
by
nents.
 rules

 more
nents

f com-
mmu-
usable

mposi-
mpo-

Vick
(Eds
Repr
may
othe
right
Chapter 10

Visual Composition of
Software Applications

Vicki de Mey

Abstract Open applications can be viewed as compositions of reusable and
configurable components. We introduce visual composition as a way of
constructing applications from plug-compatible software components. After
presenting related work, we describe an object-oriented framework for visual
composition that supports open system development through the notion of
domain-specific composition models. We illustrate the use of the framework
through the application of a prototype implementation to a number of very
different domains. In each case, a specialized visual composition tool was
realized by developing a domain-specific composition model. We conclude
with some remarks and observations concerning component engineering and
application composition in a context where visual composition is an essential
part of the development process.

10.1 Introduction

We define visual composition as the interactive construction of running applications
the direct manipulation and interconnection of visually presented software compo
The connections between components are governed by a set of plug-compatibility
specified within a composition model.

Visual composition is a response to the trends in software development towards
component-oriented lifecycles described in chapter 1. With a large number of compo
supplied by component engineers, application development becomes an activity o
posing components into running applications. Visual composition can be used to co
nicate reusable assets from component engineers to application developers, re
designs to application developers, and open applications to end-users. A visual co
tion framework enables the construction of environments and tools to facilitate co
nent-oriented software development.
i de Mey, “Visual Composition of Software Applications,” Object-Oriented Software Composition, O. Nierstrasz and D. Tsichritzis
.), pp. 275-303, Prentice Hall, 1995.
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. It is not
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
s reserved.

276 Visual Composition of Software Applications

ress-
) com-

 com-
ent. A
 state of
le com-
ed
frame-

ain.
soft-
.
rete

posi-
by an
 10.5.
owing

pha-
 not
al
 lan-

devel-
ys of
s.

ecy-
, com-
are the

o form
brik, Sil-
s
 and
s sim-
ompo-
In this chapter we present a framework for visual composition. The framework add
es four issues: (1) components, (2) composition models, (3) user interaction, and (4
ponent management. Components are made up of a behaviour and a presentation. The
behaviour is responsible for the component’s composition interface and the work the
ponent was designed to do. The presentation is the visual display of the compon
component can have more than one presentation, and the presentations reflect the
the component. A set of components can be grouped together to function as a sing
ponent through the composite component mechanism. Component composition is defin
as communication between components through their composition interfaces. The
work defines the notions of port and link to handle the communication. A composition
model is the set of rules for component composition in a particular application dom
Decoupling the rules for composition from components allows a variety of different
ware composition paradigms and increases the potential for reuse of a component

Vista is a prototype implementation of the visual composition framework. A conc
implementation of a visual composition tool is obtained by a component engineer (chapter
1) by completing the framework with components, their presentations and the com
tion model governing their interconnection. Finally, the resulting tool can be used
application developer to visually compose running applications, as shown in section

In reference to software development environments, Ivar Jacobson made the foll
statement:

In the long run, we shall see new development environments that place more em
sis on applications and less on technique. Developers will be application experts,
Unix or C++ experts. They will work with graphical objects presented in sever
dimensions, not simply text. The language of today may be handled as a machine
guage that is invisible to developers. [23].

These new development environments will have the potential to transform software
opment. End-users will play a larger role in putting applications together and new wa
creating applications will be necessary. Visual composition is one of these new way

10.2 Related Work

Visual composition is based on work done in many different fields from software lif
cles to graphical user interfaces and graphical object editors, visual programming
ponents and connectivity, and component integration. Since the latter two areas
most relevant for this chapter, they will be discussed here.

Visual composition supports components and connecting components together t
running systems. Some exemplary systems based on these ideas are ConMan, Fa
icon Graphic’s IRIS Explorer , Apple’s ATG Component Construction Kit and IBM’
VisualAge . ConMan [14] is a high-level visual language that allows users to build
modify graphics applications. To create an application the user interactively connect
ple components using a directed dataflow metaphor. No concept of composite c

Related Work 277

ming
at can
 used

hrough
viron-
d, de-
stom
n Kit
allows
ts: (1)
 (2) a
ly con-
mpo-
 in the
nt–
s. The
l pro-
esting
e way

p com-
es and
echa-
an be

n con-
ages, or
onents
 Harri-
proach
tions
h are

ration.
inte-
wlett
om-
 Re-
ple
2 for a
e of an
nents exists. Fabrik [22] is a contemporary of ConMan. Fabrik is a visual program
environment that supplies a kit of computational and user interface components th
be wired together using a bidirectional dataflow metaphor. The environment can be
to build new components and applications. Composite components are supported t
the gateway construct. IRIS Explorer is an application creation system and user en
ment that provides visualization and analysis functionality. It is based on a distribute
centralized dataflow model. Its graphical user interface allows users to build cu
applications by connecting modules together. Apple’s ATG Component Constructio
(CCK) [43] is a prototype component architecture and set of test components that
end-users to plug components into a framework at run-time. The kit has four elemen
a component framework (the structure within which components are connected);
component palette (source of components); (3) an inference engine for automatical
necting components; (4) a component inspector for display and modification of co
nent information. Objects are the medium of communication between components
CCK. VisualAge [20] is a product from IBM designed to build the client side of clie
server applications, focusing on business applications and decision support system
tool is based on the “construction by parts” paradigm that is supported by a visua
gramming tool for creating applications non-procedurally. These systems are inter
but limited since some cater only to specific application domains or are based on on
of expressing the relationships between components.

A component can be seen as a separate tool, application or process. This brings u
ponent integration issues that run very close to the issues of component interfac
component interconnection. Visual composition needs component integration m
nisms to implement the connections between components. Integration issues c
viewed on two levels: coarse-grained and fine-grained. Coarse-grained integratio
cerns components that may be large objects that cooperate by exchanging mess
tools that cooperate through shared files. Fine-grained integration concerns comp
that are smaller and usually need to communicate with each other more frequently.
son, Ossher and Kavianpour [17] have discussed this issue and proposed an ap
called Object-Oriented Tool Integration Services (OOTIS). They believe that applica
are moving more towards fine-grained integration, but that current systems, whic
coarse-grained, must still be supported while this move takes place.

Many proposals have been made for specific solutions to coarse-grained integ
Some examples are: Unix facilities that provide a variety of different tools and tool
gration mechanisms (character files, I/O redirection, pipes, shell programming); He
Packard’s Softbench environment [19]; and Sun’s ToolTalk [26] for interapplication c
munication. Fine-grained integration solutions include efforts by the OMG (Object
quest Broker), NeXT (Distributed Objects [36]), Microsoft (OLE [34]) and Apple (Ap
events and the Apple event object model [1], and OpenDoc [2]). See also chapter 1
more thorough discussion of these commercial efforts, and chapter 3 for an exampl
object-oriented framework to support interoperability.

278 Visual Composition of Software Applications

ition.
: com-
ation

pose.

alk’s
nd-
erent

s the
ws the
s the

ompo-
nent
may
enus,

ts the
 they
erent
o be-
10.3 A Framework for Visual Composition

The framework we present provides a simple and flexible core for visual compos
There are three pieces of information that are needed in order to use the framework
ponent behaviours, component presentations and rules for composition. This inform
is plugged into the framework to produce a visual composition tool for a specific pur

10.3.1 Component Definition

The framework defines a component as a behaviour together with one or more presenta-
tions. Such a “division of labour” has been seen in other frameworks including Smallt
MVC framework [13], Unidraw [48] and Andrew [38]. Table 10.1 shows the correspo
ing terms in the different frameworks. This division promotes reuse, because diff
presentations can be reused with the same or different behaviours.

Behaviour

The behaviour is responsible for the following:

• Communication with the presentation(s).

• The component’s composition interface. The composition interface advertise
component’s services and requests for services. The composition interface allo
component to be reused in different contexts. A component’s context include
components it is immediately connected to as well as the entire ensemble of c
nents in which it finds itself embedded. The composition interface of a compo
consists of a set of ports, each of which has a name, a type and a polarity. Ports
be visually presented in a variety of ways, such as knobs, buttons, text fields, m
etc., depending on the intended semantics.

• Executing whatever the component was designed to do. The behaviour reflec
inner part of the component. From the outside, two components can look like
have the same behaviour, but their internal implementations could be very diff
(e.g. implemented in different programming languages). A component can als
have differently depending on the other components it is connected to.

Visual composition Behaviour Presentation

MVC Model View, Controller

Unidraw subject view

Andrew data object view

Table 10.1 Comparison of the behaviour/presentation division of labour.

A Framework for Visual Composition 279

 not,
ins an

. The
ation

put can
aviour.
play

ent is
 (or re-
 frame-
idered
 add to
set of
esenta-
posite
 illus-

onents
e-
Presentation

The presentation is responsible for the following:
• Communication with the behaviour.
• Visual display of the component. All components, whether inherently visual or

have a visual presentation. A presentation can also process user input if it conta
interaction component such as a button or a text field.

Communication between the behaviour and presentation is pictured in figure 10.1
presentation informs the behaviour of its location and dimensions so that this inform
can be passed on to other components that need it to display themselves. Also, in
be done through the presentation, and this information is communicated to the beh
The behaviour only informs the presentation of information that it might need to dis
on the screen.

Composite Components

Components can be created by programming or by composition. When a compon
created by programming, only the behaviour and presentation need to be specified
used if an appropriate behaviour or presentation already exists) and hooked into the
work. A composite component is a set of components linked together that is cons
useful as a component in its own right. To define a composite component, one must
the set of components (1) a composition interface (by specifying which ports of the
components are to become ports of the composite component), and (2) a visual pr
tion (which can be composed of existing presentations). The behaviour of a com
component is simply the behaviour of the components it encapsulates. Figure 10.2
trates the idea of composite component. The framework supports composite comp
by defining external_port and external_view entities. A set of external_port entities repr

User input

Values

Location of presentation
Dimension of presentation

BehaviourPresentation

Figure 10.1 Communication between the behaviour and presentation
entities in the framework.

280 Visual Composition of Software Applications

y is the
l_view

ion of
efines
 in-
ort in a
ompo-
igure

cation
ction-
sents the composite component’s composition interface, and an external_view entit
presentation used for the composite component. Both external_port and externa
entities are created interactively when a composite component is being defined.

10.3.2 Component Composition

The way component composition is supported in the framework is through the creat
networks. The framework uses components for the nodes in the network and d
active_port and link entities for edges in the network. Not all ports in the composition
terface of a component need to be used. An active_port is created only when a p
component’s composition interface is connected to a port in another component’s c
sition interface. A link represents the connection from one active_port to another. F
10.3 illustrates the relationship between the elements of the framework. Communi
between components can be either one-way (the dark arrows in figure 10.3) or bidire

Becomes

Figure 10.2 Composite component.

External ports

External view

Figure 10.3 Framework entities.

Link

ComponentComponent

Active port Active port

A Framework for Visual Composition 281

 that
nt. The
me-
hat the
ation

.5, are
rts, the
certain

gh
forma-
ism to
rop-

ly and
e the
 of a

 of

 can
al (both the dark and the grey arrows in figure 10.3). The format of the information
passes from component to component is defined in the behaviour of the compone
format is not restricted by the framework. The display information is internal to the fra
work and should at least include the location and dimensions of the presentation so t
active_ports and links can be displayed correctly. Figure 10.4 summarizes the inform
that is communicated between the active_port and link entities of the framework.

As components are composed, networks, such as the one pictured in figure 10
generated. The grey ovals in the figure are components, the black circles are po
clear circles are active_ports and the rectangles are links. These networks have
characteristics:

• Automatic network update: Information must be automatically propagated throu
the network. Propagation occurs when a node indicates some change to the in
tion on its outputs. This indicates the need for some type of constraint mechan
specify the relations in the network that must always be satisfied. Information p
agation could imply some change to the display that must be done automatical
immediately to support the requirement of direct manipulation. There must b
option for immediate propagation or batching for the display, since the update
densely populated screen can be expensive and possibly postponed

• Hierarchical decomposition: The network must support nodes that are made up
other network structures.

• Cyclic networks: In visual composition, the relationships between components
create cycles in the network.

Location of presentation

Dimension of presentation

Values

Port location

Values

Values

values

Link

Figure 10.4 Communication between a component, active_port and link.

Component

Active port

282 Visual Composition of Software Applications

 gen-
_port
utput
 links

y just

rticu-
, i.e.

open-
ther ap-
om-
pling
posi-
ponent

t with

ompo-
h, but
els in
The division of labour among components, active_ports and links is flexible, but in
eral, a link is used to transport information between two active_ports, an input active
controls whether information should be passed into a component, and an o
active_port packages up information for leaving a component. Both active_ports and
can have an associated visual display.

Composition Model

The active_port and link framework entities do not impose rules on connections; the
enable connections. Whether or not a connection is valid is determined by a composition
model. The composition model is the set of rules for component composition in a pa
lar application domain. The rules determine compatibility between components
which component can be linked to which other component. The type of rules is
ended and based on the component, the component’s composition interface, and o
plication domain-specific information. Different from many other frameworks, the c
patibility between components is not determined by the components. Decou
composition models from components supports a variety of different software com
tion paradigms and increases the potential for reuse of a component, because a com
can be reused without modification in different application domains by associating i
different composition models. A composition model is active when it is dynamically ap-
plied to a set of components to get them to cooperate in a specific application. The c
sition model can have some knowledge of what components it can be used wit
usually components do not have to be designed with particular composition mod
mind.

Figure 10.5 Network of components.

Component Port Active port Link

A Framework for Visual Composition 283

phic
 flows
rough
r com-
ailable
ports
ort. If a
, then
f data.
or en-
om-

aflow

This
ompo-
of type
ied out
 two-
Composition Model Examples

Three examples of composition models will be given: dataflow, two-dimensional gra
objects and class hierarchy diagrams. Dataflow composition is used for specifying
of data in a network of components. Components have input and output ports th
which dataflow. Each data value is associated with some component responsible fo
puting the value as a function of its inputs. The component makes the data value av
at one or more of its output ports. Input and output ports can be joined by links. All
have an associated type reflecting the type of the data that passes through the p
component has only output ports, then it is a supplier of data; if it has only input ports
it is a user of data; and if it has both input and output ports, then it is a transformer o
Links represent data flowing between components. Links are primarily responsible f
forcing valid dataflow networks. They allow ports to be connected only if they have c
patible types and compatible directions (input to output and output to input). The dat
components and composition model are pictured in figure 10.6

Another example is a composition model for two-dimensional graphic objects.
model is used to attach and keep two-dimensional graphics objects connected. A c
nent (a graphic object) has ports that represent points on the object, i.e. ports are
point. These ports are either input or output depending on the operation being carr
on the graphic object to which they belong. The points are the location of the object in

Component Port LinkDataflow

Supplier Transformer User Data Dataflow

Figure 10.6 Dataflow composition model and some connected components.

284 Visual Composition of Software Applications

 top of
 when

pdate
o-di-

e used
mpo-
n have
 of type
 will not

y. Links,
bclass
nother;
bout its

ponents

s are
ulate
dimensional space. Links are created between components by placing one point on
the other. Any point can be linked to any other point. When some point changes, as
a graphic object is moved, all other points linked to this point will be updated. This u
guarantees the connectivity between graphic objects. The composition model for tw
mensional graphic objects is pictured in figure 10.7.

A third example is that of a class hierarchy diagram. Class hierarchy diagrams ar
to show the class structure of an object-oriented application. There is one kind of co
nent for this type of diagram, namely the class component. The class component ca
ports of type subclass and superclass. Some class components will not have ports
superclass; these are leaf classes in the class hierarchy. Some class components
have subclass ports; these components are top-level classes in the class hierarch
which represent class relationships, are unidirectional and connect ports of type su
to ports of type superclass. Links do not pass data from one class component to a
their role is to make relationships between classes so that when a class is asked a
superclasses and subclasses, it will be able to respond. The class hierarchy com
and composition model are pictured in figure 10.8.

10.3.3 Interactive Environment

The interactive environment is responsible for ensuring that the framework entitie
used correctly. The interactive environment supplies ways for the user to manip

Graphic objects

Link
Two-dimensional
graphic objects

Implicit in
position of
objects

Component Port

Point Position

Figure 10.7 Two-dimensional graphic composition model and some connected components.

A Framework for Visual Composition 285

aphors
inimal
d/or re-

tion
oncepts
en any
expect
“try it
t is go-
t the
 do not

ree-
ibility
po-
ke ele-
e in,
posi-
 more

te this
site
components, ports and links. This is accomplished using various user interface met
depending on the implementation. The operations listed in table 10.2 make up a m
set. The interactive environment is customizable so that operations can be added an
moved.

The interactive environment supports direct manipulation [42]. Direct manipula
makes objects more concrete and thus helps people to grasp better the ideas and c
being described. Users get immediate feedback to their actions and are informed wh
of their actions cause a change in the system. Ideally, users always know what to
from the system. Development becomes more of an exploratory activity where a
and see what happens” attitude is encouraged. Being able to see immediately wha
ing on in an application is important in the early stages of application development. A
same time, the interactive environment is as transparent as possible so that users
have to do things that make no sense in their specific application domain.

The environment is visual — a mixture of text, graphics (two-dimensional and/or th
dimensional), and other media like video, sound and images — and therefore vis
control is very important. Visibility control is used to modify the presentations of com
nents, ports and links. There are operations (see table 10.2) that allow a user to ma
ments invisible according to different criteria like, for instance, what group they ar
what component they are attached to, etc. An application developer using visual com
tion usually needs more objects visible than an end-user. The developer is working in
general terms, while the end-user is working in a specific domain. To accommoda
situation, visibility control can hide information that is not appropriate. The compo

Component Port LinkClass hierarchy

Figure 10.8 Class hierarchy composition model and some connected components.

Class
relationship

Subclass

Superclass

Class

286 Visual Composition of Software Applications

neces-

e con-
as win-
component capability can also be used to shield an end-user from unwanted or un
sary detail.

Some of the more common characteristics of interactive environment must also b
sidered. It is necessary that some type of grouping mechanism be available, such

Components Ports Links

instantiation
make a functional copy of
the chosen component

identification
name, type and
polarity of port

create
Manual creation relies on
the user manually selecting
the start port and target port
for the link
Automatic connection
would attempt to automati-
cally connect compatible
ports when a component is
placed in a composition
composition model verifies
link

determine location in space
fixed into a particular loca-
tion in space, fixed in rela-
tion to other components’
locations, or left free to be
moved

copy
state is also copied

delete
links referencing the del-
eted component are also
deleted

delete

replace
The links that referenced
the original component are
reconnected to the new
component

display different presenta-
tions

Table 10.2 Manipulations on components, ports and links.

Vista — A Prototype Visual Composition Tool 287

nality,
helping
iar with
 hand,
llow-
enta-
e the
ning an
itches
e and
put is

orma-
be re-
d. The
 used
ssibly
om-

cated
ties.

e. The
] was
eface
gen-
T, an

imple

rts of
to the
ph
d from
s. In
e dis-
dows in the desktop metaphor. The environment supports the undo/redo functio
because all users make mistakes. Skill levels, such as novice or expert, are ways of
users learn to use a system. These levels usually assume that a novice is not famil
the system and therefore needs a bit of “hand-holding.” Expert users, on the other
could consider such hand-holding distracting. Skill levels can be implemented by a
ing or disallowing certain actions on the objects being manipulated. Different pres
tions of a component can be used to reflect different skill levels. To further facilitat
usage of the environment, mode switches, such as those between building and run
application, are minimized. The literature [39] suggests that avoiding such mode sw
is important for new users because it gives them the flexibility simultaneously to us
modify an application, and that typically there is almost no confusion about when in
directed to the tool and when it is directed to the application.

10.3.4 Component Management

The activities of storing, organizing and retrieving components are external to the
framework, but the framework supplies a simple mechanism that records enough inf
tion about the network to a text file so that when the file is read, the network can
created. Composition models also need to be stored, organized and retrieve
information stored in the composition model must be activated when a network is
and constantly accessible since it is consulted whenever a link is created and po
whenever information flows through a link. Some notation, possibly textual, for the c
position model is necessary. The framework supports “hooks” for more sophisti
tools, such as the software information base described in chapter 7, for these activi

10.4 Vista — A Prototype Visual Composition Tool

Vista is a prototype visual composition tool based on the framework described abov
prototype is meant as a test-bed for the visual composition framework. Vista [29][37
developed as part of ITHACA’s application development environment. (See the pr
and chapter 7 for more information about the ITHACA project.) Vista is a second
eration prototype; some of the ideas of visual composition were demonstrated in VS
earlier prototype based on a Unix composition model [45]. Vista is meant to be a s
and evolutionary prototype.

The layers of software supporting Vista are pictured in figure 10.10. The major pa
Vista are in the shaded region of the figure. The implementation of Vista conforms
ITHACA software platform which includes C++, X Windows and OSF/Motif. Gra
management for Vista is supplied by a set of class definitions and functions extracte
the Labyrinth System [27], a generic framework for developing graphical application
Vista, components and links are displayed on the screen using Motif widgets and th
play capabilities of Labyrinth.

288 Visual Composition of Software Applications

sition
le that

odel.
pat-
om-
nents,
sets of
Composition Model Manager

There are at least two ways to go about implementing the functionality of the compo
model. One possibility is to implement a composition model manager as an orac
oversees the correct functioning of the framework based on the active composition m

The other possibility is to delegate responsibility for checking and maintaining com
ibility rules to framework entities. If composition models are used to define global c
patibility between components or global rules encompassing large groups of compo
an oracle would probably be the best choice. The oracle can have an overview of

Figure 10.9 RECAST example.

Vista — A Prototype Visual Composition Tool 289

ystems
graph
 Vista,
osition
sed by

imple-
lement
ur of a

ass

l to
lassed

n C++
ivision
stem

ays
tible
n be-
 has a
 con-

 of the
s.
networks on which to base global decisions. Some powerful graph management s
can also work on a global level in the network; thus the decision for a certain type of
manager could influence the implementation of the composition model manager. In
the composition model manager is an oracle implemented as a C++ class. A comp
model is expressed in a textual notation that expresses port compatibility and is par
the composition model manager.

Components, Active_ports and Links

In Vista, components (behaviours and presentations), active_ports and links are
mented as C++ classes. Vista supplies default active_port and link classes. To imp
the component behaviour and presentation, four classes are defined. The behavio
component is implemented in the cmp_Node class and subclasses of the abstract cl
V_Base. The presentation of a component is implemented in the view_Node class and sub-
classes of the abstract class Framer. The cmp_Node and view_Node classes are interna
Vista and maintain network connectivity. The V_Base and Framer classes are subc
by the user of Vista. This division is advantageous because Vista is implemented i
and modifications to superclasses necessitate recompilation of subclasses. The d
avoids much of this recompilation since the information added from outside the sy
does not directly impact the internal framework classes and vice versa.

Dividing up the responsibilities of components, active_ports and links is not alw
straightforward. For example, if two ports of different types are defined to be compa
by a particular composition model, and they are linked, where should the coercio
tween port types take place? The input active_port participating in the connection
type and can coerce things that it receives into that type. The link participating in the
nection knows it is connecting ports of compatible types and can coerce the type
information from the output active_port to the type that the input active_port expect

Figure 10.10 Layers of software supporting Vista.

Unix

Graph management
(Labyrinth)

X Windows

OSF/Motif

Application-specific components and
composition models

Components

Composition model
manager

Active ports Links

C++

290 Visual Composition of Software Applications

ience.
ction
tion”
 in fig-
but the
 could
dding

re com-
e pre-
) links
nother

cribed
nks sim-
rder to

lasses
r and

ta. Com-
Responsibilities can be divided up in certain ways to ameliorate the user’s exper
For example, a four-way interaction where all four components interact. The intera
can be a new component with the original four components linked to it by “interac
links or all of the components can be linked together. These two options are pictured
ure 10.11. Figure 10.11(a) might not look hard to understand as it is pictured here,
picture would become indecipherable if twenty components were interacting. Ports
accept more than one connection, but this does not reduce the number of links. A
components to a system does not necessarily imply that the system becomes mo
plex. The number of components is not that important; it is how the components ar
sented that is important, as seen in figure 10.11(b) and 10.11(c). In figure 10.11(c
are represented by the location of components (e.g. all components contained in a
component interact) and not by lines connecting the components.

In Vista, active_ports and links can be used to implement any of the scenarios des
above. But as classes are developed, the goal should be to keep active_ports and li
ple, since too much hidden behaviour will make the system unpredictable and ha
understand.

Application-Specific Components and Composition Models

Components and composition models for specific domains are defined using the c
and functionality of the lower layers of software. For components, only the behaviou
presentation need to be defined as subclasses of abstract classes supplied by Vis
position models are expressed in the textual notation supported by Vista.

10.5 Sample Applications

Johnson and Russo [25] have stated that:

Figure 10.11 Four-way component interaction.

(c) Interaction seen as
containment

(b) A component
moderating the

interaction

(a) Direct interaction between
components

Sample Applications 291

 the
.

d get
al com-
 came
l com-

rk and
pter
sition

llection
gy that
visual
AST.
. The
roce-
s was

isfied
he code

nning
re rela-
e spec-
More

edia
s were
ions
dia

ware
mpo-
lica-

e ex-

po-
a use of a framework validates it when the use does not require any changes to
framework, and helps improve the framework when it points out weaknesses in it

Iteration is a major part of the validation cycle of a framework. The framework shoul
better (more reusable) as results are gathered from its usage. To this end, the visu
position framework was used in three sample applications. The sample applications
from actual ongoing projects and were not artificially devised as test cases for visua
position.

The first application was part of a project that addresses the creation of a framewo
rapid prototyping environment for distributed multimedia applications [32] (see cha
11). The visual composition framework was then used to implement a visual compo
tool for multimedia applications.

The second application was part of a project that addresses the requirements co
and specification phase of software development. The project defines a methodolo
functions as a formal basis for requirements specification and support tools. The
composition framework was used to implement one of the support tools called REC

The third application was part of a project that addresses workflow applications
project defines a complete environment for designing and running coordination p
dures. The need for some type of visual representation of coordination procedure
recognized by the participants in the project. The visual composition framework sat
this need and was used to draw pictures of coordination procedures and generate t
that the procedures represented.

The scope of these sample applications varies considerably. The first deals with ru
applications and components represent actual executing modules.The other two a
ted to software specification, where components represent elements of the softwar
ification model. We will describe the first and second sample applications here.
information about all three applications can be found in the author’s thesis [30].

Sample Application 1: Multimedia Component Kit

Chapter 11 introduces the basic concepts of a multimedia framework and multim
components. Based on this work, multimedia components and composition model
created for visual composition. The visual composition tool for multimedia applicat
is a rapid prototyping tool for experimenting with different combinations of multime
components.

A multimedia application is implemented by large number of interconnected hard
and software components. Visual composition can be used to interactively plug co
nents together — rather than permanently “hard-wiring” them — thus making app
tions more flexible and reconfigurable.

Various composition paradigms are appropriate to multimedia applications. Thre
ample composition models follow:

1. Dataflow composition describes an application as a configuration of media com
nents and the data (media streams) that flow between them.

292 Visual Composition of Software Applications

tiv-

nd is

sition
ow the
will be

er in-
 can

 Some
. The
appli-
 in the
.
sSeq
t, a

 input
pplica-
ences
ld).

plica-
trib-
ccept
y, as

eCube
can be
ender
2. Activity composition describes the behaviour of an application with respect to ac
ities and events.

3. Temporal composition describes relationships between temporal sequences a
a special case of activity composition [31].

These three ways of viewing multimedia applications can be reflected in compo
models that determine the types of components useful in the applications and h
components interact. The dataflow composition model has been implemented and
discussed in detail here.

Viewed from a dataflow perspective, a typical multimedia application accepts us
put and displays multimedia information related to the input. This type of application
be built from components that represent input devices and multimedia renderers.
example multimedia components for dataflow composition are listed in table 10.3
GeoBall and Navigator components are responsible for getting user input into the
cation. The GeoBall component represents an actual hardware device, pictured
presentation of the component, that generates 4 × 4 geometric transformation matrices
This component can be considered a producer of information of type GeoTran
(sequences of 4 × 4 geometric transformation matrices). The Navigator componen
transformer component, is responsible for taking the information produced by the
device and transforming it into a type understandable by other components in the a
tion. Here, the Navigator component produces information of type MoveSeq (sequ
of Render requests dealing with movement of objects in the three-dimensional wor

The Modeler component represents the content that will be displayed by the ap
tion. The Modeler gathers together all the information in the application that will con
ute to the content and prepares the information for display. The Modeler can a
information from the Navigator component to incorporate user input into the displa
well as information from other components that generate content such as the Activ
component. The ActiveCube component represents a graphical cube object that
displayed. The Modeler produces information of type RenderSeq (sequences of R

GeoBall Renderer Modeler Navigator ActiveCube

out: GeoTransSeq in: RenderSeq in: MoveSeq
in: RenderSeq
out: RenderSeq

in: GeoTransSeq
out: MoveSeq

out: RenderSeq

Table 10.3 Components for dataflow composition.

Sample Applications 293

r com-

f the
ensures
ensure
be put
le like
gator
e the

multi-
e Geo-
f the
 com-
sliders
requests) that represent the content in a format suitable for rendering. The Rendere
ponent accepts information of type RenderSeq and is responsible for its display.

A simple composition model for dataflow can check to make sure that only ports o
same type are connected as a user interactively creates an application. This model
that the components making up the application are correctly connected but cannot
that the application is producing the desired result. More semantic information can
into the composition model to produce a particular desired result. For example, a ru
“if a GeoBall component is in the application, then it must be connected to a Navi
component” would eliminate the need to explicitly connect them, and would guarante
correct use of these two components.

Figure 10.12 shows a screen image of the tool displaying a simple dataflow of a
media application using the components described in the preceding paragraphs. Th
Ball component is implemented as a composite component. The internal view o
composite component is pictured in the upper right side of the figure. The composite
ponent contains a geometry ball component and two sets of horizontal sliders. The

Figure 10.12 Multimedia dataflow composition.

294 Visual Composition of Software Applications

put de-
vigator

d to a
objects

om-
ction of
AST

ication
sed

gm ex-
ct can
l that
com-
onents

ded in a

y the
dia-
ooper-
ms are
 imple-

cies be-
mework.
. Roles
 in the

s
t either

ferent
 exam-
d, then
 a pos-
 conse-

r of the
ation.

 of the
adjust the parameters of the device (x, y, z translation and x, y, z rotation sensitivity). These
parameters can be changed interactively and thereby modify the behaviour of the in
vice as a user navigates through the museum. The input device is connected to a Na
component, which connects to a Modeler component, which, in turn, is connecte
Renderer component. ActiveCube components, which move cube-shaped graphic
given a velocity, are also connected into the Modeler component.

Sample Application 2: RECAST

The RECAST tool [3][4] in the ITHACA software development environment uses a c
position-based approach to requirements specification and provides assisted inspe
available components by accessing the software information base (SIB). REC
assumes that requirements are specified according to an object-oriented specif
model, called the Functionality in the Objects with Roles Model (F-ORM), which is u
for requirements representation. The model is based on the object-oriented paradi
tended with the concept of roles [8] to represent the different behaviours that an obje
have during its lifetime. F-ORM is a textual definition language and RECAST is a too
graphically manipulates F-ORM requirements. RECAST was built using the visual
position framework. F-ORM classes and class elements are represented by comp
and class relationships are represented by links. The class relationships are recor
composition model so that a user of RECAST is assured of using F-ORM correctly.

The composition concept of RECAST is reflected in a set of diagrams defined b
ITHACA object-oriented methodology [9]. The methodology defines five types of
grams at the application design level: class diagram, cluster tree diagram, cluster c
ation diagram, state/transition diagram and IsA/PartOf diagrams. These five diagra
used by the application designer when specifying requirements. The class diagram
mented in RECAST is described here.

The class diagram represents F-ORM classes and roles along with the dependen
tween classes and roles. Classes have corresponding Class components in the fra
The presentation of the Class component contains at least the name of the class
have corresponding Role components and are graphically displayed embedded
Class component to which they belong. Class components can be in their base represen-
tation, where all the roles are visible, or in a compact representation, where only the clas
name is visible. Role components are connected by message links that represen
unidirectional or bidirectional message flows.

Colours are used extensively to distinguish different types of components and dif
types of links. Shading is used to signal if certain classes or roles are selected. For
ple, if a class or role is not selected, it is not shaded. If a class or role is darkly shade
it was selected by the user. If a class or role is lightly shaded, then it was selected by
sible design action. If a class or role is moderately shaded, then it was selected as a
quence of a design action.

The components for class diagrams are summarized in table 10.4. The behaviou
Class component is responsible for changes in the F-ORM requirements specific
These changes are made by direct manipulation of the graphical representation

Sample Applications 295

eleting
respon-
ut the
ions of
s to the
ent is

 cluster

r. This
cation
pro-

ation
 frame

compo-
 roles,
ide the
class. Such changes include the addition of classes to the diagram, adding and d
roles, and the transformation of a class into a set of classes. The behaviour is also
sible for the display of the class (base or compact) and the display of information abo
class. The behaviour of the Role component is responsible for managing design act
the role, the presentation of the role, access to the properties of the role, and acces
state/transition diagram for the role. The behaviour of the Cluster-reference compon
responsible for mediating the connection between the active class diagram and the
the reference is representing.

Figure 10.13 shows the class diagram for the OrderManagementSystem cluste
diagram is generated by using RECAST to transform a request-processing appli
into an order-processing application. Interacting with RECAST in the following way
duces the OrderManagementSystem cluster:

1. The user starts a new application called OrderManagementSystem.

2. The user consults the SIB for the application domain and a generic applic
frame. In this case the application domain is sales and the generic application
is request processing. The RequestProcessing class is chosen.

3. The RequestProcessing class is copied into the diagram generating a Class
nent called MyReqProc. The MyReqProc component has a set of associated
represented as Role components in the diagram, which are embedded ins
presentation of MyReqProc.

Process class Resource class Role Cluster-reference

in: message
in: role
out: message
out: class
in/out: class
in/out: class
in/out: message

all from process class
plus:
in/out: resclass
in/out: resclass

in: message
in: class
in: stdiagram
out: message
out: role
in/out: message

in: message
out: message
in/out: message
in/out: class
in/out: class
in/out: resclass
in/out: resclass

Table 10.4 Class diagram components.

name
level

296 Visual Composition of Software Applications

T con-
nd a cli-
ation

tion of

 are re-
nager
sented
4. The Receive Role component is selected. Because of the selection, RECAS
sults its design suggestions and suggests adding a request manager agent a
ent agent to the diagram. The client agent represents the source of the inform
for MyReqProc. The request manager agent represents the requested informa
MyReqProc.

5. The suggestions are executed and the corresponding Class components
trieved. For the client agent, MyClient class is retrieved. For the request ma
agent, MyRequest and MyReqAdmin are retrieved. The message links, repre
by thin black arrows, between all the Class components are displayed.

Figure 10.13 RECAST example.

Discussion 297

 My-

es the
uch of

ple-
stions

ful in-
work
decom-
atterns
s de-
ning

es or

e the
nt in-

at first
h dif-

 that are
nent
m the

e two
 at the

se re-

 set of
ns.
6. MyReqProc is specialized to MyOrderProc and MyRequest is specialized to
Order. Specialization is represented by thick grey arrows.

The sample applications demonstrate that the visual composition framework mak
process of building graphical, component-based applications easier by supplying m
the infrastructure such applications require.

10.6 Discussion

As a result of the work done on the visual composition framework, the prototype im
mentation of a visual composition tool and the sample applications, certain sugge
concerning component definition, composition and visualization can be made.

10.6.1 Component Definition

The choice of components for a particular application is still somewhat ad hoc, and results
from other fields, such as the reverse engineering of applications, could supply use
formation for component design. Work by, among others, Johnson [24] [11] on frame
design has highlighted some key strategies such as finding common abstractions,
posing problems into standard components, parameterizing and finding common p
of interaction. With this work in mind and the experience from the sample application
scribed in the previous section, we present the following list of guidelines for desig
reusable components:

• If a concept is used, or looks like it could be used, in a number of different plac
application domains, this concept should probably be a component.
If the same concept were included explicitly in every component, there would b
same functionality spread throughout the component set, proliferating redunda
formation and negating efforts of encapsulation and reuse.
Parameterization can be used to generalize concepts that might look different
glance but, with further investigation, they could really be the same concept wit
ferent values for a few different parameters.
User interface components are a good example since they represent concepts
reused in many applications. The Modeler component in the multimedia compo
kit is also a good example. If the Modeler component had not been separate fro
3DRenderer component, the same model information would not be able to driv
different renderers, say a three-dimensional and a two-dimensional renderer,
same time.

• If a component requires an undetermined or variable number of resources, the
sources should probably be components.
Since this type of information can be quite variable, it seems natural to define a
lower-level primitive components and compose them into different configuratio

298 Visual Composition of Software Applications

 role
 be dy-

fferent
role as

ke ad-

unt of

ave to
s are

nking
nents,
 must

nceal

, “big-
es
s long
more
.

dele-
 should
mon

es. Ef-
nd de-

sition
t types
cribe
uld be
ntains
s, both
An example of this is found in RECAST for the implementation of the class and
components. Since a class can have a variable number of roles, and roles can
namically added or removed, it is much easier to make classes and roles di
components that share the relationships roleOf and class than to include the
part of the class.

• Composite components should contain a small number of components and ta
vantage of hierarchical decomposition.
This allows concepts to be organized more effectively and reduces the amo
screen clutter.

• The number of components should be small but extensible.
A small set of components helps people remember what components they h
work with, but the set must be extensible so that when valuable new primitive
discovered they do not have to be simulated with the existing components.

• Components should strike a balance between concreteness and abstraction.
From their experience with the world around them, people are more used to thi
concretely rather than abstractly. Visual composition uses a set of compo
which are abstractions, for application construction. A balance between the two
be made. Components cannot require the user to fill in every detail — if they had to
do that, then visual composition would be worthless. But components cannot co
all the details since the user would never figure out what to do with them.

• Big components can be reusable.
It is claimed that the bigger a component gets, the harder it is to reuse [5]. Here
ger” means more complex and more specific. A component being more specific do
make it harder to reuse, but being complex does not have to cause problems. A
as the composition interface of a component correctly reflects its behaviour,
complex components can be reused just as well as less complex components

10.6.2 Composition

Choosing an effective set of rules for composition is not easy. Visual composition
gates this decision to the users, on the basis that they know best how components
communicate in their particular application. More effort is needed to determine com
sets of rules that are often observed in applications as well as domain-specific rul
forts such as the Law of Demeter [28], contracts [18], law-governed systems [35] a
sign by contract [33] all contribute to this area.

Alternative ways for expressing composition models are needed. The compo
model was implemented as a small textual language (essentially just listing the por
and their compatibilities) in Vista. It could be useful to use visual composition to des
composition models. Certain rules, like no cycles allowed between components, co
illustrated by diagrams like the ones pictured in figure 10.14. If a component set co
a huge number of components, and a composition model has a huge number of rule

Discussion 299

nother

 able
ontrib-
esign

senta-
n will

ility is
 visual
ment

-di-
ten be
rooks
 sim-

ncep-
s. It is
mpts
on-

 new
ibili-
 flow-
the textual and graphical representation of the model could get awkward, and a
strategy might become necessary.

10.6.3 Visualization

The visual aspect of visual composition is one of its most important features. Being
to see the pieces that make up applications and manipulate these pieces directly c
utes greatly to the understanding of an application. Seeing the impact of certain d
choices is very advantageous. But, as with all visual communication, a suitable pre
tion must be chosen otherwise the effectiveness and quality of the visual expressio
be brought into question. What is suitable can vary from person to person, so flexib
important, but people still have to understand each other. Any enhancements to the
presentation must give a user a more comfortable, informative and familiar environ
in which to work.

Visualization is the visual representation of information using, for example, two
mensional/three-dimensional computer graphics. Solutions and problems can of
easier and faster to recognize visually than having to sort through program text. B
does not favour visualizing software, saying: “In spite of progress in restricting and
plifying the structures of software, they remain inherently unvisualizable, and thus do not
permit the mind to use some of its most powerful conceptual tools” [6] (emphasis added).
Despite Brooks’s pessimistic view, a person’s visual capacity is such a powerful co
tual tool that it must be explored as a possible aid in dealing with complex system
possible that not every level of software is visualizable, but this should not limit atte
to try to profit from visualization where appropriate. Scientific visualization has “dem
strated previously unknown flaws in numerical simulations and made possible
knowledge and insight” [41]. Harel [15] takes a more optimistic view about the poss
ties of visualization. Like Brooks, he agrees that the “traditional” diagrams, such as

Figure 10.14 Example visualizations of some composition model rules.

Cycles allowed between
any two components

Cycles allowed between
neighbouring components

300 Visual Composition of Software Applications

structs
nd to-
senta-

epts
 and col-
ul men-

erest-
s that

dimen-
awn
 has
ompo-
moves
ed and

appli-
 become
To sup-

ent in
ts and
 new
 puts
hical

resent
cribed
lmann
 and

edia
bbs,
charts, are not what is needed for modeling systems. But a lot of the conceptual con
underlying software systems can be captured naturally by notions from set-theory a
pology that have natural spatial/graphical representations. Harel calls these repre
tions visual formalisms [16] and they all have rigorous mathematical semantics. Conc
such as containment, connectedness, overlap and adjacency as well as shape, size
our are used to depict a system. Combining these techniques can trigger many usef
tal images of what is going on in a system.

In Vista, only two-dimensional presentations have been used, and it would be int
ing to see if a third dimension could enhance the effectiveness of the tool. Situation
currently use up too much screen space could be more effectively treated in three
sions. Examples of this type of work exist [7][40][46]. Different conclusions can be dr
if the application domain is inherently non-graphic or inherently graphic. Animation
also been used to help understand systems [10][12][44] and would enhance visual c
sition. For example, a “data map” that shows where data is, how it is used and how it
around the application could give a global picture of data usage. Data could be tagg
followed through the executing application.

10.7 Conclusion

The landscape of software is changing from monolithic closed applications to open
cations composed of reusable components. As the landscape changes, end-users
application developers and application developers become component engineers.
port this new landscape, the software industry needs to promote the idea of investm
components. Among other things, this means developing repositories of componen
tools for developing applications from components. Visual composition can lead to
tools and environments which would contribute to the fulfilment of our duty, as Harel
it, “to forge ahead to turn system modeling into a predominately visual and grap
process.”

Acknowledgements

The work described in this chapter has benefited from the efforts of many past and p
members of the Object Systems Group. The prototype visual composition tool des
here includes efforts by Betty Junod, Oscar Nierstrasz, Serge Renfer, Marc Stade
and Ino Simitsek. The precursor to Vista — VST — was implemented by Jan Vitek
Marc Stadelmann, with contributions from Gerti Kappel. The work on the multim
framework includes efforts by Christian Breiteneder, Laurent Dami, Simon Gi
Michael Papathomas and Dennis Tsichritzis.

References 301

ona
ad of

LI-

ents

ork-

ol-
 in

 In-

r of

raction

pp.

 Fine-
Much of this work was done in the context of the ITHACA project. Roberto Bellinz
of Politecnico di Milano worked on the RECAST sample application and Hayat Iss
IFATEC worked on the component set of the workflow sample application.

References

[1] Apple Computer, Inc., Inside Macintosh: Interapplication Communication, Addison-Wesley, Read-
ing, Mass.

[2] Jeff Alger, “OpenDoc vs. OLE,” MacTech Magazine, vol. 10, no. 8, Aug. 1994, pp. 58–70.

[3] Roberto Bellinzona and Mariagrazia Fugini, “RECAST Prototype Description,” ITHACA.PO
MI.91.E.2.8.#1, Politecnico di Milano, Nov. 28, 1991.

[4] Roberto Bellinzona, Mariagrazia Fugini and Giampo Bracchi, “Scripting Reusable Requirem
Through RECAST,” ITHACA.POLIMI.92.E.2.9.#1, Politecnico di Milano, July, 1992.

[5] Ted J. Biggerstaff and C. Richter, “Reusability Framework, Assessment and Directions,” IEEE Soft-
ware, March 1987, pp. 41–49.

[6] Fred P. Brooks, “No Silver Bullet,” IEEE Computer, April 1987, pp. 10–19.

[7] Stuart Card, G. Robertson and J. Mackinlay, “The Information Visualizer: An Information W
space,” CHI ’91 Conference Proceedings, New Orleans.

[8] Valeria De Antonellis, Barbara Pernici and P. Samarati, “F-ORM METHOD: A F-ORM Method
ogy for Reusing Specifications,” IFIP WG 8.4 Working Conference on Object-Oriented Aspects
Information Systems, Quebec, Oct. 1991.

[9] Valeria De Antonellis and Barbara Pernici, “ITHACA Object-Oriented Methodology Manual —
troduction and Application Developer Manual (IOOM/AD),” ITHACA.POLIMI.UDUN-
IV.91.E.8.1, Oct., 1991.

[10] Wim De Pauw, Richard Helm, Doug Kimelman and John Vlissides, “Visualizing the Behavio
Object-Oriented Systems,” in Proceedings OOPSLA ’93, ACM SIGPLAN Notices, vol. 28, no. 10,
Oct. 1993, pp. 326–337.

[11] Erich Gamma, Richard Helm, JohnVlissides and Ralph E. Johnson, “Design Patterns: Abst
and Reuse of Object-Oriented Design,” in Proceedings ECOOP ’93, ed. O. Nierstrasz, Lecture
Notes in Computer Science, vol. 707, Springer-Verlag, Kaiserslautern, Germany, July 1993,
406–431.

[12] Steven C. Glassman, “A Turbo Environment for Producing Algorithm Animations,” in Proceedings
IEEE Symposium on Visual Languages, Aug. 1993, pp. 32–36.

[13] Adele Goldberg, “Information Models, Views and Controllers,” Dr. Dobb’s Journal, July, 1990.

[14] Paul E. Haeberli, ”ConMan: A Visual Programming Language for Interactive Graphics,” ACM
Computer Graphics, vol. 22, no. 4, Aug. 1988, pp. 103–111.

[15] David Harel, “Biting the Silver Bullet,” IEEE Computer, vol. 25 no. 1, Jan., 1992, pp.8–20.

[16] David Harel, “On Visual Formalisms,” Communications of the ACM, vol. 31, no. 5, May 1988, pp.
514–530.

[17] William Harrison, Harold Ossher and Mansour Kavianpour, “Integrating Coarse-Grained and
Grained Tool Integration,” Proceedings CASE ’92, July 1992.

302 Visual Composition of Software Applications

Com-

inois,

.0),”
lion,

tation

y of

sual

 1992.

ram-

= Ap-

, pp.

rface
hnol-
[18] Richard Helm, Ian Holland and Dipayan Gangopadhyay, “Contracts: Specifying Behavioural
positions in Object-Oriented Systems,” Proceedings OOPSLA/ECOOP ’90, ACM SIGPLAN Notic-
es, vol. 25, no. 10, Oct. 1990, pp. 169–180.

[19] HP Journal, vol. 41, no. 3, June 1990 (HP SoftBench).

[20] IBM, VisualAge documentation and demo diskette.

[21] ITHACA Tecnical Annex, Sept. 1988.

[22] Dan Ingalls, “Fabrik: A Visual Programming Environment,” ACM SIGPLAN Notices, vol. 23, no.
11, Nov. 1988, pp. 176–190.

[23] Ivar Jacobson, “Is Object Technology Software’s Industrial Platform?” IEEE Software, vol. 10, no.
1, Jan. 1993, pp. 24–30.

[24] Ralph E. Johnson, “How to Design Frameworks,” OOPSLA ’93 tutorial notes.

[25] Ralph E. Johnson and Vincent F. Russo, “Reusing Object-Oriented Designs,” University of Ill
TR UIUCDCS 91-1696.

[26] A. Julienne and L. Russell, “Why You Need ToolTalk,” SunExpert Magazine, vol. 4, no. 3, March
1993, pp. 51–58.

[27] Manolis Katevenis, T. Sorilos and P. Kalogerakis, “Laby Programmer’s Manual (version 3
ITHACA report FORTH.92.E3.3.#1, Foundation of Research and Technology — Hellas, Irak
Crete, Jan. 1992.

[28] Karl Lieberherr and Ian Holland, “Assuring Good Style for Object-Oriented Programs,” IEEE Soft-
ware, Sept. 89, pp. 38–48.

[29] Vicki de Mey, Betty Junod, Serge Renfer, Marc Stadelmann and Ino Simitsek, “The Implemen
of Vista — A Visual Scripting Tool,” in Object Composition, ed. D. Tsichritzis, Centre Universitaire
d’Informatique, University of Geneva, June 1991, pp. 31–56.

[30] Vicki de Mey, “Visual Composition of Software Applications,” Ph.D. thesis no. 2660, Universit
Geneva, 1994.

[31] Vicki de Mey, Christian Breiteneder, Laurent Dami, Simon Gibbs and Dennis Tsichritzis, “Vi
Composition and Multimedia,” Proceedings Eurographics ’92.

[32] Vicki de Mey and Simon Gibbs, “A Multimedia Component Kit,” Proceedings ACM Multimedia
’93.

[33] Bertrand Meyer, “Applying ‘Design by Contract’,” IEEE Computer, Oct. 1992, pp. 40–51.

[34] Microsoft, Object Linking and Embedding Programmer’s Reference (pre-release), version 2,

[35] Naftaly H. Minsky and David Rozenshtein, “ A Law-Based Approach to Object-Oriented Prog
ming,” Proceedings OOPSLA ’87 , Oct. 1987, pp. 482–493.

[36] NeXT, Distributed Objects, release 3.1, 1993.

[37] Oscar Nierstrasz, Dennis Tsichritzis, Vicki de Mey and Marc Stadelmann, “Objects + Scripts
plications,” Proceedings, Esprit 1991 Conference, Kluwer, Dordrecht, 1991, pp. 534–552.

[38] Andrew J. Palay, “Towards an ‘Operating System’ for User Interface Components,” in Multimedia
Interface Design, ed. M. M. Blattner and R. B. Dannenberg, Frontier Series, ACM Press, 1992
339–355.

[39] Randy Pausch, Nathaniel R. Young and Robert DeLine, “SUIT: The Pascal of User Inte
Toolkits,” Proceedings of the Fourth Annual Symposium on User Interface Software and Tec
ogy, Nov. 1991, pp. 117–125.

References 303

tion

ware,”

een

ell,”
e-

rmat-

tan-
[40] Steven P. Reiss, “A Framework for Abstract 3D Visualization,” in Proceedings IEEE Symposium
on Visual Languages, Aug. 1993, pp. 108–115.

[41] Lawrence J. Rosenblum and Gregory M. Nielson, “Guest Editors’ Introduction: Visualiza
Comes of Age,” IEEE Computer Graphics and Applications, vol. 11, no. 3, May 1991, pp. 15–17.

[42] Ben Shneiderman, “Direct Manipulation: A Step Beyond Programming Languages,” IEEE Compu-
ter, vol. 16, no. 8, Aug. 1983, pp. 57–69.

[43] David C. Smith and Joshua Susser, “A Component Architecture for Personal Computer Soft
in Languages for Developing User Interfaces, ed. B. Myers, Jones & Bartlett, 1992, pp. 31–56.

[44] Randall B. Smith, “Experiences with the Alternate Reality Kit: An Example of the Tension Betw
Literalism and Magic,” IEEE Computer Graphics and Applications, Sept. 1987, pp. 42–50.

[45] Marc Stadelmann, Gerti Kappel and Jan Vitek, “VST: A Scripting Tool Based on the UNIX Sh
in Object Management, ed. D. Tsichritzis, Centre Universitaire d’Informatique, University of Gen
va, July 1990, pp. 333–344.

[46] John T. Stasko and Joseph F. Wehrli, “Three-Dimensional Computation Visualization,” in Proceed-
ings IEEE Symposium on Visual Languages, Aug. 1993, pp. 100–107.

[47] Dennis Tsichritzis and Simon Gibbs, “Virtual Museums and Virtual Realities” Proceedings Inter-
national Conference on Hypermedia & Interactivity in Museums, Archives and Museum Info
ics, Technical Report no. 14, Pittsburgh, Oct. 14–16, 1991, pp. 17–25.

[48] John Vlissides, “Generalized Graphical Object Editing,” Technical Report CSL-TR-90-427, S
ford University June 1990.

304

	Visual Composition of Software Applications
	10.1 Introduction
	10.2 Related Work
	10.3 A Framework for Visual Composition
	10.3.1 Component Definition
	10.3.2 Component Composition
	10.3.3 Interactive Environment
	10.3.4 Component Management

	10.4 Vista — A Prototype Visual Composition Tool
	10.5 Sample Applications
	10.6 Discussion
	10.6.1 Component Definition
	10.6.2 Composition
	10.6.3 Visualization

	10.7 Conclusion

