
diverse
, de-

iented
upport

ided by
aviga-
apabil-
w the

Xavi
Pren
Repr
may
othe
right
Chapter 9

The Affinity Browser

Xavier Pintado

Abstract Large numbers of classes, complex inheritance and containment
graphs, and diverse patterns of dynamic interaction all contribute to difficulties in
understanding, reusing, debugging, and tuning large object-oriented systems.
These difficulties may have a significant impact on the usefulness of such systems.
Tools that help in understanding the contents and behaviour of an object-oriented
environment should play a major role in reducing such difficulties. Such tools allow
for the exploration of different aspects of a software environment such as
inheritance structures, part-of relationships, etc. However, object-oriented systems
differ in many respects from traditional database systems, and in particular,
conventional querying mechanisms used in databases show poor performance
when used for the exploration of object-oriented environments. This chapter
defines the requirements for effective exploration mechanisms in the realm of
object-oriented environments. We propose an approach to browsing based on
the notion of affinity that satisfies such requirements. Our tool, the affinity browser,
provides a visual representation of object relationships presented in terms of
affinity. Objects that appear closer in the visual representation are more strongly
related than objects lying farther apart. So, the intensity of a relationship is
translated into distance in the visual representation that provides the support for
user navigation. We provide many examples of metrics defined over the objects of
an environment to illustrate how object relationships can be translated in terms of
affinity so that they can be used for the exploration of an environment.

9.1 Introduction

Large numbers of classes, complex inheritance and containment graphs, and
patterns of dynamic interaction all contribute to difficulties in understanding, reusing
bugging, and tuning large object-oriented systems. From the inception of object-or
environments, developers and software designers have felt the need for tools that s
the process of understanding the objects, the classes and the relationships prov
their environments. For example, reuse of existing software components requires n
tion and inspection of classes and how they are related. Inspection and navigation c
ities are also instrumental for the combination of instantiated objects since they allo
er Pintado, “The Affinity Browser,” Object-Oriented Software Composition, O. Nierstrasz and D. Tsichritzis (Eds.), pp. 245-272,
tice Hall, 1995.
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. It is not
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
s reserved.

246 The Affinity Browser

vein,
jects is

 based
col-
nted in
rongly
d into

 point-
iven

r pro-
loring
 allows
tion-
ts con-
 many
llow-
 a large

ng and
stics of
owsing
tional
quire-
ents.

 In sec-
nment
y can

ant, for
 envi-
proxi-
 his or
ve rela-
lection

mote
ftware
user to go back and forth, inspecting objects and combining them. In a similar
discerning global and local patterns of interaction among classes and among ob
critical for tuning and debugging.

This chapter proposes an approach to browsing for object-oriented environments
on the notion of affinity. Our tool, the affinity browser, allows for the exploration of
lections of objects based on a visual representation of object relationships prese
terms of affinity. Objects that appear closer in the visual representation are more st
related than objects lying farther apart. So, the intensity of a relationship is translate
distance in the visual representation.

Our approach displays many advantages. First, affinity browsing is not based on
to-point navigation. The user is provided with the set of objects that lie within a g
neighbourhood relative to the object currently being inspecting. The affinity browse
motes, therefore, proximity-based navigation whereby exploration proceeds by exp
first the objects that are close to the current object of interest. Second, the browser
for the exploration of dynamically evolving relationships. The evolution of such rela
ships is visualized as an animation where the change in the relative position of objec
veys the change of the underlying relationships expressed in terms of affinity. Third,
different kinds of object relationships can be translated into affinity representations a
ing the same exploration paradigm and the same user interface to be used to explore
spectrum of object relationships.

This chapter is organized as follows. Section 9.1.1 addresses the problem of findi
selecting objects inside an object-oriented environment. It discusses the characteri
object-oriented systems that may have an impact on the effectiveness of various br
mechanisms. Section 9.1.2 surveys work related to browsing ranging from tradi
graph-based browsing to graphical and spatial browsing. Section 9.2 defines the re
ments for effective exploration mechanisms in the realm of object-oriented environm
Section 9.3 presents the affinity browser as a tool that satisfies such requirements.
tion 9.4 we provide many examples of metrics defined over the objects of an enviro
to illustrate how object relationships can be translated in terms of affinity so that the
be used for the exploration of an environment

9.1.1 Object Selection

We address here the issue of selection in the object-oriented realm. Users may w
instance, to select classes, objects, or functionality. Selection in an object-oriented
ronment has many problems, however. First, an application designer has only ap
mate selection criteria to select an appropriate reusable object class for developing
her application. Second, the object classes and the objects in a running system ha
tionships that change dynamically. Third, objects are encapsulated and content se
has only very limited use.

Furthermore, object-oriented principles applied to software design seem to pro
systems with object relationships that are more complex than in more traditional so

Introduction 247

elop-
an ex-

tech-
its of
 inter-
nition
ional-
echa-
grate
ition
lexity

tance,
e
sition

isting
mber

s that
nce,
gh, it
ures of
mming
e kind
 code

meth-
ation,
 proc-

own
lection
imin-

 brows-

ria are
the
ulate,

oit,
environments. Many authors think that these principles will allow designers and dev
ers to create software environments that are an order of magnitude more complex th
isting software systems [19] [4].

A noteworthy supporting reason for such belief is that object-oriented design
niques seem to allow significantly better decomposition of complex problems into un
manageable complexity. First, by the virtue of encapsulation an object conceals its
nal complexity and it acquires some level of autonomy. Second, incremental defi
through inheritance allows for the endless refinement of object behaviour and funct
ity without the need to rework the whole hierarchy at each refinement step. These m
nisms, with such desirable features, allow for the implementation of models that inte
much detail both at the object level and at the level of object relationships. This intu
is further supported by experience that shows that it is quite easy to introduce comp
in the design and in the implementation of an object-oriented environment. For ins
object-oriented programming is more an activity of wiring together sets of objects. For th
programmer or for the designer whose task is to build a system through the compo
of objects it might be quite easy to combine them in many different ways — this is the
producer’s view. On the other hand, for a developer who wants to understand ex
functionality for reuse or maintenance, it may be difficult to comprehend the large nu
of functional relationships that have been created — this might be the consumer’s view.

Early experiences with object-oriented environments highlighted the need for tool
allow for the exploration of object relationships. The Smalltalk environment, for insta
already provided a sophisticated integrated browsing tool [12]. Interestingly enou
has been argued that the Smalltalk browsing tool is one of the most appealing feat
that environment and it is often cited as a reference. For sure, almost every progra
activity on the environment relies on the browser to support navigation needed for th
of non-linear programming promoted by object-orientation. The browser is used to
new objects, to find reusable classes and to explore object relationships.

9.1.1.1 Querying and Browsing
The two methods commonly applied for selection are querying and browsing. The
ods are usually applied in a complementary manner; we query and browse in altern
applying which method seems more appropriate at different stages of the selection
ess.

Querying provides fine selectivity when the structure of the information space is kn
and when content selection can be used. For instance, querying is the primary se
method in database systems. When querying provides good selectivity, browsing d
ishes in importance. Most selected items are appropriate and we only need a crude
ing tool to inspect them.

Querying, however, can have poor results for many reasons. If the selection crite
ill-defined and fuzzy querying does not work well, e.g. in information retrieval. If
structure of the information space changes dynamically, queries are not easy to form
e.g. in financial information systems. Finally, if content selectivity is difficult to expl

248 The Affinity Browser

 cases

n im-
it helps
 sup-
k. In
earch

tability
.
anges
ery
 with a
terms of
 with

bject
bjects
 inter-
tem is
is in-
 an en-

lso in

base,
to inte-

 infor-
 explo-
d to

viron-
cepts
 as the
querying loses a lot of selectivity power, e.g. in multimedia databases. In all these
powerful browsing capabilities become indispensable.

9.1.1.2 Dynamically Evolving Relationships
As we already mentioned, the analysis of dynamically evolving relationships plays a
portant role in debugging but can also be of invaluable assistance for reuse since
understanding how objects are related in existing applications. However, providing
port for the understanding of dynamically evolving relationships is a challenging tas
fact, traditional querying techniques usually assume a user with knowledge of the s
structure that supports selection. Such an assumption usually implies structure s
since it seems unrealistic to assume user knowledge of a quickly evolving structure

With traditional databases it is usually assumed that their information contents ch
but not their structure — or at least not frequently. For example, widely used qu
languages such as SQL provide almost no support for selection in an environment
changing structure. The stability of database schemes represents an advantage in
access to information but it makes traditional databases ill-suited for information
dynamically evolving structures.

The need to cope with dynamically evolving relationships appears in many o
selection problems. For example, we may be interested in finding which are the o
that interact most frequently with a given object in order to determine its patterns of
action. The change in the interaction patterns depending on what activities the sys
performing may provide useful information about the intended role of an object. Th
formation can be used, for instance, to assess the potential of reuse for an object in
vironment that may or may not provide the same activity context.

The need for more flexibility than that provided by query mechanisms appeared a
databases. For example, Motro [20] [21] [22] describes browsing tools that allow fornav-
igation in a semantic network extracted from the internal structure of a relational data
and provide capabilities for fuzzy queries. The approach has been later extended
grate similar capabilities in an object-oriented environment [23].

9.1.2 Related Work

Because there is an observable trend towards more complex and quickly evolving
mation systems we need to investigate how to enhance browsing capabilities for the
ration of information systems. In this section we describe previous work relate
browsing.

9.1.2.1 The Smalltalk Browser
To the best of our knowledge, the Smalltalk system was the first programming en
ment where exploration tools played a major role. Furthermore, the browsing con
and mechanisms have been clearly defined [13] [12] and they are quite often cited
historical reference to which more recent browsing tools are compared.

Introduction 249

 of ob-
n

 view
ch as:
ge?
 class
sents
range
ses and

ols is
y
pection
reation
o per-

s. The
inuous
envi-
lltalk

he tree
ven to

s large
rranged

ning
d pro-

tem’s
ing the
wever.
ame-
vent
ms of
ended to

 Their
stem.
ddress

aviour.
The Smalltalk environment provides capabilities to inspect the message interface
jects through a system view called a browser. Similarly, the internal state of an object ca
be inspected through another system view called an inspector. Furthermore, it is possible
to obtain interface information about sets of objects through another kind of system
called a message-set browser. These views are generated as responses to queries su
which classes implement a given message? Which objects send a particular messa

The main way to find out about classes in the environment is to use a system
browser. The browser presents a hierarchical view of class-related information. It pre
categories that organize the classes within the environment, and categories that ar
messages within each class. Categories provide essentially a way of grouping clas
messages into meaningful groups.

It should be noted that in the Smalltalk environment the role of the exploration to
not restricted to inspection. For example, an inspector allows users to change interactivel
the values of instance variables and to send messages to objects. In general, ins
tools are used for both inspection and programming purposes. For instance, the c
of a new class derived from an existing one, and the definition of new methods is als
formed through the browser.

Other browsing tools have been described and implemented in various system
browsing mechanisms implemented in the Smalltalk environment have been a cont
source of inspiration for new browsing tools. For example, the Trellis programming
ronment [24] provides browsing capabilities that are quite similar to those of the Sma
environment [12].

The great majority of existing browsing tools allow for a point-to-point navigation, i.e.
the navigation paths are defined by a tree or a network structure. For instance, t
structure of the Smalltalk browser is based on classification. This approach has pro
be useful for small collections of objects. But when the number of classes become
users may feel lost because there is no global view and the structure cannot be rea
to fit their intuitive perception of the object’s space.

Discerning global and local patterns of interaction among classes is critical for tu
and debugging. A few authors have already identified this as an important issue an
posed adequate tools. For example, Böcker and Herczeg [1] introduce a software oscillo-
scope for visually tracking the interactions between objects in a system. The sys
dynamic behaviour is inspected by placing obstacles between objects and animat
flow of messages across them. The tool focuses only on microscopic behaviour, ho
Brüegge, Gottschalk and Luo [3] describe BEE++, an object-oriented application fr
work for the analysis of distributed applications. BEE++ is fundamentally an e
processing system since it views the execution of distributed activities as strea
events. Event processing is encapsulated in a set of core base classes that are int
be derived for customization.

Other authors such as Kleyn and Gingrich [17] focus on object behaviour issues.
tool offers concurrently animated views of the behaviour of an object-oriented sy
These views include graphs of invocations between objects. Podgursky and Pierce a
the problem [30] of retrieving reusable software components based on sampled beh

250 The Affinity Browser

 on ob-
 design

eed for
orma-
erot
 tech-
 sys-

hat the
erot ar-
pecify

raph-
lab-
. In
 uses

xima-
o one
are rep-

 [18],

 mech-
ertext
m to

 three-
 a hy-
 con-

a is to
irected

d to the
m. The
ith the
xplore

 devel-
wsing.
s sys-
rms. A
Finally, Rubin and Goldberg [31] sketch an object-oriented design approach based
ject behaviour analysis and stress the importance of exploration tools to support the
process.

9.1.2.2 Graphical and Spatial Browsing
In the late 1970s Fields and Negroponte, in a visionary paper [10], expressed the n
new clues to find data. Among the many approaches they envisioned for locating inf
tion are spatial referencing and proximity. Shortly after, Donelson [7], Bolt [2], and H
[14] published papers about spatial management of information which apply many
niques for information exploration and inspection that will serve as a basis for future
tems. They introduced the spatial data management system (SDMS) concept, whereby
information is expressed in graphical form and presented in a spatial framework so t
information has a structure that is more obvious than in a conventional database. H
gues that: “in this way the user can find the information he seeks without having to s
it precisely or know exactly where in the DBMS it is stored.”

More recently, Caplinger [5] has described a sophisticated browsing tool with a g
ical spatial interface that is, in fact, an evolution of the original SDMS idea. A further e
oration of SDMS is BEAD [6], a system for the visualization of bibliographical data
BEAD, articles in a bibliography are represented by particles in 3-space. The system
physically based modelling techniques to take advantage of methods for the appro
tion of potential fields. Interparticle forces tend to make similar articles move closer t
another and dissimilar ones move apart, so that the relationships between articles
resented by their relative spatial positions. We may also mention the N-Land system
which addresses the problem of visualizing higher dimension information spaces.

The growing interest on hypertext systems generalized the use of browsing as a
anism for information access. Many things have been written recently about hyp
browsing and hypertext navigation, and we will just mention a few works that see
deserve particular interest in the context of this work. SemNet [8] is a system for the
dimensional visualization and exploration of large knowledge bases that promotes
pertext-like navigation paradigm. Feiner’s work addresses the problem of how to
veniently display hypertext structures [9] so as to facilitate hypertext navigation.

Another interesting approach is described by Stotts and Furuta [34]. The basic ide
replace the usual directed graph of an hypertext system by a Petri net. Unlike a d
graph, a Petri net also allows the specification of browsing semantics, i.e. the dynamic
properties of a reader’s experience when browsing a document. So, Petri nets ad
hypertext system access control capabilities based on a formally sound mechanis
authors describe the -Trellis system that has been implemented to experiment w
Petri-net-based model. This approach is also discussed in [28] where it is used to e
hypertext systems with an affinity browser.

A sophisticated browsing tool with advanced capabilities for databases has been
oped by Stonebraker [33], which combines query refinement techniques and bro
Jones has described a personal filer with interesting retrieving capabilities [15]. Hi
tem, ME, is a database of files connected through links which represent weighted te

α

Browsing Requirements 251

atch the
edye

hip de-
se.

 have

 would
within
, nice

. We
t restau-
 have,
 from

 don’t
e mul-
ever,

ould
ch
hically
ertain
. Each
is ex-
wsing

hange
. The
ness.
owser
pace.
uld all
 insist
track.

 mul-
retrieval request is a set of terms, and a spreading activation process is used to m
files that are most relevant. Finally we cite a browsing tool for specific databases; G
[11] has discussed the problems associated with accessing information related to c
sign, and described a browsing tool to inspect the contents of a chip design databa

9.2 Browsing Requirements

To illustrate our browsing requirements we will use a simple paradigm. Suppose we
an information base relative to a city. We need a city browser which can guide visitors to
plan their stay. For example, suppose we arrive at a hotel and want to go to eat. We
like the city browser to help us choose a restaurant which is geographically close,
an interesting and safe walk (or a place easy to reach and park), with good food
surroundings, good service and within our budget.* It is obvious that we have multiple
criteria for our choice and it will be very difficult to find a restaurant that is best in all
need, therefore, to be guided to reach a compromise. We should also be aware tha
rants do not always advertise all their points (especially their shortcomings). They
therefore — like encapsulated objects — hidden information which we can only get
persons that have been there.

To begin, we should point out that if the number of restaurants is small then we
need sophisticated browsing tools. We can explore each one of them according to th
tiple criteria, while keeping the rest in the back of our mind. This approach, how
breaks down when the number of objects and criteria becomes large.

The first requirement for effective browsing is a notion of locality. The browser sh
present us first with the choices that are close. Close implies a measure of distance whi
does not necessarily have a single interpretation. For instance it can be geograp
close, public-transportation close, etc. Each definition of closeness is within a c
context. The browser should, therefore, be capable of dealing with many contexts
context defines a measure of affinity between the objects we are looking for, in th
ample city locations. We should also be in a position to change contexts in our bro
or combine contexts relating independent selection criteria.

The second requirement is that the measure of distance should be able to c
dynamically. For example, time distances between locations can vary with traffic
browser should be able, therefore, to deal with quickly changing definitions of close

The third requirement is that we need a notion of set-at-a-time navigation. The br
should present us with many choices which could be pursued in the information s
There are two reasons for this requirement. First, the immediately next objects sho
be presented to allow other more subjective criteria to be considered. Second, if we
on point-to-point navigation we may reach many dead-ends and be forced to back
Backtracking is very confusing especially when trying to find an object according to
tiple criteria.

* Such a system was implemented at Bell Labs for New York city restaurants.

252 The Affinity Browser

g. We
ional
 give a

x-
on 9.2.
ems.
ng is
ics to
by add-
ociated

upport
lltalk
e con-
nship:
related
 large
e can

lation-

g ob-
ts the

 of the
es and
onveys
nity to
aviga-
 [28].
Finally, users should be able to visualize the information space they are searchin
need, therefore, to project a multidimensional information space into a two dimens
screen. This projection should somehow preserve the definition of closeness and
good user interface for identification of choices.

To summarize, we need a browsing capability which can incorporate:
• a multidimensional space;
• a measure of distance among objects defined according to a certain context;
• a facility for dealing with many contexts independently or in combination;
• a dynamic environment where measures can change;
• a set-of-objects-at-a-time navigation;
• visualization of contexts in two dimensions.

9.3 The Affinity Browser

We describe in this section an approach to browsing based on the concept of affinity. Our
approach, the affinity browser, is a tool for the exploration of object relationships e
pressed as affinity between objects that fulfils the requirements discussed in secti
The affinity browser is a generic browsing tool for the exploration of information syst
As a generic tool it is meant to be tailored to specific browsing activities. The tailori
accomplished in essentially two ways. First, by defining the appropriate affinity metr
describe object relationships of interest among the objects of the system. Second,
ing concepts and visual features that enhance the navigation guidance of the ass
search space.

Most of the browsing tools that have been discussed in the previous sections s
either point-to-point navigation based on hierarchical structures (e.g. the Sma
browser), or they rely on spatial relations for navigation. Our approach is based on th
cept of affinity that can be appropriately expressed in visual terms as a spatial relatio
proximity. Objects that appear close in the representation space are more strongly
than objects that lie farther apart. A significant advantage of this approach is that a
spectrum of object relationships can be expressed in terms of affinity provided that w
devise metrics defined on the objects of the system that appropriately portray the re
ships in terms of affinity.

The first step for the realization of a visual representation of a relationship amon
jects portrayed in terms of affinity is the choice of a metric that satisfactorily represen
relationship. The second step is the construction of a multidimensional placement
objects based on the affinity information. The dimension of the space, the coordinat
the measure of distance are chosen in such a way that the position of each object c
its relationship to the others. Objects that appear close together should have an affi
each other. Finally, the object placement needs to be visualized in order to provide n
tion support for the user. A detailed discussion of the affinity browser can be found in

The Affinity Browser 253

 to
por-

ne
 of the
d thus

rstand-

. Be-
re the

the next
called
ose to-
o pur-
ndent

pace
an be

icons

r
explo-
y may

e new
hat ap-
rhood.
 repre-

 per-
hbour-

with if
 the en-

 These
ration
Affinity is a powerful conceptual relationship that humans utilize in everyday life
construct a cognitive structure over a generally loosely structured world. One of its im
tant characteristics is that it is highly context sensitive. A set of objects that are close in o
context can appear quite unrelated in another context. Furthermore, different views
same set of objects relating to different contexts can be displayed simultaneously an
complement one another. Adding new views increases, therefore, the user’s unde
ing about these object relationships.

Once affinity is visually represented, users perform proximity-based navigation
cause users can explore different contexts, the browser should allow them to explo
system by choosing, at each step, the context that seems the most appropriate for
move and update the other views accordingly. The set of coordinated views are
synchronized views. This capability seems convenient since objects that appear cl
gether in one view may lie far apart in another view. Conversely, the user may wish t
sue many explorations concurrently, so the browser should also allow for indepe
views. These aspects will be discussed in more detail in the next section.

9.3.1 The Affinity Browser Exploration Paradigm

The intended usage of the affinity browser is the exploration of an information s
assisted by visual representations of object relationships. Each such affinity c
explored through an affinity browser.

Figure 9.1 represents the typical layout of an affinity browser. Each of the round
represents an object. The black icon in the centre of the browser is the marked object. The
marked object is the object around which exploration recurs; users usually select, omark
an object, and then explore the objects in its neighbourhood. Eventually, during the
ration they will find an object that appears to be more appropriate, in which case the
select it as the new marked object.

The selection of a new marked object has two main consequences. First, th
marked object is displayed in the centre of the browser. Second, the set of objects t
pear in the browser are those that correspond to the new marked object’s neighbou
As a consequence of marking a new object, some objects may disappear from the
sentation while others may become visible.

In terms of exploration concepts, marking a new object corresponds to a shift in
spective. The user chooses a new navigation focal point and then explores the neig
hood of the new marked object.

In a typical browsing session users select either an object they are acquainted
they already have some knowledge of the information space or they selected one of
try points that may be provided by the system.

An exploration path can be characterized by the sequence of marked objects.
may act as exploration landmarks and it may be interesting to provide a set of explo
paths that represent relevant guided tours.

254 The Affinity Browser

time.
of the
rame-
an af-

e dis-
bour-
oration
 few ob-
uttered

yed
nts the
h the
tion of
m for
 rather
9.3.1.1 Affinity Neighbourhood

An affinity browser does not usually show all the objects of an affinity context at a
The displayed objects are those that lie within a user-defined neighbourhood
marked object. More precisely, the neighbourhood of an object is controlled by a pa
ter which represents a discriminant threshold: only the objects that have
finity higher than relative to the marked object are displayed.

Alternatively, the user may specify the maximum number of objects to appear in th
play. In practice this is the most commonly used way of specifying the visual neigh
hood range. The reason is that by keeping the same number of objects during expl
the user avoids situations where the system does not provide enough choices (e.g.
jects displayed), or situations where the browser presents too many choices in a cl
display.

The notion of set-of-objects-at-a-time navigation results from limiting the displa
objects to those that lie in the specified neighbourhood of an object. This set represe
inspection alternatives that the browser offers concurrently to the user. Althoug
“radius” of the neighbourhood can be changed at any time, it is an essential assump
our approach that proximity-based navigation is a convenient exploration paradig
most exploration or inspection tasks. Further, we see the neighbourhood restriction

Figure 9.1 Typical layout of an affinity browser representing an affinity context.
The black icon represents the marked object .

ε 0 1,[]∈
ε

The Affinity Browser 255

 be pre-

 for
, they
wever,
sual-

ample,
mental
ghtly
bours,
anoth-
a pow-
e first
iation;
 reach
ind of
ion of
 high-
 same
r con-
 close,
onized
be un-
e fact
ot dis-
ser for
ion of
wsers
ity.

-min
bout

ndent
e syn-
 (a) is
with
y.
as a feature than as a limitation. Once users locate a region of interest they should
sented only with the choices that are close in its exploration context.

9.3.1.2 Synchronised Affinity Browsers

The proximity-based navigation provided by an affinity browser is mainly intended
“fine-grained” exploration. That is, once users have identified an interesting region
explore the alternatives that are close in order to select the most appropriate. Ho
when users are exploring the information space “at large”, local navigation alone is u
ly not enough.

A powerful mechanism used in human mental processes is association. For ex
users proceed by association to recall entities that are close to a given entity. This
process corresponds, in terms of browsing, to proximity-based navigation. A sli
more elaborate mental process consists of focusing on an object, exploring its neigh
and investigating how the neighbouring objects in the present context are related in
er context, and then exploring the objects that are close in the new context. This is
erful process since it allows us to reach objects that are not closely related in th
context. Loosely speaking, we may say that exploration is based on transitive assoc
navigation is proximity-based but by alternating the navigation context the user can
many other interesting objects. The mechanism that we provide to support this k
transitive associations is the synchronization of affinity browsers. The synchronizat
the affinity browsers implies that the object under inspection in one browser is also
lighted in the others. Users may pursue exploration in any of the browsers and the
path is followed in the others provided the inspected object also belongs to the latte
text. We may recall here that two objects that are close in one context might not be
or may even be unrelated, in another context. Figure 9.2 shows a set of four synchr
browsers. Synchronized views allow users to inspect objects that would otherwise
reachable if navigation is based on just one exploration context. This stems from th
that, in one browser objects that are not related to the marked object are normally n
played. So, to reach non-related objects the user needs to switch to another brow
which the objects are related in the displayed context. This emphasizes the not
navigation based on the strict neighbourhood of the marked object. However, the bro
allow users to display objects that are not directly related but are related by transitiv

When objects are transitively related, their affinity is calculated either by a max
transitivity rule or by a max-product rule. Refer to [28] for a detailed discussion a
these operations.

Finally, the user may also explore the information space based on multiple indepe
browsers or a combination of synchronized and non-synchronized browsers. Th
chronization of the browsers is not a symmetric mechanism: saying that browser
synchronized with browser (b) does not imply that browser (b) is synchronized
browser (a). To obtain two-way synchronization the user needs to specify it explicitl

256 The Affinity Browser

e nav-
r pro-
nd in
ee of
amic
8] and

 the
ntation

ur ex-
ace.
9.3.1.3 Exploration Based on Dynamically Evolving
Affinity Contexts

As we stated in our browsing requirements, affinity browsers are intended to provid
igation guidance based on dynamically evolving object relationships. The browse
vides such support essentially in two ways. First, it is able to track in a visual way a
interactive time-evolving relationships. Second, the browser provides for a degr
visual feedback where the movement of the visual objects gives the illusion of dyn
motion and dynamic interaction. Both aspects are addressed in more depth in [2
[25].

One difficulty that users may find with dynamically evolving affinity contexts is that
changes in object relationships may make some objects disappear from the represe
and others may show up due to the neighbourhood-restricted display. From o
perience, this is quite cumbersome for unstable relationships that evolve at a fast p

Figure 9.2 Synchronous affinity browsers. The black icon represents the marked object.
The user is performing exploration in the lower left browser where the marked
object appears in the centre. Since the browsers are synchronized, the marked
object is the same in all the browsers.

The Affinity Browser 257

ware
ch em-
reusa-
ity
o meet

 trans-

 affin-
finity
 en-

ngine
uently

pabil-
so that
 desired
nspar-
ew do
epth

explo-
 useful
ng ef-
isplay
n and

fined,
ntage
an be
sional
9.3.2 Architectural Elements of an Affinity Browser

The architectural foundation of the affinity browser relies on an approach to soft
construction based on the composition of software components. Such an approa
phasizes modularity and careful study of component interfaces in order to achieve
bility and flexibility in software configuration. This flexibility is needed for the affin
browser since the idea is to provide a generic architecture that can be configured t
the exploration requirements that a specific browser is intended to support.

9.3.2.1 Affinity Engine and View Engine

An affinity browser is comprised of two main units: the affinity engine and the view engine.
The affinity engine is responsible for the management of tasks that are related to the
lation of object relationships into a standard form of affinity representation.

The view engine is responsible for display and user interaction management. The
ity engine and the view engine communicate through well-defined protocols. The af
engine often incorporates application-domain-dependent functionality in order to
hance navigation guidance with domain dependent-features. Similarly, the view e
can also incorporate visual features specific to the application domain and we freq
use this capability, in particular for financial tools.

9.3.2.2 Translucency: One Browser, Multiple Contexts

In our architecture, a browser can display multiple contexts simultaneously. This ca
ity is made available by the view engine that supports a stack of translucent views
the user can see through the views those that lie behind. The user can specify the
degree of translucency from completely transparent to completely opaque. In a tra
ent view, no objects are visible. In an opaque view, objects hidden behind a front vi
not show up. The superimposition of views is displayed with a visual effect of d
cueing: views progressively fade away from front to back.

The use of translucency is quite effective because it allows for the simultaneous
ration of many contexts on the same visual space. As a rule of thumb, in order to be
the number of displayed views should not usually exceed four since the visual fadi
fect makes some views unreadable. Translucent visual layers are also effective to d
domain-dependent information such as names, visual cues, transient informatio
alarms.

The interaction protocols between the view engine and the visual layers is well-de
which allows the dynamic insertion of new layers into the view stack. The main adva
of having multiple views displayed in two dimensions is that lengths and distances c
compared visually, which is not usually the case when display relies on three-dimen
techniques since projection distorts distances.

258 The Affinity Browser

s, the
many
. When
rested
 then it
n the
hed.

 users
isual

 by de-
of the
elation-

d co-
 define

ve this
pplica-
e flex-
 event

ously
 con-
ism.

plays
ith-
por-

visual
nvest-
matic

cter-

ion-
atic or
lobal.

inde-

 tool
9.3.3 User Interaction and Event Management

In order to conveniently support interaction with multiple superimposed visual layer
view engine provides an event distribution mechanism through which events from
sources are distributed to the various layers that are responsible for reacting to them
a new event is queued, it is sent first to the topmost layer, which is asked if it is inte
in the event. If the layer is not interested or if the layer does not consume the event,
is sent to the next layer in the view stack. The operation is applied recursively dow
view stack until either the event is consumed or the bottom of the view stack is reac

The order of the visual layers can be changed interactively by the user. Typically,
bring the layer with which they want to interact to the top of the stack. Furthermore, v
layers can be added to and deleted from the stack. A new visual layer is inserted,
fault, at the top of the stack. Object relationships displayed in different visual layers
same browser can be either synchronized or not, much in the same way as object r
ships are displayed in different browsers.

The event distribution mechanism plays an important role in implementing couple
operative strategies between the visual layers. In fact, one of our design goals was to
an architecture for the view engine independent of the application domain. To achie
goal, the interaction between the view engine and the visual layers only supports a
tion-independent operations and not intended to be extended. We decided to provid
ibility in the way cooperation between views can be specified through an extended
distribution mechanism that acts as a messaging backbone.

The event distribution mechanism allows visual layers to communicate spontane
or in reaction to user-initiated events. Additionally, the browser can be dynamically
trolled by other applications that send events through the event distribution mechan

We applied the idea of external browser control to a financial application that dis
real-time evolving relationships [29]. The application, which runs most of the time w
out user interaction, implements various display strategies aimed at highlighting im
tant financial instruments relationships. The display and the relative position of the
layers changes under the control of another application that monitors interesting i
ment opportunities. This approach to browsing control can be used to provide auto
navigation for dynamically evolving system.

To summarize, the affinity browser architecture has the following desirable chara
istics for an exploration tool:

• Versatility. Allows users to inspect the underlying system through object relat
ships expressed in terms of affinity. The exploration can be based both on st
dynamic relationships, and the exploration perspective can be either local or g

• Composability. Users can navigate based on multiple object relationships used
pendently or in combination. Multiple views can be active concurrently.

• Extensibility. New object relationships can be easily added to the exploration
and combined with previously defined ones.

The Affinity Browser by Example 259

” ob-
nto ob-
ress

s are
 a for-

is the
 few

in goal
s of an
n an

f anal-
ions; it
 code.

namic
es and
onsists
ecu-

f the
rma-

nce the
t the

 is that
play.

nships.
As a
d this
 related

ks, the
f interac-
t the

l class
9.4 The Affinity Browser by Example

An intuitive way to describe the affinity browser approach is to say that we “measure
ject relationships in such a way that the measurements translate the relationships i
ject affinities. Alternatively, we can say that we quantify a relationship in order to exp
it in terms of object affinity or proximity. For the affinity browser, these measurement
always performed between pairs of objects and are called metrics (refer to [28] for
mal presentation of these concepts).

As we may easily anticipate, one of the critical issues related to affinity browsing
definition of metrics that portray interesting object relationships. We provide here a
examples of such metrics describing both static and dynamic relationships. Our ma
is to illustrate how the affinity browser can help one to understand particular aspect
object-oriented environment, and provide typical examples of the kind of informatio
affinity browser is intended to provide for a system.

We first discuss metrics based on static analysis of class relationships. This kind o
ysis is usually important to assess design and to understand architectural articulat
provides insight into the relationships among classes without actually executing the
Therefore, the information is primarily extracted by source code analysis.

Next we address the issue of extracting relationships corresponding to the dy
behaviour of the system. We can identify interesting relationships among both class
objects. Metrics to portray such relationships are based on dynamic analysis that c
of collecting statistical information, or simply frequency data during a system’s ex
tion.

The analysis can be performed either dynamically, in which case the display o
relationship is synchronized with the execution, or it can be off-line based on the info
tion collected. In the latter case, the exploration phase resembles static analysis si
relationships do not evolve dynamically. It is also possible to collect data abou
dynamic behaviour of the system and perform the analysis off-line. The advantage
the analysis can be performed at the user’s pace while still allowing for dynamic dis

9.4.1 Class Relationships

We discuss in this section three examples of metrics aimed at revealing class relatio
The first example deals with portraying functional commonality among classes.
result of inheritance, derived classes inherit functionality from their base classes, an
raises the issue of the extent to which classes differ. The example discusses metrics
to this issue.

The second example deals with class acquaintances. In order to perform their tas
methods of a class send messages to other classes to invoke services. Patterns o
tion between a class and its environment may provide useful information abou
required working environment for the class. We discuss metrics intended to revea
acquaintances.

260 The Affinity Browser

t
ating
ses, we
e other

ends
 partic-
ships
n met-
, with
d.

ality
ith the

les,
t a class
hat re-
 With
ality.
portion

ethods
tween

ht dif-
ase
n the
lcu-

re one
we can

d to

isplays
rhood
igher
The third example addresses the problem of class relationships related to objecbirth
and death. More specifically, we are interested in knowing which classes are instanti
and freeing objects. Because we are focusing here on relationships among clas
consider that two classes are related if one class instantiates or frees objects of th
class.

It should be noted that the extraction of information for building such metrics dep
considerably on the environment and on the language used to define the classes. In
ular, with strongly typed object-oriented languages such as C++ and Eiffel, relation
like those of the first two examples are usually more accurately portrayed than whe
rics are derived from classes implemented with weakly typed languages since
strongly typed languages, relationships among classes are mostly statically define

9.4.1.1 Functional Commonality
In this example we construct a metric aimed at portraying the functional common
among classes. For the sake of concreteness, the metric construction is illustrated w
set of classes depicted in figure 9.3. Following inheritance ru
classes recursively inherit methods from their superclasses. We further assume tha
can redefine the methods inherited from its superclasses. Let be a function t
turns the set of methods in the interface to class . For instance, .
this metric we want to convey the extent to which classes provide common function
The measure of affinity between two classes can, therefore, be expressed as the pro
of methods that are common to the two classes relative to the total number of the m
defined in both classes. As a candidate measure we define the affinity be
class and class by the function:

where is a function that returns the cardinality of a set.

Suppose now that we want to emphasize the fact that redefined functionality mig
fer from inherited functionality. We can modify slightly the affinity measure for the c
of redefined functionality. Let be the inherited method and be its redefinition. I
case where both and appear in then for the affinity ca
lation we consider in while in
we take . This produces a slight reduction of the affinity between classes whe
redefines a method from a superclass (such as class). From the affinity function
derive the table 9.1 of pairwise affinities.

Figure 9.4 shows a view of the affinity browser depicting metric applie
the classes of figure 9.3. In figure 9.4, the highlighted class, , is the marked item
selected by the user. Therefore, the exploration is centred on it and the browser d
the items that lie inside the neighbourhood of the marked item, where the neighbou
is defined as the set of objects for which the affinity relative to the current object is h

C C0 … C8, ,{ }=

M X()
X C3 a b g h, , ,{ }=

A1 X Y,()
X Y

A1 X Y,() card M X() M Y()∩()
card M X() M Y()∪()
--=

card()

m m ′
m m ′ card M X() M Y()∪()

m m ′= card M X() M Y()∩() card M X() M Y()∪()
m m ′≠

C1

A1 X Y,()
C4

The Affinity Browser by Example 261

 are all

nter-
vectors
than a chosen value. In this case, however, due to the small number of items, they
displayed.

9.4.1.2 Metrics Based on Binary Vectors
Many other metrics can be defined to reveal functional commonality. A particularly i
esting approach relies on metrics based on binary data. The interest in using binary

2/5 1/2 1/2 1/2 2/7 2/9 2/8 2/11

2/7 2/7 2/7 2/3 4/9 2/11 4/11

1/3 1/3 2/9 4/9 1/2 4/11

1/3 2/9 2/11 2/10 2/13

2/9 2/11 1/2 2/13

4/11 2/13 4/13

4/13 8/11

4/15

Table 9.1 Functional commonality: pairwise affinity.

ab

efcda ij

kl

gh

mn op

qr

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

Figure 9.3 Inheritance structure of a set of classes.

C1 C2 C3 C4 C5 C6 C7 C8

C0

C1

C2

C3

C4

C5

C6

C7

262 The Affinity Browser

tors to

each
 signa-
 Refer-

ture is
lass
to build metrics is that many relationships can be expressed in terms of binary vec
which we can apply a set of “standard” operations to measure their similarity.

In order to apply these metrics to portray functional commonality we assign to
class a binary vector of length , where represents the number of distinct method
tures in the system. Each entry of the vector is associated with a method signature.
ring to the set of classes depicted in figure 9.3, the binary vector takes the form:

Each entry contains a Boolean value that tells if the associated method signa
present or absent in the class. For example, the binary vector associated with c
looks like:

and the vector associated with class :

C7

C4

C8

C6

C5
C0

C3

C2

C1

Figure 9.4 Affinity browser display showing a set of classes.

l l

a b c qo p rnd e f g h i j k l m

C0

1 1 0 00 0 000 0 0 0 0 0 0 0 0 0

C6

1 1 1 00 0 011 1 1 0 0 0 0 0 0 1

The Affinity Browser by Example 263

eas-
xiliary

ears

ears
ears
r
nts.

ector

erived.
ength

ber of
 metric

ns that
The construction of an affinity metric from binary vectors consists essentially in m
uring to what extent vectors match. These can be defined based on the following au
parameters:

where x and y represent two binary vectors. counts the number of times 1 app
simultaneously in the corresponding entries of x and y; counts the number of times 1
appears in x and 0 in y for corresponding entries; counts the number of times 0 app
in x and 1 in y for corresponding entries; and counts the number of times 0 app
simultaneously in the corresponding entries of x and y. So and count the numbe
of entries in which x and y agree, while and count the number of disagreeme

We propose three metrics to portray functional commonality based on the binary v
representation. The first metric is

where and represent the classes from which the binary vectors and are d
 assesses binary vector similarity in terms of 1-consensus relative to the l

of the binary vectors.

The second metric is

With this metric the proportion of the 1-consensus is evaluated relative to the num
entries of the vectors excluding those that correspond to a 0-consensus; that is, the
assesses affinity in terms of 1-consensus relative to disagreement. This mea

 is equivalent to .

The third metric

measures binary vector correlation but is not a metric similarity index as are
and, consequently, .

ψ11 min xk yk,()
k 1=

l

∑= ψ10 xk ψ11–
k 1=

l

∑=

ψ01 yk ψ11–
k 1=

l

∑= ψ00 l ψ01 ψ10 ψ11+ +()–=

Ψ11

Ψ10

Ψ01

Ψ00

Ψ11 Ψ00

Ψ10 Ψ01

A2 X Y,()
Ψ11

l
---------=

X Y x y
A2 X Y,()

A3 X Y,()
Ψ11

Ψ11 Ψ10 Ψ01+ +
---=

A3 X Y,() A1 X Y,()

A4 X Y,()
Ψ11Ψ00

Ψ11 Ψ10+() Ψ11 Ψ01+() Ψ00 Ψ10+() Ψ00 Ψ01+()
--=

A3 X Y,()
A1 X Y,()

264 The Affinity Browser

ss can
cepted

wever,
etween
e may

sending

 former
sually
 work-
urate
e latter

 differ
bout
d those
rtray

actually
9.4.1.3 Class Acquaintances
The functionality of a class is not usually self-contained. Methods belonging to a cla
invoke services from other classes. This perspective corresponds to a commonly ac
view of object-oriented systems as sets of collaborating objects.

We are interested in understanding patterns of collaboration between objects. Ho
collaboration has many aspects. We can focus, for instance, on the relationships b
classes that can be observed by static analysis of the source code. Alternately, w
focus on dynamic acquaintances of classes measured by observing message
patterns between objects of the classes.

Both perspectives are interesting and are, to a large extent, complementary. The
perspective usually reflects design decisions since “hard coded” relationships u
materialize links defined at the architectural level. Such links represent the required
ing environment for a class. But this perspective may fall short of providing an acc
picture if we are looking for working acquaintances between classes. In this case th
perspective may be more helpful.

In practice, the collaboration patterns revealed by the two perspectives usually
significantly. However, the analysis of the differences might offer useful insight a
mismatch between the collaborations that have been foreseen by the designer an
that show up in specific execution contexts. We start with a metric intended to po
static class acquaintances. That is, acquaintances that can be determined without
executing the methods of the class.

ba
bb
bc
bd
be

aa
ab
ac
ad
ae

ca
cb
cc
cd
ce

Figure 9.5 A set of cooperating classes. The three classes cooperate by service
exchange. Each slot represents the body of a method and the arrows
represent the activation of a method from the body of another method.

class Cclass A

class B

The Affinity Browser by Example 265

 a set of
, trigger
cution

let
g is a

 maxi-
 many
” ac-

nc-
 might
 in this
sents
y ac-

 to dis-
lasses.
 of its
voca-

ss a
ber

e serv-
ogether
ight-
Figure 9.5 represents the analysis context for such a metric. Each class contains
methods and the methods activate methods belonging to other classes that, in turn
other methods as well. So the execution of a class’s method usually involves the exe
of methods from many classes.

Let denote the number of times class invokes methods from class , and
denote the total number of invocations from class to any other class. The followin
candidate metric to portray class acquaintances:

which means that the acquaintance affinity between two classes is defined as the
mum of relative invocation frequency of both classes. We may notice, however, that
different functions can be used instead of to combine the two “one-sided
quaintances. We can define a more general metric as follows:

where and has base . This metric is inspired from a fu
tion proposed by Frank [1] to define the union operation on fuzzy sets. The reader
want to refer to [28] for a detailed discussion about other functions that can be used
context. This way of doing things may suggest an interpretation where repre
the affinity degree of an element to affinity set which depicts the unilateral affinit
quaintance between class and the other classes.

9.4.1.4 Class Acquaintance Similarities
We may also be interested in class acquaintance similarity. In other words, we want
cover to what extent classes match in terms of the services they ask for from other c
Let denote a service; that is, is an association of a class name and one
methods represented by its method’s signature . Let denote the frequency of in
tion of service from inside the methods of class . We can associate to each cla
vector with entries containing . The dimension of vector is equal to the num
of different services invoked by the classes of the system.

So, the collection of classes can be represented in the -dimensional space of th
ices, where each class will appear as a point. The idea is that classes lying close t
in this space ask for similar services. We may want to modify slightly the service we

IK
J

K J IK
K

A5 K J,() max
IK
J

IK

IJ
K

IJ
-----,

=

max()

A5 K J,() 1

λ
1

IK
J

IK
----–

1–

λ
1

IJ
K

IJ
----–

1–

λ 1–
--- 1+

log–=

λ 0 1,() 1 ∞,()∪∈ x()log λ

IK
J

IK⁄
J K

K

sC m, s C
m fK

s

s K K
vK fK

s
d vK

d

266 The Affinity Browser

ervice

ich
 few

cision
tween
 and .

her ob-
asons.
t pop-
s that
gging
ure of
t clean-
ifficult

er of
ant is-

ically.
t per-
source
n and
troy in-

which
ects are
impor-
ubsys-
hase,
 of both
 phase

se ac-
e

ing scheme to improve selectivity. Let denote the number of classes from which s
 is invoked, and let denote the number of classes. We can define

A service weighting proportional to will assign larger weights to services wh
are invoked with high frequency in individual classes, but that are only invoked by a
classes. This type of weighting scheme improves substantially both recall and pre
when applied to document retrieval [32]. Finally, we can define a distance metric be
two classes and as the Euclidean distance between the associated vectors

9.4.2 Creation and Destruction Relationships

In an object-oriented environment, objects are usually created and destroyed by ot
jects. Understanding creation and destruction relationships is important for many re
First, it provides essential information about which classes are managing the objec
ulation in the system and, in particular, which are the typical procreators of object
provide specific kinds of services. Second, this understanding is crucial for debu
and, in particular, memory allocation related errors. As a matter of fact, the very nat
object-oriented systems as sets of cooperating agents raises the problem of objec
up. Designers need to decide who is responsible for freeing the objects. It is often d
to assign this responsibility to its creator, especially if the creator is not the consum
the services. The non-destruction of stale objects may become a particularly import
sue in the absence of automatic garbage collection.

Creation and destruction relationships can be analyzed either statically or dynam
Similar to acquaintance relationships, dynamic and static analysis provide differen
spectives on the creation and destruction relationship. Static analysis based on
code scanning essentially provides information about the structure of the creatio
destruction process. We can learn, for instance, which classes can create and des
stances of given classes.

Dynamic analysis provides another perspective on the relationship by showing
class instances are actually creating and destroying objects, and also how many obj
created and destroyed. However, the static perspective falls short of portraying an
tant aspect of software execution: execution phases. A typical software system or s
tem goes through a number of execution phases. It may start with an initialization p
then alternate through several phases. Different phases become evident by analysis
interclass acquaintances and creation and destruction relationships. Entering a new
usually corresponds to a significant modification of interaction patterns and an inten
tivity of object destruction — for phase cleanup — and creation of new objects for th
new execution phase.

is
s n

Ls log2n log2is 1.+–=

fK
s

Ls⋅

K J vK vJ

The Affinity Browser by Example 267

ke

e iden-
lysis.
f class
ution
 in cre-
t has a
ss

ruction
ces of
s can

volved
ter to-

ich
h in-

chro-
lready

n. The
an they
ocess
The information about the creation relationship can be represented by a matrix li

where represents the number of times creation of an instance of class can b
tified inside the source code specifying class , if we are in the context of static ana
In the context of dynamic analysis, represents the number of times instances o

 create instances of class during a given time interval. In order to explore exec
phases we can collect data for several time intervals that should reveal the changes
ation patterns. The destruction relationship can be represented by a matrix tha
similar form to where entry represents the number of times instances of cla
destroy instances of class during a given time interval.

We can derive a matrix

which might represent an acceptable view of the balance between creation and dest
responsibilities. For instance, means that class destroyed more instan
class than it created during the time interval under analysis. Many insightful metric
be derived from the information contained in these matrices.

We convey creation relationships in such a way that classes that are frequently in
in creation (either by creating or by being created) have more affinity and thus clus
gether in the representation. A candidate metric is:

where denotes the maximum value in matrix . fails to show wh
one of two classes displaying high affinity is responsible for creation. To obtain suc
formation we may either define a pair of metrics to be used in exploration with syn
nized views or create a metric that highlights asymmetry. Both approaches have a
been discussed in the context of the formulation of previous metrics.

We provide another metric to convey the balance between creation and destructio
idea is that instances of a class that create more instances of another class th
destroy, display more affinity while a negative balance in the creation/destruction pr
reduces the affinity between and .

C

CA A, CA B, CA C,

CB A, CB B, CB C,

CC A, CC B, CC C,

=

CX Y, Y
X

CX Y,
X Y

D
C DX Y, X

Y

R

CA A, DA A,– CA B, DA B,– CA C, DA C,–

CB A, DB A,– CB B, DB B,– CB C, DB C,–

CC A, DC A,– CC B, DC B,– CC C, DC C,–

=

RX Y, 0< X
Y

A6 X Y,()
max CX Y, CY X,,()

max C()
--=

max C() C A6 X Y,()

X Y

X Y

268 The Affinity Browser

forma-
itions,
, that
 In this
ects of
stand-
rovide
is can

s;

ic be-
vely,
borate
ation

ime
ject

object
e to-
 metric
 will

e, for
eldom
9.4.3 Object Relationships

We discussed in the previous section metrics to portray class relationships. The in
tion needed to apply those metrics relies either on static analysis of the class defin
on dynamic analysis of execution activity, or on both. We may notice, in passing
many of the metrics discussed could be used to portray object relationships as well.
section we focus specifically on object relationships that are related to dynamic asp
the system’s execution and, therefore, require dynamic behaviour analysis. Under
ing the dynamic behaviour of a set of objects that collaborate to perform a task can p
useful information for reuse and for class management. Dynamic behaviour analys
be helpful:

• in giving useful hints about the usage a developer intended for a particular clas
• by showing the typical utilization of classes inside an application;
• to tune the performance of classes;
• in providing information for the assessment of class designs;
• in application debugging.

We now discuss candidate metrics intended to portray different aspects of the dynam
haviour of objects defined in terms of object affinity. In order to perform tasks collecti
objects exchange messages. As a first goal we want to know which objects colla
closely. Because we are interested in dynamic patterns of collaboration, the inform
needed to build the metrics is collected by monitoring message passing activity.

Let denote the set of interacting objects during a given t
interval. We may define an affinity metric between object and ob

 by:

where is a function that returns the set of messages sent by object to
, and returns the cardinality of a set. So represents th

tal number of messages exchanged during the monitored time interval. With such a
of affinity, objects that exchange messages frequently will have more affinity and
therefore cluster together in the affinity browser’s visual representation.

9.4.3.1 Detecting Object Interaction Asymmetry
However, metric does not show asymmetric interaction patterns. Suppos
example, that object sends messages frequently to object while object s

A7 X Y,()
max RX Y, min R()– RY X, min R()–,()

max R() min R()–
---=

O O1 O2 … On, , ,{ }=
A8 X Y,() X O∈

Y O∈

A8 X Y,() card send X Y,()() card send Y X,()()+

card send Oi()()
i

∑
---=

send X Y,() X
Y card x() Σicard send Oi()()

A8 X Y,()
X Y Y

The Affinity Browser by Example 269

to ex-
d to

n

t that
r
 that

r
nd to

 plays
rther-

e
tion in

, the
w and

ollab-

ppro-
 end
sends messages to object . Measure will not reveal this fact. In order
pose asymmetry we define two metrics, and , that are intende
be used in two synchronized views:

We introduce the notion of source and destination to cope with the asymmetry betwee
the two metrics; the functions src() and dest() return respectively the source object and the
destination object. The role of these functions is to enforce a rule so that an objec
plays the source role for a given pair (X,Y) in the first metric plays the destination role fo
the same pair in the other metric. Additionally, the rule copes with pair symmetry so

 and . The rule works as follows: fo
an affinity context with objects we generate the pairs that correspo
the upper right half of a matrix which is illustrated for :

The rule specifies that for each pair, the object that appears on the left-hand side
the role of the source and the object on the right plays the role of the destination. Fu
more, for any such pair (X,Y) the roles for the symmetric pair (Y,X) are assigned to the sam
objects. For example, plays the role of the source and the role of the destina
both and .

When metrics and are represented in synchronized views
user can spot asymmetry by looking for pairs of objects that appear close in one vie
farther apart in the other. These two metrics provide both global information about c
oration as well as information about collaboration asymmetry.

However, if we are mostly interested in detecting asymmetry, it might be more a
priate to emphasize pairwise interaction instead of global interaction affinity. To this
we may consider the replacement of metrics and by
and . Let

X A8 X Y,()
A9a X Y,() A9b X Y,()

A9a X Y,() card send src X Y,() dest X Y,(),()()
card send Oi()()

i
∑

---=

A9b X Y,() card send dest X Y,() src X Y,(),()()
card send Oi()()

i
∑

---=

A9a X Y,() A9a Y X,()= A9b X Y,() A9b Y X,()=
n n n 1–()() 2⁄

n 4=

O1 O2,() O1 O3,() O1 O4,()

O2 O3,() O2 O4,()

O3 O4,()

O1 O3

O1 O3,() O3 O1,()
A9a X Y,() A9b X Y,()

A9a X Y,() A9b X Y,() A10a X Y,()
A10b X Y,()

∆ X Y,() card send src X Y,() dest X Y,(),() send dest X Y,() src X Y,(),()∪()=

270 The Affinity Browser

 in one
is a
age ex-
n.

ch [4]

on by

on by

pon by
 or an-

oles
n exe-
ompo-

ject-
objects
 related
 object-
g tools

nment
ation-
 related
erent re-
 explo-
and

It is also possible to synthesize information about symmetry of message passing
metric, although the resulting display might be more difficult to interpret.
candidate measure for such a view. This measure focuses on symmetry of mess
changes and, therefore, suppresses information about frequency of communicatio

Interaction asymmetry is an important issue at the design level. For instance, Boo
identifies three roles for objects in terms of message passing activity:

• Actor : an object that operates upon other objects but that is never operated up
other objects.

• Server: an object that never operates upon other objects; it is only operated up
other objects.

• Agent: an object that can both operate upon other objects and be operated u
other objects; an agent is usually created to do some work on behalf of an actor
other agent.

Such roles can be identified with metric . The comparison of the r
assigned to objects during the design phase, with the effective role they play in give
cution contexts, might be instrumental to assess to what extent reusable software c
nents are used as intended by their designers.

9.5 Conclusion

This chapter dealt with the exploration of object relationships in the context of ob
oriented environments. We addressed the important issue of understanding how
are related because such understanding plays an important role in many key issues
to software engineering such as reuse, debugging and software maintenance. Early
oriented environment designers have identified these issues and provided browsin
to help users explore the environment.

We have proposed a new approach to the exploration of an object-oriented enviro
where object relationships are translated into affinity relations so that the object rel
ships can be graphically represented in terms of distance: objects that are strongly
appear closer in the representation. The approach has the advantage that many diff
lationships can be represented and explored with the same tool and with the same

A10a X Y,() card send src X Y,() dest X Y,(),()()
∆ X Y,()

---=

A10b X Y,() card send dest X Y,() src X Y,(),()()
∆ X Y,()

---=

A11 X Y,()

A11 X Y,() 1
abs A9a X Y,() A9b X Y,()–()
abs A9a X Y,() A9b X Y,()+()
---–=

A11 X Y,()

References 271

t has

-

nowl-

,”

ce on

t Ber-

sonal
.

sing

m-

64–
ration paradigm. From the user’s perspective, affinity is a very intuitive concept tha
the advantage of being easily translated into a visual distance.

References

[1] Hans-Dieter Böcker, Jürgen Herczeg, “What Tracers are Made Of,” Proceedings of OOPSLA/
ECOOP ’90, ACM SIGPLAN Notices, 1990, pp. 89–99.

[2] R. Bolt, “Spatial Data Management,” DARPA Report, MIT, Architecture Machine Group, 1979.

[3] Bernd Brüegge, Tim Gottschalk, Bin Luo, “A Framework for Dynamic Program Analysers,” Proceed-
ings of OOPSLA ’93, ACM SIGPLAN Notices, 1993, pp. 65–82.

[4] Grady Booch, Object Oriented Design With Applications, Benjamin/Cummings, 1991.

[5] Michael Caplinger, “Graphical Database Browsing,” Proceedings of ACM-SIGOIS, SIGOIS bulletin,
vol. 7, no. 2–3, Oct. 1986.

[6] Matthew Chalmers and Paul Chitson, “Bead: Explorations in Information Visualization,” Proceed-
ings of SIGIR ’92, June 1992, pp. 330–337.

[7] William Donelson, “Spatial Management of Information,” Computer Graphics (Proceedings of SIG
GRAPH ’78), Aug. 1978, pp. 203–209.

[8] Furnas Fairchild, Poltrock, “Semnet:Three-dimensional Graphic Representation of Large K
edge Bases,” in Cognitive Science and its Applications for Human–Computer Interaction, ed. R.
Guindon, Lawrence Erlbaum, Hillsdale, NJ, 1988.

[9] Steven Feiner, “Seeing the Forest for the Trees: Hierarchical Display of Hypertext StructuresPro-
ceedings of COIS ’88, Palo Alto, March 1988, pp. 205–212.

[10] C. Fields and N. Negroponte, “Using New Clues to Find Data,” Third International Conferen
Very Large Data Bases, Tokyo, Oct. 1977, pp. 156–158.

[11] David Gedye and Randy Katz, “Browsing the Chip Design Database,” University of California a
keley, Computer Science Division, Oct. 1987.

[12] Adele Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, Read-
ing, Mass., 1984.

[13] I. Goldstein and D. Bobrow, “Browsing in a Programming Environment,” Proceedings of the 14th Ha-
waii International Conference on System Science, January 1981.

[14] Charles Herot, “Spatial Management of Data,” ACM Transactions on Database Systems, vol. 5, no. 4,
Dec. 1980, pp. 493–513.

[15] William P. Jones, “On the Applied Use of Human Memory Models: The Memory Extender Per
Filing System,” International Journal Man–Machine Studies, vol. 25, no. 2, 1986, pp. 191–228

[16] George Klir, Tina Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall, Englewood Cliffs,
NJ, 1988.

[17] M. Kleyn, P. Gingrich, “GraphTrace — Understanding Object-oriented Behaviour Systems U
Concurrently Animated Views,” Proceedings of OOPSLA ’88, ACM SIGPLAN Notices, 1988, pp.
191–205.

[18] Jeffrey T. LeBlanc, “N-Land: A Visualization Tool for N-Dimensional Data,” Technical Report Co
puter Science Department, University of Worcester, May 1991.

[19] Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1988.

[20] Amihai Motro, “Browsing in a Loosely Structured Database,” Proceedings of ACM–SIGMOD 1984,
International Conference on Management of Data, 1984, pp. 197–207.

[21] Amihai Motro, “BAROQUE: A Browser for Relational Databases,” vol. 4, no. 2, April 1986, pp. 1
181.

272 The Affinity Browser

ries,”

ed

otion

ire

ws-
p.

Uni-

l

rma-

sing
[22] Amihai Motro, “VAGUE: A User Interface to Relational Databases that Permits Vague Que
ACM Transactions on Office Information Systems, vol. 6, no. 2, July 1988, pp. 187–214.

[23] Amihai Motro, Alessandro D’Atri, Laura Tarantino, “The Design of KIVIEW: An Object-Orient
Browser,” Proceedings of the Second International Conference on Expert Database Systems, Virgin-
ia, 1988, pp. 17–31.

[24] P. O’Brien and D. Halbert and M. Kilian, “The Trellis Programming Environment,” Proceedings of
OOPSLA ’87, ACM SIGPLAN Notices, Oct. 1987.

[25] Xavier Pintado, Eugene Fiume, “Grafields: Field-directed Dynamic Splines for Interactive M
Control,” Computers & Graphics, vol. 13, no. 1, Jan. 1989, pp. 77–82.

[26] Xavier Pintado, Dennis Tsichritzis, “An Affinity Browser,” Technical Report, Centre Universita
d’Informatique, University of Geneva, June 1988.

[27] Xavier Pintado, “Selection and Exploration in an Object-oriented Environment: The Affinity Bro
er,” in Object Management, ed. D. Tsichritzis, Centre Universitaire d’Informatique, July 1990, p
79–88.

[28] Xavier Pintado, “Objects’ Relationships,” Ph.D. Thesis, Centre Universitaire d’Informatique,
versity of Geneva, Switzerland, 1994.

[29] Xavier Pintado, “Visualization in the Financial Markets,” VR ’94, Proceedings of the Fourth Annua
Conference on Virtual Reality, Mecklermedia, London, 1994, pp. 80–84.

[30] Andy Podgursky, Lynn Pierce, “Retrieving Reusable Software by Sampling Behaviour,” ACM Trans-
actions on Software Engineering and Methodology, vol. 2, no. 3, July 1993, pp. 286–303.

[31] Kenneth Rubin, Adele Goldberg, “Object Behaviour Aanlysis,” Communications of the ACM, vol. 35,
no. 9, Sept. 1992.

[32] Gerard Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Info
tion by Computer, Addison-Wesley, Reading, Mass. 1988.

[33] Michael Stonebraker and J. Kalash, “Timber: a Sophisticated Database Browser,” Proceedings of the
8th International Conference on Very Large Data Bases, Sept. 1982, pp. 1–10.

[34] David Stotts and Richard Furuta, “Petri-Net-Based Hypertext: Document Structure with Brow
Semantics,” ACM Transactions on Information Systems, vol. 7, no. 1, Jan. 1989.

	The Affinity Browser
	9.1 Introduction
	9.1.1 Object Selection
	9.1.2 Related Work

	9.2 Browsing Requirements
	9.3 The Affinity Browser
	9.3.1 The Affinity Browser Exploration Paradigm
	9.3.2 Architectural Elements of an Affinity Browser
	9.3.3 User Interaction and Event Management

	9.4 The Affinity Browser by Example
	9.4.1 Class Relationships
	9.4.2 Creation and Destruction Relationships
	9.4.3 Object Relationships

	9.5 Conclusion

