de Paris-Sud, Oct. 1992.

[5] Adele Goldberg, Smalltalk-80, Addison-Wesley, Reading, Mass. 1984.

[6] Yoshinori Kishimoto, Nobuto Kotaka, Shinichi Honiden, “OMEGA: A Dynamic Method Adapti
Model for Object Migration,” Laboratory for New Software Architectures, IPA Japan, Working Pa
April 1991.

[7] Dimitri Konstantas, Oscar Nierstrasz and Michael Papathomas, “An Implementation of Hybri
Active Object Environments, ed. D. Tsichritzis, Centre Universitaire d’Informatique, University
Geneva, 1988, pp. 61–105.

[8] Dimitri Konstantas, “Cell: A Model for Strongly Distributed Object Based Systems,” in Object Com-
position ed. D. Tsichritzis, CUI, University of Geneva, 1991, pp. 225–237.

[9] Dimitri Konstantas, “Design Issues of a Strongly Distributed Object Based System,” Proceedings of
2nd International Workshop for Object-Orientation in Operating Systems (I-WOOOS ’91), IEEE,
Palo Alto, Oct. 17–18, 1991, pp. 156–163.

[10] Dimitri Konstantas, “Hybrid Update,” in Object Frameworks, ed. D. Tsichritzis, Centre Universitaire
d’Informatique, University of Geneva, 1992, pp. 109–118.

[11] Dimitri Konstantas, “Hybrid Cell: An Implementation of an Object Based Strongly Distributed S
tem,” Proceedings of the International Symposium on Autonomous Decentralized Systems ISA,
Kawasaki, Japan, March 1993.

[12] Dimitri Konstantas, “Cell: A Framework for a Strongly Distributed Object Based System,” Ph.D.
sis No. 2598, University of Geneva, May 1993.

References 93

93,

ability
arch

t Lan-
n

s,” in

.

c-

at-

.

N

l In-

ction
[13] Dimitri Konstantas, ‘‘Object-Oriented Interoperability,’’ Proceedings ECOOP ’93, ed. O. Nierstrasz,
Lecture Notes in Computer Science, vol. 707, Springer-Verlag, Kaiserslautern, Germany, July 19
pp. 80–102.

[14] Dimitri Konstantas, “Towards the Design and Implementation of a Safe and Secure Interoper
Support Layer in CHASSIS,” CHASSIS SPP project technical report, University of Geneva, M
1994.

[15] Jintae Lee and Thomas W. Malone, “How Can Groups Communicate when they use Differen
guages? Translating Between Partially Shared Type Hierarchies,” Proceedings of the Conference o
Office Information Systems, March 1988, Palo Alto, CA.

[16] Barbara Liskov, Dorothy Curtis, Paul Johnson and Robert Scheifler, “Implementation of Argu
Proceedings of the 11th ACM Symposium on Operating Systems Principles, ACM, Austin, Tex., Nov.
1987, pp. 111–122.

[17] Oscar Nierstrasz, ‘‘A Tour of Hybrid — A Language for Programming with Active Objects,’’ Advanc-
es in Object-Oriented Software Engineering, ed. D. Mandrioli, B. Meyer, Prentice Hall, 1992, pp
167–182.

[18] Object Management Group and X Open, The Common Object Request Broker: Architecture and Spe
ification, Document Number 91.12.1 Revision 1.1

[19] Object Management Group, Object Management Architecture Guide, OMG TC Document 92.11.1,
Revision 2.0, Sept. 1992.

[20] Anna-Kristin Pröfrock, Dennis Tsichritzis, Gerhard Müller and Martin Ader, “ITHACA: An Integr
ed Toolkit for Highly Advanced Computer Applications,” in Object Oriented Development, ed. D.
Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1989, pp. 321–344

[21] James M. Purtilo and Joanne A. Atlee, “Module Reuse by Interface Adaption,” Software Practice &
Experience, vol. 21 no. 6, June 1991.

[22] Ken Sakamura, “Programmable Interface Design in HFDS,” Proceedings of the Seventh TRO
Project Symposium, Springer-Verlag, Tokyo, 1990.

[23] Marc Shapiro, “Structure and Encapsulation in Distributed Systems: The Proxy Principle,” 6th Inter-
national Conference on Distributed Computing Systems, Boston, Mass., May 1986.

[24] Peter Wegner, ‘‘Concepts and Paradigms of Object-Oriented Programming,’’ ACM OOPS Messenger,
vol. 1, no. 1, Aug. 1990, pp. 7–87.

[25] Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt and Peri L. Tarr, “Specification Leve
teroperability,” Communications of ACM, vol. 34, no. 5, May 1991.

[26] Daniel M. Yellin and Robert E. Strom, “Interfaces, Protocols, and the Semi-Automatic Constru
of Software Adaptors,” proceedings of the 9th annual conference on Object Oriented Programming
Systems, Languages and Applications — OOPSLA’94, Portland, Oreg., 23–27 Oct. 1994.

94 Interoperation of Object-Oriented Applications
Annex I: Interface Adaption Language

typeMatchDef : remoteCellId ‘::’ typeMatch ‘;’

typeMatch : localType ‘->’ remoteTypes typeMatchSpec

| localType ‘=>’ remoteType [‘:’ transFunction]

| localType ‘+>’ remoteType [‘:’ transFunction]

remoteTypes : ‘<’ remoteTypeList ‘>’

remoteTypeList : remoteType [‘@’] [‘,’ remoteTypeList]

typeMatchSpec : ‘{’ operMatchList ‘}’ [adaptDefList]

adaptDefList : ‘@{’ Program ‘@}’ [adaptDefList]

operMatchList : operMatch [operMatchList]

operMatch : localOpName ‘:’ remoteOpDef ‘(’argMatchList ‘)’ ‘^’ returnValDef ‘;’

remoteOpDef : remoteType ‘.’ remoteOpName

argMatchList : argMatch [‘,’ argMatchList]

argMatch : localArgId

| adaptFunct ‘(’ localArgId ‘)’

| localArgId ‘:’ localType ‘<-’ remoteType

| ‘<’ localArgIdList ‘>’ ‘:’ ‘<’ localTypeList ‘>’ ‘<-’ remoteType

| remoteOpDef ‘(’ argMatchList ‘)’

returnValDef : RET

| adaptFunct ‘(’ RET ‘)’

| RET ‘:’ localType ‘->’ remoteType

localArgIdList : localArgId [‘,’ localArgIdList]

localTypeList : localType [‘,’ localTypeList]

localArgId : ‘$’SMALL_INTEGER

| INTEGER_LITERAL

localType : STRING

remoteType : STRING

remoteOpName : STRING

remoteCellId : STRING

transFunction : STRING

adaptFunct : STRING

Program : Program code in Native Language.

Annex II: Type Match Definition Example 95
Annex II: Type Match Definition Example

CooLCell :: windowServer -> WINDOW_CONTROL {
newWindow : create_win($3, $4, $1, $2, 17) ^ RET ;
newSquareWin : create_win (bottomRX($1, $3), bottomRY($2, $3), $1, $2, 17)

^ RET ;
refreshDisplay : redisplay_all ($1 : display <- DISPLAY) ^ int2bool(RET) ;
readCoordinates : get_Position

 (< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES,
 $ 4) ^ RET

windowSelected : select_Window (
WINDOW_CONTROL.get_Position

 (< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES, 1)
) ^ RET ;

}
@{

bottomRX : (integer : topLeftX, side) -> integer ;
{ return (topLeftX + side) ; }

bottomRY : (integer : topLeftY, side) -> integer ;

{ return (topLeftY - side) ; }

int2bool : (integer : intval) -> boolean ;
{

return (intval ~=? 0) ;
}

@} ;

96

	Interoperation of Object-Oriented Applications
	3.1 Reusing Objects from Different Environments
	3.2 Procedure-Oriented Interoperability
	3.2.1 Interface bridging
	3.2.2 Interface standardization
	3.2.3 Advantages and Disadvantages

	3.3 Object-Oriented Interoperability
	3.3.1 Interface Bridging
	3.3.2 Interface Standardization
	3.3.3 Summary

	3.4 Comparison of Interoperability Support Approaches
	3.5 Interface Bridging — Object-Oriented Interoperability
	3.5.1 Terminology
	3.5.2 Interface Adaption
	3.5.3 Object Mapping

	3.6 Interface Adaption
	3.6.1 Type Relations
	3.6.2 Description of the Running Example
	3.6.3 Binding of Operations

	3.7 Object Mapping
	3.8 Conclusions and Research Directions
	3.8.1 Openness of Interoperability Platforms
	3.8.2 Interoperability and Legacy System Migration

