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Chapter 1

Component-Oriented 
Software Technology

Oscar Nierstrasz and Laurent Dami

Abstract    Modern software systems are increasingly required to be open and
distributed. Such systems are open not only in terms of network connections
and interoperability support for heterogeneous hardware and software
platforms, but, above all, in terms of evolving and changing requirements.
Although object-oriented technology offers some relief, to a large extent the
languages, methods and tools fail to address the needs of open systems
because they do not escape from traditional models of software development
that assume system requirements to be closed and stable. We argue that open
systems requirements can only be adequately addressed by adopting a
component-oriented as opposed to a purely object-oriented software
development approach, by shifting emphasis away from programming and
towards generalized software composition.

1.1 Introduction

There has been a continuing trend in the development of software applications awa
closed, proprietary systems towards so-called open systems. This trend can be lar
tributed to the rapid advances in computer hardware technology that have vastly inc
the computational power available to end-user applications. With new possibilities 
new needs: in order to survive, competitive businesses must be able to effectively e
new technology as it becomes available, so existing applications must be able to wo
new, independently developed systems. We can see, then, that open systems 
“open” in at least three important ways [49]:

1. Topology: open applications run on configurable networks.

2. Platform: the hardware and software platforms are heterogeneous.

3. Evolution: requirements are unstable and constantly change.
r Nierstrasz and Laurent Dami, “Component-Oriented Software Technology,” Object-Oriented Software Composition, O. 
trasz and D. Tsichritzis (Eds.), pp. 3-28, Prentice Hall, 1995. 
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company).  This work is protected by copyright and 

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only.  It is not 
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall.  All other 
s reserved.
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Object-oriented software development partially addresses these needs by hidin
representation and implementation details behind object-oriented interfaces, thus p
ting multiple implementations of objects to coexist while protecting clients from cha
in implementation or representation. Evolution is only partially addressed, however,
changes in requirements may entail changes in the way that the objects are structu
configured. In fact, to address evolution, it is necessary to view each application a
one instance of a generic class of applications, each built up of reconfigurable softwa
components. The notion of component is more general than that of an object, 
particular may be of either much finer or coarser granularity. An object encapsulate
and its associated behaviour, whereas a component may encapsulate any useful software
abstraction. Since not all useful abstractions are necessarily objects, we may miss
tunities for flexible software reuse by focusing too much on objects. By viewing ope
plications as compositions of reusable and configurable components, we expect to 
to cope with evolving requirements by unplugging and reconfiguring only the affe
parts.

1.1.1 What Are Components?

If we accept that open systems must be built in a component-oriented fashion, we
still answer the following questions: What exactly are components, and how do they
from objects? What mechanisms must programming languages and environments p
to support component-oriented development? Where do components come from
software development lifecycle, and how should the software process and metho
commodate them?

In attempting to answer these questions, we must distinguish between methodo
and technical aspects. At a methodological level, a component, we will argue, is a c
nent because it has been designed to be used in a compositional way together with oth
components. This means that a component is not normally designed in isolation,
part of a framework of collaborating components. A framework may be realized as an
stract class hierarchy in an object-oriented language [23], but more generally, comp
need not be classes, and frameworks need not be abstract class hierarchies. Mixin
tions, macros, procedures, templates and modules may all be valid examples of c
nents [3], and component frameworks may standardize interfaces and generic co
various kinds of software abstractions. Furthermore, components in a framework
also be other entities than just software, namely specifications, documentation, tes
example applications, and so on. Such components, however, will not be discussed
tail in this paper: we will mainly concentrate on some technical aspects related to so
components.

At a software technology level, the vision of component-oriented development is a
old idea, which was already present in the first developments of structured program
and modularity [32]. Though it obtained a new impulse through the compositional m
anisms provided by object-oriented programming languages, component-oriented
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ware development is not easy to realize for both technological and methodolo
reasons. For a programming language to support component-oriented developm
must cleanly integrate both the computational and the compositional aspects of software
development. An application can be viewed simultaneously as a computational enti
delivers results, and as a construction of software components that fit together to a
those results (figure 1.1). A component per se does not perform any computation, but ma
be combined with others so that their composition does perform useful computa
much in the way that the parts of a machine do not necessarily perform any function
vidually, but their composition does. The integration of these two aspects is not str
forward, however, since their goals may conflict. To take a concrete example, concu
mechanisms, which are computational, may conflict with inheritance, which is a a 
positional feature, in that implementation details must often be exposed to correct
plement inheriting subclasses [26] [31] (see chapter 2 for a detailed discussion 
issues). To complicate things even further, the distinction between “composition 
and “run time” is not always as clear as in the picture above: with techniques such 
namic loading, dynamic message lookup or reflection, applications can also be pa
composed or recomposed at run-time.

In order to achieve a clean integration of computational and compositional featu
common semantic foundation is therefore needed in which one may reason abou
kinds of features and their interplay. As we shall see, the notions of objects, functions and
agents appear to be the key concepts required for such a foundation. In consequen
will adopt a definition of software component which is sufficiently abstract to range
these various paradigms.

In short, we say that a component is a “static abstraction with plugs”. By “static”, we
mean that a software component is a long-lived entity that can be stored in a softwar
independently of the applications in which it has been used. By “abstraction”, we 
that a component puts a more or less opaque boundary around the software it encap

Figure 1.1   Static and dynamic views of an application.

Dynamic assembly of 
cooperating and 
communicating “entities” 
(objects, agents, ...)

Static assembly of 
components
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“With plugs” means that there are well-defined ways to interact and communicate wi
component (parameters, ports, messages, etc.). So, seen from the outside, a com
may appear as in figure 1.2: a single entity, which may be moved around and copie
in particular may be instantiated in a particular context, where the plugs (the small
rectangles) will be bound to values or to other components. In fact, such visual rep
tations of components can be very convenient for supporting interactive composit
applications from component frameworks (see chapter 10). Software composition, then, is
the process of constructing applications by interconnecting software components th
their plugs. The nature of the plugs, the binding mechanisms and the compatibility
for connecting components can vary quite a bit, as we shall see, but the essential c
of components, plugs, plug-compatibility and composition remain the same.

1.1.2 Where Do Components Come From?

Once the programming language and associated tools support the development o
ponents, we are still left with the question, “Where do the components come fr
Although we argue that a component-oriented approach is necessary to deal with ev
requirements, it turns out that components themselves only emerge through an it
and evolutionary software lifecycle. This is reasonable, if we consider that compo
are only useful as components if they can be easily used in many contexts. Before
useful” component can be designed [23], one must first collect, understand and a
knowledge about these different contexts to determine how their different needs c
addressed by some common frameworks. When component frameworks are put 
they must be evaluated with respect to how easily they can be applied to new pro
and improvements must then be introduced on the basis of new experience. Comp
oriented development is therefore a capital-intensive activity that treats componen
frameworks as capital goods (or “reusable assets”), and requires investment in com
development to achieve economic benefits in the long-term [53]. This means that no
must the programming language technology and support environment addre
technical requirements of component-oriented development, but the entire sof
process, including the analysis and design methods, must incorporate the acti
“component engineering” into the software lifecycle.

Udell, who has provocatively proclaimed the “failure of object-oriented system
deliver on the promise of software reuse,” [50] supports this view by arguing that s

Figure 1.2   A software component and its plugs.
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components, such as those delivered with VisualBasic are a much more succ
example of software reuse than object-oriented programming. An animated discu
followed on the Internet* which finally came to the obvious agreement that succes
software reuse is a matter of methodology and design, more than technology; so 
oriented systems cannot be taken as responsible for lack of reusability: they are
likely to help in producing reusable software, provided that the right design decision
taken in the first place. Additional arguments on the same line can be found in [22], 
various authors discuss software reuse not only in terms of technology, but above
terms of economical, human and organizational factors.

Our position is that both software methods and development technology need to 
go some significant changes in order to take advantage of component-oriented de
ment. We will first focus on some of the foundational issues concerning the differ
between objects and components, and their integration in programming languag
environments; then we will briefly survey related technological and methodolog
problems to be resolved; finally, we will conclude with some prospects for the futu
component-oriented development.

1.2 Objects vs. Components

Object-oriented programming languages and tools constitute an emerging software
nology that addresses the development of open systems in two important ways:

1. as an organizing principle;

2. as a paradigm for reuse.

In the first case, one may view an object-oriented application as a collection of c
orating objects. The fact that each object properly encapsulates both the data and 
responding behaviour of some application entity, and that one may only interact wit
entity through a well-defined interface means that reliability in the face of software m
ifications is improved, as long as client–server interfaces are respected. In the secon
one may view applications as compositions of both predefined and specialized so
components. Application classes inherit interfaces and some core behaviour and rep
tation from predefined abstract classes. Interactions within an application obey the 
cols defined in the generic design. Inheritance is the principle mechanism for sharin
reusing generic designs within object-oriented applications.

Despite these two significant advantages of object-oriented development, it is sti
that present-day object-oriented languages emphasize programming over composition,
that is, they emphasize the first view of applications to the detriment of the seco
general, it is not possible to reuse classes without programming new ones — one 
simply compose object classes to obtain new classes in the way that one can co

* The discussion took place during September 1994 in the newsgroup comp.object, under the subje
ing “Objects vs Components.”
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functions to obtain new functions. Furthermore, one is either forced to define a given
ponent as a class, whether or not the object paradigm is an appropriate one, or, 
kinds of components are supported, the list is typically ad hoc (for example, mixins, mac-
ros, modules, templates).

If we consider the various dimensions of programming languages supporting som
tion of objects, we discover a mix of features concerned with computational and co
sitional issues. Wegner [54] has proposed a classification scheme with the following
“dimensions”: objects, classes, inheritance, data abstraction, strong typing, concu
and persistence. According to the criterion that sets of features are orthogonal if they
independently in separate programming languages, it turns out that objects, abstr
types, concurrency and persistence are orthogonal. But this does not tell us how 
difficult it is to cleanly integrate combinations of features within a single language.

In fact, if we consider just objects, classes and inheritance, it turns out that it is no
straightforward to ensure both object encapsulation and class encapsulation in th
ence of inheritance [47]. One way of explaining this is that classes are overloaded to
both as templates for instantiating objects and as software components that can be
ed by inheritance to form new classes. Typically, these two roles are not cleanly sep
by the introduction of separate interfaces. Instead, various ad hoc rules must be introduced
into each object-oriented programming language to determine what features of a
may be visible to subclasses. Since these rules cannot possibly take into account th
of all possible component libraries, the net effect is that encapsulation must often b
lated* in order to achieve the desired degree of software reusability.

A reasonably complete programming language for open systems development 
not only support objects and inheritance, but also strong typing and concurrency. 
are needed to formalize and maintain object and component interfaces, and concu
features are needed to deal with interaction between concurrent or distributed subsy
(Fine-grain parallelism is also of interest, but is not an overriding concern.) Though 
and concurrency are supposedly orthogonal to objects and inheritance, their integra
not a simple matter. 

One source of difficulty for types is that objects are not simply values taken in isola
like integers, strings, higher-order functions, or even more complex constructs such
stract datatypes. Objects typically belong to a global context, and may contain refe
to other objects in that context. Furthermore, since they are dynamic entities, the
change behaviour or state, and hence the meaning of references changes over time
extracting static type information from such dynamic systems is considerably more
cult. Modelling inheritance is also problematic, due to the two different roles playe
classes. Many difficulties in early attempts arose from efforts to identify inheritance
subtyping. It turns out, on the contrary, that subtyping and inheritance are best cons

* We say that encapsulation is violated if clients of a software component must be aware of implem
tion details not specified in the interface in order to make correct use of the component. In particular
changes in the implementation that respect the original interface may affect clients adversely, then 
sulation is violated. If the inheritance interface cannot be separately specified, then encapsulation c
violated when implementation changes cause subclasses to behave incorrectly.
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as independent concepts [1] [7]. It may even be convenient to have a separate no
type for the inheritance interface [28].

When concurrency is also brought into the picture, the same conflicts are seen to
aggerated degree:

1. Concurrency features may conflict with object encapsulation if clients need 
aware of an object’s use of these features [45] (see chapter 2).

2. Class encapsulation may be violated if subclasses need to be aware of imple
tion details [26] [31].

3. Type systems generally fail to express any aspect of the concurrent behaviour
jects that could be of interest to clients (such as the requirement to obey a c
protocol in issuing requests — see chapter 4).

The source of these technical difficulties, we claim, is the lack of a sufficiently com
nent-oriented view of objects. Components need to be recognized as entities in the
right, independently of objects. A class as a template for instantiating objects is on
of component with a particular type of interface. An object is another kind of compo
with an interface for client requests. A class as a generator for subclasses is yet a
kind of component with a different kind of interface. Each of these components h
own interface for very different purposes. It is possible to provide syntactic sugar to 
a proliferation of names for all of these different roles, but the roles must be distingu
when the semantics of composition is considered.

The other lesson to learn is that each of these dimensions cannot simply be con
as an “add-on” to the others. An appropriate semantic foundation is needed in wh
study the integration issues. If state change and concurrency are modelling require
then a purely functional semantics is not appropriate. As a minimum, it would seem
computational model for modelling both objects and components would need to inte
both agents and functions, since objects, as computational entities, can be viewed as
ticular kinds of communicating agents, whereas components, as compositional en
can be seen as abstractions, or functions over the object space. Moreover, since 
nents may be first-class values, especially in persistent programming environments
new components may be dynamically created, it is essential that the agent and fu
views be consistently integrated. From the point of view of the type system, both o
and components are typed entities, although they may have different kinds of types

1.3 Technical Support for Components

Component-oriented software development not only requires a change of mind-s
methodology: it also requires new technological support. In this section, we will re
some of the issues that arise:

• What are the paradigms and mechanisms for binding components together?

• What is the structure of a software component?
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• At which stage do composition decisions occur, i.e. how can we characteriz
composition process?

• How do we formally model components and composition, and how can we verify that
fragments are correctly composed?

• To which extend does a concurrent computational model affect software compos
tion?

These questions obviously are interrelated; moreover, they depend heavily on the c
sition paradigm being used. We have argued that, ideally, a complete environment fo
ware composition should somehow provide a combination of objects, functions
agents. So far, these paradigms have evolved quite independently. In order to co
them into a common environment, considerable care must be taken to integrate
cleanly. In the following, we examine the specific contributions of each paradigm to
ware composition, we discuss how they may be integrated, and we summarize the
ple open research problems.

1.3.1 Paradigms for Assembling Components

Probably the most fundamental composition mechanism to mention is functional compo-
sition. In this paradigm one entity is first encapsulated and parameterized as a fun
abstraction, and is then “activated” (instantiated) by receiving arguments that are bo
its parameters. Obviously this compositional mechanism occurs in nearly e
programming environment, and is by no means restricted to functional program
languages. Many languages, however, do not allow arbitrary software entities to be t
as values, and therefore do not support functional composition in its most general
Parameterized modules, containing variables that can be bound later to other modu
example, are still absent from many programming languages. At the other end of the
trum, functional languages use functional composition at every level and ther
provide homogeneity: any aspect of a software fragment can be parameterized and
bound to another component, thereby providing much flexibility for delimiting 
boundaries of components. Furthermore, functional programming supports higher-order
composition, i.e. components themselves are data. In consequence, compositio
themselves can be encapsulated as components, and therefore some parts of the c
tion process can be automated. Finally, functional composition has the nice prope
being easily verifiable, since functions can be seen externally as black boxes: unde
assumptions about the parameters of a function, it is possible to deduce some pro
of the result, from which one can know if that result can safely be passed to anothe
tion. Current functional programming languages have developed sophisticated typ
tems to check correctness of composed software [37][21].

Functional composition is a local composition mechanism, in the sense that it on
volves one abstraction and the values passed as parameters. By contrast, agent 
ments typically use a global composition mechanism, often called a blackboard. A
blackboard is a shared space, known by every component, in which information can
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and retrieved at particular locations. For systems of agents communicating through ch
nels, the blackboard is the global space of channel names. Even without agents,
memory in traditional imperative programming also constitutes a kind of blackbo
Blackboard composition supports n-ary assemblies of components (whereas local co
position mechanisms are mostly binary); furthermore, free access to the shared sp
poses less constraints on the interface of components. The other side of the coin, ho
is that blackboard composition systems are much more difficult to check for correc
because interaction between components is not precisely localized. As a partial rem
the problem, blackboard composition systems often incorporate encapsu
mechanisms for setting up boundaries inside the global space within which interfere
restricted to a well-known subset of components. By this means, at least some loca
erties of a blackboard system can be statically verified. The π-calculus [35], for example,
has an operator to restrict the visibility of names; in the world of objects, islands [19] have
been proposed as a means to protect local names and avoid certain traditional pr
with aliasing. 

Finally, object-oriented systems have introduced a new paradigm for software co
sition with the notion of extensibility — the possibility of adding functionality to a com
ponent while remaining “compatible” with its previous uses. Extensibility, typica
obtained in object-oriented languages through inheritance or delegation, is an imp
factor for smooth evolution of software configurations. The delicate question, howev
to understand what compatibility means exactly. For example, compatibility betwe
classes is usually decided on the basis of the sets of methods they provide, possib
their signatures; in the context of active objects, this view does not take into account
sequences of methods invocations are accepted by an object. Chapter 4 studies how
capture this aspect through so-called regular types. Moreover, compatibility ca
meaningful not only for classes, but for more generalized software entities; in parti
object-oriented systems based on prototypes and delegation need to understan
patibility directly at the level of objects. Chapter 6 investigates a functional calculu
which compatibility is defined at a fundamental level, directly on functions.

Figure 1.3 is an attempt to represent visually the different paradigms. Functional
position is pictured through the usual image of functions as boxes, with parameters
sented as input ports and results of computation as output ports. Connections b
components are established directly and represent bindings of values to formal
meters. The blackboard paradigm has an addressing scheme that structures the
space; it sometimes also uses direct connections, but in addition, components are
specific locations, and they may establish connections with other components th
their locations. Here locations are pictured as coordinates in a two-dimensional spa
the purpose of the visual illustration. In practice, the common space will most ofte
structured by names or by linear memory addresses. Finally, extensibility is pictur
additional ports and connections added to an existing component, without affectin
features that were already present. Seen at this informal level, it is quite clear that so
habitation of the paradigms should be possible, but it is also clear that many detail
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careful study. The next subsections discuss the notions of components (the boxes)
anisms (the arrows), and software configurations (the assemblies).

1.3.2 Components as Static Abstractions

In the introduction, we described components in terms of their usage: a software fra
is a component if it is designed for reuse and is part of a framework. This does n
much about the structural aspects of a component. Some global invariants seem to 
within any composition paradigm: components typically are static entities; moreover,
they always consist of some kind of abstraction. Both notions, however, deserve mor
careful examination.

There are many different kinds of static software entities: procedures, functions,
ules, classes and so on. In each case, they have a persistent existence independen
surrounding context, allowing them to be manipulated and stored individually. Onc
sembled into a program, these static entities control the creation and evolution of dy
entities, which in current languages are usually not components (procedure activation
objects, dynamic data structures). Several examples can be found, however, of dy
entities that could be interesting as reusable software fragments, but cannot direc
ticipate in a composition because of limitations of the software environment. For exa
in most object-oriented languages the classes are static, but the objects (instances)

(x1, y1)

Functional Composition Blackboard

Extensibility

Figure 1.3   Composition paradigms.

(x2, y2)

(x3, y3)

(x4, y4)
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In such languages various strategies are typically used by programmers to have ob
composable entities, such as defining a class that encapsulates a single object (in
Another strategy, heavily used in the NeXTStep environment [39], is to define compl
chiving procedures so that groups of objects can be stored into files (so-called “nib” 
the corresponding files can then be composed and the resulting configuration used
reate at run-time the collection of objects defined in the individual groups. In case
this, where the structure of the objects composing a user interface is known statica
does not evolve at run-time, the ability to directly store objects would be much more
venient than writing programs or description files that will dynamically recreate a co
uration of objects.

Another limitation to composition occurs in exactly the reverse situation: saying
components are static entities does not mean that they should be always assembl
cally. Open systems have an increasing need to dynamically manipulate and exc
components, and dynamically link them with a running application. Recent languag
distributed agents such as Telescript [56] or Obliq [5] are good examples of this new
direction. Dynamic assembly means that software can be configured at the latest
according to user’s needs, or that several running applications can dynamically c
orate to exchange information. 

The notion of a component is also closely related to that of an abstraction, a self-
contained entity, with some kind of boundary around it, which can later be composed
other entities. A procedure is an abstraction for a sequence of instructions; a class is
straction for a collection of objects; a module is a set of named abstractions. The fa
abstractions have boundaries is crucial for software composition, since it provi
means for structuring software, controlling interaction between components, and v
ing proper assembly. Unfortunately, most software environments impose some re
tions on the use of abstractions: boundaries cannot be drawn arbitrarily, accord
user’s needs, but must follow specific patterns. For example, in most object-ori
systems, boundaries cannot cross inheritance paths, i.e. a class cannot be defined
explicitly referencing its superclass. Only CLOS [27] supports a notion of inherita
through mixins in which the superclass need not be known and can be bound later
flexibility for drawing abstraction boundaries requires all software components t
treated as first-class values that can be passed as parameters to other component
discussed above, the languages that are most advanced in that direction are fun
languages, where “everything is a function,” and functions are data. Since func
abstraction is the only abstraction mechanism, programmers have great flexibi
choosing which aspects to fix in a function definition and which aspects to leave op
parameters.

Besides treating components as values, another property of abstractions that has
impact on compositionality is scalability, namely the possibility to use the same abstr
tion and composition mechanisms at every level of a configuration. Again this is obvi
the case with functions, where an assembly of functions is a function again. The adv
is the economy of concepts, and the fact that there is no limit on the granularity of co
nents. Through their inheritance interface, classes can be seen as scalable, since th
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mental modifications of a subclass, together with the parent class, form a class ag
contrast, modules are usually not scalable: an assembly of modules is not a modul
An environment without scalability imposes a fixed granularity of composition (mod
can only be assembled into programs), and therefore restrict reusability of compo
Furthermore, the absence of scalability often creates problems for formal studies o
gramming and composition environments, because formal theories are most suc
when they can rely on a small set of universal operators. A striking example can b
served in the area of concurrency, where theoreticians typically use process calcu
scalability (a pool of agents or processes is itself a process), while most practical 
mentations involving concurrency clearly distinguish between a process and a sys
processes.

1.3.3 The Composition Process

In traditional environments for software development the various phases for buildi
application are well-defined and distinct: first one has to write a collection of mod
possibly with some interdependencies, and with some dependencies to predefine
ules stored in libraries; then one has to compile the modules, in order to generate machi
code and, in strongly typed systems, to check type correctness of the modules; fina
has to link the various pieces of machine code together, using a global name sp
resolve all cross-references. This, of course, is the schema for compiled language
accounts for the great majority of development environments in current use. Theref
such systems, the granularity of components seen by programmers is basically th
as the granularity of units manipulated by the development environment.

In order to get more flexible composition environments, this well-established sc
of program development has to be reviewed. There are several reasons why a com
oriented lifecycle is needed, and there are several tendencies in modern languag
demonstrate the possibility of improving the traditional three-phase assembly of soft

We discussed above the necessity for open systems to be able to dynamically lin
agents into a running system. This implies that the information that is normally disc
at link-time, namely the association between global names and memory addresses
to be kept both in the running system and in the agent that will be added to it. In
words, even a complete system can no longer considered to be totally closed: nam
be locally resolved, but they still need to be considered as potential free variables th
be linked later to a dynamic entity. 

In some object-oriented systems, this is true to a further degree: not only the linka
formation, but also a major part of compile-time information is required at run-tim
this is necessary to implement features such as delegation or even reflection. Earl
cates of object-oriented programming were often arguing in favour of the high lev
flexibility offered by fully dynamic object-oriented systems, even if they admitted 
such choices have a cost in terms of resources: dynamicity typically consumes more
ory and more computing power than statically optimized code. Later, some though
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had found the adequate compromise with C++: use objects and classes, but compi
a maximum of information, only keeping what is strictly necessary (namely table
dynamic binding of virtual functions); this is one of the main reasons why the C++ c
munity grew so rapidly. Indeed, C++ has been and is very successful for a large num
applications, but one could say that the original target of proponents of object-ori
programming has shifted: C++ is being used as a replacement for C, for applicati
which interaction with operating system, efficient use of resources, tractability for la
scale projects are essential. We are slowly rediscovering, however, that if flexib
openness, fast prototyping are really important issues, then the choice of C++ is no
justified. In the recent years, demand for qualified Smalltalk programmers has been
ily increasing, and large-scale high-level platforms for application development
OpenStep [40] are being based on Objective-C instead of C++; both languages differ
C++ in that they maintain full information about objects, classes and methods in th
time environment. So the market is progressively acknowledging that efficiency i
necessarily the most important feature in any case, and that it also has its cost in te
lack of openness and flexibility.

We are not saying that the future of software components is necessarily in fully 
preted languages, but that flexible open systems need to deal with components in
possible forms, ranging from source code to machine code through several interm
representations, partially compiled and optimized. Some modern languages in v
areas already demonstrate this tendency, and show that much progress has been 
such implementation strategies. For example, both the scripting language Perl [5
the functional language CAML-Light [30] are compiled into an intermediate form th
then interpreted; actually, interpreted Perl programs are sometimes faster than equ
compiled programs written in C, and the implementation of the CAML-Light interpr
is faster than compiled versions of the original CAML language! Another example i
Self language [51], which provides a very high level of run-time flexibility, and yet ha
ficient implementations based on the principle of compile-by-need: the run-time system
includes a Self compiler, and methods are compiled whenever needed. Static comp
of a method in an object-oriented system is sometimes complicated, because one
make assumptions about the context in which it will be called (taking inheritance
account); if, instead, the method is compiled at run-time, then more information is k
about the context (i.e. which actual object the method belongs to), which allows for a
efficient compilation of the method. In other words, the time lost to compile the meth
run-time may be quickly recovered through subsequent calls to the same method.

Ideally, the responsibility of switching between high-level, human-readable repre
tations of components and low-level, optimized internal representations should be 
the composition environment. In practice, however, programmers still often need to 
these choices. This means that the granularity of components manipulated by the 
is visible to programmers. In itself, this is not necessarily a disadvantage, but the pr
is that this granularity is often identified with the granularity of logical components
software system. In other words, programmers are forced to think in terms of “com
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tion units,” instead of thinking in terms of “modules.” Leroy [29] explained very clea
the distinction:

Modularization is the process of decomposing a program in[to] small units (mod-
ules) that can be understood in isolation by the programmers, and making the rel
tions between those units explicit to the programmers. Separate compilation is the 
process of decomposing a program in[to] small units (compilation units) that can be 
type-checked and compiled separately by the compiler, and making the relations
tween these units explicit to the compiler and linker.

Identifying the two concepts is very common, and yet is limiting, as Leroy points o
the context of the SML language [37]. Modules — i.e. logical units of a program —
be structurally much more complex than compilation units, especially if, as discu
above, one wants to be able to treat them as first-class values and to perform highe
module combinations, either statically or even dynamically. In this respect, SML
probably the most sophisticated module system for an existing programming lang
yet it does not support separate compilation. Several researchers are currently wor
removing this limitation [29][16].

1.3.4 Verification of Composition

Whenever components are assembled to perform a common task, there is always
plicit contract between them about the terms of the collaboration. In order to be able 
ify the correctness of a configuration, the contracts need to be made explicit and
compared for eventual discrepancies. This issue can be addressed by a type syste
ever, conventional type systems cannot capture in general all the aspects of a contr
cause of their limited expressiveness. Two approaches can be taken for dealing w
problem. One approach, taken by Meyer in the Eiffel language [33], is to enrich the
faces of components with additional constraints expressing the expectations and pr
of each partner in the contract. Part of the constraints are checked by the type syste
part of them are verified at run-time, each time that an actual collaboration (control
ing) between two components takes place. The other approach is to improve the e
siveness of type systems. Much research has been done in this direction, especial
area of functional programming languages. Polymorphic type inference in language
as ML or Haskell [21] actually provides a level of security that is much higher than in 
ditional language like Pascal, without putting any additional burden on the program
However, as soon as one leaves the functional model, such results are no longer a
ble: in systems with blackboard composition (imperative programming languages
current systems) one cannot infer much type information. As far as object system
concerned, this is still an open question, examined in detail in a survey by Fishe
Mitchell [11]. The addition of subtyping makes both type inference and type chec
considerably harder, so despite important progress made over the recent years, no
oriented language with an ML-like type system has yet been developed.
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To capture the recursive semantics of objects at a type level, most researchers 
plicitly typed systems with either recursive types or existential quantification; such 
tions have improved the state of the art for object typing, but are not likely to be ap
soon in real languages, since the complexity of the resulting type expressions would
ably appal most programmers not familiar with type theory. Therefore we believe
practicability of object typing will be achieved through type inference rather than thro
explicit typing; preliminary results in that direction are discussed in [18]. The diffi
point, however, is to be able to infer types that are both “minimal” in the sense of
typing, and “principal” in the sense of Curry type schemes (a type scheme is princip
a term if and only if it can generate all other types of that term by substitution of
variables). To our knowledge, this is still an open problem; but some recent results o
cipal types for objects are collected in [15].

Coming back to the problem of explicit contracts between components, we s
mention another family of solutions that puts the contract, not inside components, bu
side. For interlanguage composition, this is even the only possibility, since it wou
quite difficult to compare contracts specified in different languages and models. An e
ple of a contract being outside of the components is a database schema that spec
conditions under which a common database may be accessed, and which must be 
ed by every program doing transactions on the database.While providing a glue be
heterogeneous components, this kind of solution has the disadvantage of being quit
the terms of the contract are specified from the beginning and can hardly be change
moreover, this approach cannot support scalability, since components are clearly d
from configurations of multiple components. Contracts outside of components are
found in module interconnection languages, whose job is precisely to perform compos
tion of software components. The amount of information handled in such languages
from one system to the other; Goguen, for example, advocates an algebraic appro
capture semantic information about the components [13]. It should be noted, how
that module interconnection languages seem to have lost part of their importance
literature in favour of more homogeneous approaches in which the distinction bet
components and component assemblies is less strict. Object-oriented approaches 
that category, as do functional approaches to an even greater degree.

Type systems and algebraic specifications aim at verifying correctness in a ma
checkable way by statically looking at a software configuration. They belong, there
to the world of static semantics. By contrast, a number of techniques have been dev
for studying the dynamic behaviour of programs, like denotational, algebraic, opera
or axiomatic semantics. Since such techniques deal with dynamic information, an
therefore not decidable in general, they are commonly used for studying program
languages and environments rather than particular software configurations. It is the
not our purpose here to discuss them in detail. It should be noted, however, that sev
the points discussed above for the evolution of component-oriented software develo
will have some impact on these analysis techniques. For example, most of these sem
are compositional, but they are not modular (for denotational semantics, this is ack
edged by Mosses [38]). In the scenario of iterative compositional development, it s
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 [55].
be possible to progressively refine the semantics of a component according to the 
ble knowledge about its context: we know more about a component inserted into a
configuration than about this component seen in isolation. Instead of the usual disti
between static semantics, dynamic semantics, and what Jones [25] calls “bindin
analysis,” we should again have a whole range of intermediate steps, correspondin
various intermediate stages of assembly.

Finally, it should be noted that traditional semantic techniques induce an equiva
relationship over software components — they have been designed to be able t
whether two components are equal or not. In the context of object-oriented program
this is no longer sufficient, since the idea is to extend components — to produce new
ponents that are not just “equal” to previous ones (plug-compatible), but in some sen
“better” (extended). To deal with this aspect, theoreticians of object-oriented lang
have developed the notion of partial equivalence relationships (PERs) [4], which equates
components not universally, but relative to a given type: for example the records 
y=3}, {x=1, y=4, z=10} are equivalent as type {x:Int}, but not as type {x:Int, y:Int}. A
alternative approach is proposed in this book in chapter 6, in which components a
time universally related, but by a compatibility partial order instead of an equivalence r
lationship.

1.3.5 Objects as Processes

Earlier in this chapter we argued that components and concurrency are both fundamenta
concepts, and cannot be considered as “add-ons” to programming languages. F
more, the semantic issues are sufficiently subtle and complex that it is essential to
formal object model and a semantic foundation  for reasoning about all language fe
What, then, should the object model look like, and what would be an appropriate sem
foundation?

Let us consider the features we would need to model in a language that support
ponent-oriented development:

1. Active Objects: objects can be viewed as autonomous agents or processes.

2. Components: components are abstractions, possibly higher-order, over the co
tational space of active objects.

3. Composition: generalized composition is supported, not just inheritance.

4. Types: both objects and components have typed interfaces, but, since objects a
namic entities and components are static, the type system must distinguish be
them.

5. Subtypes: subtyping should be based on a notion of “plug compatibility” that p
mits both objects and components to be substituted if their clients are satisfied
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An object model must therefore cope with both objects and components. Objec
capsulate services, and possess identity, state and behaviour* . The services are obtaine
through the behaviour according to some client/server protocol. Components, on the othe
hand, are abstractions used to build object systems, i.e., they are functions over the ob
process space. Although functions are fundamental, we cannot model objects as fu
al entities because they are long-lived and concurrent. Since input and output are 
ing, and the same input may produce different results at different times, objec
essentially non-functional. Ideally, an object calculus [41] would merge the operationa
features of a process calculus with the compositional features of the λ calculus.

Interestingly, recent progress in the study of process calculi addresses many asp
the semantics of concurrent object-oriented systems. The original work by Milner
Calculus of Communicating Systems (CCS) [34] resulted in a highly expressive pr
calculus that nevertheless could not be used to model “mobile processes” that c
change the names of their communication ports in messages. This, of course, is e
to model objects. Work by Engberg and Nielsen [10] borrowed and adapted concept
the λ-calculus to deal with this, and Milner [36] refined and simplified their results to 
duce the π-calculus, a true “calculus for mobile processes.” In the meantime, Thom
[48] developed the first “Calculus for Higher-Order Communicating Systems” (CHO
which essentially added term-passing to CCS. From an object systems point of vie
should allow one to model objects and components as values at run-time. Milner ext
the π-calculus to a polyadic form [35], which allows one to express communicatio
complex messages, and he introduced a simple type system for the calculus. Follow
work by Milner, Sangiorgi [46] developed a higher-order process calculus (HOπ), whose
semantics can be faithfully preserved by a mapping to the unadorned π-calculus, and Hen-
nessy [17] has developed a denotational model of higher-order process calculi. H
[20] has also developed the ν-calculus, a process calculus based on asynchronous c
munication, whose semantics is obtained by a reduction of the features of the π-calculus.
Going in the opposite direction, Dezani et al. [9] have investigated synchronous paralle
ism and asynchronous non-determinism in the classical λ-calculus. In the object-oriented
community, there have been several other attempts to develop object calculi that tak
initial inspiration from either process calculi or the λ-calculus, or both [8] [20] [41].

We propose that a formal model of objects and components based on recent de
ments in process calculi and λ-calculi should form a good basis not only for understand
and explaining abstraction and composition in a component-oriented software de
ment method, but can actually serve as an abstract machine for developing a new g
tion of component-oriented languages [43] [44], much in the same way that the λ-calculus
has served as a semantic foundation for modern functional programming language

* The distinction between “state” and “behaviour” is admittedly artificial, but is useful for conceptual
sons, since state is thought of as hidden and behaviour as visible. In fact, the notions are dual, and 
consider the “state” of an object to be its “current behaviour.”
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1.3.6 Summary of Research Topics

In this section we have listed some very ambitious wishes for the future of compo
oriented development environments, but we have also shown that several directio
ready present in modern programming languages can give us some confidence ab
filment of that program. To summarize, here are the points that we consider as
important research issues:

• Merge current notions of abstraction in process calculi, functional language
object-oriented languages into a single notion of component, which should be a
firstclass, storable entity equipped with the notions of parameterization (lea
some aspects of the component “open”) and instantiation (ability to gener
“copy” of the component in a given run-time context), and furthermore sho
support scalability (possibility to encapsulate a partial configuration of compon
as a new component).

• Develop software manipulation tools that are able to deal with partial configura
and support an iterative assembly process, by using various levels of interm
representations of components. Current tasks of type checking, compilati
machine code and linkage will be replaced by incremental change of interme
representation.

• Find expressive, yet decidable type inference/partial evaluation systems, that w
able to statically decide about the correctness of a partial configuration, in a wa
is transparent to (or requires minimal typing information from) programmers.

It can be seen that these research directions require a tight integration between 
research being done both at a theoretical level (semantics and types of progra
languages) and at a practical level (implementations, compiler/interpreter design).

1.4 Component Engineering

Once we have a language and environment that permits us to develop software com
frameworks, there remains the question how these components should be dev
maintained and applied. With traditional software development, applications are in
ciple designed to meet very specific requirements. Component frameworks, on the
hand, must be designed to meet many different sets of requirements, and should 
built to anticipate unknown requirements. 

Consider the following scenario* [42] for application development: an application d
veloper has access to a software information system (SIS) that contains not only descrip
tions of available component frameworks, but domain knowledge concerning va
application domains, descriptions of requirements models, generic designs, and 
lines for mapping requirements specifications in the problem space to designs and

* This scenario was elaborated as part of the ITHACA project (described briefly in the preface).
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software information system is closer in spirit to an expert system than to a reposito
fact, the principle of a SIS is that it should encode and present the knowledge acqu
a domain expert.

To use the SIS, the application developer first enters into a dialogue to identify the
vant application domain. The information pertaining to this domain can be referred t
Generic Application Frame (GAF). The GAF determines the context for applicatio
development. The next step in the dialogue is to specify the requirements. Since th
includes domain knowledge and requirements models, the requirements specifica
largely performed according to existing patterns. The specific requirements will then
the SIS to suggest, according to stored guidelines, generic designs and componen
works that can be used to build the application. The guidelines may also suggest how
ponents should be instantiated or specialized to meet specific requirements. (Cha
contains a brief description of RECAST, an interactive tool for requirements colle
and specification, based on this scenario.)

The process of completing requirements specifications, making design decision
refining and composing components results in a new information structure that w
call a Specific Application Frame (SAF). The SAF consists not only of the complete
application, but all the information that was generated along the way. When applic
requirements evolve, the SIS is again used, but in this case the dialogue results in pr
decisions being reconsidered and a new SAF being built from the old.

This scenario is very appealing, but suggests more questions than it answers. How
main knowledge to be captured and represented in the SIS? How are generic desi
component frameworks developed and described? How are guidelines determined 
coded? Who is responsible for maintaining the SIS and its contents, and how are th
tents evaluated and maintained? Is the scenario even realistic? How much will th
need to be supported by human experts? We believe it is, because successful gen
plications and component frameworks do exist, but nobody knows how far this sce
can be pushed to work well in practice. Will it only work for very restricted and w
understood application domains, or is it also valid for more complex and evo
domains?

This suggests that the role of component engineering is fundamentally different from
the more traditional role of application development. Although the same person may i
some cases play both roles, it is important to separate them in order to keep the d
sets of requirements distinct. In particular, the clients for each are very different. Th
ents of an application are (ultimately) the end-users, whereas the clients of a com
framework are the application developers.

Why is it necessary to elevate component engineering to a distinguished ac
Should it not be possible to find reusable components by scavenging existing o
oriented applications? A plausible scenario might have application developers use
tional methods to arrive at an object-oriented design, and then search for reusable 
that would at least partially meet the specifications. The “found” objects would the
tailored to fit the task at hand.
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The problem with this scenario is that you do not get something for nothing. Soft
components are only reusable if they have been designed for reuse. A repository of soft-
ware objects from previous applications is like a “software junkyard” that, more li
than not, will not contain just what you are looking for. The cost of searching for
finding something that approximately meets one’s needs, and the additional c
adapting it to fit may exceed the cost of developing it from scratch. Worse, the ta
components are not maintainable, since such an approach will encourage a prolif
of hacked-up, incompatible versions of somewhat similar components, none of wh
ultimately reusable. Systematic rather than accidental software reuse requires 
investment in component framework development and in software informa
management [53].

1.4.1 Benefits and Risks

A component that has been designed for reuse always forms part of a framework o
ponents that are intended to be used together, much in the way that modular furn
made of components that can be combined in many ways to suit different needs. C
the development of a component framework represents an investment that must be
ated against the expected return. The benefits can be measured in two ways: a com
framework should make it easier (i) to fill (at least partially) the needs of many diffe
applications, and (ii) to adapt a given application to changing needs. (These are a
main selling points of modular furniture.) If either or both of these requirements
present to a sufficient degree, it may be worthwhile developing a component frame
or investing in the use and possible adaptation of an existing framework.

In fact, one can easily argue that component frameworks should always be used: long-
lived applications necessarily undergo changes in requirements with time that can b
easily met with the use of a framework, and short-lived applications must typically b
veloped under tight time constraints, which can also be facilitated by the use of an e
framework. The risks, however, must also be considered:

1. A steep learning curve can be associated with the use of a framework. Deve
must be willing to invest time and effort into learning a framework before the b
fits can be realized. The not invented here syndrome can be difficult to overcome.

2. Development of new frameworks is a costly and long-term activity. The long-
benefits must be justified in terms of the opportunities for recovering the in
ment.

3. Individual projects have short-term goals and deadlines that conflict with the 
term goals of component-engineering. Management must commit to develop
service-oriented infrastructure to support the provision of frameworks to pro
[14]. If the use of frameworks introduces too much overhead, projects will not a
them.
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4. New frameworks evolve rapidly in the beginning, and may undergo several 
plete redesigns before they stabilize. The costs of re-engineering client applic
of a redesigned framework may be quite high, though the long-term benefits 
engineering can be significant. In principle one should not use unstable frame
for a large base of client applications, but on the other hand, a framework wi
evolve to the point that it stabilizes unless it is applied to many different kinds o
plications.

The reason that each of these points can be considered a risk is that present s
engineering practice actually discourages component-oriented development by focusin
on the individual application rather than viewing it as part of a much broader soft
process. To address these points we need to rethink the way software is develop
introduce new activities into the software lifecycle. 

If we reject the “software junkyard” model of software reuse, we can still consider
a starting point for component engineering. A component engineer processes and 
the results of previous development efforts to synthesize (i) domain knowledge
requirements models [2], (ii) design patterns [12] and generic architectures, (iii) fr
works [24] and component libraries, (iv) guidelines to map from problem to solution
mains (i.e. from requirements to designs and implementations). The result of comp
engineering, therefore, resembles a well-designed cookbook — it is not just a colle
of prepackaged recipes, but it contains a lot of background information, generic re
suggestions on how to combine and tailor recipes, and advice on how to meet s
needs. The “cookbook” is intended to compensate for the fact that not everyone can
the time and expense required to become an expert, and so the acquired expertis
duced to a standard set of guidelines and rules. Naturally one cannot hope to ans
possible needs with such an approach, but a large class of relatively mundane pr
can be addressed.

Note that component engineering is not concerned only with developing software
ponents, but touches all aspects of software development from requirements coll
and specification, through to design and implementation. The point is that the most
ficial artefacts to reuse are often not software components themselves but domain 
edge and generic designs. Software reuse is most successful if one plans for it in advance.
By waiting until after requirements are specified and the systems are designed, ma
portunities for reuse may have been wasted, and one may not even be able to find s
components to reuse.

Component engineering can only be considered successful if the results are u
build more flexible applications. Ideally, these results actually drive the application devel-
opment process: an application developer should be quickly positioned in the so
information space to some GAF, and the activities of requirements collection
specification, application design, component selection and refinement should follow
a flexible dialog between the developer and a software information system on the b
the contents of the GAF.
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1.4.2 How to Get There from Here

However attractive such a software information system might be, little is known a
how one should build one that would be successful in practice. (See chapter 7 for a 
sion of some of the issues.) Good results have been achieved by introducing a so
“Expert Services Team” of individuals who are responsible for introducing reusabl
sets into projects [14]. In this way, some of the domain expertise is formalized in ter
reusable assets, but the knowledge of how to apply them to particular situations rem
responsibility of this team. The hard parts remain: (i) how to identify the reusable a
applicable to a given situation (identifying the GAF), (ii) mapping the results of ana
to available architectures and designs, (iii) elaborating missing subsystems and c
nents, (iv) adapting frameworks to unforeseen requirements.

More generally, there are various aspects of component-oriented development th
only be considered open research problems. Some of the more significant problem

1. Domain knowledge engineering: how should domain knowledge be captured a
formalized to support component-oriented development?

2. Synergy between analysis and design: traditional software engineering wisdom
would keep design issues separate from analysis, but opportunities for reuse
missed unless one plans for it. How can analysis benefit from the knowledg
frameworks will be used in system design?

3. Framework design: what methods apply to framework design? Object-orien
analysis and design methods do not address the development of framew
Guidelines exist, but no methods [23].

4. Framework evolution: frameworks evolve as they stabilize. What principles sho
be applied to their evolution? How do we resolve the technical difficulties of m
taining applications based on evolving frameworks? [6]

5. Reuse metrics: traditional software metrics are of limited use in the developmen
object-oriented software. Less is known about measuring the cost of devel
component-oriented software. How does one measure potential for reuse? Th
and cost of framework-based applications? The cost of developing and mainta
reusable assets? [14]

6. Tools and environments: what software tools would facilitate component-orient
development? How can the software information space be managed in such
as to provide the best possible support both for application developers and c
nent engineers?

1.5 Conclusions

Component-oriented software development builds upon object-oriented program
techniques and methods by exploiting and generalizing object-oriented encapsulati
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extensibility, and by shifting emphasis from programming towards composition. Present
object-oriented technology is limited in its support for component-oriented develop
in several ways. First and foremost, the notion of a software component is not explicitly
and generally supported by object-oriented languages. A component, as oppose
object, is a static software abstraction that can be composed with other compon
make an application. Various kinds of components can be defined with object-ori
languages, but their granularity is typically too closely linked with that of objects —
addition to classes, both more finely and coarsely grained abstractions are useful a
ponents.

Supporting both components, as software abstractions, and objects, as run-tim
ties, within a common framework requires some care in integrating correspon
language features within a common framework. In particular, it is not so easy to de
satisfactory type system that captures “plug compatibility” in all its useful forms 
guises. Concurrency and evolving object behaviour pose particular difficulties, as i
in chapters 2, 4 and 5. For these reasons, we argue, it is necessary to establish a
semantic foundation of objects, functions and agents that can be used to reason
software composition at all levels.

Foundational issues, though important, address only a small part of the difficult
making component-oriented development practical. Even if we manage to produce
puter languages that are better suited to expressing frameworks of plug-compatibl
ware components, there is a vast range of technological and methodological issue
resolved before we can expect that component-oriented development will become
spread. The most fundamental question — where do the components come from? —
hardest to answer. In a traditional software lifecycle, application “components” are t
made to specific requirements. In a component-oriented approach, the activity of compo-
nent engineering must be explicitly incorporated into the lifecycle, and supported by
software process, the methods and the tools. “Software reuse” is not something tha
achieved cheaply by arbitrarily introducing libraries or “repositories” into an exis
method. In fact, rather than focusing on software reuse, we must concentrate on re
design, of architecture and of expertise. Component engineering is the activity of dis
and packaging domain expertise in such a way as to make component-oriented app
development possible.
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