Chapter 2

Concurrency in
Object-Oriented
Programming Languages

Michael Papathomas

Abstract An essential motivation behind concurrent object-oriented
programming is to exploit the software reuse potential of object-oriented
featuresin the development of concurrent systems. Early attempts to intfroduce
concurrency to object-oriented languages uncovered interferences between
object-oriented and concurrency features that limited the extent to which the
benefits of object-oriented programming could be realized for developing
concurrent systems. This has fostered considerable research intfo languages
and approaches aiming at a graceful integration of object-oriented and
concurrent programming. We will examine the issues underlying concurrent
object-oriented programming, examine and compare how different
approaches for language design address these issues. Although it is not our
intention to make an exhaustive survey of concurrent object-oriented
languages, we provide a broad coverage of the research in the area.

2.1 Infroduction

Considerable research activity in the past few years has concentrated on the design of con-
current object-oriented programming languages (COOPLS). This research activity aimed
at providing an integration of object-oriented and concurrent programming. The follow-
ing points discuss some motivation for concurrent object-based programming:

» Toaugment thenodelling poweof the object-oriented programming paradigm. One
goal of object-oriented programming can be seen as to model the real world directly
and naturally [89]. Concurrency then adds to the modelling power by making it easier
to model the inherently concurrent aspects of the real world.

Michael Papathomas, “Concurrency in Object-Oriented Programming Languages,” Object-Oriented Software Composition, O.
Nierstrasz and D. Tsichritzis (Eds.), pp. 31-68, Prentice Hall, 1995.

Reproduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and
may not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. Itis not
otherwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
rights reserved.

32 Concurrency in Object-Oriented Programming Languages

» To take advantage of tle®ftware design benefits object-oriented programming
and the potential f@oftware reuse the development of concurrent and distributed
systems. Concurrent and distributed systems are becoming more widespread and the
need to develop concurrent programs is becoming more common. This is witnessed
by the support provided for concurrent programming at the application level provid-
ed by modern operating systems.

» To supportsharing of distributed persistent datdhe object-oriented paradigm
lends itself well for providing location transparency by encapsulating within objects
access to distributed persistent data. However, as information has to be shared, ac-
cess to the objects has to be scheduled in a way that avoids interference and provides
support for recovering from failures in the distributed environment. Although this
could be left to the language implementation, as is the case in database management
systems, taking advantage of the semantics of object types to ensure atomicity has
substantial benefits with respect to performance and availability. This, however,
requires the use of concurrency control mechanisms for the implementation of object
types[90].

» To take advantage gbarallelism in the implementation of object classes for
increased execution speeds. Data abstraction can be used to conceal parallel
implementations of objects from programs that use them so as to increase their per-
formance when run on parallel machines. Parallelizing compilers could be used to
generate parallel implementations of object classes, thus avoiding the need for con-
currency constructs. However, better results are generally achieved by the use of ex-
plicit parallel algorithms as implicit approaches for parallel execution uncover and
exploit only a number of restricted classes of parallelism [46]. Moreover, as data ab-
straction hides the details of the implementation of classes, users of these classes
need not be aware of their concurrent implementation.

In all of the above cases it is necessary to combine the concurrent and object-oriented
programming paradigms, provide linguistic support for concurrent object-oriented pro-
gramming and, ideally, exploit the reuse potential of object-oriented programming for
concurrent software.

However, combining object-oriented and concurrency features has proven to be more
difficult than might seem at first sight. Clearly, devising a language that has both concur-
rent programming and object-oriented constructs poses no problem. There has been a
large number of proposals for combining object-oriented and concurrency features. How-
ever, they are not equally successful in drawing the benefits of object-oriented program-
ming for concurrent software development. The problem is that these features are not
orthogonal, and consequently they cannot be combined in an arbitrary way. Most of the re-
search in the area is devoted to devising graceful combinations that limit the interference
of features.

In this chapter we present a design space for the approaches for combining object-
oriented and concurrency features and a set of criteria for evaluating the various choices.
We use the criteria to evaluate some proposals and identify approaches that do not

Design Space 33

adequately support object-oriented programming as well as approaches that do achieve a
graceful combination of the features.

In section 2.2 we present a design space for combining object-oriented and concurren-
cy features with respect to several aspects of language design. In section 2.3, we discuss
the issues that have to be addressed to provide the benefits of object-oriented program-
ming. Section 2.4 examines the impact of some proposals on the integration of the pro-
gramming paradigms and their potential for reuse. Finally, in section 2.5 we present our
conclusions, discuss open problems and directions for further work in the area.

2.2 Design Space

We start by presenting three aspects of COOPLs that we consider for constructing the de-
sign space, and then we discuss the design choices with respect to each of these aspects.
Later, in section 2.4, we will examine more closely some existing languages showing how
the design of their features situate them in the design space.

2.2.1 A Design Space for Concurrent Object-Oriented Languages

We seek to evaluate language design choices with respect to the integration of their con-
currency and object-oriented features and the degree to which software reuse is supported.
In particular, we wish to understand how choices of concurrency constructs interact with
object-oriented techniques and affect the reusability of objects. As such, our classification
scheme concentrates on the relationship between objects and concurrency. We shall con-
sider the following aspects:

» Object modelshow is object consistency maintained in the presence of concurren-
cy? The way objects are considered with respect to concurrent execution may or may
not provide them with a default protection with respect to concurrent invocations.
Furthermore, different languages may favour or enforce a particular way of structur-
ing programs to protect objects.

* Internal concurrencycan objects manage multiple internal threads? This issue con-
cerns the expressive power that is provided to objects for handling requests. Note that
the execution of internal threads is also related to the protection of the internal state
objects, which is determined by the choice of object model.

» Constructs for object interactioow much freedom and control do objects have in
the way that requests and replies are sent and received? The choice of concurrency
constructs for sending and receiving messages determines the expressive power that
is provided for implementing concurrent objects. Moreover, the design of constructs
for conditional acceptance of messages interacts with the use of class inheritance.

34 Concurrency in Object-Oriented Programming Languages

In the presentation of the design space, it will become apparent that these aspects are not
entirely independent: certain combinations of choices are contradictory and others are re-
dundant or lack expressive power.

2.2.2 Concurrent Object Models

There are different ways one can structure a concurrent object-based system in order to
protect objects from concurrency. A language may support constructs that favour or even
enforce one particular way, or may leave it entirely to the programmer to adopt a particular
model. There are three main approaches:

» The orthogonal approachConcurrent execution is independent of objects.
Synchronization constructs such as semaphores in Smalltalk-80 [40], “lock blocks”
as in Trellis/Owl [68] or monitors as in Emerald [19] must be judiciously used for
synchronizing concurrent invocations of object methods. In the absence of explicit
synchronization, objects are subject to the activation of concurrent requests and their
internal consistency may be violated.

» The homogeneous approadit objects are considered to be “active” entities that
have control over concurrent invocations. The receipt of request messages is delayed
until the objectis ready to service the request. There is a variety of constructs that can
be used by an object to indicate which message it is willing to accept next. In POOL-
T [6] this is specified by executing an explicit accept statement. In Rosette g88] an
abled sets used for specifying which set of messages the object is willing to accept
next.

* The heterogeneous approa®@oth active and passive objects are provided. Passive
objects do not synchronize concurrent requests. Examples of such languages are Eif-
fel // [26] [27] and ACT++ [45]. Both languages ensure that passive objects cannot
be invoked concurrently by requiring that they be used only locally within single-
threaded active objects. Argus [55] provides bguilardians(active objects) and
CLU clusters(passive objects) [52].

2.2.3 Internal Concurrency

Wegner [87] classifies concurrent object-based languages according to whether objects
are internally sequential, quasi-concurrent or concurrent:

» Sequential objectgossess a single active thread of control. Objects in ABCL/1 [94]
and POOL-T and Ada tasks [9] are examples of sequential objects.

* Quasi-concurrent objectsave multiple threads but only one thread may be active at
a time. Control must be explicitly released to allow interleaving of threads. Hybrid
domains [47][70][71][72] and monitors [42] are examples of such objects.

Design Space 35

Internal concurrency

7 T

Sequential Quasi-noncurrent Concurrent

Single thread of control There are several logical threads There may be several
but only one at a time. Thread threads of control active

ABCL/1, POOL-T interleaving occurs at programmer within an object.

defined places

Hybrid, monitors

Figure 2.1 Approaches to internal concurrency.

» Concurrent objectslo not restrict the number of internal threads. New threads are
created freely when accepting requests. palskagesand POOL-Tunitsresemble
concurrent objects (though they are not first-class objects). Languages like Small-
talk-80 that adopt the orthogonal object model also support concurrent objects. From
the point of view of the called objects, a new local thread is effectively created when-
ever a method is activated in response to a message.

According to the above classification, the threads of concurrent objects are created free-
ly when an object receives a message. However, there are languages where objects may
have internally concurrent threads that are not freely created by message reception. In or-
der to include these languages in the classification and to capture more information about
the way that threads are created, we generalize the concurrent object category to include
any language in which objects have concurrent threads, irrespective of the way they are
created, and consider separately the issue of thread creation.

We identify three, non-exclusive ways for the creation of threads within objects as fol-
lows:

» By message receptioThread creation is triggered by reception of a message. An ob-
ject cannot create a thread on its own unless it can arrange for a message to be sent to
it without blocking the currently executing thread. Depending on whether objects
may control the creation of threads, we have the following subcategories:

— Controlled by the objectThe object may delay the creation of threads. For
example, in the language Sina [84] a new concurrent thread may be created for
the execution of a method belonging to a select subset of the object’s methods
only if the currently active thread executesdbé&achprimitive.

— Unconstrained creationThreads are created automatically at message recep-
tion. This is the default for languages with an orthogonal object model.

» Explicit creation Thread creation is not triggered by message reception but the ob-
ject itself initiates the creation of the new thread. For instance, in SR [12] there is a
construct similar to a “cobegin” [11] to initiate the execution of concurrent threads.

36 Concurrency in Object-Oriented Programming Languages

Thread creation

T

By message reception Explicit creation
/ \ SR co, Smalltalk-80 fork
Uncontraintsed Creation of threads is
creation of threads[] controlled by the object
Orthogonal object model Sina, Act++

Smalltalk-80, Ada packages

Figure 2.2 Approaches to thread creation.

Another way to create a new thread, in the absence of a special construct, is to call
asynchronously an operation of the object. This requires, however, that such calls are
not blocked at the object’s interface. This approach is used in a recent version of Sina.
Such calls bypass the normal method synchronization constraints as well as the re-
guest queue at the object’s interface. Finally, it would also be possible to create new
independent objects to call the object methods in parallel. However, this is cumber-
some and it also requires some means of bypassing the message queue at the object’s
interface.

Thenextandbecomeprimitives in Rosette and ACT++ can be viewed as a controlled
creation of threads, with the additional restriction that concurrent threads may not share
the object’s state since they execute on different “versions” of the object.

In Guide [48], an object may be associated with a set of activation conditions that
specify which methods may be executed in parallel by internally concurrent threads. In the
default case, as with any language following an orthogonal approach for concurrency, ob-
jects may be viewed as concurrent with unconstrained creation of threads triggered by ex-
ternal messages.

The creation of threads by reception of external messages or by execution of a special
construct are neither mutually exclusive design choices — as illustrated by SR, which
supports both — nor redundant, as we will see in section 2.3.

2.2.4 Constructs for Object Interaction

We classify these constructs with respect to the degree of control that can be exercised by
objects in the client and server roles. We specifically consigy schedulingwhich
concerns the degree of flexibility the client has in accepting a replyeqnest schedul-

ing, which concerns the control the server can exercise in accepting a request.

Design Space 37

2.2.4.1 Issuing Requests

The following important issues can be identified with respect to the constructs supported
for issuing requests:

» AddressingHow are the recipients of a request specified and determined? How and
where is the reply to be sent? Flexible control over the reply destination can reduce
the amount of message passing required.

» Synchronization for requests and repli€sin the current thread continue after issu-
ing the request? What mechanisms are supported for matching replies to requests?
How does the client synchronize itself with the computation and delivery of the re-

ply?
» First-class representation of requests and repl2s:requests and replies have a

first-class representation that permits them to be forged or changed dynamically?
What aspects (e.g. destination, method name) can be changed dynamically?

We further discuss these issues below and present how they are addressed by different
proposals.

Addressing

In most languages the recipient of a request is specified directly by using its object identi-
fier. However, there are some proposals allowing for more flexible ways of addressing
where the system determines the recipient of the request. We review some of these propos-
al below.

Types as Recipients in PROCOL

In PROCOL [49] [85] an object type may be used to specify the recipient of a request. In
this case the potential recipients are any instance of the type that is in a state such that it
may accept the request. The system determines one recipient among the set of potential re-
cipients and delivers the request. It is important to note that this feature does not support
any form of multicast; exactly one message is exchanged with the chosen recipient in a
point to point fashion.

ActorSpace

ActorSpace [2] is a general model providing a flexible and open-ended approach to object
communication that has been developed in the context of the actor model.

In this modedestination patternsay by used to designate the recipients of a request.
Patterns are matched against attributes of actors in an specified actorspace — a passive
container of actors — to determine a set of potential recipients. A message may be sent by
either one of two primitivesendor broadcasiThe former delivers exactly one message
to arecipient chosen non-deterministic by the system. The latter provides a form of multi-
cast by delivering the request to all potential recipients.

38 Concurrency in Object-Oriented Programming Languages

Client—server interaction

N

One -way message passing Request/reply

Higher-level protocols must Balanced requests and

be explicitly programmed replies are supported

PROCOL, CSP
RPC Proxies
Sending a request Sending requests and receiving
blocks the current replies may be delegated, as with
thread until areply is CBoxes and futures
received

ABCL/1, ConcurrentSmalltalk, Eiffel //

Figure 2.3 Client-server interaction mechanisms.

Extra flexibility is provided in this model by allowing the dynamic inclusion and
removal of actors from ActorSpaces as well as by allowing the dynamic modification of
actor attributes. Moreover, ActorSpaces may be nested.

Synchronization for Requests and Replies

We initially distinguish betweenne-way message passiogmmunication primitives

and constructs supportingequest/replyprotocol. The latter provide support for object
interactions where requests will be eventually matched by replies. These mechanisms
vary in flexibility when sending requests and receiving replies. Strict RPC approaches en-
force that requests will be matched by a reply and delay the calling thread until the reply
is available. Further flexibility is provided by “proxy” objects which disassociate the
sending or receiving of messages from the current thread of control. Examples of built-in
proxy objects aréuture variable§94] andCBoxeg92].

One-Way Message Passing

Whether communication is synchronous with one-way message passing, as in CSP [43]
or PROCOL [85], or asynchronous, as in actor languages, clients are free to interleave
activities while there are pending requests. Similarly, replies can be directed to arbitrary
addresses since the delivery of replies must be explicitly programmed.

Design Space 39

The main difficulty with one-way message passing is getting the replies. The client and
the server must cooperate to match replies to requests. As we shall see in section 2.3, the
additional flexibility and control provided by one-way message passing over request/re-
ply based approaches can only be properly exploited if objects (i.e. servers) are imple-
mented in such a way that the reply destination can always be explicitly specified in a
request.

Remote Procedure Call

With RPC the calling thread of the client is blocked until the server accepts the request,
performs the requested service and returns a reply. Most object-oriented languages sup-
port this form of interaction, though “message passing” is generally compiled into proce-
dure calls.

Supporting RPC as the only means for object interaction may be a disadvantage when
objects are sequential as we will see in the next section. Although it is trivial to obtain a
reply, it is not possible to interleave activities or to specify reply addresses.

Proxies

An alternative approach that provides the client with more flexibility in sending and re-
ceiving replies is to introdugeoxies The main idea is to delegate the responsibility of de-
livering the request and obtaining the reply to a proxy. (The proxy need not be a first-class
object, as is the case withture variableg94].) The actual client is therefore free to
switch its attention to another activity while the proxy waits for the reply. The proxy itself
may also perform additional computation or even call multiple servers.

If necessary, the reply is obtained by the original client by an ordinary (blocking) re-
guest. This approach, variants of which are supported by several languages [27][94][92],
maintains the benefits of an RPC interface and the flexibility of one-way message passing.
In contrast to one-way message passing, however, there is no difficulty in matching replies
to requests.

A closely related approach is to combine RPC with one-way message passing. In
ABCL/1, for example, an object that externally has an RPC interface may internally use
lower-level message-passing primitives to reply by sending an asynchronous message to
the client or to its proxy. The use of such facilities is further discussed in section 2.4.2.

First-Class Representation of Requests and Replies

The ability to have a first-class representation of requests and replies may enhance sub-
stantially the expressive power of a language. There is a range of aspects of requests and
replies that may have a first-class representation in a language. This varies from (almost)
no first-class representation at all to a full first-class representation of all aspects of re-
guests and replies. Below we discuss how this issue is addressed in some languages that
are characteristic of the various possibilities.

40 Concurrency in Object-Oriented Programming Languages

Minimal First-Class Representation

Apart from the method’s arguments and the target, all other aspects, such as the method
name and the return address, cannot be specified dynamically. This the case for languages
such as POOL-T, Hybrid and Trellis/fOwl. One could argue that since the target and the ar-
guments can be specified at run-time, there is a first-class representation of some aspects
and that the categorization is not accurate. In fact, in older language proposals such as CSP
[43] the targets of messages were determined statically. This, however, is uncommon in
more recent languages since it makes it hard to develop software libraries: a server that
must be statically bound to its potential callers has a low reuse potential. A first-class rep-
resentation of the target and arguments can be considered as a minimum that one should
expect to find in every language.

First-Class Representation of Method Names and Reply Addresses

PROCOL supports the first-class representation of method names. The name of the meth-
od to call may be supplied as a string. This allows the method names for a request to be
passed in messages or computed at run-time.

With ABCL/1 it is possible to specify dynamically and explicitly the object that is to re-
ceive the reply of a request. The benefits of the use of this feature are discussed in section
2.4.2.

Full First-Class Representation

As one would expect, full first-class representation of requests is provided in reflective
languages such as ABCL/R. However, it is also provided in languages such as Smalltalk
and Sina which are not fully reflective. In fact, the latter two illustrate the usefulness and
the possibility of having such features in any concurrent language which is not fully
reflective. Briot [23] has used the features of Smalltalk to build a several object-oriented
programming models using the relative primitive concurrency features provided in the
Smalltalk system. Aksiet al. [4] show how these features may be used to abstract and
reuse several object coordination paradigms.

2.2.4.2 Accepting Requests

A main concern from the point of view of an object acting as a server is whether requests
can be conditionally acceptédVhen a request arrives, the server may be busy servicing

a previous request, waiting itself for a reply to request it has issued, or idle, but in a state
that requires certain requests to be delayed. We distinguish initially between conditional
and unconditional acceptance of requests. Conditional acceptance can be further discrim-
inated according to whether requests are scheduled by explicit acceptance, by activation
conditions or by means of reflective computation (see figure 2.4).

* A secondary issue is whether further activity related to a request may continue after the reply has been
sent as in the Send/Receive/Reply model [39], but this can also be seen as concern of internal concurrency
where follow-up activity is viewed as belonging to a new thread.

Design Space 4]

Request scheduling

T

Unconditional Conditional
acceptance acceptance

No synchronization with the
state of the target

Ada packets, Smalltalk-80,
Emerald, Trellis/Owl

Explicit acceptance Activation conditions Reflective computation
The execution of the Explicit or implicit conditions on The arrival of a message at the
operation is synchronized the target’s state determine target triggers a reflective
with an “accept” statement ~ when the execution of an computation in the associated
explicitly executed by the operation may take place meta-object. This determines
target whether the requested operation
should be executed

ADA tasks, ABCL/1, SR
POOL-T, Eiffel // ABCL/R, ACTALK

Representation specific Abstract — representation

independent

Conditions are expressed

directly on the hidden object Conditions are expressed in terms of

state abstract properties of the object and do

not refer to the particular implementation
Guide, Hybrid, Sina

ACT++, ROSETTE, PROCOL,

path expressions

Figure 2.4 Approaches to scheduling requests.

Unconditional Acceptance

Unconditional acceptanaef requests is illustrated by monitors [42] and by Smalltalk-80

[40] objects. The mutual exclusion that is provided by monitors could be considered as an
implicit condition for the acceptance of requests. However, the mutual exclusion property

is captured by viewing monitors as quasi-concurrent objects so we consider request ac-
ceptance to be unconditional. Note that message acceptance for languages with an orthog-
onal object model is by default unconditional.

42 Concurrency in Object-Oriented Programming Languages

Explicit Acceptance

With explicit acceptancagequests are scheduled by means of an explicit “accept” state-
ment executed in the body of the server. Accept statements vary in their power to specify
which messages to accept next. Acceptance may be based on message contents (i.e.
operation name and arguments) as well as the object’s state. Languages that use this
approach are Ada, ABCL/1, Concurrent C, Eiffel//, POOL-T and SR. With this approach
objects are typically single-threaded, though SR is an exception to this rule.

Activation Conditions

With activation conditionsrequests are accepted on the basis of a predicate over the ob-
ject’s state and, possibly, the message contents. The activation condition may be partly im-
plicit, such as the precondition that there be no other threads currently active within the
object. An important issue is whether the conditions are expressed directly over a particu-
lar representation of the object’s state or if they are expressed in more abstract terms. In
Guide, for example, each method is associated with a condition that directly references the
object’s instance variables, whereas in ACT++ the condition for accepting a message is
that the object be in an appropriatestract statevhich abstracts from the state of a par-
ticular implementation. Another approach is to specify the legal sequences of message ac-
ceptance by means of a regular expression, as in path expressions [24] and PROCOL [85].

There are also some proposals sudyashronizer§38], separate method arguments
[66] andstate predicatefr4], for activation conditions that depend on the state or the
computation history of other objects.

A synchronizer [38] is a special object associated with a group of objects. When a meth-
od of any of these objects is called a condition in the synchronizer is evaluated. Depending
on the outcome, the execution of the method may proceed, or be delayed until the con-
dition becomes true. Synchronizers may have their own variables that are used to store
information about the computation history of a group of objects.

Separate method arguments [66] can be used to constraint the execution of a method by
preconditions on the argument declared as “separate.” The execution of the method is de-
layed until the preconditions are true and the separate objects are “reserved” for the dura-
tion of the call. That is, they can only be used in the body of a method.

With state predicate notifiers [74], the execution of a method can be constrained by the
notification that another object has reached a state that satsthés predicatd his fea-
ture has synchronous and asynchronous forms. In the synchronous variant, the notifying
object waits until the method is executed and the method gains exclusive access to the
object. In the asynchronous variant the notifying object proceeds independently.

Reflective Computation

With reflective computatiotine arrival of a request triggers a method of the senveta-
object The meta-object directly then manipulates object-level messages and mailboxes as

Criteria for Evaluating Language Design Choices 43

objects. This approach is followed by the language ABCL/R [86] and it is also illustrated

in Actalk [23] where some reflective facilities of the Smalltalk-80 system are used to in-
tercept messages sent to an object and synchronize their execution in a way that simulates
message execution in actor-based languages.

2.3 Criteria for Evaluating Language Designh Choices

So far we have presented a design space covering the most significant choices in the design
of concurrency features for OOPLs, but we have said little about how the various ap-
proaches compare. Since our goal is to arrive at COOPLSs that provide the advantages of
object-oriented programming for the development of concurrent systems, we must first
formulate our requirements as precisely as possible, before beginning to compare the
approaches. We first discuss the issue of developing object classes that have high reuse
potential. Then, we turn our attention to the support for reuse at a finer granularity than
objects and examine the issues related to the use of inheritance and the reuse of synchro-
nization constraints.

2.3.1 Object-Based Features — Support for Active Objects

The main issue for reuse at the object level is that concurrency in an object-oriented lan-
guage should not diminish the benefits of object-based features with respect to reuse. For
instance, encapsulation should still protect the internal state of objects from surrounding
objects and it should still be possible to insulate objects’ clients from implementation
choices. This should make it possible to change the implementations without affecting the
clients provided that the interfaces are maintained and that changes are, in some sense, be-
haviourally compatible.

Object-oriented and concurrent programming have different aims that incur different
software structuring paradigms. Object-oriented programming aims at the decomposition
of software into self-contained objects to achieve higher software quality and to promote
reusability. Concurrent programming aims at expressing and controlling the execution,
synchronization and communication of conceptually parallel activities. Its primary goal is
to provide notations that are suitable for devising solutions to problems that involve the
coordination of concurrent activities [11].

In order to compare language designs it is necessary to adopt a programming model for
concurrent object-based programming and evaluate how well the various languages sup-
port this model. Our view regarding the way the two programming paradigms should be
combined is by structuring programs as cooperating objects that exchange messages. This
is similar to the way sequential object-oriented programs are structured, however, in con-
current programs objects may encapsulate one or more concurrent threads that implement
their behaviour. Moreover, the operations of an object may be invoked by concurrently ex-
ecuting objects.

44 Concurrency in Object-Oriented Programming Languages

We use the terractive objectdor this programming model to emphasize that objects
themselves rather than the threads that invoke their operations have the responsibility to
schedule concurrent requests. Requests should be scheduled in a way consistent with the
object’s internal state and the possibly spontaneous execution of internal threads. The ob-
jects developed following this model are independent self-contained entities. They can be
reused across applications and they may be refined to support different scheduling poli-
cies for invoked operations. The programs that use the objects should not be affected by
such changes.

Although any language combining concurrent and object-oriented features could be
used to develop software following this model, as will be illustrated in section 2.4, not all
combinations of concurrent and object-oriented features are equally successful in sup-
porting this programming model. Below we develop a number of requirements on the lan-
guage features to adequately support programming following an active object model. In
section 2.4 we will use these requirements to evaluate language design choices and iden-
tify the shortcomings of some approaches.

2.3.1.1 Requirements

According to the active object model discussed above, we would like languages to support
the development of self-contained objects with high reuse potential. A general principle
for achieving this is that reusable object classes should make minimal assumptions about
the behaviour of applications that will use them. Furthermore, the choice of constructs
should not constrain the possible implementations of a class. We can formulate our re-
guirements as follows:

1. Mutual exclusion — protecting the objects’ stafée internal state of objects
should be automatically protected from concurrent invocations so that it will be
possible to reuse existing objects in concurrent applications without modification.

2. Request scheduling transparenéyr object should be able to delay the servicing
of requests based on its current state and on the nature of the request. This should be
accomplished in a way that is transparent to the client. Solutions that require the co-
operation of the client are not acceptable from the point of view of reusability since
the client then cannot be written in a generic fashion.

3. Internal concurrencyThe concurrency constructs should allow for the implemen-
tation of objects that service several requests in parallel or that make use of
parallelism in their implementation for increased execution speed in the processing
of a single request. This could be done either by supporting concurrent threads
within an object or by implementing an object as a collection of concurrently
executing objects. Whatever approach is chosen, it is important that internal
concurrency be transparent to the object’s clients so that sequential implementa-
tions of objects may be replaced by parallel ones.

4. Reply scheduling transparendyclient should not be forced to wait until the serv-
ing object replies. In the meantime it may itself accept further requests or call other
objects in parallel. It may even want replies to be directly sent to a proxy. Request

Criteria for Evaluating Language Design Choices 45

Clients Workload manager Workers

Administrator

Figure 2.5 The administrator example.

scheduling by the client should not require the cooperation of the server since this
would limit the ability to combine independently developed clients and servers.

2.3.1.2 An Example

In order to compare the design choices and their combinations with respect to the reuse re-
guirements, we shall refer to an instance of a “generic” concurrent program structure: the
administratorinspired by [39]. The administrator is an object that uses a collection of
“worker” objects to service requests. An administrator application consists of four main
kinds of components. Thadientsissue requests to the administrator and get back results.
The administratoraccepts requests from multiple concurrent clients and decomposes
them into a number of subrequests. Woekload managemaintains the status of work-

ers and pending requestgorkershandle the subrequests and reply to the administrator.
The administrator collects the intermediate replies and computes the final results to be re-
turned to clients (see figure 2.5).

The administrator is a very general framework for structuring concurrent applications.
For example, workers may be very specialized resources or they may be general-purpose
compute servers. The workload manager may seek to maximize parallelism by load bal-
ancing or it may allocate jobs to workers based on their individual capabilities.

The components described above identify functionally distinct parts of the application
that could have been developed independently and reused as indicated above to construct
a new application.These components do not have to be implemented as single objects, and
indeed, as we see later, depending on the constructs provided by certain languages, several
objects will be necessary for realizing the desired functionality. However, it should be pos-
sible to modify the implementation of the above components without affecting the rest as
if they were single objects.

The following points relate the language design requirements listed above to the reuse
issues in the case of the example application:

46

Concurrency in Object-Oriented Programming Languages

» Mutual exclusion(i) Workload manager reuse — the workload manager must be pro-

tected from concurrent requests by the administrator. There may be cases where the
administrator does not invoke the workload manager concurrently. Although in such
cases no protection is needed, workload managers that are not protected could not be
reused in different concurrent implementations of the administrator. In such a con-
current implementation the administrator may use a collection of proxies that may
invoke the workload manager concurrently. (ii) Worker reuse — workers should
similarly be protected so that arbitrary objects may be used as workers with various
implementations of the administrator, including concurrent ones.

Request scheduling transparen@y) Genericity of clients, reusing the administra-

tor with different clients — the administrator must be able to interleave (or delay)
multiple client requests, but the client should not be required to take special action.
In fact it should be possible to implement any object as an administrator and it should
not matter to the object’s clients if the serving object happens to be implemented as
an administrator.

Internal concurrency(iv) Client/worker reuse — the administrator should be open
to concurrent implementation (possibly using proxies) without constraining the in-
terface of either clients or workers;

Reply scheduling transparendy) Worker reuse — must be possible for the ad-
ministrator to issue requests to workers concurrently and to receive their replies
when it chooses without special action by workers;

2.3.2 Inheritance and Synchronization

There are two main issues concerning reuse at a finer granularity than objects.
» The firstis to maintain in concurrent languages the reuse potential offered by inher-

itance in sequential languages. Several early papers have reported difficulties in us-
ing class inheritance in COOPLs as well as in the design of languages that integrate
class inheritance and concurrency constructs [19] [6] [22]. In some cases inheritance
was left out as it was deemed difficult to integrate and of limited use. The need to syn-
chronize the execution of inherited, overridden and newly defined methods, without
breaking the encapsulation between classes, makes it more difficult to take advan-
tage of class inheritance than in sequential languages. For instance, if mutexes are
used for synchronizing method execution, a method defined in a subclass would have
to access a mutex defined in a superclass in order to be synchronized with superclass
methods. This would break encapsulation between classes. The design of concurren-
cy constructs should be made in way to avoid such problems.

The second is to make it possible to reuse algorithms, often sgtietronization

constraints for scheduling the execution of methods of a class. For instance, a class
may implement a synchronization algorithm that schedules its methods according to
the readers and writers synchronization scheme. It would be desirable to be able to

Criteria for Evaluating Language Design Choices 47

reuse this algorithm in other classes taking into account the reader/writer property of
its methods.

In most languages the reuse of synchronization constraints is achieved through class
inheritance and the termheritance of synchronization constraimgften used for this
issue. We have chosen the terruse of synchronization constraisisace class inherit-
ance is only one possible means to achieve reuse. Furthermore, it is questionable whether
class inheritance should be used for this purpose. We will further elaborate on this point
below. Then, we will discuss separately the requirements for supporting class inheritance
and for reusing synchronization constraints.

Inheritance is often considered as the most prominent feature of object-oriented pro-
gramming. The most widespread object-oriented languages such as C++, Smalltalk and
Eiffel provide an inheritance mechanism that may be used for different purposes. These
include: the reuse of the implementation of a class in the implementation of a new class;
the specification of a type compatibility relation between a class and its parent classes,
considering for type-checking purposes that instances of the class are of the same type as
instances of its superclasses; finally, it may be used to express that the concept or entity
modelled by the subclass is, in some sense, a refinement of the concepts or entities repre-
sented by its parent classes.

The use of a single mechanism for all these purposes can, on one hand, be a source of
confusion and on the other, limit the effectiveness of the mechanism for each of these dif-
ferent purposes. For instance, subtypes have to be related to a class inheritance relation-
ship even if they do not share any part of their implementation. In order to use part of the
implementation of a class in a new class, all the methods have to be inherited to comply
with the subtype relation that is also expressed by the inheritance link.Wegner and Zdonik
[88] provide a general and in-depth discussion of inheritance as an incremental modifica-
tion mechanism and illustrate its use for different purposes. Guide [48] and POOL-I [8]
are concrete examples of languages with mechanisms that distinguish between the differ-
ent uses of inheritance. Both languages distinguish between class inheritance as a code re-
use mechanism and typing. POOL-I goes even further by also allowing the specification
of behaviourally compatible classes.

In section 2.4.3 we will examine more closely the approaches for the reuse of synchro-
nization constraints followed by different languages. This will illustrate the interactions
that class inheritance may have with the reuse of synchronization constraints in these dif-
ferent approaches.

2.3.2.1 Class Inheritance

The issues listed below have to be addressed in order to take advantage effectively of the
reuse potential of inheritance. The first two are concerned with the reuse of superclass
methods. The third one concerns the use of inheritance for providing generic algorithms
through the definition and refinementatistract classel86] [44].

» Separate specification of the synchronization constralhtste code that imple-
ments the synchronization decisions related to the execution of methods is included

48

Concurrency in Object-Oriented Programming Languages

directly in methods, inherited methods typically will have to be modified to account
for the synchronization constraints of the subclass [45].

Interface between methods and the synchronization constréh@separate speci-
fication of synchronization control actions and method code does not necessarily
mean that the execution of methods once started should be carried out without any
further interaction with the synchronization constraints. Such an approach limits the
expressive power of a language. Instead, there should be a well-defined interface be-
tween methods and the synchronization constraints that allows several actions in the
execution of the method to interact with the synchronization constraints associated
with the various classes where it is reused.

Consistency with other uses of inheritance for software compogNpamt from re-

using individual methods, inheritance serves to facilitate sharing of algorithms and
designs [36]. For this purpose, inheritance is paired with other features such as invo-
cation of methods through pseudo-variables susklésr superin Smalltalk.

2.3.2.2 Reuse of Synchronization Constraints

The issues discussed below are important for evaluating and comparing the proposals for
the specification and reuse of synchronization constraints:

* Flexibility of the binding mechanisnthe mechanism that is used to apply con-

straints to a particular class determines the flexibility with which constraints may be
reused. Depending on the mechanism, constraints are bound to exactly one class (the
class where they were introduced), or to any class that inherits from the class that
introduced the constraints. Additionally, method names appearing in a constraint
specification may be considered as variables to be substituted at binding time with
method names defined in a particular class.

Compositionality and extensibilityrhis concerns the support provided for reusing
previously defined constraints in the definition of new ones. A related issue is extend-
ing the application of constraints to methods that are introduced at a later stage.

PolymorphismThe potential applicability of constraints to different classes. This is
related to the binding mechanism and modularity; constraints could be specified in a
way that would allow them to be applied to different classes. However, this may be
impossible or inconvenient because of the absence of an appropriate binding mech-
anism.

Modifiability and locality of changé&:here are circumstances where it may be desir-
able or necessary to change the implementation of a class or of just the synchroni-
zation constraint. Depending on the approach, this may be achieved easily through
some local modification or it may require a cascade of changes in synchronization
constraints. In some cases it may even be needed to modify the inheritance hierarchy.
Most of the other aspects discussed above come into play when considering this
issue.

Exploring the Language Design Space 49

2.4 Exploring the Language Design Space

We now propose to compare the various approaches to the design of COOPLs by system-
atically exploring the language design space and evaluating design choices against the re-
guirements specified in the previous section. Since the various aspects of the design space
are sometimes intertwined, we will find ourselves returning to common issues on occa-
sion. Basically we will take the following course: first we briefly consider the three
categories of object models; then we consider object interaction mechanisms in combina-
tion with internal concurrency; finally we explore inheritance and synchronization con-
straints as a topic worthy of separate study. We summarize our conclusions in section
2.4.4,

2.4.1 Object Models

By the requirement of mutual exclusion, we can immediately discount the orthogonal
object model as it provides no default protection for objects in the presence of concurrent
requests. The reusability of workers and workload managers is clearly enhanced if they
will function correctly independently of assumptions of sequential access.

The heterogeneous model is similarly defective since one must explicitly distinguish
between active and passive objects. A generic administrator would be less reusable if it
would have to distinguish between active and passive workers. Similarly worker reusabil-
ity is weakened if we can have different kinds of workers.

Thehomogeneougbject model is the most reasonable choice with respect to reusabil-
ity. No distinction is made between active and passive objects.

Note that it is not clear whether the performance gains one might expect of a hetero-
geneous model are realizable since they depend on the programmer’s (static) assignment
of objects to active or passive classes. With a homogeneous approach, the compiler could
conceivably make such decisions based on local consideration — whether a component is
shared by other concurrently executing objects is application specific and should be inde-
pendent of the object type.

2.4.2 ObjectInteraction Mechanisms

Request-reply mechanisms such as an RPC-like interface provide more support for object
reuse. Using our administrator example, we can see that one-way message passing has
several disadvantages over RPC for reusing objects.

A concurrent client may issue several requests to the administrator before it gets a reply.
In this case it is important for the client to know which reply corresponds to which request.
Are replies returned in the same order as requests? In the case of synchronous message
passing an additional difficulty is that the administrator may get blocked when it sends the
reply until the client is willing to accept it. Requiring the client to accept the reply imposes

50 Concurrency in Object-Oriented Programming Languages

additional requirements on the client and makes reuse more difficult. Either a different
mechanism has to be supported for sending replies or proxies have to be created.

One-way message passing is also inconvenient for coping with the interaction between
the administrator and worker objects. A difficulty with using one-way messages is getting
the replies from workers: as there will be several workers that are invoked in parallel, as
well as potentially concurrent invocations of single worker, it can be difficult for the ad-
ministrator to tell which reply is associated with which request.

A solution to this problem is to create a proxy for each request. The proxy would carry
out the request and then send a message to the administrator containing the worker’s reply
plus some extra information used for identifying the request. As with sequential RPC the
administrator will also have to manage local queues for partially completed requests.

2.4.2.1 Sequential Objects

We argued that an RPC interface for objects provides better support for object reuse than
one-way message passing. However, we quickly discover that if objects have a single
thread of control and RPC is the only communication mechanism, the request and reply
scheduling requirements of the administrator are not satisfied. We further discuss the lim-
itation of this design choice combination below. Then we show additional mechanisms
that may be used to overcome these limitations without giving up the RPC-interface or
completely discarding sequential object design choice. The limitation of the combination
of sequential objects (“modules” in their case) and RPC is discussed at length in [54].
However, they reach the conclusion that either the sequential object or the RPC choice
should be discarded.

Limitations of the Sequential Object—-RPC Combination

In particular, a sequential RPC administrator will not be able to interleave multiple clients’
requests as it will be forced to reply to a client before it can accept another request. The
only “solution” under this assumption requires the cooperation of the client, for example:
the administrator returns the name of a “request handler” proxy to the client, which the cli-
ent must call to obtain the result. In this way the administrator is immediately free to ac-
cept new requests after returning the name of the request handler. Such an approach is,
however, incompatible with the requirement on request scheduling transparency since
scheduling of requests by the administrator is not transparent to its clients.

Consider for instance that we would like to replace the sequential implementation of an
existing object class by a parallel implementation where instances of the class act as ad-
ministrators for a collection of appropriate worker objects. In accord with our require-
ments we would like to take advantage of encapsulation and data abstraction to replace the
old implementation without having to modify the programs that used it. This, however, is
not possible since, as discussed above, in order to be able to process client requests con-
currently, an object, implemented as an administrator, has to have a different interface than
an object having a sequential implementation.

Exploring the Language Design Space 51

The sequential RPC combination also provides limited support for reply scheduling by
the administrator. If the administrator invokes workers directly using RPC, its single
thread will get blocked until the invoked worker computes the result and returns the reply.
The sequential RPC combination prevents the administrator from invoking several work-
ers in parallel, or accepting further client requests while a worker computes the result and
receiving the workers’replies at a later time.

Itis also possible to have the workers cooperate with the administrator so that it does not
block when delegating work to them, but such solutions require workers to be coded in a
special way to implement the cooperation. This is incompatible with our requirement of
request scheduling transparency, which would allow any object to be potentially used as a
worker.

Using Proxies for Reply Scheduling

The limitation of the sequential RPC combination for reply scheduling can be overcome
by the use of “courier” proxies used by the administrator to invoke workers. Each time the
administrator needs to invoke a worker it creates an appropriate courier proxy that will in-
voke the worker instead. To get a worker’s reply, the administrator could invoke a method
of the corresponding courier or alternatively the courier could call an administrator’s
method when the reply becomes available.

The former alternative has the disadvantage that the administrator may get blocked if it
invokes the courier too early. This may never occur with the latter approach. However, the
administrator has to manage local queues for replies that are sent to it and that it cannot use
immediately. Furthermore, each time a reply is returned, it should check whether all the
replies needed so far for handling a client’s request are available so that it may proceed
with the client’s request.

The use of proxy objects for carrying out requests and for storing replies is also needed
in the case of one-way message passing for allowing requests to be paired with replies.

Although proxies are a general programming approach, it is cumbersome to program
and use them explicitly. In fact unless the language supports classes with type parameters
and a flexible manipulation of method names, a new proxy class would have to be defined
for each different worker class in an administrator application.

Future variablesn ABCL/1 [94], theprocesstype in PAL [18] and CBox objects in
ConcurrentSmalltalk [92] provide functionality which is somewhat similar to the courier
proxies that were used by the administrator to call workers. These mechanisms could be
used by the administrator to call workers without getting blocked and for collecting work-
er replies at a later time.

The advantage of these mechanisms over program-defined proxies is that they can be
used for calling workers of any class. Future variables, however, are not first-class objects
and so are not as flexible. For instance, a future variable cannot be sentin a message allow-
ing a different object than the one that made the request to receive the reply.

52 Concurrency in Object-Oriented Programming Languages

A difficulty with built-in proxies is that the administrator may at some point in time
have to get blocked and wait for a further client request or the reply to a previous worker
request. Unless there exists a synchronization mechanism that allows the administrator to
wait on either of these events, the administrator may get blocked to obtain a reply or re-
guest that is not available and will thus be unable to accept other requests or replies. This
problem could be circumvented either by polling if a non-blocking request acceptance
mechanism is supported or by additional, explicitly programmed proxies that would re-
turn the replies by invoking some administrator’s operation especially provided for that
purpose. This way a synchronization mechanism for selectively accepting requests would
allow the administrator to be woken up either for receiving the results of a previous re-
quests or for accepting new requests.

Still, the administrator’'s code may get quite involved. If there is no way to prevent being
woken up by messages containing client requests or worker replies that cannot be used
right away, local message queues will have to be managed by the administrator. So, it ap-
pears that built-in proxies combined with single-thread objects provide limited support for
reply scheduling by the administrator since one should again rely on the use of explicitly
programmed proxies.

Combining Request/Reply and One-Way Message Passing

It is also possible to relax the RPC style of communication without going all the way to
supporting one-way message passing as the main communication primitive. This has the
advantage that it is possible to present an RPC interface to clients and, at the same time,
obtain more flexibility for processing requests by the administrator. This possibility is il-
lustrated by ABCL/1 [94] which permits the pairing of an RPC interface at the client side
with one-way asynchronous message passing at the administrator’s side. Moreover, the
reply message does not have to be sent by the administrator object. This provides even
more flexibility in the way that the administrator may handle requests since the replies
may be directly returned to the client by proxies. The following segment of code shows
how this is accomplished.

The RPC call at the client side looks like:

result := [administrator <==:someRequest argl ... argn] ...

A message is sent to the administrator to execute the requeBequest with arguments
argl,...,argn. The client is blocked until the reply to the request is returned and the result is
stored in the client’s local variahiesult.

At the administrator’s side the client’s request is accepted by matching the message pat-
tern:

(=>:someRequest argl ... argn @ whereToReply
.... actions executed in response to this request ...)

When the administrator accepts this request, the arguments are made available in the
local variablesarg1,...,.argn and thereply destinatiorof the request in the local variable

Exploring the Language Design Space 53

whereToReply. The reply destination may be used as the target of a “past type,” i.e. asyn-
chronous, message for returning the reply to the client. As a reply destination may also be
passed around in messages, it is possible for another object to send the reply message to
the client. This action would look like:

[whereToReply <==result]

wherewhereToReply is a local variable containing the reply destination obtained by the
message acceptance statement shown abovesand the result of the client’s request.

Another interesting way of using the possibility to combine one-way message passing
with RPC is for flexible reply scheduling by the administrator. In the previous section, on
built-in proxies, we mentioned that a difficulty was that the administrator should be able
to wait to accept both returned replies and further requests. A way to circumvent this prob-
lem was to use explicitly programmed proxies that would return results by invoking some
operation provided by the administrator. In this way, replies were returned by requests so
that a request acceptance mechanism was sufficient for allowing the administrator to wait
for both requests and replies. A different approach is possible by pairing one-way
messages to the RPC interface supported by workers. With this approach, the
administrator may use a past type message, with itself as reply destination, for calling the
workers which present an RPC interface. The replies from the workers can then be
received by the administrator as any past-type message request. This allows the
administrator to use the message acceptance mechanism for receiving both requests and
replies.

This approach has, however, some of the drawbacks of one-way message passing: some
extrawork is needed in order to find out which reply message is related to what request and
also that the administrator has to manage queues for replies that may not be used immedi-
ately.

2.4.2.2 Multi-Threaded Objects
Another way for allowing the administrator to service several concurrent requests is by
supporting multiple concurrent or quasi-concurrent threads. A separate concurrent thread
may now be used for handling each client request. However, depending on the mecha-
nisms provided for thread creation and scheduling, it may still be necessary to resort to the
solutions discussed previously in order to achieve a satisfactory level of concurrency in
the processing of client requests.

We consider in turn quasi-concurrent and concurrent approaches and examine the sup-
port provided by the thread creation and scheduling mechanisms for programming admin-
istrators.

Quasi-Concurrent Approaches

A traditional example of “objects” with quasi-concurrent thread structure is provided by
monitors [42] [21]. However, monitors present some well-known difficulties such as
“nested monitor calls,” and they unduly constrain parallelism [56] [77] [20] when used as

54 Concurrency in Object-Oriented Programming Languages

the main modular units of concurrent programs. These limitations are due to some extent
to the quasi-concurrent structure of threads. However, an approach based on monitors
would also constrain concurrency among different objects because of its limited support
for reply scheduling. Assuming that the administrator is a monitor, then when calling a
worker the monitor would remain blocked until the invoked operation would return. This
situation, calledemote delay53], makes it impossible for the administrator to accept
further client requests or to call a second worker.

Consequently, certain object-oriented languages have adopted more flexible varia-
tions. For example, Emerald [19] uses monitors as defined by Hoare [42]. However, not all
operations of an object have to be declared as monitor procedures and also several inde-
pendent monitors may be used in the implementation of an obgetblocksandwait
gueuesn Trellis/Owl [68] also allow for more flexible implementation schemes than if
objects were identified to monitors. With this approach, however, objects in these lan-
guages are not quasi-concurrent any more.

The restricted support for concurrency among objects by monitors is not due to the
guasi-concurrent structure of objects, but rather to the limited flexibility for reply
scheduling. This is illustrated by the second quasi-concurrent approach we examine
which by providing a more flexible reply scheduling scheme does not restrict concurrency
among objects.

Hybrid [71] is another language which adopts a quasi-concurrent thread structure for
objects. However, in contrast to monitors, deéegated calinechanism provides a more
flexible reply scheduling approach that does not restrain concurrency among objects. The
administrator may use the delegated call mechanism to invoke workers. In such a case a
new thread may be activated in the administrator for processing another client request in
the meantime.

The delegated call mechanism is satisfactory for allowing the administrator to accept
further client requests while a worker is executing a previous request, thus providing sup-
port for concurrency among several client requests. However, it is of no help for allowing
several workers to execute in parallel for a single client request.

This may only be done by using proxies for invoking the workers or by a construct for
specifying the creation of a new quasi-concurrent thread. Such a construct was proposed
in the original design of Hybrid. The newly created quasi-concurrent threads would
resume each other by using delegated calls. This construct was not included in the proto-
type because it substantially increased the complexity of the rules for message accept-
ance.

Concurrent Objects

With concurrent threads it is straightforward to process several client requests concurrent-
ly by creating a new thread for processing each client request. Provided that satisfactory
mechanisms are supported for constraining the creation and activation of concurrent
threads, this does not result in the mutual exclusion problems of languages with an orthog-

Exploring the Language Design Space 55

onal object model. The concurrent execution that may take place is explicitly specified by
the programmer and the scope of the potential interference of the concurrent threads is re-
stricted to the state of a single object.

Provided that there is some way to suspend the execution of a concurrent thread or avoid
its creation, languages that support concurrent threads provide adequate support for re-
guest scheduling and for internal concurrency to the extent that several client requests may
be processed concurrently.

A differentissue that is not necessarily addressed by the support for concurrent threads
is the possibility to use concurrency for processing a single request. Unless the creation of
multiple threads can be initiated by the object, the support for reply scheduling of concur-
rent threads is not sufficient for processing a request in parallel.

For example, the language Sina [84] makes it possible to use several concurrent threads
within an object for processing requests; there is no direct means, however, for one of
these threads to create more threads for calling the worker objects in parallel. This is done
indirectly by creating a courier proxy, as described previously. It is therefore not necessar-
ily redundant to support both multiple threads and non-blocking communication primi-
tives.

A satisfactory way for calling workers in parallel without using proxies or asynchro-
nous message passing is to support a construct by which more threads may be created in
the object. In this case a worker can be called by each of these threads in an RPC fashion.
With quasi-concurrent threads, a call to a worker should trigger the execution of another
thread. In SR the code segment of the administrator that is used for issuing requests to
workers in parallel would look like this:

co resultl :=wl.doWork(...) -> loadManager.terminated(w1)
I result2 := w2.doWork(...) -> loadManager.terminated(w?2)
oc

globalResult := computResult(resultl,result2);

2.4.3 Inheritance and Reuse of Synchronization Constraints

A large body of research has concentrated on the issues of making effective use of inher-
itance in COOPLs as well as on the related issue of reusing synchronization con-
straints.We will provide a brief overview of this work. Then we will turn our attention to

the issues discussed in section 2.3.2 and illustrate the issues and how they are addressed
by various language designs putting particular emphasis on some points that have not
received the attention they deserved in related work. More extensive presentations and
systematic comparisons of the proposals for supporting inheritance and the reuse of
synchronization constraints may be found in [63] [60] and [16].

56 Concurrency in Object-Oriented Programming Languages

2.4.3.1 A Brief Overview of Related Research

Eiffel// [26][27] and Guide [34][48] were two of the earliest proposals that attempted to
combine inheritance and synchronization constraints by removing the constraints from
the bodies of methods.

These approaches presented some shortcomings with respect to the ability to extend the
synchronization constraints to account for new methods introduced by subclasses. The
problems were independently identified by Kafura and Lee [45] and Tomlinson and Singh
[83], who in turn proposed their own approaches for overcoming them. A common aspect
of these proposals is that constraints are specified by associating sets of methods to ab-
stractions of the object state in which they can be executed. The main idea was that the set
of methods would be extended in subclasses with the additional methods.

Matsuokaet al. [62], however, showed that there existed certain cases, sdikit-
ance anomaliesvhere new state abstractions would have to be introduced in subclasses,
consequently requiring extensive redefinition of inherited methods. Matsuoka later pro-
posed his own approach, where he retained the idea of sets of acceptable methods, and
provided a combination of guards and accept sets allowing the best technique to be used
for the problem at hand.

The issue of extending and combining inherited constraints was also addressed in var-
ious other proposals, notably: Synchronizing Actions [69], Scheduling Predicates [59],
Ceiffel [57], Fralund’s framework [37], PO [29], SINA [16] and SPN [74]. It is important
to note that Synchronizing Actions and SPN are two of the very few proposals to consider
the issue of suspending method execution, which is important for reply scheduling.

The language DRAGOON [13] [14] supports the specification of generic synchroniza-
tion constraints and provides a special inheritance mechanism separate from class inher-
itance of sequential aspects of classes for reusing these synchronization constraints.

Meseguer [67] has proposed a somewhat different approach for avoiding the problems
related to the use of inheritance in COOPLSs. He proposes to eliminate the synchronization
code which causes inheritance anomalies. His language is based on a concurrent rewriting
logic; the use of appropriate rewrite rules allows the specification of synchronization with-
out introducing inheritance anomalies.

Synchronizers [38] is an approach for the specification of synchronization constraints
that allows constraints to be associated to objects dynamically. An interesting point about
this proposal is that constraints may depend on the state and computation history of sever-
al other objects.

2.4.3.2 Binding Mechanisms for Synchronization Constraints

The most direct way to associate synchronization constraints to methods is to specify
them together as part of a class definition. Constraints defined in a class are inherited by
the ordinary class inheritance mechanism. Such an approach is followed by most
COOPLs, such as Guide, PO, PROCOL and ACT++, to name a few. This approach, how-
ever, has the shortcoming that it may be difficult to apply constraints to different classes.
A first problem is with method names: if constraints refer to particular method names of
the class in which they are defined, it will be difficult to apply them to classes where meth-

Exploring the Language Design Space 57

with SIMPLE; class body UNI_BUFFER is
class UNI_BUFFER
introduces ' ... definition of the instance variables and
procedure PUT(l :in SIMPLE.ITEM); implementation of the operations...

procedure PEEK (NB: out INTEGER);

end UNI_BUFFER;
end UNI_BUFFER,;

() (b)

behavioural class READERS WRITERS is

ruled WOP, ROP;

where

(c) per (WOP) <=> active(WOP) + active(ROP) = 0;

per(ROP) <=> (active(WOP) = 0) and (requested(WOP) = 0);

end READERS_WRITERS;

class READERS_WRITERS_UNI_BUFFER
(d) inherits UNI_BUFFER
ruled by READERS_WRITERS
where
PUT =>WOP,
PEEK =>ROP
end;

Figure 2.6 Constraint definition in DRAGOON.

ods have different names. Another problem comes from the use of class inheritance for
reusing constraints. If one uses class inheritance to reuse the constraints, the methods
defined in the class are also inherited. Below we examine some approaches that have been
proposed for addressing these problems.

Genericity of Synchronization Constraints in DRAGOON

DRAGOON [13][14] is an example of a language that supports the specification of gener-
ic synchronization constraints and of one that dissociates inheritance from the mechanism
used for binding synchronization constraints to a class’s methods. Generic constraints are
defined as behavioural classes (b-classes). The constraints may be apsiezpitméal

class having no associated constraints, through the b-inheritance (behavioural) mecha-
nism. This mechanism is independent from the inheritance mechanism (f-inheritance)
used for sequential classes. Figure 2.6 shows an example of the use of the constraint defi-
nition and binding mechanism in DRAGOON. A clas8 BUFFER is defined in (a) and

(b) with method®UT andPEEK used to insert a new element into the buffer and to exam-

ine the number of elements in the buffer. In (C) a generic cONREADERS_WRITERS

58 Concurrency in Object-Oriented Programming Languages

is defined for controlling execution of the methods of a class according to the readers, and
writers, scheduling policy [81]. This synchronization constraint is bound to the class
UNI_BUFFER in (d) wherePUT is associated with the constraints for writersreEgk with

the ones for readers.

Using the Inheritance mechanism of Beta

A similar effect for specifying and binding constraints may be achieved by usingéhne
mechanism of Beta. In Beta a method in a subclass is associated with the superclass meth-
od it specializes. Instead of the subclass method explicitly invoking the superclass method
through the use @gupermechanism, as in Smalltalk, the superclass methaid&s/sin-

voked, and subclasses may only introduce additional behaviour at the point where the key-
wordinner occurs. In a sense, the execution of the superclass method is wrapped around
the invoked subclass method. First are executed the actions in the superclass method that
precedenner, then the subclass method is executed, then the actions of the superclass
method that follownhner are executed.

This feature may be combined with low-level synchronization mechanisms, such as
semaphores, to implement classes that encapsulate generic synchronization policies that
can be applied to methods defined in subclasses in a way similar to how it is done in DRA-
GOON.

Assume there is a clarsaderWriterSched (not shown) with methodsader andwriter
that use semaphores to implement a reader/writer scheduling policy for the netthods
er andwriter. This synchronization may be applied to a ctasshedBuffer with operations
empty, get, put as follows:

SynchedBuffer: @ | ReaderWriterSched
(#Iinstance variables....

peek: Reader(# ...implementation of peek... #)
get: Writer(# ...implementation of get... #)
put: Writer(#implementation of put..#)

#)

This allows the execution @kek to be constrained according the synchronization con-
straints of a reader, wheregsandput are synchronized according to the synchronization
constraints that apply to writers. More on the use of inheritance in Beta to define generic
synchronization policies can be found in [58].

Method Sets and Abstract Classes in ABCL/AP100

Themethod seteature provided in this language may be combined with abstract classes

to define generic synchronization constraints that can be applied to several classes. Meth-
od sets are specified as part of class definitions, and are associated with synchronization
constraints. Method sets can be inherited and modified in subclasses. Systematic use of

Exploring the Language Design Space 59

methods sets solves the problem of applying constraints to classes with different method
names. The possibility of combining method sets with abstract classes (classes where not
all methods are defined) can be used to provide facilities similar to those of DRAGOON.
Abstract classes, making systematic use of method sets in synchronization constraints,
can be used to represent generic constraints similar to DRAGOON's b-classes. However,
in contrast to DRAGOON, programmers have to use the features provided by the language
in a disciplined way. Another interesting feature of this language, discussed below, is that
it is possible to combine synchronization constraints.

2.4.3.3 Polymorphism and Synchronization Constraints

Polymorphism of synchronization constraints is concerned with the potential applicabili-
ty of constraints to different classes provided that the language supports an appropriate
binding mechanism. There are two potential deficiencies with respect to this issue in ap-
proaches for specifying synchronization. The first is related to the use of instance varia-
bles in conditions constraining the activation of methods. The second concerns the use of
constraints that specify mutual exclusion among methods in languages that support intra-
object concurrency.

The first deficiency, also discussed by Bergmans [16], occurs in the proposals of
Frglund [37] and Matsuoka [63], and in Guide and PROCOL, to cite a few examples. In
these languages the conditions that are used in their constraints reference the object’s in-
stance variables. This makes it difficult to apply the constraints to classes implemented in
a way that does not require these instance variables. Moreover, it makes it difficult to
change the implementation of a class without having to consider the instance variables ref-
erenced in the constraints and, eventually, modifying the constraints as well. The problem
may also be more severe than just modifying the constraints of a single class, as the con-
straints to be modified may be used by other subclasses as well. This could cause the re-
examination and adjustment of the constraints of several subclasses of the class that was
modified.

Two approaches have been be followed for alleviating this problem. First, instead of ac-
cessing directly the instance variables, conditions could be specified through a function
that accesses the object state indirectly. If the implementation had to be modified, only
these functions would need to be modified to account for the changes in the object state.
This approach is followed for this precise reason by Sina in the way conditions are speci-
fied in wait filters [16] as well as in the specification of state predicates [74]. A second
approach is to use condition variables to maintain an abstract state that is separate from the
actual class implementation and is used purely for synchronization purposes. This
approach is followed Synchronizing Actions, DRAGOON and PO.

The second potential deficiency occurs in languages with intra-object concurrency. In
several languages with intra-object concurrency, such as Guide, DRAGOON and PO, syn-
chronization constraints specify mutual exclusion properties among methods. The main
reason for imposing mutual exclusion constraints on method executions is that method
implementations access common instance variables. However, a different or modified im-
plementation of a class may use a different set of instance variables and may have different

60 Concurrency in Object-Oriented Programming Languages

needs for mutual exclusion. Consequently, constraints that specify mutual exclusion prop-
erties among methods may find limited applicability to classes with a different implemen-
tation. Also, modifying the implementation of a class to which such constraints are
attached, as discussed above for guards that reference instance variables, may cause the
modification of the constraints attached to several classes. This problem, however, has not
received any attention by other work in the area.

2.4.3.4 Extensibility and Compositionality

In languages such as DRAGOON, the issue of combining synchronization constraints is
avoided by the way the language is designed; inheritance is not allowed among classes that
are associated with synchronization constraints, r-classes, or the classes (b-classes) that
are use to describe the constraints themselves. This approach has advantages and
disadvantages. The separation of constraints from classes allows the use of inheritance
between f-classes without having to be concerned how the associated constraints would
have to be combined. The disadvantage is that there is no support for reusing constraints
in the definition of new ones.

In other languages the issue of combining constraints is addressed either because class
inheritance mechanism is tight up to the constraint binding mechanism or to allow con-
straints to be defined incrementally.

Fralund [37] proposed an approach for combining constraints of a class with those in-
troduced in subclasses based on the view that constraints should become stricter in sub-
classes. The proposed approach for combining constraints supports this view by
incrementally combining conditions that disable method execution. This way conditions
may only become more strict in subclasses.

Matsuoka [63] provides a more elaborate way of combining constraints through modi-
fication ofmethod setand by the fact that method sets are recomputed in a subclass taking
into account the full set of methods including the methods inherited from all superclasses.
For instance, the method agexcept(LOCKED), whereLOCKED is another method set de-
fined elsewhere, denotes all the object’s methods except the coexi&D. This method
set is recomputed in subclasses to account for additional methods defined in the subclass
or inherited from other superclasses. Such features enable the definition of mixins that can
be combined with the constraints of other classes to obtain the synchronization behaviour
specified by the mixin. An example of such a mixin class is presented in [63].

A powerful way of composing synchronization constraints is also provided by wait fil-
tersin Sina. In order to get accepted, messages are matched against paitetfitefs
Wait filters are associated with conditions, a form of guards, that must be true to let match-
ing messages go through the filter. Filters can be stacked at the interface of an object and
messages have to traverse all of them before being accepted by the object. Bergmans
shows in [16] how this approach can be used for the locking mixin and for other constraint
composition examples. The locking mixin discussed above can be realized by a class that
provides a walit filter that matches all messagesrbutk and is associated with a condi-
tion, Unlocked, that is true only when the object is unlockestk anduUnlock methods
change the state of a lock object so as to rendentbex condition false and true respec-

Exploring the Language Design Space 61

tively. A lock object can be used in the definition of another class in such a way that mes-
sages have to go through its filter first. In this way the synchronization constraint defined
by lock can be reused in other classes.

PO [29] also supports the composition of constraints defined in superclasses of a class.
In contrast to the proposals of Frglund and Matsuoka, where objects are single-threaded,
PO constraints are designed for objects with internal concurrency. Constraints on the par-
allel execution of methods are partially ordered in a lattice with fully parallel execution of
methods at the top and mutual exclusion among all methods at the bottom of the lattice.
When incompatible constraints are inherited from different superclasses, they are com-
pared according to this order and the more strict constraint is retained.

2.4.3.5 Combining Inheritance with Request/Reply Scheduling

In most work on the design of mechanisms for the specification and reuse of synchroniza-

tion constraints, little attention has been paid to the eventuality that methods may have to

be suspended halfway through their execution. However, as we discussed in section 2.4.2
this may be necessary to support reply scheduling. The possibility of suspending methods

using mechanisms designed for the reuse of synchronization constraints is addressed in
Synchronizing Actions [69] and in the design of skege predicat¢74] mechanism.

Synchronizing Actions are based on multi-thread objects. The execution of a method
may be suspended by calling, throwsglf, another method with a pre-action such that the
call is delayed. This approach may be used to support request and reply scheduling for the
administrator as shown in figure 2.7. The administrator calls workers by creating proxy
objects that do the actual call. After creating a proxy the administrator thread is suspended
by calling the methoslispend. The proxy calls the worker and when the call returns it calls
theworkerDone method to cause the administrator thread to be resumed. Figure 2.7 illus-
trates the implementation of the administrator concentrating on the synchronization as-
pects. Other languages that support internally concurrent objects and flexible
specification of synchronization constraints, for instance Guide or Sina, could be used in
a similar way. This approach, however, has some shortcomings. First, its complexity
would make it difficult to use in practice. Second, it relies on the assumption that methods
invoked through self are subject to the same constraints as invocations from other objects.
This may not be appropriate when self is used in conjunction with inheritance to reuse al-
gorithms defined in abstract superclasses.

The state predicate approach [74] provides a simpler and more direct way for suspend-
ing method execution based on a state predicate. The effect is similar to the one achieved
by the approach discussed above. However, the resulting code is simpler as thread suspen-
sion and resumption is supported by the language and the complications deriving from the
need to call the objects methods through self are avoided.

2.4.4 Summary

Below we present our observations with respect to reuse issues resulting from our explo-
ration of language design approaches.

62 Concurrency in Object-Oriented Programming Languages
class Admin; method workerDone()
concurrency_control: matching (true)

boolean worker_finished := false, pre { worker_finished :=true }
admin_idle :=true; action { }
post{}
method suspend()
matching (true) method request()
pre {admin_idle :=true } matching (admin_idle)
action{ pre { admin_idle :=false}
selflwaitWorker () action {
} do some local processing...
post { admin_idle := false} request := worker_proxy.doWork();
selflwaitWorker ();
method waitWorker() ...some more processing...
matching (worker_finished); }
pre { worker_finished := false;admin_idle := false post{admin_idle :=true };
}
action {}
post{};

Figure 2.7 Request/reply scheduling with synchronization constraints.

Object-Based Features

Homogeneous object models promote re@seicurrent applications can safely re-
use objects developed for sequential applications; efficiency need not be sacrificed.

Sequential objects with strict RPC are inadequiequest scheduling and internal
concurrency can only be implemented by sacrificing the RPC interface; the solution
is either to support concurrent threads or to relax the strict RPC protocol.

One-way message passing is expressive but undesitahde higher-level request-
reply protocols must be explicitly programmed, development and reuse of objects is
potentially more error-prone.

Acceptance of concurrent requests is handled well either by concurrent threads or by
explicit request/reply scheduling.

Issuing concurrent requests is handled well by one-way message passing, by proxies
or by internal concurrencyThe combination of both concurrent threads and non-
blocking communication primitives may be appropriate for handling the separate
issues of accepting and issuing concurrent requests.

Built-in proxiesused bysequential object&ith non-blocking request issuing mech-
anisms provide adequate support for reply scheduling but are weak at combining
reply and request scheduling.

Both concurrent objects and multi-object approaches are useful for internal concur-
rency: These approaches for internal concurrency are both useful for different pur-
poses. Concurrent threads make it easy to implement objects that may service several
concurrent requests that do not modify the objects state. Multi-object approaches are

Conclusion 63

interesting when the implementation of a new object class, with internal concurren-
cy, may be realized by using several concurrently executing instances of existing
object classes.

Inheritance and Synchronization Constraints

» Synchronization constraints should not be hardwired in methidtie: synchroniza-
tion code that schedules the execution of methods is hardwired in methods, it will be
necessary to modify the method code in order to meet the constraints of other classes.

» Multiple threads are needed to cope with reply schedulinogupport reply sched-
uling it is important to be able to suspend the execution of a method. However, it
seems difficult to do this if synchronization code is kept separate from methods to
support inheritance.

* Method suspension and resumption should be taken into account by synchronization
constraints Taking into account the suspension of method execution by the mecha-
nism that implements the synchronization constraints makes it simpler to program
reply scheduling problems without compromising the reusability of methods.

» Specification of mutual exclusion may lead to non-polymorphic constisiutsal
exclusion properties of methods are often related to the way methods access instance
variables. Such constraints may thus not be applicable to classes with different
instance variables or in which methods access instance variables in a different way.
Including mutual exclusion specifications in constraints makes them less reusable.

* Itis advantageous to separate the reuse of constraints from inheritaisceasier to
reuse synchronization constraints is they are specified generically and if their appli-
cation to different classes is not accomplished through class inheritance.

2.5 Conclusion

Integrating concurrency and object-oriented programming is not as easy as it may seem at
a first sight. There is no major difficulty in introducing both object-oriented and concur-
rency features in a single language. However, arbitrary combinations of concurrency and
object-oriented features do not allow programmers draw the benefits of object-oriented
programming for the development of concurrent systems. These difficulties have fostered
substantial research in the past few years in the design of languages that gracefully in-
tegrate both kinds of features. However, the interference of the features occurs in several
aspects of language design and the various proposals are not equally successful in all these
aspects.

In this chapter we have discussed a number of issues that should be addressed in various
aspects of language design, and we have formulated some criteria to use in evaluating de-
sign choices. We have used these criteria to evaluate various proposals, and we have illus-
trated the issues by examining specific languages. The languages discussed were chosen
to illustrate particular points rather than to present a complete survey of all existing pro-

64 Concurrency in Object-Oriented Programming Languages

posals. It was not our intention to compare individual languages; other issues not dis-
cussed in this chapter would have to be considered in such an endeavour. Different
considerations come in to play, for example, when designing a language for rapid proto-
typing or a language for programming embedded systems.

We have presented some guidelines for the design of languages that support the basic
object-oriented features promoting reuse. Although these seem to be necessary conditions
more is needed to achieve reuse at a larger scale. These are research issues which are dis-
cussed in other chapters. The further development and the use of techniques for reuse at a
larger scale for developing concurrent systems may provide more criteria for evaluating
language features and may result in more requirements on language design.

References

[1] GulAgha,ACTORS: A Model of Concurrent Computation in Distributed SystdiisPress, Cam-
bridge, Mass., 1986.

[2] GulAghaand C. J. Callsen, “ActorSpace: An Open Distributed Programming Paraéigoged-
ings 4th ACM Conference on Principles and Practice of Parallel Programi®igl SIGPLAN No-
tices vol. 28, no. 7, 1993, pp. 23-323

[3] AlfredV. Aho, Ravi Sethi and Jeffrey D. Ullma@pmpilers Principles, Techniques and Toélddi-
son-Wesley, Reading, Mass., 1986.

[4] MehmetAksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans and Akinori Yonezawa, “Abstracting Ob-
ject Interactions Using Composition FilterBfoceedings of the ECOOP '93 Workshop on Object-
Based Distributed Programmingd. R. Guerraoui, O. Nierstrasz, M. Rivdilkcture Notes in Com-
puter Scienceyol. 791, Springer-Verlag, 1994, pp. 152-184

[5] Pierre America, “Inheritance and Subtyping in a Parallel Object-Oriented LangRagegedings
ECOOP '87 ed. J. Bézivin, J-M. Hullot, P. Cointe and H. Liebermagcture Notes in Computer Sci-
enceyol. 276, Springer-Verlag, Paris, 1987, pp. 234-242.

[6] Pierre America, “POOL-T: A Parallel Object-Oriented Language@loject-Oriented Concurrent
Programminged. A. Yonezawa and M. Tokoro, MIT Press, Cambridge, Mass., 1987, pp. 199-220.

[7] Pierre America, “A Behavioural Approach to Subtyping in Object-Oriented Programming Lan-
guages,” inProceedings of the Workshop on Inheritance Hierarchies in Knowledge Representation
and Programming Languagedareggio, Italy, Feb. 1989, pp. 141-156.

[8] Pierre America and Frank van der Linden, “A Parallel Object-Oriented Language with Inheritance
and Subtyping,Proceedings OOPSLA'9ACM SIGPLAN Noticewol. 25, no. 10, ACM Press, Oct.
1990, pp. 161-168.

[9] American National Standards Institute, InEhe Programming Language Ada Reference Manual
Lecture Notes in Computer Sciened, 155, Springer-Verlag, 1983.

[10] S.Andler, “Predicate Path ExpressionsPioceedings of 6th ACM POPACM SIGPLAN Notices
1979.

[11] Gregory R. Andrews and Fred B. Schneider, “Concepts and Notations for Concurrent Programming,
ACM Computing Surveyegol. 15, no. 1, March 1983, pp. 3—43.

[12] Gregory R. Andrews, R.A. Olsson and M. Coffin, “An Overview of the SR Language and Implemen-
tation] TOPLAS,vol. 10, no. 1, Jan. 1988, pp. 51-86.

[13] Colin Atkinson, Stephen Goldsack, Andrea Di Maio and R. Bayan,“Object-Oriented Concurrency
and Distribution in DRAGOON Journal of Object-Oriented Programminidarch/April 1991.

References 65

[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]

[34]

Colin Atkinson, Object-Oriented Reuse, Concurrency and Distribytidadison-Wesley/ACM
Press, 1991.

Henri E. Bal, J.G. Steiner and Andrew S. Tanenbaum, “Programming Languages for Distributed
Computing SystemsACM Computing Surveygol. 21, no. 3, Sept. 1989, pp. 261-322.

Lodewijk Bergmans, “Composing Concurrent Objects,” Ph.D. Thesis, University of Twente, 1994.

Ted Biggerstaff and C. Richter, “Reusability Framework, Assessment and Direckifieg, 'Soft-
ware,vol. 4, no. 2, March 1987, pp. 41-49.

Anders Bjornerstedt and Stefan Britts, “AVANCE: An Object Management SysRnteedings
OOPSLA’88ACMSIGPLAN Noticesyol. 23, no. 11, San Diego, Nov. 1988, pp. 206—221.

Andrew Black, Norman Hutchinson, Eric Jul and Henry Levy, “Object Structure in the Emerald Sys-
tem,” Proceedings OOPSLA'88CM SIGPLAN Noticesol. 21, no. 11, Nov. 1986, pp. 78-86.

Toby Bloom, “Evaluating Synchronisation MechanismsPinceedings of the Seventh Symposium
on Operating System PrinciplesCM-SIGOPS, Dec. 1979.

Per Brinch Hansen, “The Programming Language Concurrent PAEEdE, Transactions on Soft-
ware Engineeringyol. SE-1, June 1975, pp. 199-207.

Jean-Pierre Briot and Akinori Yonezawa, “Inheritance and Synchronisation in ConcurrenP@oOP,”
ceedings ECOOP 8Paris, June 1987, BIGRE, no. 54, June 1987, pp. 35-43.

Jean-Pierre Briot, “Actalk: A Testbed for Classifying and Designing Actor Languages in the Small-
talk-80 Environment,” irProceedings ECOOP 88d. S. Cook, British Computer Society Workshop
Series, Cambridge University Press, 1989.

Roy H. Campbell and A.Nico Habermaniihe Specification of Process Synchronisation by Path Ex-
pressions, Lecture Notes in Computer Scieneel. 16, Springer-Verlag, New York, 1974, pp. 89—
102.

Luca Cardelli and Peter Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,”
ACM Computing Surveygol. 17, no. 4, Dec. 1985, pp. 471-523.

Denis Caromel,”A General Model for Concurrent and Distributed Object-Oriented Programming,”
Proceedings ACM SIGPLAN OOPSLA 88 workshop on Object-Based Concurrent Programming,
ACM SIGPLAN Noticewpl. 24, no. 4, April 1989, pp. 102-104.

Denis Caromel, “Concurrency and Reusability: From Sequential to Parddiglirial of Object-Ori-
ented Programmindsept./Oct. 1990.

William Cook, “A Proposal for Making Eiffel Type-Safe,” Proceedings ECOOP 8@d. S. Cook,
British Computer Society Workshop Series, Cambridge University Press, 1989.

Antonio Corradi and L. Leonardi, “Parallelism in Object-Oriented Programming LanguBges,”
ceedings of IEEE International Conference on Computer Langusggsh 1990, New Orleans,
IEEE Computer Society Press, pp. 261-270.

P. Courtois, F. Heymans and D. Parnas, “Concurrent Control with Readers and \iQaters\tinica-
tions of the ACMyol. 14, no. 10, Oct. 1971, pp. 667—668.

Brad J. CoxQbject Oriented Programming: An Evolutionary Approaatidison-Wesley, Reading,
Mass., 1986.

Stefano Crespi Reghizzi, G. Galli de Paratesi and S. Genolini, “Definition of Reusable Concurrent
Software Componentsl’ecture Notes in Computer Sciengel. 512, Springer-Verlag, July 1991,
Proceedings of ECOOP 9Geneva, pp. 148-166.

S. Danforth and Chris Tomlinson, “Type Theories and Object-Oriented Program#Aig,Com-
puting Surveysyol. 20, no. 1, March 1988, pp. 29-72.

Dominigue Decouchant, Sacha Krakowiak, M. Meysembourg, Michel Rivelliand X. Rousset de Pina,
“A Synchronisation Mechanism for Typed Objects in a Distributed Systemm¢eedings ACM SIG-
PLAN OOPSLA 88 workshop on Object-Based Concurrent Programming, ACM SIGPLAN Notices,
vol. 24, no. 4, April 1989, pp. 105-107.

66

[35]
[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]
[47]

[48]

[49]
[50]

[51]

[52]
[53]

[54]

[55]

[56]

Concurrency in Object-Oriented Programming Languages

L. Peter Deutsch, “Reusability in the Smalltalk-80 Programming systehEE Tutorial on Soft-
ware Reusability, 1987

L. Peter Deutsch, “Design Reuse and Frameworks in the Smalltalk-80 systSoftivare Reusabil-
ity, ed. T. J. Biggerstaff and A. J. Perlis, vol. 2, ACM Press, 1989, pp. 57-71.

Svend Frglund, “Inheritance of Synchronization Constraints in Concurrent Object-Oriented Pro-
gramming LanguagesProceedings ECOOP 92d. O. Lehrmann Madseecture Notes in Com-
puter Scienceyol.615, Springer-Verlag, Utrecht, June/July 1992, pp. 185-196.

Svend Frglund and Gul Agha, “A Language Framework for Multi-Object Coordind®imtéedings
ECOOP’93 Lecture Notes in Computer Sciepeel. 707, July 1993, pp. 346—360.

Morven Gentleman, “Message Passing Between Sequential Processes: the Reply Primitive and the
Administrator Concept Software—Practice and Experieneel. 11, 1981, pp. 435-466.

Adele Goldberg and David Robs@malltalk-80: The Language and its Implementatiaidison-
Wesley, Reading, Mass., 1983.

C.A. R. Hoare, “Proof of correctness of data representatidcis Informaticavol. 1, Feb. 1972, pp.
271-281.

C.A.R. Hoare, “Monitors: An Operating System Structuring Conc€ptjimunications of the ACM
vol. 17, no. 10, Oct. 1974, pp. 549-557.

C.A. R. Hoare, “Communicating Sequential Processasyimunications of the AGMol. 21, no. 8,
Aug. 1978, pp. 666—677.

Ralph E. Johnson and Brian Foote, “Designing Reusable Cladsesyal of Object-Oriented Pro-
gramming June/July 1988, pp. 22-35.

Dennis G. Kafura and Kueng Hae Lee, “Inheritance in Actor Based Concurrent Object-Oriented Lan-
guages,” irProceedings ECOOP’ 8@d. S. Cook, British Computer Society Workshop Series, Cam-
bridge University Press, 1989.

Alan H. Karp, “Programming for ParallelismEEE Computerl987, pp. 43-577

Dimitri Konstantas, Oscar M. Nierstrasz and Michael Papathomas, “An Implementation of Hybrid,”
in Active Object Environmentsg. D. Tsichritzis, Centre Universitaire d’Informatique, University of
Geneva, 1988, pp. 61-105.

Sacha Krakowiak, M. Meysembourg, H. Nguyen Van, Michel Riveill, C. Roisin and X. Rousset de
Pina, “Design and Implementation of an Object-Oriented Strongly Typed Language for Distributed
Applications,”Journal of Object-Oriented Programmifgpl. 3, no. 3, Sept./Oct. 1990, pp. 11-22

Chris Laffra, “PROCOL.: A Concurrent Object Language with Protocols, Delegation, Persistence and
Constraints,” Ph.D. thesis, Erasmus University, Rotterdam, 1992.

Butler W. Lampson and D.D. Redell, “Experience with Processes and Monitors in Mesaiuni-
cations of the ACMvol. 23, no. 2, 1980, pp. 105-117.

Henry Lieberman, “Using Prototypical Objects to Implement Shared Behavior in Object Oriented
Systems,Proceedings OOPSLA '88CM SIGPLAN Noticewol. 21, no. 11, Nov. 1986, pp. 214—
223.

Barbara Liskov, Alan Snyder, Robert Atkinson and Craig Schaffert, “Abstraction Mechanisms in
CLU,” Communications of the AGMol. 20, no. 8, Aug. 1977, pp. 564-576.

Barbara Liskov and S. Zilles, “Programming with Abstract Data Tyfp&sgeedings of the ACM
Symposium on Very High Level Language€3M SIGPLAN Noticewol. 9, no. 4, 1974, pp. 50-59.

Barbara Liskov, Maurice Herlihy and L. Gilbert, “Limitations of Synchronous Communication with
Static Process Structure in Languages for Distributed Computingrbaeedings of the 13th ACM
POPL, St Petersburg, Fla., 1986.

Barbara Liskov, “Distributed Programming in Argu€dmmunications of the AGMol. 31, no. 3,
1988, pp. 300-313.

A. Lister, “The Problem of Nested Monitor Call&CM Operating Systems Revjdwly 1977, pp. 5—
7.

References 67

[57]
[58]

[59]

[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]

[71]

[72]

[73]

[74]
[75]
[76]

[77]

Peter Lohr, “Concurrency Annotations for Reusable Softw@ayimunications of the AGMol. 36,
no. 9, Sept. 1993, pp.81-89.

Ole Lehrmann Madsen, Birger Mgller-Pedersen and Kristen Nygaajdct-Oriented Program-
ming in the Beta Programming Languageldison-Wesley, Reading, Mass., 1993.

Ciaran McHale, Bridget Walsh, Sean Baker and Alexis Donnelly,"Scheduling Predi€ategtd-
ings of the ECOOP’91 workshop on Object-Based Concurrent CompuaethgM. Tokoro, O.
Nierstrasz and P. Wegnégcture Notes in Computer Sciene®l. 612, 1992, pp. 177-193.

Ciaran McHale, Bridget Walsh, Sean Baker and Alexis Donnelly, “Evaluating Synchronisation
Mechanisms: The Inheritance Matrix,” Technical Report, TCD-CS-92-18, Department of Computer
Science, Trinity College, Dublin 2, July 1992, (presented at the ECOOP’92 Workshop on Object-
Based Concurrency and Reuse).

Pattie Maes, “Concepts and Experiments in Computational Reflectiéigdredings OOPSLA'87
ACM SIGPLAN Noticewol. 22, no. 12, Dec. 1987.

Satoshi Matsuoka, Ken Wakita and Akinori Yonezawa, “Analysis of Inheritance Anomaly in Concur-
rent Object-Oriented Languages,” (Extended Abstr&eticeedings of OOPSLA/ECOOP’90 work-
shop on Object-Based Concurrent Systéx@dv SIGPLAN Noticed4990.

Satoshi Matsuoka, Kenijiro Taura and Akinori Yonezéawéghly Efficient and Encapsulated Re-use
of Synchronisation Code in Concurrent Object-Oriented LanguaBesceedings OOPSLA'93,
ACM SIGPLAN Noticewol. 28, no. 10, Oct. 1993, pp. 109-129

Bertrand MeyerQbject-Oriented Software Constructid?rentice Hall, New York, 1988.

Bertrand Meyer, “Reusability: The Case for Object-Oriented Design,” IEEE Software, vol. 4, no. 2,
March 1987, pp. 50-64.

Bertrand Meyer, “Systematic Concurrent Object-Oriented Programm@ugyimunications of the
ACM, vol. 36, no. 9, Sept. 1993, pp. 56-80.

José Meseguer, “Solving the Inheritance Anomaly in Object-Oriented Programmbigptéeedings
ECOOP’93 Lecture Notes in Computer Scieneal. 707, ed. O.M. Nierstrasz, Springer-Verlag 1993.

J. Eliot B. Moss and Walter H. Kohler, “Concurrency Features for the Trellis/Owl Lang&age,”
ceedings of ECOOP "8 BIGRE, no. 54, June 1987, pp. 223-232.

Christian Neusius, “Synchronizing ActionBfoceedings of ECOOP'9Lecture Notes in Computer
Sciencevol. 512, Springer-Verlag, July 1991, pp. 118-132.

Oscar Nierstrasz, “Active Objects in Hybri@foceedings OOPSLA’SACM SIGPLAN Noticesol.
22,no0. 12, Dec. 1987, pp. 243—-253.

Oscar Nierstrasz, “A Tour of Hybrid — A Language for Programming with Active Objéateédnces
in Object-Oriented Software Engineerjreg. D. Mandrioli and B. Meyer, Prentice Hall, 1992, pp.
167-182.

Michael Papathomas and Dimitri Konstantas, “Integrating Concurrency and Object-Oriented Pro-
gramming: An Evaluation of Hybrid,” i®bject Managemengd. D. Tsichritzis, Centre Universitaire
d’Informatique, University of Geneva, 1990, pp. 229-244.

Michael Papathomas, “Concurrency Issues in Object-Oriented Languag@ebjért Oriented De-
velopmented. D. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, 1989, pp.
207-245.

Michael Papathomas, “State Predicate Notifiers: A Concurrent Object Model,” Lancaster University
Report, April 1994.

David L. Parnas, “A Technique for Software Module Specification with Exam@lesymunications
of the ACMvol. 15, no. 5, May 1972, pp. 330-336.

David L. Parnas, “On the Criteria to be Used in Decomposing Systems into Mo@aesyiunica-
tions of the ACMvol. 15, no. 12, Dec. 1972, pp. 1053-1058.

David L. Parnas, “The Non-Problem of Nested Monitor Cal€M Operating Systems Revjewl.
12, no. 1, 1978, pp. 12-14.

68

[78]
[79]

[80]
[81]

[82]
[83]

[84]
[85]
[86]
[87]

[88]

[89]
[90]
[91]

[92]

[93]

[94]

Concurrency in Object-Oriented Programming Languages

Geoffrey A. Pascoe, “Encapsulators: A New Software Paradigm in Smalltalk 8dgdaedings of
OOPSLA '86ACM SIGPLAN NoticesSept. 1986.

Alan Snyder, “Encapsulation and Inheritance in Object-Oriented Programming Languages,” ACM
SIGPLAN Notices, vol. 21, no. 11, Nov. 1986, pp. 38-45.

Bjarne Stroustrupfhe C++ Programming Languagé@ddison-Wesley, Reading, Mass., 1986.

T. J. Teorey and T. B. Pinkerton, “A Comparative Analysis of Disk Scheduling PoliC@&s{nuni-
cations of the ACIvol. 15, no. 3, March 1972, pp. 177-184.

Tom Thompson, “System 7.5: A Step Toward the Futigg August 1994,

Chris Tomlinson and Vineet Singh, “Inheritance and Synchronisation with Enabled”3etggd-
ings OOPSLA '89ACM SIGPLAN Noticewol. 24, no. 10, Oct. 1989, pp. 103-112.

Anand Tripathi and Mehmet Aksit, “Communication, Scheduling, and Resource Management in Si-
na,” Journal of Object-Oriented Programminigov./Dec. 1988, pp. 24-36.

JanVan Den Bos and Chris Laffra, “PROCOL: A Parallel Object Language with ProtBrotgsed-
ings OOPSLA '89ACM SIGPLAN Noticewol. 24, no. 10, Oct. 1989, pp. 95-102.

Takuo Watanabe and Akinori Yonezawa, “Reflection in an Object Oriented Concurrent Language,”
ACM SIGPLAN Noatices, vol. 23, no. 11, 1988, pp. 306—-315.

Peter Wegner, “Dimensions of Object-Based Language DesigPrpaeedings OOPSLA '8ACM
SIGPLAN Noticesvol. 22, Orlando, Florida, Dec. 1987, pp. 168-182.

Peter Wegner and Stanley B. Zdonik, “Inheritance as an Incremental Modification Mechanism or
What Like Is and Isn’t Like,” irProceedings ECOOP’8& ecture Notes in Computer Scieneel.
322, Springer-Verlag, 1988, pp. 55-77.

Peter Wegner, “Concepts and Paradigms of Object-Oriented Programi@hg OOPS Messenger
vol. 1, no. 1, August 1990.

William E. Weihl, “Linguistic Support for Atomic Data Type#&CM Transactions on Programming
Languages and Systemsl. 12, no. 2, 1990.

Rebecca J. Wirfs-Brock and Ralph E. Johnson, “Surveying Current Research in Object-Oriented De-
sign,” Communications of the AGMol. 33, no. 9, Sept. 1990, pp. 104-123.

Yasuhiko Yokote and Mario Tokoro, “Concurrent Programming in ConcurrentSmalltatjject-
Oriented Concurrent Programmingd. M. TokoroMIT Press Cambridge, Mass., 1987, pp. 129—
158.

Yasuhiko Yokote and Mario Tokoro, “Experience and Evolution of ConcurrentSmalltalRfbin
ceedings OOPSLA '8ACM SIGPLAN Noticewol. 22, Orlando, Florida, Dec. 1987, pp. 168—182.

Akinori Yonezawa, Etsuya Shibayama, T. Takada and Yasuaki Honda, “Modelling and Programming

in an Object-Oriented Concurrent Language ABCL/1,0ibject-Oriented Concurrent Program-
ming, ed. M. TokoroMIT Press Cambridge, Mass., 1987, pp. 55-89.

	Concurrency in Object-Oriented Programming Languages
	2.1 Introduction
	2.2 Design Space
	2.2.1 A Design Space for Concurrent Object-Oriented Languages
	2.2.2 Concurrent Object Models
	2.2.3 Internal Concurrency
	2.2.4 Constructs for Object Interaction

	2.3 Criteria for Evaluating Language Design Choices
	2.3.1 Object-Based Features — Support for Active Objects
	2.3.2 Inheritance and Synchronization

	2.4 Exploring the Language Design Space
	2.4.1 Object Models
	2.4.2 Object Interaction Mechanisms
	2.4.3 Inheritance and Reuse of Synchronization Constraints
	2.4.4 Summary

	2.5 Conclusion

