Chapter 4

Regular Types for
Active Objects’

Oscar Nierstrasz

Abstract  Previous work on type-theoretic foundations for object-oriented
programming languages has mostly focused on applying or extending
functional type theory to functional "objects.” This approach, while benefiting
from a vast body of existing literature, has the disadvantage of dealing with
state change either in a roundabout way or not at all, and completely side-
stepping issues of concurrency. In particular, dynamic issues of non-uniform
service availability and conformance to protocols are not addressed by
functional types. We propose a new type framework that characterizes objects
as regular (finite state) processes that provide guarantees of service along
public channels. We also propose a new notion of subtyping for active objects,
based on Brinksma’s notion of exfension, that extends Wegner and Zdonik’s
“principle of substitutability” to non-uniform service availability. Finally, we
formalize what it means to “satisfy a client’s expectations,” and we show how
regular types can be used to tell when sequential or concurrent clients are
satisfied.

4.1 Infroduction

Much of the work on developing type-theoretic foundations for object-oriented program-
ming languages has its roots in typed lambda calculus. In such approaches, an object is
viewed as a record of functions together with a hidden representation type [10]. While this
view has the advantage of benefiting from a well-developed body of literature that has a
great deal to say of relevance to OOP about polymorphism and subtyping — see, for ex-
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ample, chapter 6 of this book — the fact that objects in real object-oriented languages
change state is typically dealt with in an indirect way.

The mismatch is even more acute in concurrent object-oriented languages. In such lan-
guages, “active objects” may have their own thread of control and may delay the servicing
of certain requests according to synchronization constraints [20]. Such objects may fur-
thermore require a particular protocol to be obeyed (such as an initialization protocol) for
them to behave properly. Chapter 2 of this book presents a survey of such languages and a
thorough discussion of issues. See also chapter 12 for an example of an object-oriented
framework in which “gluons” encapsulate protocols to facilitate dynamic interconnection
of components. Existing notions of object types coming from a functional setting do not
address the issues of non-uniform service availability or conformance to a service proto-
col. (Although these issues are also relevant for passive objects and sequential OOPLs, we
draw our main motivation from object-based concurrency, and so we will refer in a general
way to “active” objects.)

We argue that, in order to address these issues, it is essential to start by viewing an object
as gorocessnot a function. (See [26] for other reasons.) By “process” we mean an abstract
machine that communicates by passing messages along named channels, as in Milner’s
CCS [24] or the polyadit-calculus [25]. Processes naturally model objects since they
represent pure behaviour (i.e. by message passing). Behaviour and “state” are indistin-
guishable in such an approach, since the current state of a process is just its current behav-
iour. Unfortunately there has been considerably less research done on type models for
processes than for functions, and the work that has been done focuses primarily on typing
channelsnot processes (see, for example [25] [33]).

Although processes in general may exhibit arbitrary behaviour, we can (normally) ex-
pect objects to conform to fairly regular patterns of behaviour. In fact, we propose on the
one hand to characterize #ervice typeassociated with an object in terms of types of re-
guest and reply messages, and on the other hand to characteanzailtizlity of these
services byegular typeghat express the abstract states in which services are available
and when transitions between abstract states may take place. Services represent contracts
or “promises” over the message-passing behaviour of the object: in a given state the object
will accept certain types of requests over its public channels, and promises to (eventually)
send a reply along a private channel (supplied as part of the request message). When pro-
viding a particular service, an object may (non-deterministically) change its abstract state
to alter the availability of selected services.

Subtyping in our framework is based on a generalization of Wegner and Zdonik’s “prin-
ciple of substitutability” [34]: services may be refined as long as the original promises are
still upheld (by means of a novel application of intersection types [5] [31]), and regular
types may be refined according to a subtype relation — based on Brinkgteasione-
lation for LOTOS processes [7] — that we call “request substitutability.”

In section 4.2 we shall briefly review what we mean by “type” and “subtype,” and how
we may understand the notiorsobstitutabilityin the context of active objects. In section
4.3 we introducservice typeas a means to characterize the types of request messages un-
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derstood by an object and their associated replies, and we shointarsectionover
service types provides us with a means to refine these specifications.

In section 4.4 we defimequest substitutabilitjor transition systems and we demon-
strate its relationship to failures equivalence. In section 4.5 we introetpudar typesas
a means to specify the protocols of active objects. In section 4.6 we propose to use request
substitutability as a subtype relationship for regular types, and we demonstrate a simple
algorithm for checking that one regular type is request substitutable for another. Next, we
formalize a client’'s expectations in termseduest satisfiabilityand we show how regu-
lar types relate to this notion.

In section 4.8 we summarize a number of open issues to be resolved on the way to prac-
tically applying our type framework to real object-oriented languages. We conclude with
some remarks on unexplored directions.

4.2 Types, Substitutability and Active Objects

Before we embark on a discussion of what types should do for active objects, we should
be careful to state as precisely as possible (albeit informally) what we believe types are
and what they are for. Historically, types have meant many things from templates for data
structures and interface descriptions, to algebraic theories and retracts over Scott's seman-
tic domains. We are interested in viewing typepaxtial specifications of behavioaf
values in some domain of discourse. Furthermore, types should express things about these
values that tell us how we may use them safely. Naturally, we would also like these speci-
fications to (normally) be statically checkable.

Subtyping is a particular kind of type refinement. irherpretationof a type for some
value space determines which values satisfy the type. A subtype, then, is simply a stronger
specification and guarantees that the set of values satisfying the subtyqpdsenf
those that satisfy the supertyper i§ a type (expression) aktlis some universal value
space of interest, then we shall wifeto mearx satisfieg, and[[ T] to mean{x Ox:T}
(i.e. whereJ is understood). Another tyjgas a subtype of, writtens<T, if xS x:T, i.e.
(s TI.

But specifically whakindsof properties should types specify? It is worthwhile to recall
Wegner and Zdonik’s principle of substitutability:

An instance of a subtype can always be used in any context in which an instance of a
supertype was expected. [34]

It is important to recognize that “can be used” impdiely “safely,” and nothing more.
It does not imply, for instance, that an application in which a type has been replaced by
some subtype will exhibit the same behaviour. We are not concerned with full behavioural
compatibility, but only with safe usage.

What does type safety mean in an object-oriented setting? First of all, that objects
should only be sent messages that they “understand.” We must therefore be able to specify
the types of request and reply messages exchanged by objects. If we think of objects as
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Figure 4.1 Non-uniform service availability.

“servers,” then the services they provide are promises that they understand certain types
of requests, and that, in response to a particular request, they will eventually send a certain
type of reply. Subtyping of services can then be defined in a fairly conventional way, in that

a subtype at least guarantees the promises of the supertype: at least the same requests are
understood (possibly more) and consequent replies to those requests are guaranteed to be
of the right type.

Services may not always be available, however. If requests must be sent in a certain or-
der, or if certain services may be temporarily unavailable, then, we argue, the object’s type
should describe this. Type safety, in this case, means that clients (or, more generally, envi-
ronments) that interact with such objects do not deadlock because of protocol errors. Type
substitutability is correspondingly defined so that sequences of interactions that are valid
for a supertype are also valid for a subtype. A client will never be unexpectedly starved of
service because a subtype instance has been substituted.

In order to explain our type approach, we will adopt an object model that views objects
as certain kinds of communicating processes [4][8][17][24]. (Although we could formal-
ize our model in process-theoretic terms, as in, for example, [30], for the purposes of this
presentation we will attempt to be rigorous and precise without being excessively formal.)

Figure 4.1 depicts an object’s behaviour in an idealized fashion. The large circles rep-
resent the object in its various states and the small circles represent its communication
channels, white for input and black for output. The input channels on the left side are for
receiving requests. Note that the set of “enabled” input requests changes over time.

In our object model, every object receives requests along uniquely identified channels,
one per request name. Each request consists of a message containing a number of argu-
ments and a unique reply address (also a channel name). The arguments must be of the cor-
rect type. (We will not be concerned with what kinds of values may be passed, but the
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reader may assume that any reasonable value — objects, object identifiers, channel
names, etc. — is fair game.)

An object, then, accepts requests addressed to it through its (public) request channels,
and it may issue requests to other objects it is acquainted witheuiaequest channels.
Allreplies, however, are communicated alpnigatechannels that are temporarily estab-
lished by clients of requests. When an object accepts a request, it imglieithnteeso
(eventually) send a reply (of the correct type) to the client. This reply may be delivered by
a third party to which the reply address has been forwarded. Furthermore, the object may
vary the requests accepted over time by selectively listening only to certain request chan-
nels. When an object is ready to accept a message addressed to one of its request channels,
we say that the requesEBsabled and that the corresponding servicavailable We as-
sume that the complete set of public request channels is finite and fixed in advance for any
object.

We will now separately discuss the issues of specifying types of services associated
with an object (section 4.3), and specifying when those services are available (section
4.4).

4.3 Intersecting Service Types

We will start by introducing the following syntax for service types:
S:=all Onone OM(V)-VOS'S
V::=all Onone O(V,..) O...

whereM is a request name a¥ids a value type (i.e. types for argument and return values).
“ - ” binds more tightly than®”. We assume thatincludes some base types, the typles
andnone, and tuples over value types.

We will write x : m(A) - R to mean that objegtmay receive a valueof typeA together
with a reply address along a request chaxpeind will consequently promise to return a
valuer of typeR. We may also write.m(a) : R to say thak understands the message)
and returns a value of type We call the type expressiafiA) - R aserviceof x, and we
say that offersthis service. Note that this does not imply anything about other services
thatx may or may not offer.

We may refine these expressions byititersectionoperator for types. Intersection
types have been studied extensively in functional settings (see [31] for a bibliography).
Here we propose to assign an interpretation to them for objects in a process setting. If we
write x:S11S2, we wish that to mean precisely that1 andx:S2. In set-theoretic terms,
then:

[s1rs2] = [s1] n [S2]

As specifications, we mean that bethands2 are true statements abaufs we shall
see, this device allows us not only to attribute sets of services to objects, but also permits
us to refine their types in interesting ways.
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The expressionsl andnone represent, respectively, the set of all objects and the empty
set. That isall tells us nothing about the services of an objectpamgddemands so much
that no object can possibly satisfy il Gndnone are the “top” and “bottom” of our type
hierarchy.)

Let us now briefly look at the subtyping properties of service types. Some facts are
clear:

1. T<all(i.e. for any value or service typg
2. none<T
3. m(none) - T =all (since no such request can ever be received)
4. R1<R2[ m(A)-R1<m(A)-R2
5. A2<A1[0] m(Al)-»R <m(A2) R (i.e. a contravariant rule)
Now, considering intersections, the following are straightforward:
6. S17S2<S1andsirs2 <S2
7. S<siands<s2[] S<S17s2
8. s1<s2 0 (S1782) = s1 (follows from (6) and (7))
Now consider:
9. m(Al) > R1"m(A2) - R2 < m(A1"A2) - (R1"R2)
Normally we may expect to write type expressions like:
put(all) — (Ok) " get() — (all)
but nothing prevents us from writing:
inc(Int) - Int ~ inc(Real) — Real
or even:
update(Point) — Point ~ update(Colour) — Colour

If an incoming message satisfies more than one request type in the intersection, then the
result must satisfgachof the result types. Our (informal) semantics of intersection types
requires thaall applicable service guarantees must hold. In this case, if:

cp:ColouredPoint,

whereColouredPoint = Point*Colour
thenx.update(cp):Point and x.update(cp):Colour. The result, therefore, must have tyjg
ouredPoint.

Notice that as a corollary of (9), via (6) , (4) and (7), we also have:

10.m(A) - (R1"R2) = m(A) - R1 A m(A) - R2
This also means, however, that we must take care not to intersect services with abandon.
For example, suppos@ andReal are disjoint types. Then:

size(Point) — Int * size(Colour) — Real
< size(ColouredPoint) — (Int*Real)
= size(ColouredPoint) — none
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Since the twaize services have contradictory result types, their intersection yields the re-
sult typenone.

As a final remark, notice that type-safe covariance is naturally expressed:
update(Point) — Point * update(ColouredPoint) — ColouredPoint

is a subtype of bottpdate(Point) — Point andupdate(ColouredPoint) - ColouredPoint. A cli-
ent supplying an instance@dlouredPoint as an argument can be sure of getting@ured-
Point back as a result, whereas clients that supgpiy arguments will only be able to infer
that the result is of the more general tppet.

4.4 Request Substitutability

Service types tell us what types of requests are understood by an object and what types of
reply values it promises to return, but they do not teNlusnthose services are available.

In particular, we are interested in specifying when an object’'s request channels are
enabled. The sequences of requests that an object is capable of servicing constitute the
object’sprotocol An object thatonformsto the protocol of another object is safely sub-
stitutable for that second object, in the sense that clients expecting that protocol to be sup-
ported will receive no “unpleasant surprises.”

Before tackling the issue of how to specify protocols, let us first try to formalize the ap-
propriate substitutability relation.

According to our abstract object model, objects can do four things: accept requests, is-
sue requests, receive replies and send replies. Since the behaviour of objects should be
properly encapsulated, clients should only need to know about the first and the last of
these, i.e. the requests accepted and the replies sent. If we can safely assume that an object
that accepts requests promises to deliver replies according to service type specifications,
then the only additional thing a client needs to know about an object’s protocol is when it
will accept requests. We therefore adopt an abstract view of an object’s protocol that only
considergequestgeceived along its request channels, igmdres all other messages
(Later, in section 4.7, we will model clients’ protocols by considering only requests is-
sued.)

In this view we model an object as a transition system where each state of interest rep-
resents atablestate of the object, in which it blocks for acceptance of some set of re-
guests. A transition takes places upon the receipt of some request and leads to a new stable
state. If an object in statecan accept a requeseading to a new statg we would write:

x5 X
Note that we ignore all intervening communications leading to the new state. If these
communications are purely internal to the object, we can view it as a closed system, but if
some of these communications are with external acquaintances, then an element of non-

determinism is introduced, since the transitions to new stable states may depend upon the
current state of the environment. In cases like this, we feel it is correct to view the object’s
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protocol as inherently non-deterministic, since it would be unreasonable to expect clients
to monitor the environment to know the state of an object’s protocol.

Clients are typically interested not just in issuing a single request, but in issuing series
of related requests. Suppass such a sequencer2,... of requests. If an object in state
can accept such a sequence, leading tost#ten we write:

x [ %

An important part of the protocol of an object is the set of sequences of requests that it
may accept. This is conventionally captured by the notion of sebefy 8] of a transition
system:

Definition 1 tracegx)={s0O,x I x'}.

Suppose we wish to express that an object inssistequest substitutabler an object
in statey, which we will writex:<y. Then clearly we must hatacegy) [] tracegx), for if
a client ofy expects to accept a sequence of requestind we substitutefor y, thenx
must accept the same sequesnicemay accept additional sequences, but since the client
does not expecthem, they are of no concern to us.

But the inclusion of traces is not enough to guarantee request substitutability, for sup-
pose that after a sequence of requestsvill move to statg’, butx will move to either
statex' orx". Furthermore, suppose that stais identical to/ — i.e. behaviour from that
point on is identical — and permits a requesto be accepted, bxit denies it. Then itis
possible thatracegy) [ tracegx), but nevertheless the client may receive a nasty surprise
if x is substituted foy and the requests refused after the sequencdraces tell us what
sequences are acceptable, but they do not tell us if theyxeeessarilyacceptable! For
this, we need the help of a finer notiorfafures|8].

First, we need to define tirgtials of an object — the requests which are initially ena-
bled:

Definition 2 init(x)={rO00' x &L x}.
Definition 3 The set ofailuresof an object x is
failurex) ={ (s,R) 0K, x 3 x,Ris finite R n init(x') =0 }.

That is,(s,R) is a failure ok if x may simultaneously refuse all of the requests in the set
R after accepting the sequencét may be the case thavill reach a state in which some
or all of the requests mwill be accepted, but we know that ipsssiblethat they will all
be refused. (NB: It is also important that the sktatee stable for the s& to be well-
defined, but we have already assumed that.)

Now, suppose that we wanky and we know thag,R) is a failure ok. Furthermore,
suppose thatis a sequence of requestsracegy). Then a client will be satisfiemhly if

it expected thak,R) was also a failure gf Note that is isnota sequence in the protocol
of y, then the client is unconcerned whetfgr) is a failure ofk or not, since it is in any

* Although we have not yet formalized clients’ expectations, we are implicitly assuming here that clients
aresequentigli.e. they only issue a single request at a time. Later, when we ifirest satisfiabilitywe
will see how request substitutability relates to concurrent clients.
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case not expected to be handled. To express this notelatbfe failureswe need the fol-

lowing definition:

Definition 4 The set ofelative failuresof an object in statewith respect to an object
in statey is: failures,(x) ={ (s,R) U failureg(x) [s [ tracegy)}.

Now we come to the definition of request substitutability:

Definition 5 Anobjectin stateisrequest substitutabfer an object in statg written
x:<y iff: (i) tracegy) [tracegx)
(i) failures/(x) U failureg(y).

(This turns out to be identical to tb&tensiorrelation introduced by Brinksma [7]. See
also Cusack [13] for a discussion of various conformance relations, including extension,
in the context of CSP [8].)

That s, a client expectingto follow the protocol of will expect that all sequences of
requests supported pyvill also be accepted by and that any requests refused layjter
accepting one of those sequences might also have been refysétbtg/thak may (1)
accept additional sequences of requests that the client does not expect and therefore will
not use, and (2) may eliminate some non-determinisyrbinprovidingfewerpossible
transitions between states. On the other han@y introduce new transitions and states
as long as they can be explained from the viewpomtinfgeneral, eitherory may have
more or less states or transitions.

Note also that the set of failures of an object tells us all we need to know in order to de-
termine request substitutability, since the traces can be derived from the failures set by
projections, and relative failures can be determined from the failures of one object and the
traces of another.

Proposition 1 Request substitutability is a pre-order.
Proof
(1) :<is reflexive Ux, x:<x — immediate, sinctilures(x) =failuregx).
(i) :< is transitive Suppose:<y andy:<z. Thentracegz) [1 tracegy) [ tracegx).
Next, supposes,R) U failures,(x). Thens Utracegz) [ tracegy),
so(s,R) U failures (x) U failures(y). But then(s,R) U failures,(y) U failureg(z),
so we conclude<z.0
There exists a vast literature on process equivalences and pre-orders (see, for example,

[1][14] for some interesting comparisons). Interestingly, the equivalence induces by re-
quest substitutability is the same as failures equivalence [7][8].

Definition 6 Objects in stateg andy arefailures equivalentff failureqx) =
failuregy).
Proposition 2 xandy are failures equivalent i<y andy:<x.
Proof
[0) failureqx) =failureqy) O tracegx) =tracegy)
[ failures(x) =failures (x) = failures,(y) =failurey) Ul x:<y andy:<x.
0) x=<yandy:<x [ tracegx) =tracegy).
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Hencefailures (x) =failureg(x) [ failuresy).
By symmetryfailureqx) =failureqly). o

Although failures equivalence is exactly request equivalence, the inclusion of failures
sets does not imply request substitutability, nor vice versa. It suffices to consider:

a b a
a

It is easy to see thaky (but not the reverse, singeloes not permé.b) andfailureg(y) U
failureqx) (but not the reverse, singeb,{a,b}) is a failure ok but not ofy). See also Brin-
skma [7] for a detailed discussion.

4.5 Viewing Objects as Regular Processes

We now have a plausible definition of protocol conformance in terms of request substitut-
ability — what we still need is a way to specify protocols, and a way to check that an object
conforms to a protocol, or that one protocol conforms to another. In the most general case,
unfortunately, request substitutability will be undecidable since failures equivalence is
undecidable in general [18]. (If request substitutability were decidable, we could use its
decision procedure to check if two processes were failures equivalent according to propo-
sition 2.)

We therefore propose to specify protocolsegsilar processes.e. processes with a fi-
nite number of “states” or behaviours [6][11][15][23]. A regular process is essentially a fi-
nite state machine (hence the adjective “regular”), where transitions take place upon
communications with other processes. We will call the specification of such a process a
regular type since we intend to use it to specify object protocols. It turns out that by re-
stricting ourselves to finite state protocols, request substitutability is decidable by a simple
procedure.

Furthermore, although we cannot specify all protocols exactly with a finite number of
states, we caapproximatenfinite state protocols by non-deterministic regular processes.
These approximations can then be used in many cases to check request substitutability.

Let us consider a few canonical examples using various kinds of “container” objects
(bounded buffers, stacks, variables) each supporting (atdeeatdget requests. We can
associate with these objects a number of abstract states, each corresponding to a set of cur-
rently enabled requests. Since we assume that the total set of possible services is finite, a
finite number of abstract states suffices to characterize all the possible combinations of en-
abled requests (and normally only a few of these combinations should be needed). From
the client’s point of view, transitions may take place when services are provided (since this
is all the client may observe).
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First, consider a one-slot bounded buffer.

put

get

It has two abstract states: one in which orgytas accepted, and one in which onkyea
is allowed. Upon acceptingpat or aget request, the object changes state. We express this
by the protocol (regular type).

Now consider an uninitialized variable with the protocol

put

Var = m put, get

Its protocol requires thatat must first be requested, but thpenandget requests may be
interleaved arbitrarily. In this case, we seeVhatBuf since a client that expects an object
to obey thesuf protocol will never be “disappointed” if an object obeyagis substitut-
ed. The reverse does not hold, becauswill refuse the sequeneet.get.get, whereavar

will not.

In these two cases, the transitions are deterministic, Bui@ndvar are really finite
state protocols.

Now consider a stack (wihut andget instead opush andpop). Initially only aput is
possible. Then botbut andget are enabled. Furtheat requests will not change this, but
aget may bring us back to the initial state. The corresponding regular type is specified be-
low asNDStack.

put

NDStack = C):C):] put, get

get

It resemblesar except that after get, we do not necessarily know what state we are in.
Clearly, such a description is an approximation because we are attempting to express the
service availability of a deterministic process (the object) by means of a non-deterministic
one (the regular type).

We can try to add another intermediate state, B $tack?:

put put
get get put, get

but after twaut requests andget we again do not know what state we are in. In fact, we
would need an infinite number of states to describe completetyatikgorotocol.

As we argued before, however, non-determinism is inherent in some protocols, because
objects are not, in general, closed systems. Furthermore, the non-deterministic regular
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types are still useful to us. We can determine, for example, that an object conforming to the
NDStack regular type also conformsmaf sinceNDStack:<Buf.

Choosing a simplandreadable syntax for specifying regular types is somewhat prob-
lematic. For the purpose of this chapter we will opt for simplicity. We specify a regular
type by a pair,Xg,E) consisting of a finite system of equati@hsf the form:

E={x=t, ..}
wherex; is a distinguished start state, andttage regular type expressions of the form:

tr=rxdt+t
r is arequest name ards a state name. Evexyised irE must have exactly one defining
equation inE (except fomil, which stands for a dead state with no transitions). Regular
types have the following interpretation as transition systems:

1. init(nil) =00
rnil 5 nil
x=tOEDO rx &t

t1 rl t1' O t1+t2 rl t1'

22 0ua 3

With this simple syntax, then, we could specify the various regular types we have seen
as follows:
Buf = (b1, { bl=put.b2, b2=get.b1})
Var = (v1, { vl=put.v2, v2=put.v2+get.v2 })
NDStack = (s1, { s1l=put.s2, s2=put.s2+get.s2+get.s1})
NDStack2 = (s1, { s1=put.s2, s2=put.s3+get.s1,
s3=put.s3+get.s2+get.s3 })
At this point the reader may wonder why we cannot simply use regular expressions to
specify regular types. The reason is that regular expressions stand forleeguages
i.e. sets of strings, not regular processes. Regular expressions can consequently tell us
about the traces of a transition system but not its failures. Consider, for example, the reg-
ular types/ar andNDStack. If we consider any state to be a valid final state, then they rec-
ognize exactly the same regular language, namely:
€ + put.(put+get)*
But this does not tell us that after acceptipgt@ollowed by aget, NDStack mayrefusean-
otherget, whereasar never will. (A similar argument is elaborated in [16] to introduce the
difference between language and process equivalence.) For precisely the same reason, it
isnotgenerally possible to convert a non-deterministic regular process into a determinis-
tic one without losing information.

a bk DN

4.6 Subtyping Regular Types

We now propose to use request substitutability sisoéypingrelationship over regular
types. We are justified in this since we have shown that request substitutability is a pre-
order, so ifvar:<NDStack andNDStack:<Buf, then we can conclude thai:<Buf.
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The fact that regular types have finite states means that a simple algorithm exists for
checking the subtype relationship (not surprisingly, the algorithm is similar to that for
checking equivalence of finite state automata [2]). To derive the algorithm, we must intro-
duce a multi-state variant of request substitutability. First let us exigf)dand - to
work with sets of states:

Definition 7 init(x)={rMxOX,x,x & x'}.
Definition 8 x L X'iff X' ={x' [Ox0Ox,x & x'}.
Note in particular thats for sets of states isfanction not just a relation. In effect, we
are turning a non-deterministic transition system into a deterministic one in the traditional

way by expanding single states into sets of reachable states [2].
Now let us consider the following definition:

Definition 9 A set of object states is multi-state request substitutalfier a set of
statesy, writtenx:<<y, iff:
@) init(Y) Oinit(X)
(i) OxOx, A3y, init(y) O init(x)
(i) OrOinit(y), ifx L x"andy L v', thenx":<<Y'.

Condition (i) guarantees that all transitions possible from some statg®flso pos-
sible from some state &f Condition (ii) says that any failure possible in some state of
can be explained by a failure of some corresponding stateainey has the same or few-
er initial transitions possible). Condition (iii) is simply the recursive case.

Proposition 3 {x}:<<{y} = x«<y.

Proof
[0 ) Suppose thdix } :<<{y}, thentracegy) [ tracegx) by 9(i) and 9(iii).
Next, supposes(R) O failures,(x). Then¢',x 8 ', init(x) n R=0and3y/,y 8 vy,
init(y’) O init(x') by 9.ii and 9.iii sog,R) U failuresy) andfailures,(x) U failuregy)
hencex:<y.
0 ) Similar argument in reverse.

Note that this result is independent of whether we restrict our attention to finite state
transition systems or not. If the sets of reachable states are finite, howeveianey dre
regular types, then proposition 3 provides us with a simple procedure to check whether
x:<y by simply generating all the sets of states reachable{fiamd{y} by transitions in
tracegy) and checking conditions 9(i) and 9(ii) for all the comparable sets. Since the state
space is finite, the set of reachable state sets must also be finite, and so the comparison
must terminate in finite time.

The following iterative algorithm suggests itself: we maintain a LIST of comparable
sets of states and possible transitions, of the fotM g, whereX andY are the sets of
states ok andy reachable from some common tracdy, andRis the set of possible tran-
sitions (requests) fromithat the algorithm must traverse. We follow each possible request
to new comparable state sets until we have exhausted all transitions and checked all com-
parable state sets, or until we fail to satisfy one of the conditions in definition 9.
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Verify thatinit(y) O init(x), else FAIL

Add ({x},{ y},init(y)) to LIST

If possible, select somX,{Y,R from LIST whereRis not empty, else SUCCEED
Select somein Rand replaceX,Y,R by (X,Y,R{r}) in LIST

ComputeX' andY’, whereX L X andy & Y

If (X',Y',R) for someR is already in LIST, then go to step 3, else continue

If init(Y") O init(X"), then continue, else FAIL

If for eachx; U X' there exists somgl'Y' such that
init(y;) O init(x;), then continue, else FAIL

9. Add X,Y,init(Y")) to LIST and go to step 3.

Note that steps 2 and 7 guaranteeXhgenerated in step 5 will never be empty.

Since there is a finite number of reachableXatsdY to compare, the algorithm clearly
terminates. In the worst case, there will b&-9x(2™1) comparisons (i.e. the size of
LIST), wherenandmare the number of states reachable fx@amdy respectively, but nor-
mally there will be far fewer, since not all subsets of states will be generated, and not all
possible combinations will need to be compared. In the special case that one compares two
deterministic regular types, the maximum number of comparisons mjusbut may be
even as little am (in case of success, that is).

Let us briefly look at an example that compaego the regular type of a stack that
supports an additionalvap operation:

© N o g bk wbdE

put put, get, swap
get

NewNDStack = (s1, { s1=put.s2,
s2=put.s2+get.s2+get.sl+swap.s2})

We wish to check wheth&ewNDStack:<Buf. We start with({s1},{b1},{put}). Boths1 and
b1l permit gput, and they have the same requests enabled, so we can add this to our list:

({s1},{b1}.{put})
The only possible transition igut, so we remove it from LIST and generate:
({s2}.{b2},{get}). s2 enables at least the requests bhanables, so we add this to our list:

({s1}{b1}.{put})

({s2},{b2}.{get})
Now only aget is possible, so we generatel1,s2},{b1},{put}). We verify that1 ands2 each
enable at least the request®pand add this to our list:

({s1}.{b1}.{put})

({s2}.{b2},{get})
({s1,s2},{b1},{put})



Request Satisfiability 113

put put

Buf = m FaultyStack = put, get

get
get

put put

NDStack = m put, get

get get

et
put put g

NDStack? = C):C):CDput, get

get get
put put, get,swap

NewNDStack = m
put
Var = O_m put, get get

Figure 4.2 Some subtype relationships between regular types.

Now we can perform put, but this just generatgs?2},{b2},{get}), which is already repre-
sented in the list. There is nothing left to check, so we SUCCEED. (In the reverse direction
we would quickly FAIL in step 7 after a singl& because2 enables neitheut norswap.)

Note that the total number of comparisons (3) is far less than the worst case possible (9).

Note thatNewNDStack is request substitutable fBuf even though it is, in a sensess
deterministic thaBuf. The key point is that it is safe to use wherever we are expeating
like behaviour.

Figure 4.2 shows the subtype relationships between a few of the regular types we have
seen. CuriouslyybDstack andNDStack2 are not related (to see why, consider the sequence
put.get.get, which is intracegNDStack) but not intracegNDStack2), and the failure
(put.put.get,{get}), which is infailuregNDStack), but not infailuregNDStack?2)).

4.7 Request Satisfiability

Up to now our discussion has focused on the protocols of service providers. Request sub-
stitutability tells us when an object obeying some protocol can be safely substituted by
some second object, assuming that the first object satisfies the client’s expectations. But
we have not yet formalized what it means to satisfy a client. It turns out that we need to de-
fine a new relation, callegquest satisfiabilitywhich expresses this idea.
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If the protocol of a service provider expresses when its services are available, then the
protocol of its client expresses when those services are requested. We propose that a client
is satisfiedf its requests are always honoured. Up to now we have implicitly assumed that
clients issue at most one request at a time. In general, however, a client may issue multiple
requests simultaneously (particularly if the “client” is actually an environment consisting
of multiple concurrent clients) — in such cases, we do not ask that all of the requests be
honoured together, just that the client be guaranteed to make progress, i.e. at least one re-
guest must always be accepted. Since the current state of the client may not necessarily be
deterministic, the object must be prepared for the client to be in any one of its reachable
states. The object is allowed to terminate (i.e. refuse all further requests) only if it can be
sure that the client will issue no more requests. In short, we must ensure that an object can
only fail if the client makes no mouodfers

We can formalize this as follows:
Definition 10 The set obffersof a transition systemis:
offergc) ={ (s,R) Ok', c I ¢',R=init (c') }.

So, if(s,R) is an offer ok, then we know that may issue the sequence of requesiisd
then may issue the set of requesttt is also possible thatmay issue some other set of
request®’, if (s,R") is also an offer of.

Definition 11 An objectx isrequest satisfiablfor a clientc, writtenx i ¢, iff:
(s,R) [ failuregx)nofferdc) 0 R=01

If both client and server protocols are specified as regular types, then request satisfiability
can be determined by an algorithm along the lines of the one we demonstrated for check-
ing request substitutability.

4.7.1 Sequential Clients

How does request substitutability relate to request satisfiability? Clearly, we would expect
that ifx:.<y andy k ¢, thenx & c. It turns out that i€ is sequential, then this is in fact the case.

Definition 12 Aclientcissequentialf (s,R)offerdc) O |R|< 1.
Lemma 4 |If cis sequential, then:- cJ tracegc) [] tracegy).
Proof By induction on the length of traceswfi
Proposition 5 If cis sequential, then<y andy-c [ xkc.
Proof (s,R) [failuregx)nofferqc) O s [tracegc) U tracegy)

U (s,R) Ufailures)(x) U failuregy) 0 R=0. 0

We are taking advantage of the fact thiatsequential to conclude tlyatompletelysat-
isfies the expectations af(Note that it also suffices to require thrategc) O tracegy)
for the same result to go through.) But if there are different ways of satisfying a client (par-
ticularly a concurrent one), then it is no longer true that the client will necessarily be sat-
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isfied by a request substitutable service provider. Some additional preconditions must be
imposed.

4.7.2 Concurrent Clients

Let us consider a simple example of a concurrent client consisting of a producer and a con-
sumer connected by a bounded buffer. The producer and the consumer each have their own
view of the buffer, but we are interested in the requirements posed by their concurrent
composition.

Presently we might separately specify expectations of the producer and consumer re-

spectively as:
Prod = CD put Cons = CD get

We might write their concurrent compositionPasd&Cons, where:
cl 5 c1'0 cl&c2 L cl'&c2
and
c2 &L ¢2'0 c1l&c2 L c1&c?'

So we can conclude:
Prod&Cons = CD put, get

Note thatrod&Cons is hotsequential according to definition 12.

It is easy to check th&uf £ Prod&Cons, sinceBuf never refuses bojsut andget. But
what is the role of request substitutability now? Since we knowvthaBuf can we
necessarily conclude also tiat £ Prod&Cons? Unfortunately this is not quite right. The
reason is that a regular subtype may introduce additional behaviour that can perturb the
client’s expectations. Consider, for example, a deletable buffer:

ut
P del
vemut= (o ()
get

It is clear thabelBuf:<Buf. But suppose that we now compose the producer and consum-
er with a malevolent object whose only goal is to try to delete the buffer:

del

Now Buf £ Prod&Consé&Del but it is not the case thatlBuf - Prod&Cons&Del. In the first
case onlyel will be starved out becauBef provides no delete operation, but the client as
whole will still be satisfied sind&od&Cons continues to make progress.
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In the second case, however, the delete operation may succeed, then causing the client
as a whole to deadlock, and thus remain unsatisfied.

What we need to do in order to be sure thtguf can be safely substituted ®&uf is to
restrictits behaviour to that allowed IByf:

Definition 13 xv L x/¥'iff x L x andv L v’

What we mean to capture ki is that some object in statés restricted to accept only

the requests allowed by a second object whose state igSonvée do not know precise-

ly which state the second object s in, so we keep track of the set of possible states.
Usually the initial state of the second object is known, so we will simply wyita-

stead ok/{y}.

Proposition 6 x«<y[ x/y:<y.

Proof
(i) tracegxly) =tracegx) n tracegy). Butx:<y [1 tracegy) [] tracegx),
sotracegx/y) =tracegy).

(i) (s,R)Ofailuresxty) 0 Ok, x 3 x,{y} ¥ Y',suchthar n init(x') n init(y') = O
O Rninit(x’) n O{ init(y") Oy'0Y'}=H R init(x') ninit(y’) Oy'0Y'} =0
Butx:<y O {x}:<<{y}0 O/ O Y, init(y") Oinit(x")

(M y'OY,Rninit(y') =01 (s,R) Ofailureqy) O failureqxry) [ failureg(y).
Butfailures,(x/y) = failureg(x/y), soxly :<y.0

Finally, the result we want:
Proposition 7 x<yandyrcO xiytc.

Proof x:<y[ xly:<y (by proposition 6), stailuregx/y) [J failuregly).
Now (s,R) [ failureqxty) n offerqc) O (s,R) O failureqy) n offerdc) 0 R = [.
Hencex/yEc.O

So, for example, we can conclude that:
DelBuf/Buf E Prod&Consé&Del

since we effectivelidethe additional behaviour introducediBuf from the client.

This is not as strong a result as we might have hoped for, but it is a natural consequence
of the fact that multiple concurrent clients may interfere with one another if their expecta-
tions are not consistent. This is essentially the observation of Liskov and Wing [22] who
propose a new definition of subtyping that requires view consistency. Briefly, the idea is
that a type that extends the behaviour of another type may only be considered a subtype of
the second if the additional behaviour can always be explained in terms of behaviour that
wasalreadythere in the supertype.

In some cases we may get this consistency for free. Note, for example, that if the sub-
type’s behaviour is properly included in the supertype’s, in the sensailinats(x) = fail-
uregxly), then the subtype will be request substitutable for the supertype. We must be sure,
though, that the subtype behaviour is consistent with the restriction imposed by the super-
type. This leads to the following result:
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Proposition 8 If tracegx) =tracegy) and
failureqx) [I failureqly), theny e c [0 xkc.

Proof Follows from proposition 7 since
failureqx) =failuregxty). o

It may still be the case that a subtype provides additional behaviour thabtpeurb
the client. But to be sure that the subtype is truly substitutable, it is necessary to know more
about the client’s expectations. We have previously expiotechction equivalenceith
respect to the expectations of particular sets of observers, and found that equivalence with
respect to all possible observers (also) reduces to failures equivalence [27]. We expect that
relativizingrequest substitutability with respect to the expectations of specific classes of
clients will lead to more general and more useful results for the case of multiple concurrent
clients.

4.8 Open Problems

We have proposed service types as a means of characterizing the services an object pro-
vides, and regular types as a means to express non-uniform service availability. In both
cases we have presented an approach to subtyping. Furthermore, we have formalized what
it means to satisfy a client’s expectations, and we have shown the role that subtyping plays
in determining substitutability.

Although regular types appear to be a novel and promising approach for reasoning
about some of the dynamic (type) properties of concurrent object-oriented programs,
there remains much to be studied before we can claim to have a pragmatically acceptable
approach for type-checking object-oriented languages. Let us briefly summarize some of
these considerations.

4.8.1 Regular Service Types

So far we have treated the typing of services and their availability as orthogonal issues.
Service types express types of requests and replies, and regular types tell us when requests
are enabled. There is nothing to prevent us from proposing a syntax for regular service
types that simply expands request names in regular types to the complete service type
specification corresponding to that request. For example, an integer variable could be as-
signed the regular service type:

IntVar=(v1,{ vi1=put(Int) - Ok.v2,
v2 = put(Int) - Ok.v2 + get - Int.v2  })

Since this is somewhat verbose (the type ofptheservice must be given twice), it
seems more desirable to keep the type specifications of services and their protocols sepa-
rate.
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Itis conceivable, however, that the type of a service may itself change with time. In par-
ticular, the result types associated with certain requests may depend on the argument types
of earlier requests (as is the case with all of the container objects we have seen). To handle
this case, it would seem necessary to introduce term variables into regular types to express
the dependencies between services in the protocol (i.e. a la “dependent types” [32]). Itis
not clear, however, what effect this would have on the determination of request substitut-
ability.

It may also be interesting to consider bounded polymorphism in our framework, since
the integration of intersection types and bounded polymorphism has been previously stud-
ied [31], but only in a functional setting. Finally, we have not considered the issue of re-
cursively defined types, in which the regular type of an object may contain services whose
argument and return types refer to the object’s own type. Previous work on “F-bounded”
guantification [9] addresses subtyping for such types [3], and is likely to be relevant to our
framework.

4.8.2 Applying RegularTypes to Object-Oriented Languages

We have presented our type model without giving any concrete interpretation for types.
The objects to which we wish to assign types have been described only informally by
means of a very general model of objects as transition systems. The next step would be to
provide a concrete syntax for objects, either in terms of a programming language or a
process calculus that can model objects in a straightforward way.

We have been working towards aject calculughat incorporates those features of
process calculi that are most needed for expressing the semantics of concurrent object-
oriented languages [28]. We intend to use the object calculus as an (executable) abstract
machine for gattern language for (typed) active objej@8], and assign regular types to
the expressions of this language.

Since the type expressions we are dealing with can become rather unwieldy, it is espe-
cially important that we be able to do as much tgferenceas possible. In languages that
directly represent abstract states of objects (such as ACT++ [20]) this job will be easier.
The main difficulty will be in determining what transitions between the abstract states are
possible.

We have already pointed out that objects may satisfy many different regular types, and,
since regular types are only approximations, in some cases they may bead:haede-
am In order to assign regular types automatically to objects, it is necessary to generate
some type assignment which is perhaps not the finest possible but which assigns at least
one abstract state to every reachable subset of available services. (Recall thanowr first
Stack was such a minimal representation, whenga&tack2 had two distinct states with
the same services available.)

Another consideration, however, is whether a deterministic regular type can be as-
signed to an object. If such a type specification existsv@.gndsuf), then this is in any
case to be preferred to a non-deterministic regular type that may have less states. Such
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types not only completely describe service availability for an object, but are well-behaved
during type-checking since the sets of reachable nodes for a given trace are always single-
tons. (So LIST stays small.)

4.9 Concluding Remarks

We have proposed a type framework for object-oriented languages that expressas the
icesof an object as an intersectionsefvice typesharacterizing request and reply mes-
sages, andon-uniform service availability terms ofegular typesover a finite number

of abstract states associated with subsets of services. Subtyping of regular types is defined
by introducingrequest substitutabilifya novel pre-order over processes that has special
interest for object-oriented applications. Subtyping is easy to determine for regular types,
and a simple algorithm is presented. Satisfaction of client’s expectations is formalized as
request satisfiabilityand we show how request substitutability relates to it.

A number of technical issues must first be resolved before the framework can be prac-
tically applied to real object-oriented languages. In particular, we seek some results that
will simplify reasoning about substitutability with respect to multiple concurrent clients.

We expect that it will be easier to reason about regular types in the presence of concur-
rency if we interpret them either using a temporal logic or a modal process logic (such as
Hennessy—Milner logic with recursion [21]). A logical characterization of the concepts
we have presented will be the topic of further research.

Despite a number of open research problems, the approach seems to hold a great deal of
promise, since numerous tools and algorithms exist not only for analysing properties of
finite state processes [11][15][23] but also for reasoning about processes in general
[12][19]. This suggests that regular types may be more generally useful for reasoning
about temporal properties of concurrent objects.

We have concentrated on client—server-based protocols in which requests eventually
entalil replies. Can we accommodate other kinds of communication protocols (to support,
for example, transactions)? If so, must we modify our model of regular types to incorpo-
rate bidirectional communications (instead of just enabling of request channels)? Can we
easily accommodatxceptionsn our framework by, for example, allowing replies to be
union types?

Finally, our approach considers only objects with fixed sets of known services. Can we
accommodateeflectiveobjects that acquire new services with time? In such a setting,
would we have to consider not only services, but also types as first-class values?
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