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Chapter 2

Concurrency in
Object-Oriented 
Programming Languages

Michael Papathomas

Abstract    An essential motivation behind concurrent object-oriented
programming is to exploit the software reuse potential of object-oriented
features in the development of concurrent systems. Early attempts to introduce
concurrency to object-oriented languages uncovered interferences between
object-oriented and concurrency features that limited the extent to which the
benefits of object-oriented programming could be realized for developing
concurrent systems. This has fostered considerable research into languages
and approaches aiming at a graceful integration of object-oriented and
concurrent programming. We will examine the issues underlying concurrent
object-oriented programming, examine and compare how different
approaches for language design address these issues. Although it is not our
intention to make an exhaustive survey of concurrent object-oriented
languages, we provide a broad coverage of the research in the area.

2.1 Introduction

Considerable research activity in the past few years has concentrated on the design
current object-oriented programming languages (COOPLs). This research activity 
at providing an integration of object-oriented and concurrent programming. The fo
ing points discuss some motivation for concurrent object-based programming: 

• To augment the modelling power of the object-oriented programming paradigm. O
goal of object-oriented programming can be seen as to model the real world di
and naturally [89]. Concurrency then adds to the modelling power by making it e
to model the inherently concurrent aspects of the real world.
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• To take advantage of the software design benefits of object-oriented programming
and the potential for software reuse in the development of concurrent and distribut
systems. Concurrent and distributed systems are becoming more widespread 
need to develop concurrent programs is becoming more common. This is witn
by the support provided for concurrent programming at the application level pro
ed by modern operating systems.

• To support sharing of distributed persistent data. The object-oriented paradigm
lends itself well for providing location transparency by encapsulating within obj
access to distributed persistent data. However, as information has to be shar
cess to the objects has to be scheduled in a way that avoids interference and p
support for recovering from failures in the distributed environment. Although 
could be left to the language implementation, as is the case in database mana
systems, taking advantage of the semantics of object types to ensure atomic
substantial benefits with respect to performance and availability. This, how
requires the use of concurrency control mechanisms for the implementation of o
types[90].

• To take advantage of parallelism in the implementation of object classes f
increased execution speeds. Data abstraction can be used to conceal p
implementations of objects from programs that use them so as to increase the
formance when run on parallel machines. Parallelizing compilers could be us
generate parallel implementations of object classes, thus avoiding the need fo
currency constructs. However, better results are generally achieved by the use
plicit parallel algorithms as implicit approaches for parallel execution uncover
exploit only a number of restricted classes of parallelism [46]. Moreover, as da
straction hides the details of the implementation of classes, users of these c
need not be aware of their concurrent implementation.

In all of the above cases it is necessary to combine the concurrent and object-o
programming paradigms, provide linguistic support for concurrent object-oriented
gramming and, ideally, exploit the reuse potential of object-oriented programmin
concurrent software. 

However, combining object-oriented and concurrency features has proven to be
difficult than might seem at first sight. Clearly, devising a language that has both co
rent programming and object-oriented constructs poses no problem. There has 
large number of proposals for combining object-oriented and concurrency features.
ever, they are not equally successful in drawing the benefits of object-oriented pro
ming for concurrent software development. The problem is that these features a
orthogonal, and consequently they cannot be combined in an arbitrary way. Most of 
search in the area is devoted to devising graceful combinations that limit the interfe
of features. 

In this chapter we present a design space for the approaches for combining o
oriented and concurrency features and a set of criteria for evaluating the various ch
We use the criteria to evaluate some proposals and identify approaches that 
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adequately support object-oriented programming as well as approaches that do ac
graceful combination of the features. 

 In section 2.2 we present a design space for combining object-oriented and conc
cy features with respect to several aspects of language design. In section 2.3, we 
the issues that have to be addressed to provide the benefits of object-oriented pr
ming. Section 2.4 examines the impact of some proposals on the integration of th
gramming paradigms and their potential for reuse. Finally, in section 2.5 we prese
conclusions, discuss open problems and directions for further work in the area.

2.2 Design Space

We start by presenting three aspects of COOPLs that we consider for constructing 
sign space, and then we discuss the design choices with respect to each of these
Later, in section 2.4, we will examine more closely some existing languages showin
the design of their features situate them in the design space.

2.2.1 A Design Space for Concurrent Object-Oriented Languages

We seek to evaluate language design choices with respect to the integration of the
currency and object-oriented features and the degree to which software reuse is sup
In particular, we wish to understand how choices of concurrency constructs interac
object-oriented techniques and affect the reusability of objects. As such, our classifi
scheme concentrates on the relationship between objects and concurrency. We sh
sider the following aspects:

• Object models: how is object consistency maintained in the presence of concur
cy? The way objects are considered with respect to concurrent execution may o
not provide them with a default protection with respect to concurrent invocat
Furthermore, different languages may favour or enforce a particular way of stru
ing programs to protect objects.

• Internal concurrency: can objects manage multiple internal threads? This issue 
cerns the expressive power that is provided to objects for handling requests. No
the execution of internal threads is also related to the protection of the interna
objects, which is determined by the choice of object model.

• Constructs for object interaction: how much freedom and control do objects have
the way that requests and replies are sent and received? The choice of concu
constructs for sending and receiving messages determines the expressive pow
is provided for implementing concurrent objects. Moreover, the design of const
for conditional acceptance of messages interacts with the use of class inherita
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In the presentation of the design space, it will become apparent that these aspects
entirely independent: certain combinations of choices are contradictory and others 
dundant or lack expressive power.

2.2.2 Concurrent Object Models

There are different ways one can structure a concurrent object-based system in o
protect objects from concurrency. A language may support constructs that favour o
enforce one particular way, or may leave it entirely to the programmer to adopt a par
model. There are three main approaches:

• The orthogonal approach: Concurrent execution is independent of objec
Synchronization constructs such as semaphores in Smalltalk-80 [40], “lock blo
as in Trellis/Owl [68] or monitors as in Emerald [19] must be judiciously used
synchronizing concurrent invocations of object methods. In the absence of ex
synchronization, objects are subject to the activation of concurrent requests an
internal consistency may be violated.

• The homogeneous approach: All objects are considered to be “active” entities th
have control over concurrent invocations. The receipt of request messages is d
until the object is ready to service the request. There is a variety of constructs th
be used by an object to indicate which message it is willing to accept next. In P
T [6] this is specified by executing an explicit accept statement. In Rosette [83] aen-
abled set is used for specifying which set of messages the object is willing to ac
next.

• The heterogeneous approach: Both active and passive objects are provided. Pas
objects do not synchronize concurrent requests. Examples of such languages 
fel // [26] [27] and ACT++ [45]. Both languages ensure that passive objects ca
be invoked concurrently by requiring that they be used only locally within sin
threaded active objects. Argus [55] provides both guardians (active objects) and
CLU clusters (passive objects) [52]. 

2.2.3 Internal Concurrency

Wegner [87] classifies concurrent object-based languages according to whether o
are internally sequential, quasi-concurrent or concurrent:

• Sequential objects possess a single active thread of control. Objects in ABCL/1 [
and POOL-T and Ada tasks [9] are examples of sequential objects.

• Quasi-concurrent objects have multiple threads but only one thread may be activ
a time. Control must be explicitly released to allow interleaving of threads. Hy
domains [47][70][71][72] and monitors [42] are examples of such objects.
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• Concurrent objects do not restrict the number of internal threads. New threads
created freely when accepting requests. Ada packages and POOL-T units resemble
concurrent objects (though they are not first-class objects). Languages like S
talk-80 that adopt the orthogonal object model also support concurrent objects.
the point of view of the called objects, a new local thread is effectively created w
ever a method is activated in response to a message.

According to the above classification, the threads of concurrent objects are create
ly when an object receives a message. However, there are languages where obje
have internally concurrent threads that are not freely created by message reception
der to include these languages in the classification and to capture more information
the way that threads are created, we generalize the concurrent object category to 
any language in which objects have concurrent threads, irrespective of the way th
created, and consider separately the issue of thread creation. 

We identify three, non-exclusive ways for the creation of threads within objects a
lows:

• By message reception: Thread creation is triggered by reception of a message. An
ject cannot create a thread on its own unless it can arrange for a message to be
it without blocking the currently executing thread. Depending on whether ob
may control the creation of threads, we have the following subcategories:
— Controlled by the object: The object may delay the creation of threads. F

example, in the language Sina [84] a new concurrent thread may be creat
the execution of a method belonging to a select subset of the object’s me
only if the currently active thread executes the detach primitive.

— Unconstrained creation: Threads are created automatically at message re
tion. This is the default for languages with an orthogonal object model.

• Explicit creation: Thread creation is not triggered by message reception but the
ject itself initiates the creation of the new thread. For instance, in SR [12] ther
construct similar to a “cobegin” [11] to initiate the execution of concurrent thre

Internal concurrency

 

Sequential

Single thread of control 

ABCL/1, POOL-T

Quasi-noncurrent

There are several logical threads 
but only one at a time. Thread 
interleaving occurs at programmer 
defined places

Hybrid, monitors

Concurrent

There may be several 
threads of control active 
within an object.

Figure 2.1   Approaches to internal concurrency.
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Another way to create a new thread, in the absence of a special construct, is
asynchronously an operation of the object. This requires, however, that such ca
not blocked at the object’s interface. This approach is used in a recent version o
Such calls bypass the normal method synchronization constraints as well as 
quest queue at the object’s interface. Finally, it would also be possible to creat
independent objects to call the object methods in parallel. However, this is cum
some and it also requires some means of bypassing the message queue at the
interface.

 The next and become primitives in Rosette and ACT++ can be viewed as a contro
creation of threads, with the additional restriction that concurrent threads may not
the object’s state since they execute on different “versions” of the object.

 In Guide [48], an object may be associated with a set of activation conditions
specify which methods may be executed in parallel by internally concurrent threads.
default case, as with any language following an orthogonal approach for concurrenc
jects may be viewed as concurrent with unconstrained creation of threads triggered
ternal messages. 

The creation of threads by reception of external messages or by execution of a 
construct are neither mutually exclusive design choices — as illustrated by SR, 
supports both — nor redundant, as we will see in section 2.3.

2.2.4 Constructs for Object Interaction

We classify these constructs with respect to the degree of control that can be exerc
objects in the client and server roles. We specifically consider reply scheduling, which
concerns the degree of flexibility the client has in accepting a reply, and request schedul-
ing, which concerns the control the server can exercise in accepting a request.

Thread creation 

 By message reception Explicit creation

SR co, Smalltalk-80 fork

Uncontraintsed
creation of threads⇒
Orthogonal object model

Smalltalk-80, Ada packages

Creation of threads is
controlled by the object

Sina, Act++

Figure 2.2   Approaches to thread creation.
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2.2.4.1 Issuing Requests
The following important issues can be identified with respect to the constructs supp
for issuing requests:

• Addressing: How are the recipients of a request specified and determined? How
where is the reply to be sent? Flexible control over the reply destination can re
the amount of message passing required.

• Synchronization for requests and replies: Can the current thread continue after iss
ing the request? What mechanisms are supported for matching replies to req
How does the client synchronize itself with the computation and delivery of th
ply?

• First-class representation of requests and replies: Do requests and replies have 
first-class representation that permits them to be forged or changed dynami
What aspects (e.g. destination, method name) can be changed dynamically?

We further discuss these issues below and present how they are addressed by d
proposals. 

Addressing

In most languages the recipient of a request is specified directly by using its object i
fier. However, there are some proposals allowing for more flexible ways of addre
where the system determines the recipient of the request. We review some of these 
al below.

Types as Recipients in PROCOL

In PROCOL [49] [85] an object type may be used to specify the recipient of a reque
this case the potential recipients are any instance of the type that is in a state suc
may accept the request. The system determines one recipient among the set of pote
cipients and delivers the request. It is important to note that this feature does not s
any form of multicast; exactly one message is exchanged with the chosen recipie
point to point fashion. 

ActorSpace

ActorSpace [2] is a general model providing a flexible and open-ended approach to
communication that has been developed in the context of the actor model. 

In this mode, destination patterns may by used to designate the recipients of a requ
Patterns are matched against attributes of actors in an specified actorspace — a
container of actors — to determine a set of potential recipients. A message may be 
either one of two primitives: send or broadcast.The former delivers exactly one messa
to a recipient chosen non-deterministic by the system. The latter provides a form of 
cast by delivering the request to all potential recipients.
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Extra flexibility is provided in this model by allowing the dynamic inclusion a
removal of actors from ActorSpaces as well as by allowing the dynamic modificati
actor attributes. Moreover, ActorSpaces may be nested.

Synchronization for Requests and Replies 

We initially distinguish between one-way message passing communication primitives
and constructs supporting a request/reply protocol. The latter provide support for obje
interactions where requests will be eventually matched by replies. These mecha
vary in flexibility when sending requests and receiving replies. Strict RPC approach
force that requests will be matched by a reply and delay the calling thread until the
is available. Further flexibility is provided by “proxy” objects which disassociate 
sending or receiving of messages from the current thread of control. Examples of b
proxy objects are future variables [94] and CBoxes [92].

One-Way Message Passing

Whether communication is synchronous with one-way message passing, as in CS
or PROCOL [85], or asynchronous, as in actor languages, clients are free to inte
activities while there are pending requests. Similarly, replies can be directed to arb
addresses since the delivery of replies must be explicitly programmed.

Client–server interaction

One -way message passing

Higher-level protocols must 
be explicitly programmed

PROCOL, CSP

Request/reply

Balanced requests and 
replies are supported

Proxies

Sending requests and receiving 
replies may be delegated, as with 
CBoxes and futures

ABCL/1, ConcurrentSmalltalk, Eiffel //

RPC

Sending a request 
blocks the current 
thread until a reply is 
received

Figure 2.3   Client–server interaction mechanisms.
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 The main difficulty with one-way message passing is getting the replies. The clien
the server must cooperate to match replies to requests. As we shall see in section 
additional flexibility and control provided by one-way message passing over reque
ply based approaches can only be properly exploited if objects (i.e. servers) are 
mented in such a way that the reply destination can always be explicitly specifie
request.

Remote Procedure Call

With RPC the calling thread of the client is blocked until the server accepts the re
performs the requested service and returns a reply. Most object-oriented languag
port this form of interaction, though “message passing” is generally compiled into p
dure calls.

Supporting RPC as the only means for object interaction may be a disadvantage
objects are sequential as we will see in the next section. Although it is trivial to ob
reply, it is not possible to interleave activities or to specify reply addresses.

Proxies

An alternative approach that provides the client with more flexibility in sending an
ceiving replies is to introduce proxies. The main idea is to delegate the responsibility of d
livering the request and obtaining the reply to a proxy. (The proxy need not be a first
object, as is the case with future variables [94].) The actual client is therefore free t
switch its attention to another activity while the proxy waits for the reply. The proxy i
may also perform additional computation or even call multiple servers.

If necessary, the reply is obtained by the original client by an ordinary (blocking
quest. This approach, variants of which are supported by several languages [27][9
maintains the benefits of an RPC interface and the flexibility of one-way message pa
In contrast to one-way message passing, however, there is no difficulty in matching r
to requests.

A closely related approach is to combine RPC with one-way message passi
ABCL/1, for example, an object that externally has an RPC interface may internall
lower-level message-passing primitives to reply by sending an asynchronous mess
the client or to its proxy. The use of such facilities is further discussed in section 2.4

First-Class Representation of Requests and Replies

The ability to have a first-class representation of requests and replies may enhan
stantially the expressive power of a language. There is a range of aspects of reque
replies that may have a first-class representation in a language. This varies from (a
no first-class representation at all to a full first-class representation of all aspects
quests and replies. Below we discuss how this issue is addressed in some langua
are characteristic of the various possibilities.
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Minimal First-Class Representation

Apart from the method’s arguments and the target, all other aspects, such as the 
name and the return address, cannot be specified dynamically. This the case for lan
such as POOL-T, Hybrid and Trellis/Owl. One could argue that since the target and 
guments can be specified at run-time, there is a first-class representation of some 
and that the categorization is not accurate. In fact, in older language proposals such
[43] the targets of messages were determined statically. This, however, is uncomm
more recent languages since it makes it hard to develop software libraries: a serv
must be statically bound to its potential callers has a low reuse potential. A first-clas
resentation of the target and arguments can be considered as a minimum that one
expect to find in every language.

First-Class Representation of Method Names and Reply Addresses

PROCOL supports the first-class representation of method names. The name of the
od to call may be supplied as a string. This allows the method names for a reques
passed in messages or computed at run-time. 

With ABCL/1 it is possible to specify dynamically and explicitly the object that is to
ceive the reply of a request. The benefits of the use of this feature are discussed in
2.4.2.

Full First-Class Representation

As one would expect, full first-class representation of requests is provided in refle
languages such as ABCL/R. However, it is also provided in languages such as Sm
and Sina which are not fully reflective. In fact, the latter two illustrate the usefulnes
the possibility of having such features in any concurrent language which is not
reflective. Briot [23] has used the features of Smalltalk to build a several object-ori
programming models using the relative primitive concurrency features provided i
Smalltalk system. Aksit et al. [4] show how these features may be used to abstract
reuse several object coordination paradigms.

2.2.4.2 Accepting Requests
A main concern from the point of view of an object acting as a server is whether req
can be conditionally accepted.* When a request arrives, the server may be busy servi
a previous request, waiting itself for a reply to request it has issued, or idle, but in a
that requires certain requests to be delayed. We distinguish initially between cond
and unconditional acceptance of requests. Conditional acceptance can be further d
inated according to whether requests are scheduled by explicit acceptance, by ac
conditions or by means of reflective computation (see figure 2.4).

* A secondary issue is whether further activity related to a request may continue after the reply has

sent as in the Send/Receive/Reply model [39], but this can also be seen as concern of internal conc

where follow-up activity is viewed as belonging to a new thread.
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Unconditional acceptance of requests is illustrated by monitors [42] and by Smalltalk-
[40] objects. The mutual exclusion that is provided by monitors could be considered
implicit condition for the acceptance of requests. However, the mutual exclusion pro
is captured by viewing monitors as quasi-concurrent objects so we consider requ
ceptance to be unconditional. Note that message acceptance for languages with an
onal object model is by default unconditional. 

Request scheduling

Unconditional 
acceptance

No synchronization with the 
state of the target

Ada packets, Smalltalk-80, 
Emerald, Trellis/Owl

Explicit acceptance

The execution of the 
operation is synchronized 
with an “accept” statement 
explicitly executed by the 
target

ADA tasks, ABCL/1, SR
POOL-T, Eiffel //

Activation conditions

Explicit or implicit conditions on 
the target’s state determine 
when the execution of an 
operation may take place

Abstract – representation 
independent

Conditions are expressed in terms of 
abstract properties of the object and do 
not refer to the particular implementation

ACT++, ROSETTE, PROCOL,
path expressions

Representation specific

Conditions are expressed 
directly on the hidden object 
state

Guide, Hybrid, Sina

 Reflective computation

The arrival of a message at the 
target triggers a reflective 
computation in the associated 
meta-object. This determines 
whether the requested operation 
should be executed

ABCL/R, ACTALK

Conditional
acceptance

Figure 2.4   Approaches to scheduling requests.
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Explicit Acceptance

With explicit acceptance, requests are scheduled by means of an explicit “accept” s
ment executed in the body of the server. Accept statements vary in their power to s
which messages to accept next. Acceptance may be based on message conte
operation name and arguments) as well as the object’s state. Languages that u
approach are Ada, ABCL/1, Concurrent C, Eiffel//, POOL-T and SR. With this appr
objects are typically single-threaded, though SR is an exception to this rule.

 Activation Conditions

With activation conditions, requests are accepted on the basis of a predicate over th
ject’s state and, possibly, the message contents. The activation condition may be pa
plicit, such as the precondition that there be no other threads currently active with
object. An important issue is whether the conditions are expressed directly over a p
lar representation of the object’s state or if they are expressed in more abstract te
Guide, for example, each method is associated with a condition that directly referenc
object’s instance variables, whereas in ACT++ the condition for accepting a mess
that the object be in an appropriate abstract state which abstracts from the state of a pa
ticular implementation. Another approach is to specify the legal sequences of mess
ceptance by means of a regular expression, as in path expressions [24] and PROCO

 There are also some proposals such as synchronizers [38], separate method argument
[66] and state predicates [74], for activation conditions that depend on the state or 
computation history of other objects. 

A synchronizer [38] is a special object associated with a group of objects. When a
od of any of these objects is called a condition in the synchronizer is evaluated. Dep
on the outcome, the execution of the method may proceed, or be delayed until th
dition becomes true. Synchronizers may have their own variables that are used t
information about the computation history of a group of objects.

Separate method arguments [66] can be used to constraint the execution of a me
preconditions on the argument declared as “separate.” The execution of the metho
layed until the preconditions are true and the separate objects are “reserved” for th
tion of the call. That is, they can only be used in the body of a method.

With state predicate notifiers [74], the execution of a method can be constrained 
notification that another object has reached a state that satisfies a state predicate.This fea-
ture has synchronous and asynchronous forms. In the synchronous variant, the no
object waits until the method is executed and the method gains exclusive access
object. In the asynchronous variant the notifying object proceeds independently.

Reflective Computation

With reflective computation the arrival of a request triggers a method of the server’s meta-
object. The meta-object directly then manipulates object-level messages and mailbo
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objects. This approach is followed by the language ABCL/R [86] and it is also illustr
in Actalk [23] where some reflective facilities of the Smalltalk-80 system are used t
tercept messages sent to an object and synchronize their execution in a way that si
message execution in actor-based languages. 

2.3 Criteria for Evaluating Language Design Choices

So far we have presented a design space covering the most significant choices in the
of concurrency features for OOPLs, but we have said little about how the variou
proaches compare. Since our goal is to arrive at COOPLs that provide the advanta
object-oriented programming for the development of concurrent systems, we mus
formulate our requirements as precisely as possible, before beginning to compa
approaches. We first discuss the issue of developing object classes that have hig
potential. Then, we turn our attention to the support for reuse at a finer granularity
objects and examine the issues related to the use of inheritance and the reuse of s
nization constraints. 

2.3.1 Object-Based Features — Support for Active Objects

The main issue for reuse at the object level is that concurrency in an object-oriente
guage should not diminish the benefits of object-based features with respect to reu
instance, encapsulation should still protect the internal state of objects from surrou
objects and it should still be possible to insulate objects’ clients from implement
choices. This should make it possible to change the implementations without affecti
clients provided that the interfaces are maintained and that changes are, in some se
haviourally compatible.

Object-oriented and concurrent programming have different aims that incur diffe
software structuring paradigms. Object-oriented programming aims at the decompo
of software into self-contained objects to achieve higher software quality and to pro
reusability. Concurrent programming aims at expressing and controlling the exec
synchronization and communication of conceptually parallel activities. Its primary go
to provide notations that are suitable for devising solutions to problems that involv
coordination of concurrent activities [11].

In order to compare language designs it is necessary to adopt a programming mo
concurrent object-based programming and evaluate how well the various language
port this model. Our view regarding the way the two programming paradigms shou
combined is by structuring programs as cooperating objects that exchange messag
is similar to the way sequential object-oriented programs are structured, however, i
current programs objects may encapsulate one or more concurrent threads that imp
their behaviour. Moreover, the operations of an object may be invoked by concurren
ecuting objects. 
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We use the term active objects for this programming model to emphasize that obje
themselves rather than the threads that invoke their operations have the responsi
schedule concurrent requests. Requests should be scheduled in a way consistent 
object’s internal state and the possibly spontaneous execution of internal threads. T
jects developed following this model are independent self-contained entities. They c
reused across applications and they may be refined to support different schedulin
cies for invoked operations. The programs that use the objects should not be affec
such changes.

Although any language combining concurrent and object-oriented features cou
used to develop software following this model, as will be illustrated in section 2.4, n
combinations of concurrent and object-oriented features are equally successful i
porting this programming model. Below we develop a number of requirements on th
guage features to adequately support programming following an active object mod
section 2.4 we will use these requirements to evaluate language design choices an
tify the shortcomings of some approaches.

2.3.1.1 Requirements
According to the active object model discussed above, we would like languages to s
the development of self-contained objects with high reuse potential. A general prin
for achieving this is that reusable object classes should make minimal assumptions
the behaviour of applications that will use them. Furthermore, the choice of cons
should not constrain the possible implementations of a class. We can formulate o
quirements as follows:

1. Mutual exclusion — protecting the objects’ state: The internal state of objects
should be automatically protected from concurrent invocations so that it wi
possible to reuse existing objects in concurrent applications without modifica

2. Request scheduling transparency: An object should be able to delay the servicin
of requests based on its current state and on the nature of the request. This sh
accomplished in a way that is transparent to the client. Solutions that require t
operation of the client are not acceptable from the point of view of reusability s
the client then cannot be written in a generic fashion.

3. Internal concurrency: The concurrency constructs should allow for the implem
tation of objects that service several requests in parallel or that make u
parallelism in their implementation for increased execution speed in the proce
of a single request. This could be done either by supporting concurrent th
within an object or by implementing an object as a collection of concurre
executing objects. Whatever approach is chosen, it is important that int
concurrency be transparent to the object’s clients so that sequential implem
tions of objects may be replaced by parallel ones.

4. Reply scheduling transparency: A client should not be forced to wait until the ser
ing object replies. In the meantime it may itself accept further requests or call 
objects in parallel. It may even want replies to be directly sent to a proxy. Re
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scheduling by the client should not require the cooperation of the server sinc
would limit the ability to combine independently developed clients and server

2.3.1.2 An Example 
In order to compare the design choices and their combinations with respect to the re
quirements, we shall refer to an instance of a “generic” concurrent program structu
administrator inspired by [39]. The administrator is an object that uses a collectio
“worker” objects to service requests. An administrator application consists of four 
kinds of components. The clients issue requests to the administrator and get back res
The administrator accepts requests from multiple concurrent clients and decomp
them into a number of subrequests. The workload manager maintains the status of work
ers and pending requests. Workers handle the subrequests and reply to the administra
The administrator collects the intermediate replies and computes the final results to
turned to clients (see figure 2.5).

The administrator is a very general framework for structuring concurrent applicat
For example, workers may be very specialized resources or they may be general-p
compute servers. The workload manager may seek to maximize parallelism by loa
ancing or it may allocate jobs to workers based on their individual capabilities.

The components described above identify functionally distinct parts of the applic
that could have been developed independently and reused as indicated above to c
a new application.These components do not have to be implemented as single obje
indeed, as we see later, depending on the constructs provided by certain languages
objects will be necessary for realizing the desired functionality. However, it should be
sible to modify the implementation of the above components without affecting the re
if they were single objects.

The following points relate the language design requirements listed above to the
issues in the case of the example application:

Clients 

Administrator

WorkersWorkload manager

Figure 2.5   The administrator example.
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• Mutual exclusion: (i) Workload manager reuse – the workload manager must be
tected from concurrent requests by the administrator. There may be cases wh
administrator does not invoke the workload manager concurrently. Although in
cases no protection is needed, workload managers that are not protected could
reused in different concurrent implementations of the administrator. In such a
current implementation the administrator may use a collection of proxies that
invoke the workload manager concurrently. (ii) Worker reuse – workers sh
similarly be protected so that arbitrary objects may be used as workers with va
implementations of the administrator, including concurrent ones.

• Request scheduling transparency: (iii) Genericity of clients, reusing the administra
tor with different clients — the administrator must be able to interleave (or de
multiple client requests, but the client should not be required to take special a
In fact it should be possible to implement any object as an administrator and it s
not matter to the object’s clients if the serving object happens to be implemen
an administrator.

• Internal concurrency: (iv) Client/worker reuse — the administrator should be op
to concurrent implementation (possibly using proxies) without constraining th
terface of either clients or workers;

• Reply scheduling transparency: (v) Worker reuse — it must be possible for the ad
ministrator to issue requests to workers concurrently and to receive their re
when it chooses without special action by workers;

2.3.2 Inheritance and Synchronization

There are two main issues concerning reuse at a finer granularity than objects. 

• The first is to maintain in concurrent languages the reuse potential offered by 
itance in sequential languages. Several early papers have reported difficulties
ing class inheritance in COOPLs as well as in the design of languages that int
class inheritance and concurrency constructs [19] [6] [22]. In some cases inher
was left out as it was deemed difficult to integrate and of limited use. The need t
chronize the execution of inherited, overridden and newly defined methods, wi
breaking the encapsulation between classes, makes it more difficult to take a
tage of class inheritance than in sequential languages. For instance, if mutex
used for synchronizing method execution, a method defined in a subclass woul
to access a mutex defined in a superclass in order to be synchronized with sup
methods. This would break encapsulation between classes. The design of con
cy constructs should be made in way to avoid such problems. 

• The second is to make it possible to reuse algorithms, often called synchronization
constraints, for scheduling the execution of methods of a class. For instance, a
may implement a synchronization algorithm that schedules its methods accord
the readers and writers synchronization scheme. It would be desirable to be a
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reuse this algorithm in other classes taking into account the reader/writer prope
its methods. 

In most languages the reuse of synchronization constraints is achieved through
inheritance and the term inheritance of synchronization constraints is often used for this
issue. We have chosen the term reuse of synchronization constraints since class inherit-
ance is only one possible means to achieve reuse. Furthermore, it is questionable w
class inheritance should be used for this purpose. We will further elaborate on this
below. Then, we will discuss separately the requirements for supporting class inher
and for reusing synchronization constraints.

Inheritance is often considered as the most prominent feature of object-oriente
gramming. The most widespread object-oriented languages such as C++, Smallta
Eiffel provide an inheritance mechanism that may be used for different purposes. 
include: the reuse of the implementation of a class in the implementation of a new
the specification of a type compatibility relation between a class and its parent cl
considering for type-checking purposes that instances of the class are of the same
instances of its superclasses; finally, it may be used to express that the concept o
modelled by the subclass is, in some sense, a refinement of the concepts or entitie
sented by its parent classes. 

The use of a single mechanism for all these purposes can, on one hand, be a so
confusion and on the other, limit the effectiveness of the mechanism for each of the
ferent purposes. For instance, subtypes have to be related to a class inheritance r
ship even if they do not share any part of their implementation. In order to use part
implementation of a class in a new class, all the methods have to be inherited to c
with the subtype relation that is also expressed by the inheritance link.Wegner and Z
[88] provide a general and in-depth discussion of inheritance as an incremental mo
tion mechanism and illustrate its use for different purposes. Guide [48] and POOL
are concrete examples of languages with mechanisms that distinguish between the
ent uses of inheritance. Both languages distinguish between class inheritance as a 
use mechanism and typing. POOL-I goes even further by also allowing the specific
of behaviourally compatible classes. 

In section 2.4.3 we will examine more closely the approaches for the reuse of syn
nization constraints followed by different languages. This will illustrate the interact
that class inheritance may have with the reuse of synchronization constraints in the
ferent approaches.

2.3.2.1 Class Inheritance
The issues listed below have to be addressed in order to take advantage effectivel
reuse potential of inheritance. The first two are concerned with the reuse of supe
methods. The third one concerns the use of inheritance for providing generic algor
through the definition and refinement of abstract classes [36] [44]. 

• Separate specification of the synchronization constraints: If the code that imple-
ments the synchronization decisions related to the execution of methods is inc
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directly in methods, inherited methods typically will have to be modified to acc
for the synchronization constraints of the subclass [45].

• Interface between methods and the synchronization constraints: The separate speci
fication of synchronization control actions and method code does not neces
mean that the execution of methods once started should be carried out witho
further interaction with the synchronization constraints. Such an approach limi
expressive power of a language. Instead, there should be a well-defined interfa
tween methods and the synchronization constraints that allows several actions
execution of the method to interact with the synchronization constraints asso
with the various classes where it is reused.

• Consistency with other uses of inheritance for software composition: Apart from re-
using individual methods, inheritance serves to facilitate sharing of algorithms
designs [36]. For this purpose, inheritance is paired with other features such as
cation of methods through pseudo-variables such as self or super in Smalltalk. 

2.3.2.2 Reuse of Synchronization Constraints
The issues discussed below are important for evaluating and comparing the propos
the specification and reuse of synchronization constraints:

• Flexibility of the binding mechanism: The mechanism that is used to apply co
straints to a particular class determines the flexibility with which constraints ma
reused. Depending on the mechanism, constraints are bound to exactly one cla
class where they were introduced), or to any class that inherits from the clas
introduced the constraints. Additionally, method names appearing in a cons
specification may be considered as variables to be substituted at binding tim
method names defined in a particular class.

• Compositionality and extensibility: This concerns the support provided for reusi
previously defined constraints in the definition of new ones. A related issue is ex
ing the application of constraints to methods that are introduced at a later stag

• Polymorphism: The potential applicability of constraints to different classes. Thi
related to the binding mechanism and modularity; constraints could be specifie
way that would allow them to be applied to different classes. However, this ma
impossible or inconvenient because of the absence of an appropriate binding 
anism.

• Modifiability and locality of change: There are circumstances where it may be de
able or necessary to change the implementation of a class or of just the sync
zation constraint. Depending on the approach, this may be achieved easily th
some local modification or it may require a cascade of changes in synchroniz
constraints. In some cases it may even be needed to modify the inheritance hie
Most of the other aspects discussed above come into play when considerin
issue.
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2.4 Exploring the Language Design Space

We now propose to compare the various approaches to the design of COOPLs by s
atically exploring the language design space and evaluating design choices agains
quirements specified in the previous section. Since the various aspects of the desig
are sometimes intertwined, we will find ourselves returning to common issues on 
sion. Basically we will take the following course: first we briefly consider the th
categories of object models; then we consider object interaction mechanisms in com
tion with internal concurrency; finally we explore inheritance and synchronization 
straints as a topic worthy of separate study. We summarize our conclusions in s
2.4.4.

2.4.1 Object Models

By the requirement of mutual exclusion, we can immediately discount the orthog
object model as it provides no default protection for objects in the presence of conc
requests. The reusability of workers and workload managers is clearly enhanced 
will function correctly independently of assumptions of sequential access.

The heterogeneous model is similarly defective since one must explicitly disting
between active and passive objects. A generic administrator would be less reusab
would have to distinguish between active and passive workers. Similarly worker reu
ity is weakened if we can have different kinds of workers.

The homogeneous object model is the most reasonable choice with respect to reus
ity. No distinction is made between active and passive objects.

Note that it is not clear whether the performance gains one might expect of a h
geneous model are realizable since they depend on the programmer’s (static) assi
of objects to active or passive classes. With a homogeneous approach, the compile
conceivably make such decisions based on local consideration — whether a compo
shared by other concurrently executing objects is application specific and should be
pendent of the object type.

2.4.2 Object Interaction Mechanisms

Request-reply mechanisms such as an RPC-like interface provide more support for
reuse. Using our administrator example, we can see that one-way message pass
several disadvantages over RPC for reusing objects. 

A concurrent client may issue several requests to the administrator before it gets a
In this case it is important for the client to know which reply corresponds to which req
Are replies returned in the same order as requests? In the case of synchronous m
passing an additional difficulty is that the administrator may get blocked when it sen
reply until the client is willing to accept it. Requiring the client to accept the reply imp
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additional requirements on the client and makes reuse more difficult. Either a diff
mechanism has to be supported for sending replies or proxies have to be created. 

One-way message passing is also inconvenient for coping with the interaction be
the administrator and worker objects. A difficulty with using one-way messages is g
the replies from workers: as there will be several workers that are invoked in paral
well as potentially concurrent invocations of single worker, it can be difficult for the
ministrator to tell which reply is associated with which request.

A solution to this problem is to create a proxy for each request. The proxy would 
out the request and then send a message to the administrator containing the worke
plus some extra information used for identifying the request. As with sequential RP
administrator will also have to manage local queues for partially completed reques

2.4.2.1 Sequential Objects
We argued that an RPC interface for objects provides better support for object reus
one-way message passing. However, we quickly discover that if objects have a 
thread of control and RPC is the only communication mechanism, the request and
scheduling requirements of the administrator are not satisfied. We further discuss th
itation of this design choice combination below. Then we show additional mechan
that may be used to overcome these limitations without giving up the RPC-interfa
completely discarding sequential object design choice. The limitation of the combin
of sequential objects (“modules” in their case) and RPC is discussed at length in
However, they reach the conclusion that either the sequential object or the RPC 
should be discarded. 

Limitations of the Sequential Object–RPC Combination

In particular, a sequential RPC administrator will not be able to interleave multiple cli
requests as it will be forced to reply to a client before it can accept another reques
only “solution” under this assumption requires the cooperation of the client, for exam
the administrator returns the name of a “request handler” proxy to the client, which th
ent must call to obtain the result. In this way the administrator is immediately free t
cept new requests after returning the name of the request handler. Such an appr
however, incompatible with the requirement on request scheduling transparency
scheduling of requests by the administrator is not transparent to its clients. 

Consider for instance that we would like to replace the sequential implementation
existing object class by a parallel implementation where instances of the class act
ministrators for a collection of appropriate worker objects. In accord with our req
ments we would like to take advantage of encapsulation and data abstraction to repl
old implementation without having to modify the programs that used it. This, howev
not possible since, as discussed above, in order to be able to process client reque
currently, an object, implemented as an administrator, has to have a different interfac
an object having a sequential implementation.
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The sequential RPC combination also provides limited support for reply schedulin
the administrator. If the administrator invokes workers directly using RPC, its si
thread will get blocked until the invoked worker computes the result and returns the 
The sequential RPC combination prevents the administrator from invoking several 
ers in parallel, or accepting further client requests while a worker computes the resu
receiving the workers’ replies at a later time.

It is also possible to have the workers cooperate with the administrator so that it do
block when delegating work to them, but such solutions require workers to be code
special way to implement the cooperation. This is incompatible with our requireme
request scheduling transparency, which would allow any object to be potentially use
worker.

Using Proxies for Reply Scheduling

The limitation of the sequential RPC combination for reply scheduling can be over
by the use of “courier” proxies used by the administrator to invoke workers. Each tim
administrator needs to invoke a worker it creates an appropriate courier proxy that w
voke the worker instead. To get a worker’s reply, the administrator could invoke a m
of the corresponding courier or alternatively the courier could call an administra
method when the reply becomes available.

 The former alternative has the disadvantage that the administrator may get block
invokes the courier too early. This may never occur with the latter approach. Howeve
administrator has to manage local queues for replies that are sent to it and that it can
immediately. Furthermore, each time a reply is returned, it should check whether a
replies needed so far for handling a client’s request are available so that it may pr
with the client’s request.

The use of proxy objects for carrying out requests and for storing replies is also n
in the case of one-way message passing for allowing requests to be paired with rep

Although proxies are a general programming approach, it is cumbersome to pro
and use them explicitly. In fact unless the language supports classes with type para
and a flexible manipulation of method names, a new proxy class would have to be d
for each different worker class in an administrator application. 

Future variables in ABCL/1 [94], the process type in PAL [18] and CBox objects in
ConcurrentSmalltalk [92] provide functionality which is somewhat similar to the cou
proxies that were used by the administrator to call workers. These mechanisms co
used by the administrator to call workers without getting blocked and for collecting w
er replies at a later time.

 The advantage of these mechanisms over program-defined proxies is that they
used for calling workers of any class. Future variables, however, are not first-class o
and so are not as flexible. For instance, a future variable cannot be sent in a messag
ing a different object than the one that made the request to receive the reply.
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A difficulty with built-in proxies is that the administrator may at some point in ti
have to get blocked and wait for a further client request or the reply to a previous w
request. Unless there exists a synchronization mechanism that allows the administ
wait on either of these events, the administrator may get blocked to obtain a reply
quest that is not available and will thus be unable to accept other requests or replie
problem could be circumvented either by polling if a non-blocking request accep
mechanism is supported or by additional, explicitly programmed proxies that wou
turn the replies by invoking some administrator’s operation especially provided fo
purpose. This way a synchronization mechanism for selectively accepting requests
allow the administrator to be woken up either for receiving the results of a previou
quests or for accepting new requests.

Still, the administrator’s code may get quite involved. If there is no way to prevent b
woken up by messages containing client requests or worker replies that cannot b
right away, local message queues will have to be managed by the administrator. So
pears that built-in proxies combined with single-thread objects provide limited suppo
reply scheduling by the administrator since one should again rely on the use of exp
programmed proxies.

Combining Request/Reply and One-Way Message Passing

It is also possible to relax the RPC style of communication without going all the w
supporting one-way message passing as the main communication primitive. This h
advantage that it is possible to present an RPC interface to clients and, at the sam
obtain more flexibility for processing requests by the administrator. This possibility 
lustrated by ABCL/1 [94] which permits the pairing of an RPC interface at the client
with one-way asynchronous message passing at the administrator’s side. Moreov
reply message does not have to be sent by the administrator object. This provide
more flexibility in the way that the administrator may handle requests since the re
may be directly returned to the client by proxies. The following segment of code s
how this is accomplished.
 The RPC call at the client side looks like:

result := [ administrator <== :someRequest arg1 ... argn] ...

A message is sent to the administrator to execute the request someRequest with arguments
arg1,...,argn. The client is blocked until the reply to the request is returned and the res
stored in the client’s local variable result.

At the administrator’s side the client’s request is accepted by matching the messa
tern:

(=> :someRequest arg1 ... argn @ whereToReply 
.... actions executed in response to this request ... )

When the administrator accepts this request, the arguments are made availabl
local variables arg1,...,argn and the reply destination of the request in the local variabl
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whereToReply. The reply destination may be used as the target of a “past type,” i.e. 
chronous, message for returning the reply to the client. As a reply destination may a
passed around in messages, it is possible for another object to send the reply mes
the client. This action would look like:

[ whereToReply <== result ]

where whereToReply is a local variable containing the reply destination obtained by
message acceptance statement shown above, and result is the result of the client’s reques

Another interesting way of using the possibility to combine one-way message pa
with RPC is for flexible reply scheduling by the administrator. In the previous sectio
built-in proxies, we mentioned that a difficulty was that the administrator should be
to wait to accept both returned replies and further requests. A way to circumvent this
lem was to use explicitly programmed proxies that would return results by invoking s
operation provided by the administrator. In this way, replies were returned by reque
that a request acceptance mechanism was sufficient for allowing the administrator 
for both requests and replies. A different approach is possible by pairing one
messages to the RPC interface supported by workers. With this approach
administrator may use a past type message, with itself as reply destination, for calli
workers which present an RPC interface. The replies from the workers can th
received by the administrator as any past-type message request. This allow
administrator to use the message acceptance mechanism for receiving both reque
replies.

This approach has, however, some of the drawbacks of one-way message passin
extra work is needed in order to find out which reply message is related to what reque
also that the administrator has to manage queues for replies that may not be used i
ately. 

2.4.2.2 Multi-Threaded Objects
Another way for allowing the administrator to service several concurrent requests
supporting multiple concurrent or quasi-concurrent threads. A separate concurrent 
may now be used for handling each client request. However, depending on the m
nisms provided for thread creation and scheduling, it may still be necessary to resor
solutions discussed previously in order to achieve a satisfactory level of concurre
the processing of client requests. 

We consider in turn quasi-concurrent and concurrent approaches and examine th
port provided by the thread creation and scheduling mechanisms for programming a
istrators.

Quasi-Concurrent Approaches

A traditional example of “objects” with quasi-concurrent thread structure is provide
monitors [42] [21]. However, monitors present some well-known difficulties such
“nested monitor calls,” and they unduly constrain parallelism [56] [77] [20] when use
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the main modular units of concurrent programs. These limitations are due to some
to the quasi-concurrent structure of threads. However, an approach based on m
would also constrain concurrency among different objects because of its limited su
for reply scheduling. Assuming that the administrator is a monitor, then when call
worker the monitor would remain blocked until the invoked operation would return. 
situation, called remote delay [53], makes it impossible for the administrator to acce
further client requests or to call a second worker.

 Consequently, certain object-oriented languages have adopted more flexible 
tions. For example, Emerald [19] uses monitors as defined by Hoare [42]. However, 
operations of an object have to be declared as monitor procedures and also sever
pendent monitors may be used in the implementation of an object. Lock blocks and wait
queues in Trellis/Owl [68] also allow for more flexible implementation schemes tha
objects were identified to monitors. With this approach, however, objects in thes
guages are not quasi-concurrent any more.

The restricted support for concurrency among objects by monitors is not due 
quasi-concurrent structure of objects, but rather to the limited flexibility for re
scheduling. This is illustrated by the second quasi-concurrent approach we ex
which by providing a more flexible reply scheduling scheme does not restrict concur
among objects.

 Hybrid [71] is another language which adopts a quasi-concurrent thread structu
objects. However, in contrast to monitors, the delegated call mechanism provides a mor
flexible reply scheduling approach that does not restrain concurrency among objec
administrator may use the delegated call mechanism to invoke workers. In such a
new thread may be activated in the administrator for processing another client req
the meantime.

The delegated call mechanism is satisfactory for allowing the administrator to a
further client requests while a worker is executing a previous request, thus providin
port for concurrency among several client requests. However, it is of no help for allo
several workers to execute in parallel for a single client request.

This may only be done by using proxies for invoking the workers or by a constru
specifying the creation of a new quasi-concurrent thread. Such a construct was pro
in the original design of Hybrid. The newly created quasi-concurrent threads w
resume each other by using delegated calls. This construct was not included in the
type because it substantially increased the complexity of the rules for message a
ance.

Concurrent Objects

With concurrent threads it is straightforward to process several client requests conc
ly by creating a new thread for processing each client request. Provided that satis
mechanisms are supported for constraining the creation and activation of conc
threads, this does not result in the mutual exclusion problems of languages with an o
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onal object model. The concurrent execution that may take place is explicitly specifi
the programmer and the scope of the potential interference of the concurrent thread
stricted to the state of a single object. 

Provided that there is some way to suspend the execution of a concurrent thread o
its creation, languages that support concurrent threads provide adequate support
quest scheduling and for internal concurrency to the extent that several client reques
be processed concurrently.

A different issue that is not necessarily addressed by the support for concurrent t
is the possibility to use concurrency for processing a single request. Unless the crea
multiple threads can be initiated by the object, the support for reply scheduling of co
rent threads is not sufficient for processing a request in parallel.

For example, the language Sina [84] makes it possible to use several concurrent 
within an object for processing requests; there is no direct means, however, for o
these threads to create more threads for calling the worker objects in parallel. This i
indirectly by creating a courier proxy, as described previously. It is therefore not nec
ily redundant to support both multiple threads and non-blocking communication p
tives.

A satisfactory way for calling workers in parallel without using proxies or async
nous message passing is to support a construct by which more threads may be cr
the object. In this case a worker can be called by each of these threads in an RPC f
With quasi-concurrent threads, a call to a worker should trigger the execution of an
thread. In SR the code segment of the administrator that is used for issuing requ
workers in parallel would look like this:

co result1 := w1.doWork(...) -> loadManager.terminated(w1)
// result2 := w2.doWork(...) -> loadManager.terminated(w2)
oc
globalResult := computResult(result1,result2);
...

2.4.3 Inheritance and Reuse of Synchronization Constraints

A large body of research has concentrated on the issues of making effective use o
itance in COOPLs as well as on the related issue of reusing synchronization
straints.We will provide a brief overview of this work. Then we will turn our attention
the issues discussed in section 2.3.2 and illustrate the issues and how they are ad
by various language designs putting particular emphasis on some points that ha
received the attention they deserved in related work. More extensive presentatio
systematic comparisons of the proposals for supporting inheritance and the re
synchronization constraints may be found in [63] [60] and [16].
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2.4.3.1 A Brief Overview of Related Research
Eiffel// [26][27] and Guide [34][48] were two of the earliest proposals that attempte
combine inheritance and synchronization constraints by removing the constraints
the bodies of methods. 

These approaches presented some shortcomings with respect to the ability to ext
synchronization constraints to account for new methods introduced by subclasse
problems were independently identified by Kafura and Lee [45] and Tomlinson and 
[83], who in turn proposed their own approaches for overcoming them. A common a
of these proposals is that constraints are specified by associating sets of method
stractions of the object state in which they can be executed. The main idea was tha
of methods would be extended in subclasses with the additional methods. 

Matsuoka et al. [62], however, showed that there existed certain cases, called inherit-
ance anomalies, where new state abstractions would have to be introduced in subcla
consequently requiring extensive redefinition of inherited methods. Matsuoka late
posed his own approach, where he retained the idea of sets of acceptable metho
provided a combination of guards and accept sets allowing the best technique to b
for the problem at hand.

 The issue of extending and combining inherited constraints was also addressed
ious other proposals, notably: Synchronizing Actions [69], Scheduling Predicates
Ceiffel [57], Frølund’s framework [37], PO [29], SINA [16] and SPN [74]. It is importa
to note that Synchronizing Actions and SPN are two of the very few proposals to co
the issue of suspending method execution, which is important for reply scheduling.

The language DRAGOON [13] [14] supports the specification of generic synchro
tion constraints and provides a special inheritance mechanism separate from clas
itance of sequential aspects of classes for reusing these synchronization constrain

Meseguer [67] has proposed a somewhat different approach for avoiding the pro
related to the use of inheritance in COOPLs. He proposes to eliminate the synchron
code which causes inheritance anomalies. His language is based on a concurrent re
logic; the use of appropriate rewrite rules allows the specification of synchronization
out introducing inheritance anomalies.

Synchronizers [38] is an approach for the specification of synchronization const
that allows constraints to be associated to objects dynamically. An interesting point
this proposal is that constraints may depend on the state and computation history o
al other objects.

2.4.3.2 Binding Mechanisms for Synchronization Constraints
The most direct way to associate synchronization constraints to methods is to s
them together as part of a class definition. Constraints defined in a class are inher
the ordinary class inheritance mechanism. Such an approach is followed by
COOPLs, such as Guide, PO, PROCOL and ACT++, to name a few. This approach
ever, has the shortcoming that it may be difficult to apply constraints to different cla
A first problem is with method names: if constraints refer to particular method nam
the class in which they are defined, it will be difficult to apply them to classes where 
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reusing constraints. If one uses class inheritance to reuse the constraints, the m
defined in the class are also inherited. Below we examine some approaches that ha
proposed for addressing these problems. 

Genericity of Synchronization Constraints in DRAGOON

DRAGOON [13] [14] is an example of a language that supports the specification of g
ic synchronization constraints and of one that dissociates inheritance from the mech
used for binding synchronization constraints to a class’s methods. Generic constrai
defined as behavioural classes (b-classes). The constraints may be applied to a sequential
class having no associated constraints, through the b-inheritance (behavioural) m
nism. This mechanism is independent from the inheritance mechanism (f-inherit
used for sequential classes. Figure 2.6 shows an example of the use of the constra
nition and binding mechanism in DRAGOON. A class UNI_BUFFER is defined in (a) and
(b) with methods PUT and PEEK used to insert a new element into the buffer and to ex
ine the number of elements in the buffer. In (c) a generic constraint READERS_WRITERS

with SIMPLE;
class UNI_BUFFER
      introduces
           procedure PUT(I : in SIMPLE.ITEM);
           procedure PEEK (NB: out INTEGER);

end UNI_BUFFER;

class body UNI_BUFFER is

   ... definition of the instance variables and
        implementation of the operations...

end UNI_BUFFER;

behavioural class READERS_WRITERS is
ruled WOP, ROP;
where
           per (WOP) <=> active(WOP) + active(ROP) = 0;
           per(ROP) <=> (active(WOP) = 0) and (requested(WOP) = 0);

end READERS_WRITERS;

class READERS_WRITERS_UNI_BUFFER
inherits UNI_BUFFER
ruled by READERS_WRITERS
where 

PUT => WOP, 
PEEK => ROP

end;

Figure 2.6   Constraint definition in DRAGOON.

(a) (b)

(c)

(d)
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is defined for controlling execution of the methods of a class according to the reade
writers, scheduling policy [81]. This synchronization constraint is bound to the c
UNI_BUFFER in (d) where PUT is associated with the constraints for writers and PEEK with
the ones for readers.

Using the Inheritance mechanism of Beta

A similar effect for specifying and binding constraints may be achieved by using the inner
mechanism of Beta. In Beta a method in a subclass is associated with the superclas
od it specializes. Instead of the subclass method explicitly invoking the superclass m
through the use of super mechanism, as in Smalltalk, the superclass method is always in-
voked, and subclasses may only introduce additional behaviour at the point where th
word inner occurs. In a sense, the execution of the superclass method is wrapped 
the invoked subclass method. First are executed the actions in the superclass met
precede inner, then the subclass method is executed, then the actions of the supe
method that follow inner are executed.

This feature may be combined with low-level synchronization mechanisms, su
semaphores, to implement classes that encapsulate generic synchronization polic
can be applied to methods defined in subclasses in a way similar to how it is done in
GOON.

Assume there is a class ReaderWriterSched (not shown) with methods reader and writer
that use semaphores to implement a reader/writer scheduling policy for the methodread-
er and writer. This synchronization may be applied to a class SynchedBuffer with operations
empty, get, put as follows:

SynchedBuffer: @ |   ReaderWriterSched
(# .... instance variables....

peek: Reader(# ...implementation of peek... #)
get: Writer(# ...implementation of get... #)
put: Writer(# ....implementation of put..#)

#)

This allows the execution of peek to be constrained according the synchronization c
straints of a reader, whereas get and put are synchronized according to the synchronizat
constraints that apply to writers. More on the use of inheritance in Beta to define g
synchronization policies can be found in [58].

Method Sets and Abstract Classes in ABCL/AP100

The method set feature provided in this language may be combined with abstract cla
to define generic synchronization constraints that can be applied to several classes
od sets are specified as part of class definitions, and are associated with synchron
constraints. Method sets can be inherited and modified in subclasses. Systematic
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methods sets solves the problem of applying constraints to classes with different m
names. The possibility of combining method sets with abstract classes (classes wh
all methods are defined) can be used to provide facilities similar to those of DRAGO
Abstract classes, making systematic use of method sets in synchronization cons
can be used to represent generic constraints similar to DRAGOON’s b-classes. Ho
in contrast to DRAGOON, programmers have to use the features provided by the lan
in a disciplined way. Another interesting feature of this language, discussed below, 
it is possible to combine synchronization constraints.

2.4.3.3 Polymorphism and Synchronization Constraints
Polymorphism of synchronization constraints is concerned with the potential applic
ty of constraints to different classes provided that the language supports an appr
binding mechanism. There are two potential deficiencies with respect to this issue
proaches for specifying synchronization. The first is related to the use of instance 
bles in conditions constraining the activation of methods. The second concerns the
constraints that specify mutual exclusion among methods in languages that suppor
object concurrency.

The first deficiency, also discussed by Bergmans [16], occurs in the propos
Frølund [37] and Matsuoka [63], and in Guide and PROCOL, to cite a few example
these languages the conditions that are used in their constraints reference the obje
stance variables. This makes it difficult to apply the constraints to classes implemen
a way that does not require these instance variables. Moreover, it makes it diffic
change the implementation of a class without having to consider the instance variab
erenced in the constraints and, eventually, modifying the constraints as well. The pr
may also be more severe than just modifying the constraints of a single class, as th
straints to be modified may be used by other subclasses as well. This could cause
examination and adjustment of the constraints of several subclasses of the class t
modified.

Two approaches have been be followed for alleviating this problem. First, instead 
cessing directly the instance variables, conditions could be specified through a fu
that accesses the object state indirectly. If the implementation had to be modified
these functions would need to be modified to account for the changes in the objec
This approach is followed for this precise reason by Sina in the way conditions are 
fied in wait filters [16] as well as in the specification of state predicates [74]. A se
approach is to use condition variables to maintain an abstract state that is separate f
actual class implementation and is used purely for synchronization purposes
approach is followed Synchronizing Actions, DRAGOON and PO.

The second potential deficiency occurs in languages with intra-object concurren
several languages with intra-object concurrency, such as Guide, DRAGOON and PO
chronization constraints specify mutual exclusion properties among methods. The
reason for imposing mutual exclusion constraints on method executions is that m
implementations access common instance variables. However, a different or modifi
plementation of a class may use a different set of instance variables and may have d
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needs for mutual exclusion. Consequently, constraints that specify mutual exclusion
erties among methods may find limited applicability to classes with a different imple
tation. Also, modifying the implementation of a class to which such constraints
attached, as discussed above for guards that reference instance variables, may c
modification of the constraints attached to several classes. This problem, however, 
received any attention by other work in the area.

2.4.3.4 Extensibility and Compositionality 
In languages such as DRAGOON, the issue of combining synchronization constra
avoided by the way the language is designed; inheritance is not allowed among clas
are associated with synchronization constraints, r-classes, or the classes (b-class
are use to describe the constraints themselves. This approach has advantag
disadvantages. The separation of constraints from classes allows the use of inhe
between f-classes without having to be concerned how the associated constraints
have to be combined. The disadvantage is that there is no support for reusing con
in the definition of new ones.

In other languages the issue of combining constraints is addressed either becau
inheritance mechanism is tight up to the constraint binding mechanism or to allow
straints to be defined incrementally. 

Frølund [37] proposed an approach for combining constraints of a class with tho
troduced in subclasses based on the view that constraints should become stricter
classes. The proposed approach for combining constraints supports this vie
incrementally combining conditions that disable method execution. This way cond
may only become more strict in subclasses. 

Matsuoka [63] provides a more elaborate way of combining constraints through m
fication of method sets and by the fact that method sets are recomputed in a subclass t
into account the full set of methods including the methods inherited from all supercla
For instance, the method set all-except(LOCKED), where LOCKED is another method set de
fined elsewhere, denotes all the object’s methods except the ones in LOCKED. This method
set is recomputed in subclasses to account for additional methods defined in the s
or inherited from other superclasses. Such features enable the definition of mixins th
be combined with the constraints of other classes to obtain the synchronization beh
specified by the mixin. An example of such a mixin class is presented in [63].

A powerful way of composing synchronization constraints is also provided by wa
ters in Sina. In order to get accepted, messages are matched against patterns of wait filters.
Wait filters are associated with conditions, a form of guards, that must be true to let m
ing messages go through the filter. Filters can be stacked at the interface of an obj
messages have to traverse all of them before being accepted by the object. Be
shows in [16] how this approach can be used for the locking mixin and for other cons
composition examples. The locking mixin discussed above can be realized by a cla
provides a wait filter that matches all messages but unlock and is associated with a cond
tion, Unlocked, that is true only when the object is unlocked. Lock and Unlock methods
change the state of a lock object so as to render the Unlock condition false and true respec
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tively. A lock object can be used in the definition of another class in such a way that
sages have to go through its filter first. In this way the synchronization constraint de
by lock can be reused in other classes.

PO [29] also supports the composition of constraints defined in superclasses of a
In contrast to the proposals of Frølund and Matsuoka, where objects are single-thr
PO constraints are designed for objects with internal concurrency. Constraints on th
allel execution of methods are partially ordered in a lattice with fully parallel executio
methods at the top and mutual exclusion among all methods at the bottom of the 
When incompatible constraints are inherited from different superclasses, they are
pared according to this order and the more strict constraint is retained.

2.4.3.5 Combining Inheritance with Request/Reply Scheduling
In most work on the design of mechanisms for the specification and reuse of synchr
tion constraints, little attention has been paid to the eventuality that methods may h
be suspended halfway through their execution. However, as we discussed in sectio
this may be necessary to support reply scheduling. The possibility of suspending m
using mechanisms designed for the reuse of synchronization constraints is addre
Synchronizing Actions [69] and in the design of the state predicate [74] mechanism. 

Synchronizing Actions are based on multi-thread objects. The execution of a m
may be suspended by calling, through self, another method with a pre-action such that t
call is delayed. This approach may be used to support request and reply scheduling
administrator as shown in figure 2.7. The administrator calls workers by creating p
objects that do the actual call. After creating a proxy the administrator thread is susp
by calling the method suspend. The proxy calls the worker and when the call returns it ca
the workerDone method to cause the administrator thread to be resumed. Figure 2.7
trates the implementation of the administrator concentrating on the synchronizatio
pects. Other languages that support internally concurrent objects and fle
specification of synchronization constraints, for instance Guide or Sina, could be u
a similar way. This approach, however, has some shortcomings. First, its comp
would make it difficult to use in practice. Second, it relies on the assumption that me
invoked through self are subject to the same constraints as invocations from other o
This may not be appropriate when self is used in conjunction with inheritance to reu
gorithms defined in abstract superclasses. 

The state predicate approach [74] provides a simpler and more direct way for sus
ing method execution based on a state predicate. The effect is similar to the one ac
by the approach discussed above. However, the resulting code is simpler as thread 
sion and resumption is supported by the language and the complications deriving fro
need to call the objects methods through self are avoided. 

2.4.4 Summary

 Below we present our observations with respect to reuse issues resulting from our
ration of language design approaches. 
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Object-Based Features

• Homogeneous object models promote reuse: Concurrent applications can safely re
use objects developed for sequential applications; efficiency need not be sacri

• Sequential objects with strict RPC are inadequate: Request scheduling and interna
concurrency can only be implemented by sacrificing the RPC interface; the so
is either to support concurrent threads or to relax the strict RPC protocol.

• One-way message passing is expressive but undesirable: Since higher-level request
reply protocols must be explicitly programmed, development and reuse of obje
potentially more error-prone.

• Acceptance of concurrent requests is handled well either by concurrent threads
explicit request/reply scheduling. 

• Issuing concurrent requests is handled well by one-way message passing, by p
or by internal concurrency: The combination of both concurrent threads and n
blocking communication primitives may be appropriate for handling the sepa
issues of accepting and issuing concurrent requests.

•  Built-in proxies used by sequential objects with non-blocking request issuing mech
anisms provide adequate support for reply scheduling but are weak at comb
reply and request scheduling.

•  Both concurrent objects and multi-object approaches are useful for internal con
rency: These approaches for internal concurrency are both useful for differen
poses. Concurrent threads make it easy to implement objects that may service 
concurrent requests that do not modify the objects state. Multi-object approach

Figure 2.7    Request/reply scheduling with synchronization constraints.

method workerDone()
matching (true)
pre { worker_finished := true }
action {  }
post { }

method request()
matching ( admin_idle )
pre { admin_idle := false}
action {

do some local processing...
request := worker_proxy.doWork();
self!waitWorker ();
...some more processing...

}
post { admin_idle := true };

class Admin;
concurrency_control:

boolean worker_finished := false, 
admin_idle := true;

method suspend()
matching (true)
pre { admin_idle := true }
action{ 

self!waitWorker ()
 }
post { admin_idle := false}

method waitWorker()
matching (worker_finished );
pre { worker_finished := false;admin_idle := false
}
action { }
post { };
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interesting when the implementation of a new object class, with internal concu
cy, may be realized by using several concurrently executing instances of ex
object classes.

Inheritance and Synchronization Constraints

• Synchronization constraints should not be hardwired in methods: If the synchroniza-
tion code that schedules the execution of methods is hardwired in methods, it w
necessary to modify the method code in order to meet the constraints of other cl

• Multiple threads are needed to cope with reply scheduling: To support reply sched-
uling it is important to be able to suspend the execution of a method. Howev
seems difficult to do this if synchronization code is kept separate from metho
support inheritance.

• Method suspension and resumption should be taken into account by synchroni
constraints: Taking into account the suspension of method execution by the me
nism that implements the synchronization constraints makes it simpler to pro
reply scheduling problems without compromising the reusability of methods.

• Specification of mutual exclusion may lead to non-polymorphic constraints: Mutual
exclusion properties of methods are often related to the way methods access in
variables. Such constraints may thus not be applicable to classes with dif
instance variables or in which methods access instance variables in a differen
Including mutual exclusion specifications in constraints makes them less reusa

• It is advantageous to separate the reuse of constraints from inheritance. It is easier to
reuse synchronization constraints is they are specified generically and if their 
cation to different classes is not accomplished through class inheritance. 

2.5 Conclusion 

Integrating concurrency and object-oriented programming is not as easy as it may s
a first sight. There is no major difficulty in introducing both object-oriented and con
rency features in a single language. However, arbitrary combinations of concurrenc
object-oriented features do not allow programmers draw the benefits of object-ori
programming for the development of concurrent systems. These difficulties have fo
substantial research in the past few years in the design of languages that gracef
tegrate both kinds of features. However, the interference of the features occurs in s
aspects of language design and the various proposals are not equally successful in 
aspects.

In this chapter we have discussed a number of issues that should be addressed in
aspects of language design, and we have formulated some criteria to use in evalua
sign choices. We have used these criteria to evaluate various proposals, and we ha
trated the issues by examining specific languages. The languages discussed were
to illustrate particular points rather than to present a complete survey of all existing
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posals. It was not our intention to compare individual languages; other issues no
cussed in this chapter would have to be considered in such an endeavour. Di
considerations come in to play, for example, when designing a language for rapid 
typing or a language for programming embedded systems.

We have presented some guidelines for the design of languages that support th
object-oriented features promoting reuse. Although these seem to be necessary con
more is needed to achieve reuse at a larger scale. These are research issues whic
cussed in other chapters. The further development and the use of techniques for re
larger scale for developing concurrent systems may provide more criteria for evalu
language features and may result in more requirements on language design.
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