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Chapter 4

Regular Types for
Active Objects*

Oscar Nierstrasz

Abstract    Previous work on type-theoretic foundations for object-oriented
programming languages has mostly focused on applying or extending
functional type theory to functional “objects.” This approach, while benefiting
from a vast body of existing literature, has the disadvantage of dealing with
state change either in a roundabout way or not at all, and completely side-
stepping issues of concurrency. In particular, dynamic issues of non-uniform
service availability and conformance to protocols are not addressed by
functional types. We propose a new type framework that characterizes objects
as regular (finite state) processes that provide guarantees of service along
public channels. We also propose a new notion of subtyping for active objects,
based on Brinksma’s notion of extension, that extends Wegner and Zdonik’s
“principle of substitutability” to non-uniform service availability. Finally, we
formalize what it means to “satisfy a client’s expectations,” and we show how
regular types can be used to tell when sequential or concurrent clients are
satisfied.

4.1 Introduction

Much of the work on developing type-theoretic foundations for object-oriented prog
ming languages has its roots in typed lambda calculus. In such approaches, an o
viewed as a record of functions together with a hidden representation type [10]. Whi
view has the advantage of benefiting from a well-developed body of literature that
great deal to say of relevance to OOP about polymorphism and subtyping — see, 

* This chapter is a revised and corrected version of a previously published paper.   ACM. Proceedings 
OOPSLA  ’93, Washington DC, Sept. 26 – Oct. 1, 1993, pp. 1–15. Permission to copy without fee all o
of this material is granted provided that the copies are not made or distributed for direct commercial
tage, the ACM copyright notice and the title of the publication and its date appear, and notice is give
copying is by permission of the Association for Computing Machinery. To copy otherwise, or to repu
requires a fee and/or specific permission.
r Nierstrasz, “Regular Types for Active Objects,” Object-Oriented Software Composition, O. Nierstrasz and D. Tsichritzis (Eds.), pp. 
21, Prentice Hall, 1995. 
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company).  This work is protected by copyright and 

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only.  It is not 
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall.  All other 
s reserved.
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ample, chapter 6 of this book — the fact that objects in real object-oriented lang
change state is typically dealt with in an indirect way.

The mismatch is even more acute in concurrent object-oriented languages. In su
guages, “active objects” may have their own thread of control and may delay the ser
of certain requests according to synchronization constraints [20]. Such objects ma
thermore require a particular protocol to be obeyed (such as an initialization protoc
them to behave properly. Chapter 2 of this book presents a survey of such language
thorough discussion of issues. See also chapter 12 for an example of an object-o
framework in which “gluons” encapsulate protocols to facilitate dynamic interconnec
of components. Existing notions of object types coming from a functional setting d
address the issues of non-uniform service availability or conformance to a service 
col. (Although these issues are also relevant for passive objects and sequential OOP
draw our main motivation from object-based concurrency, and so we will refer in a ge
way to “active” objects.)

We argue that, in order to address these issues, it is essential to start by viewing a
as a process, not a function. (See [26] for other reasons.) By “process” we mean an ab
machine that communicates by passing messages along named channels, as in 
CCS [24] or the polyadic π-calculus [25]. Processes naturally model objects since t
represent pure behaviour (i.e. by message passing). Behaviour and “state” are in
guishable in such an approach, since the current state of a process is just its curren
iour. Unfortunately there has been considerably less research done on type mod
processes than for functions, and the work that has been done focuses primarily on
channels, not processes (see, for example [25] [33]).

Although processes in general may exhibit arbitrary behaviour, we can (normally
pect objects to conform to fairly regular patterns of behaviour. In fact, we propose o
one hand to characterize the service types associated with an object in terms of types of 
quest and reply messages, and on the other hand to characterize the availability of these
services by regular types that express the abstract states in which services are ava
and when transitions between abstract states may take place. Services represent c
or “promises” over the message-passing behaviour of the object: in a given state the
will accept certain types of requests over its public channels, and promises to (even
send a reply along a private channel (supplied as part of the request message). Wh
viding a particular service, an object may (non-deterministically) change its abstrac
to alter the availability of selected services.

Subtyping in our framework is based on a generalization of Wegner and Zdonik’s “
ciple of substitutability” [34]: services may be refined as long as the original promise
still upheld (by means of a novel application of intersection types [5] [31]), and reg
types may be refined according to a subtype relation — based on Brinksma’s extension re-
lation for LOTOS processes [7] — that we call “request substitutability.”

In section 4.2 we shall briefly review what we mean by “type” and “subtype,” and 
we may understand the notion of substitutability in the context of active objects. In sectio
4.3 we introduce service types as a means to characterize the types of request messag
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derstood by an object and their associated replies, and we show how intersection over
service types provides us with a means to refine these specifications.

In section 4.4 we define request substitutability for transition systems and we demon
strate its relationship to failures equivalence. In section 4.5 we introduce regular types as
a means to specify the protocols of active objects. In section 4.6 we propose to use 
substitutability as a subtype relationship for regular types, and we demonstrate a 
algorithm for checking that one regular type is request substitutable for another. Ne
formalize a client’s expectations in terms of request satisfiability, and we show how regu-
lar types relate to this notion.

In section 4.8 we summarize a number of open issues to be resolved on the way t
tically applying our type framework to real object-oriented languages. We conclude
some remarks on unexplored directions.

4.2 Types, Substitutability and Active Objects

Before we embark on a discussion of what types should do for active objects, we s
be careful to state as precisely as possible (albeit informally) what we believe typ
and what they are for. Historically, types have meant many things from templates fo
structures and interface descriptions, to algebraic theories and retracts over Scott’s 
tic domains. We are interested in viewing types as partial specifications of behaviour of
values in some domain of discourse. Furthermore, types should express things abo
values that tell us how we may use them safely. Naturally, we would also like these 
fications to (normally) be statically checkable.

Subtyping is a particular kind of type refinement. The interpretation of a type for some
value space determines which values satisfy the type. A subtype, then, is simply a st
specification and guarantees that the set of values satisfying the subtype is a subset of
those that satisfy the supertype. If T is a type (expression) and U is some universal value
space of interest, then we shall write x:T to mean x satisfies T, and [[ T]]  to mean { x   x:T }
(i.e. where U is understood). Another type S is a subtype of T, written S≤T, if x:S ⇒  x:T, i.e.
[[ S]]⊆ [[ T]].

But specifically what kinds of properties should types specify? It is worthwhile to rec
Wegner and Zdonik’s principle of substitutability:

An instance of a subtype can always be used in any context in which an instance 
supertype was expected. [34]

It is important to recognize that “can be used” implies only “safely,” and nothing more.
It does not imply, for instance, that an application in which a type has been replac
some subtype will exhibit the same behaviour. We are not concerned with full behav
compatibility, but only with safe usage.

What does type safety mean in an object-oriented setting? First of all, that o
should only be sent messages that they “understand.” We must therefore be able to
the types of request and reply messages exchanged by objects. If we think of obj
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“servers,” then the services they provide are promises that they understand certai
of requests, and that, in response to a particular request, they will eventually send a
type of reply. Subtyping of services can then be defined in a fairly conventional way, i
a subtype at least guarantees the promises of the supertype: at least the same req
understood (possibly more) and consequent replies to those requests are guarante
of the right type.

Services may not always be available, however. If requests must be sent in a cer
der, or if certain services may be temporarily unavailable, then, we argue, the object
should describe this. Type safety, in this case, means that clients (or, more generall
ronments) that interact with such objects do not deadlock because of protocol errors
substitutability is correspondingly defined so that sequences of interactions that ar
for a supertype are also valid for a subtype. A client will never be unexpectedly starv
service because a subtype instance has been substituted. 

In order to explain our type approach, we will adopt an object model that views ob
as certain kinds of communicating processes [4][8][17][24]. (Although we could form
ize our model in process-theoretic terms, as in, for example, [30], for the purposes 
presentation we will attempt to be rigorous and precise without being excessively fo

Figure 4.1 depicts an object’s behaviour in an idealized fashion. The large circle
resent the object in its various states and the small circles represent its commun
channels, white for input and black for output. The input channels on the left side a
receiving requests. Note that the set of “enabled” input requests changes over time

In our object model, every object receives requests along uniquely identified cha
one per request name. Each request consists of a message containing a number
ments and a unique reply address (also a channel name). The arguments must be o
rect type. (We will not be concerned with what kinds of values may be passed, b

Figure 4.1   Non-uniform service availability.

Accept requests
Send requests

Receive replies
Send reply

Accept requests
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reader may assume that any reasonable value — objects, object identifiers, c
names, etc. — is fair game.)

An object, then, accepts requests addressed to it through its (public) request ch
and it may issue requests to other objects it is acquainted with via their request channels.
All replies, however, are communicated along private channels that are temporarily esta
lished by clients of requests. When an object accepts a request, it implicitly guarantees to
(eventually) send a reply (of the correct type) to the client. This reply may be deliver
a third party to which the reply address has been forwarded. Furthermore, the obje
vary the requests accepted over time by selectively listening only to certain request
nels. When an object is ready to accept a message addressed to one of its request c
we say that the request is enabled, and that the corresponding service is available. We as-
sume that the complete set of public request channels is finite and fixed in advance 
object.

We will now separately discuss the issues of specifying types of services asso
with an object (section 4.3), and specifying when those services are available (s
4.4).

4.3 Intersecting Service Types

We will start by introducing the following syntax for service types:
S ::= all   none   M(V)→V   Ŝ S
V ::= all   none   (V,...)   ...

where M is a request name and V is a value type (i.e. types for argument and return valu
“→” binds more tightly than “̂”. We assume that V includes some base types, the typesall
and none, and tuples over value types.

We will write x : m(A)→R to mean that object x may receive a value a of type A together
with a reply address along a request channel xm and will consequently promise to return
value r of type R. We may also write x.m(a) : R to say that x understands the message m(a)
and returns a value of type R. We call the type expression m(A)→R a service of x, and we
say that x offers this service. Note that this does not imply anything about other serv
that x may or may not offer.

We may refine these expressions by the intersection operator for types (^). Intersection
types have been studied extensively in functional settings (see [31] for a bibliogra
Here we propose to assign an interpretation to them for objects in a process setting
write x:S1^S2, we wish that to mean precisely that x:S1 and x:S2. In set-theoretic terms,
then:

[[ S1^S2]]  = [[ S1]]  ∩ [[ S2]]

As specifications, we mean that both S1 and S2 are true statements about x. As we shall
see, this device allows us not only to attribute sets of services to objects, but also p
us to refine their types in interesting ways.
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The expressions all and none represent, respectively, the set of all objects and the em
set. That is, all tells us nothing about the services of an object, and none demands so much
that no object can possibly satisfy it. (all and none are the “top” and “bottom” of our type
hierarchy.)

Let us now briefly look at the subtyping properties of service types. Some fac
clear:

1. T ≤ all (i.e. for any value or service type T)

2. none ≤ T

3. m(none)→T = all (since no such request can ever be received)

4. R1 ≤ R2 ⇒  m(A)→R1 ≤ m(A)→R2

5. A2 ≤ A1 ⇒ m(A1)→R ≤ m(A2)→R (i.e. a contravariant rule)

Now, considering intersections, the following are straightforward:

6. S1^S2 ≤ S1 and S1^S2 ≤ S2

7. S ≤ S1 and S ≤ S2 ⇒  S ≤ S1^S2

8. S1 ≤ S2 ⇒ (S1^S2) = S1 (follows from (6) and (7))

Now consider:

9. m(A1)→R1 ̂  m(A2)→R2 ≤ m(A1^A2)→(R1^R2)

Normally we may expect to write type expressions like:

put(all)→(Ok) ̂  get()→(all)

but nothing prevents us from writing:

inc(Int)→Int ̂  inc(Real)→Real

or even:

update(Point)→Point ̂  update(Colour)→Colour

If an incoming message satisfies more than one request type in the intersection, t
result must satisfy each of the result types. Our (informal) semantics of intersection ty
requires that all applicable service guarantees must hold. In this case, if:

cp:ColouredPoint,

where ColouredPoint = Point^Colour

then x.update(cp):Point and x.update(cp):Colour. The result, therefore, must have type Col-
ouredPoint.

Notice that as a corollary of (9), via (6) , (4) and (7), we also have:

10.m(A)→(R1^R2) = m(A)→R1 ̂  m(A)→R2

This also means, however, that we must take care not to intersect services with ab
For example, suppose Int and Real are disjoint types. Then:

size(Point)→Int ̂  size(Colour)→Real
≤ size(ColouredPoint) → (Int^Real)
= size(ColouredPoint) → none
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Since the two size services have contradictory result types, their intersection yields th
sult type none.

As a final remark, notice that type-safe covariance is naturally expressed:

update(Point) → Point ̂  update(ColouredPoint) → ColouredPoint

is a subtype of both update(Point)→Point and update(ColouredPoint)→ColouredPoint. A cli-
ent supplying an instance of ColouredPoint as an argument can be sure of getting a Coloured-
Point back as a result, whereas clients that supply Point arguments will only be able to infe
that the result is of the more general type Point.

4.4 Request Substitutability

Service types tell us what types of requests are understood by an object and what t
reply values it promises to return, but they do not tell us when those services are available
In particular, we are interested in specifying when an object’s request channe
enabled. The sequences of requests that an object is capable of servicing consti
object’s protocol. An object that conforms to the protocol of another object is safely su
stitutable for that second object, in the sense that clients expecting that protocol to b
ported will receive no “unpleasant surprises.”

Before tackling the issue of how to specify protocols, let us first try to formalize the
propriate substitutability relation.

According to our abstract object model, objects can do four things: accept reque
sue requests, receive replies and send replies. Since the behaviour of objects sh
properly encapsulated, clients should only need to know about the first and the 
these, i.e. the requests accepted and the replies sent. If we can safely assume that 
that accepts requests promises to deliver replies according to service type specific
then the only additional thing a client needs to know about an object’s protocol is w
will accept requests. We therefore adopt an abstract view of an object’s protocol tha
considers requests received along its request channels, and ignores all other messages.
(Later, in section 4.7, we will model clients’ protocols by considering only request
sued.)

In this view we model an object as a transition system where each state of intere
resents a stable state of the object, in which it blocks for acceptance of some set o
quests. A transition takes places upon the receipt of some request and leads to a ne
state. If an object in state x can accept a request r leading to a new state x′, we would write:

x →r  x′
Note that we ignore all intervening communications leading to the new state. If 

communications are purely internal to the object, we can view it as a closed system
some of these communications are with external acquaintances, then an element 
determinism is introduced, since the transitions to new stable states may depend u
current state of the environment. In cases like this, we feel it is correct to view the ob
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protocol as inherently non-deterministic, since it would be unreasonable to expect c
to monitor the environment to know the state of an object’s protocol.

Clients are typically interested not just in issuing a single request, but in issuing 
of related requests. Suppose s is such a sequence r1,r2,... of requests. If an object in statex
can accept such a sequence, leading to state x′, then we write:

x ⇒s
x′

An important part of the protocol of an object is the set of sequences of requests
may accept. This is conventionally captured by the notion of set of traces [8] of a transition
system:

Defini t ion 1  traces(x) ≡ { s   ∃ x′, x ⇒s x′ }.
Suppose we wish to express that an object in state x is request substitutable for an object

in state y, which we will write x:<y. Then clearly we must have traces(y) ⊆  traces(x), for if
a client of y expects y to accept a sequence of requests s, and we substitute x for y, then x
must accept the same sequence s. x may accept additional sequences, but since the cl
does not expect* them, they are of no concern to us.

But the inclusion of traces is not enough to guarantee request substitutability, fo
pose that after a sequence of requests s, y will move to state y′, but x will move to either
state x′ or x′′ . Furthermore, suppose that state x′ is identical to y′ — i.e. behaviour from that
point on is identical — and x′ permits a request r to be accepted, but x′′  denies it. Then it is
possible that traces(y) ⊆  traces(x), but nevertheless the client may receive a nasty surp
if x is substituted for y and the request r is refused after the sequence s. Traces tell us what
sequences are acceptable, but they do not tell us if they are necessarily acceptable! For
this, we need the help of a finer notion of failures [8].

First, we need to define the initials of an object — the requests which are initially en
bled:

Defini t ion 2  init(x) ≡ { r   ∃ x′, x →r  x′ }.
Defini t ion 3  The set of failures of an object x is

failures(x) ≡ { (s,R)   ∃ x′, x ⇒s x′, R is finite, R ∩ init(x′) = ∅  }.

That is, (s,R) is a failure of x if x may simultaneously refuse all of the requests in the
R after accepting the sequence s. It may be the case that x will reach a state in which some
or all of the requests in R will be accepted, but we know that it is possible that they will all
be refused. (NB: It is also important that the state x′ be stable for the set R to be well-
defined, but we have already assumed that.)

Now, suppose that we want x:<y and we know that (s,R) is a failure of x. Furthermore,
suppose that s is a sequence of requests in traces(y). Then a client will be satisfied only if
it expected that (s,R) was also a failure of y. Note that if s is not a sequence in the protoco
of y, then the client is unconcerned whether (s,R) is a failure of x or not, since it is in any

* Although we have not yet formalized clients’ expectations, we are implicitly assuming here that c
are sequential, i.e. they only issue a single request at a time. Later, when we define request satisfiability, we 
will see how request substitutability relates to concurrent clients.
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case not expected to be handled. To express this notion of relative failures, we need the fol-
lowing definition:

Defini t ion 4  The set of relative failures of an object in state x with respect to an object
in state y is: failuresy(x) ≡ { (s,R) ∈  failures(x)  s ∈  traces(y)}.

Now we come to the definition of request substitutability:

Defini t ion 5  An object in state x is request substitutable for an object in state y, written
x:<y iff: (i) traces(y) ⊆  traces(x)

(ii) failuresy(x) ⊆  failures(y).

(This turns out to be identical to the extension relation introduced by Brinksma [7]. Se
also Cusack [13] for a discussion of various conformance relations, including exten
in the context of CSP [8].)

That is, a client expecting x to follow the protocol of y will expect that all sequences o
requests supported by y will also be accepted by x, and that any requests refused by x after
accepting one of those sequences might also have been refused by y. Note that x may (1)
accept additional sequences of requests that the client does not expect and theref
not use, and (2) may eliminate some non-determinism in y by providing fewer possible
transitions between states. On the other hand, x may introduce new transitions and stat
as long as they can be explained from the viewpoint of y. In general, either x or y may have
more or less states or transitions.

Note also that the set of failures of an object tells us all we need to know in order 
termine request substitutability, since the traces can be derived from the failures 
projections, and relative failures can be determined from the failures of one object a
traces of another.

Proposit ion 1  Request substitutability is a pre-order.

Proof  
(i) :< is reflexive: ∀ x, x:<x — immediate, since failuresx(x) = failures(x).
(ii) :< is transitive: Suppose x:<y and y:<z. Then traces(z) ⊆  traces(y) ⊆  traces(x).

Next, suppose (s,R) ∈  failuresz(x). Then s ∈ traces(z) ⊆  traces(y),
so (s,R) ∈ failuresy(x) ⊆  failures(y). But then (s,R) ∈ failuresz(y) ⊆  failures(z),
so we conclude x:<z. ❑

There exists a vast literature on process equivalences and pre-orders (see, for e
[1][14] for some interesting comparisons). Interestingly, the equivalence induces b
quest substitutability is the same as failures equivalence [7][8].

Defini t ion 6  Objects in states x and y are failures equivalent iff failures(x) =
failures(y). 

Proposit ion 2  x and y are failures equivalent iff x:<y and y:<x.

Proof  
⇒ ) failures(x) = failures(y) ⇒ traces(x) = traces(y)

⇒  failures(x) = failuresy(x) = failuresx(y) = failures(y) ⇒  x:<y and y:<x.
⇐ )  x:<y and y:<x ⇒  traces(x) = traces(y).
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Hence failuresy(x) = failures(x) ⊆  failures(y).
By symmetry, failures(x) = failures(y). ❑

Although failures equivalence is exactly request equivalence, the inclusion of fa
sets does not imply request substitutability, nor vice versa. It suffices to consider:

It is easy to see that x:<y (but not the reverse, since y does not permit a.b) and failures(y) ⊆
failures(x) (but not the reverse, since (a.b,{a,b}) is a failure of x but not of y). See also Brin-
skma [7] for a detailed discussion.

4.5 Viewing Objects as Regular Processes

We now have a plausible definition of protocol conformance in terms of request sub
ability — what we still need is a way to specify protocols, and a way to check that an o
conforms to a protocol, or that one protocol conforms to another. In the most genera
unfortunately, request substitutability will be undecidable since failures equivalen
undecidable in general [18]. (If request substitutability were decidable, we could u
decision procedure to check if two processes were failures equivalent according to 
sition 2.)

We therefore propose to specify protocols as regular processes, i.e. processes with a fi-
nite number of “states” or behaviours [6][11][15][23]. A regular process is essentially
nite state machine (hence the adjective “regular”), where transitions take place
communications with other processes. We will call the specification of such a proc
regular type, since we intend to use it to specify object protocols. It turns out that b
stricting ourselves to finite state protocols, request substitutability is decidable by a s
procedure.

Furthermore, although we cannot specify all protocols exactly with a finite numb
states, we can approximate infinite state protocols by non-deterministic regular process
These approximations can then be used in many cases to check request substituta

Let us consider a few canonical examples using various kinds of “container” ob
(bounded buffers, stacks, variables) each supporting (at least) put and get requests. We can
associate with these objects a number of abstract states, each corresponding to a s
rently enabled requests. Since we assume that the total set of possible services is
finite number of abstract states suffices to characterize all the possible combinations
abled requests (and normally only a few of these combinations should be needed)
the client’s point of view, transitions may take place when services are provided (sinc
is all the client may observe).

a b a

a

x = y =
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First, consider a one-slot bounded buffer.

It has two abstract states: one in which only a put is accepted, and one in which only a get
is allowed. Upon accepting a put or a get request, the object changes state. We express
by the protocol (regular type) Buf.

Now consider an uninitialized variable with the protocol Var.

Its protocol requires that a put must first be requested, but then put and get requests may be
interleaved arbitrarily. In this case, we see that Var:<Buf since a client that expects an obje
to obey the Buf protocol will never be “disappointed” if an object obeying Var is substitut-
ed. The reverse does not hold, because Buf will refuse the sequence put.get.get, whereas Var
will not.

In these two cases, the transitions are deterministic, since Buf and Var are really finite
state protocols.

Now consider a stack (with put and get instead of push and pop). Initially only a put is
possible. Then both put and get are enabled. Further put requests will not change this, bu
a get may bring us back to the initial state. The corresponding regular type is specifie
low as NDStack. 

It resembles Var except that after a get, we do not necessarily know what state we are
Clearly, such a description is an approximation because we are attempting to expr
service availability of a deterministic process (the object) by means of a non-determ
one (the regular type).

We can try to add another intermediate state, as in NDStack2:

but after two put requests and a get we again do not know what state we are in. In fact, 
would need an infinite number of states to describe completely the Stack protocol.

As we argued before, however, non-determinism is inherent in some protocols, be
objects are not, in general, closed systems. Furthermore, the non-deterministic r

put

get

Buf =

put

put, getVar =

put

put, get

get

NDStack =

put

get

put

get

NDStack2 =

put, get
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types are still useful to us. We can determine, for example, that an object conforming
NDStack regular type also conforms to Buf since NDStack:<Buf.

Choosing a simple and readable syntax for specifying regular types is somewhat p
lematic. For the purpose of this chapter we will opt for simplicity. We specify a reg
type by a pair, (x1,E) consisting of a finite system of equations E of the form:

E = { x=t, ...}
where x1 is a distinguished start state, and the t are regular type expressions of the form

t ::= r.x   t + t
r is a request name and x is a state name. Every x used in E must have exactly one definin
equation in E (except for nil, which stands for a dead state with no transitions). Reg
types have the following interpretation as transition systems:

1. init(nil) = ∅
2. r.nil →r  nil

3. x=t ∈  E ⇒  r.x →r  t

4. t1 →r1 t1′ ⇒ t1+t2 →r1 t1′
5. t2 →r2 t2′ ⇒ t1+t2 →r2 t2′
With this simple syntax, then, we could specify the various regular types we have

as follows:

Buf = (b1, { b1=put.b2, b2=get.b1 })
Var = (v1, { v1=put.v2, v2=put.v2+get.v2 })
NDStack = (s1, { s1=put.s2, s2=put.s2+get.s2+get.s1 })
NDStack2 = (s1, { s1=put.s2, s2=put.s3+get.s1,

s3=put.s3+get.s2+get.s3 })

At this point the reader may wonder why we cannot simply use regular expressi
specify regular types. The reason is that regular expressions stand for regular languages,
i.e. sets of strings, not regular processes. Regular expressions can consequently
about the traces of a transition system but not its failures. Consider, for example, th
ular types Var and NDStack. If we consider any state to be a valid final state, then they 
ognize exactly the same regular language, namely:

ε + put.(put+get)*
But this does not tell us that after accepting a put followed by a get, NDStack may refuse an-
other get, whereas Var never will. (A similar argument is elaborated in [16] to introduce 
difference between language and process equivalence.) For precisely the same re
is not generally possible to convert a non-deterministic regular process into a determ
tic one without losing information.

4.6 Subtyping Regular Types

We now propose to use request substitutability as a subtyping relationship over regular
types. We are justified in this since we have shown that request substitutability is 
order, so if Var:<NDStack and NDStack:<Buf, then we can conclude that Var:<Buf.
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The fact that regular types have finite states means that a simple algorithm exi
checking the subtype relationship (not surprisingly, the algorithm is similar to tha
checking equivalence of finite state automata [2]). To derive the algorithm, we must 
duce a multi-state variant of request substitutability. First let us extend init() and → to
work with sets of states:

Defini t ion 7  init(X) ≡ { r  ∃ x∈ X, x′, x →r  x′ }.

Defini t ion 8  X →r  X′ iff X′ = { x′  ∃ x∈ X, x →r  x′ }.
Note in particular that → for sets of states is a function, not just a relation. In effect, we

are turning a non-deterministic transition system into a deterministic one in the tradi
way by expanding single states into sets of reachable states [2].

Now let us consider the following definition:

Defini t ion 9  A set of object states X is multi-state request substitutable for a set of
states Y, written X:<<Y, iff:

(i) init(Y) ⊆  init(X)
(ii) ∀ x∈ X, ∃ y∈ Y, init(y) ⊆  init(x)

(iii) ∀ r∈ init(Y), if X →r  X′ and Y →r  Y′, then X′:<<Y′.
Condition (i) guarantees that all transitions possible from some state of Y are also pos-

sible from some state of X. Condition (ii) says that any failure possible in some state oX
can be explained by a failure of some corresponding state of Y (some y has the same or few-
er initial transitions possible). Condition (iii) is simply the recursive case.

Proposit ion 3  { x } :<< { y } ⇔ x:<y.

Proof  
⇒  ) Suppose that { x } :<< { y }, then traces(y) ⊆  traces(x) by 9(i) and 9(iii).

Next, suppose (s,R) ∈  failuresy(x). Then ∃ x′, x ⇒s x′, init(x′) ∩ R = ∅  and ∃ y′, y ⇒s y′,
init(y′) ⊆  init(x′) by 9.ii and 9.iii so (s,R) ∈  failures(y) and failuresy(x) ⊆ failures(y)
hence x:<y.
⇐  ) Similar argument in reverse. ❑

Note that this result is independent of whether we restrict our attention to finite
transition systems or not. If the sets of reachable states are finite, however, i.e. if x and y are
regular types, then proposition 3 provides us with a simple procedure to check wh
x:<y by simply generating all the sets of states reachable from {x} and {y} by transitions in
traces(y) and checking conditions 9(i) and 9(ii) for all the comparable sets. Since the
space is finite, the set of reachable state sets must also be finite, and so the com
must terminate in finite time.

The following iterative algorithm suggests itself: we maintain a LIST of compara
sets of states and possible transitions, of the form (X,Y,R), where X and Y are the sets of
states of x and y reachable from some common trace s of y, and R is the set of possible tran
sitions (requests) from Y that the algorithm must traverse. We follow each possible req
to new comparable state sets until we have exhausted all transitions and checked a
parable state sets, or until we fail to satisfy one of the conditions in definition 9.
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1. Verify that init(y) ⊆  init(x), else FAIL

2. Add ({x},{ y}, init(y)) to LIST

3. If possible, select some (X,Y,R) from LIST where R is not empty, else SUCCEED

4. Select some r in R and replace (X,Y,R) by (X,Y,R\{r}) in LIST

5. Compute X′ and Y′, where X →r  X′ and Y →r  Y′
6. If (X′,Y′,R′) for some R′ is already in LIST, then go to step 3, else continue

7. If init(Y′) ⊆  init(X′), then continue, else FAIL

8. If for each xi ∈  X′ there exists some yj ∈  Y′ such that
init(yj) ⊆  init(xi), then continue, else FAIL

9. Add (X′,Y′,init(Y′)) to LIST and go to step 3.

Note that steps 2 and 7 guarantee that X′ generated in step 5 will never be empty.
Since there is a finite number of reachable sets X and Y to compare, the algorithm clearly

terminates. In the worst case, there will be (2n–1)×(2m–1) comparisons (i.e. the size o
LIST), where n and m are the number of states reachable from x and y respectively, but nor-
mally there will be far fewer, since not all subsets of states will be generated, and 
possible combinations will need to be compared. In the special case that one compa
deterministic regular types, the maximum number of comparisons is just n×m, but may be
even as little as m (in case of success, that is).

Let us briefly look at an example that compares Buf to the regular type of a stack tha
supports an additional swap operation:

NewNDStack = (s1, { s1=put.s2,
s2=put.s2+get.s2+get.s1+swap.s2 })

We wish to check whether NewNDStack:<Buf. We start with: ({s1},{b1},{put}). Both s1 and
b1 permit a put, and they have the same requests enabled, so we can add this to our

({s1},{b1},{put})

The only possible transition is put, so we remove it from LIST and generat
({s2},{b2},{get}). s2 enables at least the requests that b2 enables, so we add this to our list:

({s1},{b1},{put})
({s2},{b2},{get})

Now only a get is possible, so we generate: ({s1,s2},{b1},{put}). We verify that s1 and s2 each
enable at least the requests of b1 and add this to our list:

({s1},{b1},{put})
({s2},{b2},{get})
({s1,s2},{b1},{put})

put put, get, swap

get

s1 s2
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Now we can perform a put, but this just generates ({s2},{b2},{get}), which is already repre-
sented in the list. There is nothing left to check, so we SUCCEED. (In the reverse dir
we would quickly FAIL in step 7 after a single put because b2 enables neither put nor swap.)
Note that the total number of comparisons (3) is far less than the worst case possib

Note that NewNDStack is request substitutable for Buf even though it is, in a sense, less
deterministic than Buf. The key point is that it is safe to use wherever we are expectingBuf-
like behaviour.

Figure 4.2 shows the subtype relationships between a few of the regular types w
seen. Curiously, NDStack and NDStack2 are not related (to see why, consider the seque
put.get.get, which is in traces(NDStack) but not in traces(NDStack2), and the failure
(put.put.get,{get}), which is in failures(NDStack), but not in failures(NDStack2)).

4.7 Request Satisfiability

Up to now our discussion has focused on the protocols of service providers. Reque
stitutability tells us when an object obeying some protocol can be safely substitut
some second object, assuming that the first object satisfies the client’s expectatio
we have not yet formalized what it means to satisfy a client. It turns out that we need
fine a new relation, called request satisfiability, which expresses this idea.

Figure 4.2   Some subtype relationships between regular types.

put

get

Buf =

put

put, getVar =
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put
put, get,swap
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If the protocol of a service provider expresses when its services are available, th
protocol of its client expresses when those services are requested. We propose tha
is satisfied if its requests are always honoured. Up to now we have implicitly assumed
clients issue at most one request at a time. In general, however, a client may issue m
requests simultaneously (particularly if the “client” is actually an environment consi
of multiple concurrent clients) — in such cases, we do not ask that all of the reque
honoured together, just that the client be guaranteed to make progress, i.e. at leas
quest must always be accepted. Since the current state of the client may not necess
deterministic, the object must be prepared for the client to be in any one of its reac
states. The object is allowed to terminate (i.e. refuse all further requests) only if it c
sure that the client will issue no more requests. In short, we must ensure that an obj
only fail if the client makes no more offers.

We can formalize this as follows:

Defini t ion 10  The set of offers of a transition system c is:

offers(c)  ≡ { (s,R)   ∃ c′, c ⇒s c′, R = init (c′) }.
So, if (s,R) is an offer of c, then we know that c may issue the sequence of requests s and
then may issue the set of requests R. It is also possible that c may issue some other set o
requests R′, if (s,R′) is also an offer of c.

Defini t ion 11  An object x is request satisfiable for a client c, written x  c, iff:
(s,R) ∈  failures(x)∩offers(c) ⇒  R = ∅

If both client and server protocols are specified as regular types, then request satisfi
can be determined by an algorithm along the lines of the one we demonstrated for 
ing request substitutability.

4.7.1 Sequential Clients

How does request substitutability relate to request satisfiability? Clearly, we would e
that if x:<y and y  c, then x  c. It turns out that if c is sequential, then this is in fact the cas

Defini t ion 12  A client c is sequential if (s,R)∈ offers(c) ⇒  |R| ≤ 1.
Lemma 4  If c is sequential, then y  c⇒  traces(c) ⊆  traces(y).

Proof  By induction on the length of traces of c. ❑

Proposit ion 5  If c is sequential, then x:<y and y  c ⇒ x  c.

Proof  (s,R) ∈  failures(x)∩offers(c) ⇒ s ∈ traces(c) ⊆  traces(y)
⇒ (s,R) ∈ failuresy(x) ⊆  failures(y) ⇒  R = ∅ . ❑

We are taking advantage of the fact that c is sequential to conclude that y completely sat-
isfies the expectations of c. (Note that it also suffices to require that traces(c) ⊆  traces(y)
for the same result to go through.) But if there are different ways of satisfying a client
ticularly a concurrent one), then it is no longer true that the client will necessarily b
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isfied by a request substitutable service provider. Some additional preconditions m
imposed.

4.7.2 Concurrent Clients

Let us consider a simple example of a concurrent client consisting of a producer and
sumer connected by a bounded buffer. The producer and the consumer each have th
view of the buffer, but we are interested in the requirements posed by their conc
composition.

Presently we might separately specify expectations of the producer and consum
spectively as:

We might write their concurrent composition as Prod&Cons, where:

c1 →r  c1′ ⇒  c1&c2 →r  c1′&c2

and

c2 →r  c2′ ⇒  c1&c2 →r  c1&c2′
So we can conclude:

Note that Prod&Cons is not sequential according to definition 12.
It is easy to check that Buf  Prod&Cons, since Buf never refuses both put and get. But

what is the role of request substitutability now? Since we know that Var:<Buf can we
necessarily conclude also that Var  Prod&Cons? Unfortunately this is not quite right. Th
reason is that a regular subtype may introduce additional behaviour that can pertu
client’s expectations. Consider, for example, a deletable buffer:

It is clear that DelBuf:<Buf. But suppose that we now compose the producer and cons
er with a malevolent object whose only goal is to try to delete the buffer:

Now Buf  Prod&Cons&Del but it is not the case that DelBuf  Prod&Cons&Del. In the first
case only Del will be starved out because Buf provides no delete operation, but the client
whole will still be satisfied since Prod&Cons continues to make progress.

putProd = getCons =

put, getProd&Cons =

put

get

DelBuf =
del

Del =
del
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In the second case, however, the delete operation may succeed, then causing th
as a whole to deadlock, and thus remain unsatisfied.

What we need to do in order to be sure that DelBuf can be safely substituted for Buf is to
restrict its behaviour to that allowed by Buf:

Defini t ion 13  x/Y →r  x′/Y′ iff x →r  x′ and Y →r  Y′.
What we mean to capture by x/Y is that some object in state x is restricted to accept only
the requests allowed by a second object whose state is some y∈ Y. We do not know precise-
ly which state the second object is in, so we keep track of the set of possible states

Usually the initial state of the second object is known, so we will simply write x/y in-
stead of x/{y}.

Proposit ion 6  x:<y ⇒  x/y :< y.

Proof  
(i) traces(x/y) = traces(x) ∩ traces(y). But x:<y ⇒  traces(y) ⊆  traces(x),

so traces(x/y) = traces(y).

(ii) (s,R) ∈  failures(x/y) ⇒  ∃ x′, x ⇒s x′, { y } ⇒s Y′, such that R ∩ init(x′) ∩ init(Y′) = ∅
⇒ R ∩ init(x′) ∩ ∪ { init(y′)   y′∈ Y′} = ∪ { R ∩ init(x′) ∩ init(y′)   y′∈ Y′} = ∅.
But x:<y ⇒ { x } :<< { y } ⇒  ∃ y′ ∈ Y′, init(y′) ⊆  init(x′)
⇒ ∃ y′ ∈ Y′, R ∩ init(y′) = ∅ ⇒ (s,R) ∈ failures(y) ⇒  failures(x/y) ⊆  failures(y).
But failuresy(x/y) = failures(x/y), so x/y :< y. ❑

Finally, the result we want:

Proposit ion 7  x:<y and y  c⇒ x/y  c.

Proof  x:<y ⇒  x/y :< y (by proposition 6), so failures(x/y) ⊆  failures(y).
Now (s,R) ∈  failures(x/y) ∩ offers(c) ⇒ (s,R) ∈ failures(y) ∩ offers(c) ⇒ R = ∅ .
Hence x/y  c. ❑

So, for example, we can conclude that:

DelBuf/Buf  Prod&Cons&Del

since we effectively hide the additional behaviour introduced by DelBuf from the client.
This is not as strong a result as we might have hoped for, but it is a natural conse

of the fact that multiple concurrent clients may interfere with one another if their exp
tions are not consistent. This is essentially the observation of Liskov and Wing [22
propose a new definition of subtyping that requires view consistency. Briefly, the id
that a type that extends the behaviour of another type may only be considered a sub
the second if the additional behaviour can always be explained in terms of behavio
was already there in the supertype.

In some cases we may get this consistency for free. Note, for example, that if th
type’s behaviour is properly included in the supertype’s, in the sense that failures(x) = fail-
ures(x/y), then the subtype will be request substitutable for the supertype. We must b
though, that the subtype behaviour is consistent with the restriction imposed by the 
type. This leads to the following result:
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Proposit ion 8  If  traces(x) = traces(y) and
failures(x) ⊆ failures(y), then y  c ⇒ x  c.

Proof  Follows from proposition 7 since
failures(x) = failures(x/y). ❑

It may still be the case that a subtype provides additional behaviour that does not perturb
the client. But to be sure that the subtype is truly substitutable, it is necessary to know
about the client’s expectations. We have previously explored interaction equivalence with
respect to the expectations of particular sets of observers, and found that equivalen
respect to all possible observers (also) reduces to failures equivalence [27]. We exp
relativizing request substitutability with respect to the expectations of specific class
clients will lead to more general and more useful results for the case of multiple conc
clients.

4.8 Open Problems

We have proposed service types as a means of characterizing the services an obj
vides, and regular types as a means to express non-uniform service availability. I
cases we have presented an approach to subtyping. Furthermore, we have formaliz
it means to satisfy a client’s expectations, and we have shown the role that subtyping
in determining substitutability.

Although regular types appear to be a novel and promising approach for reas
about some of the dynamic (type) properties of concurrent object-oriented prog
there remains much to be studied before we can claim to have a pragmatically acce
approach for type-checking object-oriented languages. Let us briefly summarize so
these considerations.

4.8.1 Regular Service Types

So far we have treated the typing of services and their availability as orthogonal is
Service types express types of requests and replies, and regular types tell us when r
are enabled. There is nothing to prevent us from proposing a syntax for regular s
types that simply expands request names in regular types to the complete servic
specification corresponding to that request. For example, an integer variable could
signed the regular service type:

IntVar = (v1, { v1 = put(Int)→Ok.v2,
v2 = put(Int)→Ok.v2 + get→Int.v2 })

Since this is somewhat verbose (the type of the put service must be given twice), i
seems more desirable to keep the type specifications of services and their protoco
rate.
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It is conceivable, however, that the type of a service may itself change with time. I
ticular, the result types associated with certain requests may depend on the argume
of earlier requests (as is the case with all of the container objects we have seen). To
this case, it would seem necessary to introduce term variables into regular types to e
the dependencies between services in the protocol (i.e. à la “dependent types” [32
not clear, however, what effect this would have on the determination of request sub
ability.

It may also be interesting to consider bounded polymorphism in our framework, 
the integration of intersection types and bounded polymorphism has been previousl
ied [31], but only in a functional setting. Finally, we have not considered the issue 
cursively defined types, in which the regular type of an object may contain services w
argument and return types refer to the object’s own type. Previous work on “F-bou
quantification [9] addresses subtyping for such types [3], and is likely to be relevant 
framework.

4.8.2 Applying Regular Types to Object-Oriented Languages

We have presented our type model without giving any concrete interpretation for t
The objects to which we wish to assign types have been described only informa
means of a very general model of objects as transition systems. The next step wou
provide a concrete syntax for objects, either in terms of a programming languag
process calculus that can model objects in a straightforward way.

We have been working towards an object calculus that incorporates those features 
process calculi that are most needed for expressing the semantics of concurrent 
oriented languages [28]. We intend to use the object calculus as an (executable) a
machine for a pattern language for (typed) active objects [29], and assign regular types t
the expressions of this language.

Since the type expressions we are dealing with can become rather unwieldy, it is
cially important that we be able to do as much type inference as possible. In languages tha
directly represent abstract states of objects (such as ACT++ [20]) this job will be e
The main difficulty will be in determining what transitions between the abstract state
possible.

We have already pointed out that objects may satisfy many different regular types
since regular types are only approximations, in some cases they may be refined ad nause-
am. In order to assign regular types automatically to objects, it is necessary to ge
some type assignment which is perhaps not the finest possible but which assigns 
one abstract state to every reachable subset of available services. (Recall that our ND-
Stack was such a minimal representation, whereas NDStack2 had two distinct states with
the same services available.)

Another consideration, however, is whether a deterministic regular type can b
signed to an object. If such a type specification exists (e.g. Var and Buf), then this is in any
case to be preferred to a non-deterministic regular type that may have less state



Concluding Remarks 119

aved
 single-

e 
s-

defined
cial
types,
ed as

 prac-
ts that
ts.

oncur-
ch as

epts

t deal of
ies of
eneral
oning

ntually
pport,
orpo-
an we
e

n we
ting,

omas,
e orig-
types not only completely describe service availability for an object, but are well-beh
during type-checking since the sets of reachable nodes for a given trace are always
tons. (So LIST stays small.)

4.9 Concluding Remarks

We have proposed a type framework for object-oriented languages that expresses thserv-
ices of an object as an intersection of service types characterizing request and reply me
sages, and non-uniform service availability in terms of regular types over a finite number
of abstract states associated with subsets of services. Subtyping of regular types is 
by introducing request substitutability, a novel pre-order over processes that has spe
interest for object-oriented applications. Subtyping is easy to determine for regular 
and a simple algorithm is presented. Satisfaction of client’s expectations is formaliz
request satisfiability, and we show how request substitutability relates to it.

A number of technical issues must first be resolved before the framework can be
tically applied to real object-oriented languages. In particular, we seek some resul
will simplify reasoning about substitutability with respect to multiple concurrent clien

We expect that it will be easier to reason about regular types in the presence of c
rency if we interpret them either using a temporal logic or a modal process logic (su
Hennessy–Milner logic with recursion [21]). A logical characterization of the conc
we have presented will be the topic of further research.

Despite a number of open research problems, the approach seems to hold a grea
promise, since numerous tools and algorithms exist not only for analysing propert
finite state processes [11][15][23] but also for reasoning about processes in g
[12][19]. This suggests that regular types may be more generally useful for reas
about temporal properties of concurrent objects.

We have concentrated on client–server-based protocols in which requests eve
entail replies. Can we accommodate other kinds of communication protocols (to su
for example, transactions)? If so, must we modify our model of regular types to inc
rate bidirectional communications (instead of just enabling of request channels)? C
easily accommodate exceptions in our framework by, for example, allowing replies to b
union types?

Finally, our approach considers only objects with fixed sets of known services. Ca
accommodate reflective objects that acquire new services with time? In such a set
would we have to consider not only services, but also types as first-class values?
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