Chapter 9

The Affinity Browser

Xavier Pintado

Abstract Large numbers of classes, complex inheritance and containment
graphs, and diverse patterns of dynamic interaction all contribute to difficulties in
understanding, reusing, debugging, and funing large object-oriented systems.
These difficulties may have a significant impact on the usefulness of such systems.
Tools that help in understanding the contents and behaviour of an object-oriented
environment should play a major role in reducing such difficulties. Such tools allow
for the exploration of different aspects of a software environment such as
inheritance structures, part-of relationships, etc. However, object-oriented systems
differ in many respects from traditional database systems, and in particular,
conventional querying mechanisms used in databases show poor performance
when used for the exploration of object-oriented environments. This chapter
defines the requirements for effective exploration mechanisms in the realm of
object-oriented environments. We propose an approach to browsing based on
the notion of affinity that satisfies such requirements. Our tool, the affinity browser,
provides a visual representation of object relationships presented in terms of
affinity. Objects that appear closer in the visual representation are more strongly
related than objects lying farther apart. So, the intensity of a relationship is
tfranslated into distance in the visual representation that provides the support for
user navigation. We provide many examples of metrics defined over the objects of
an environment to illustrate how object relationships can be translated in terms of
affinity so that they can be used for the exploration of an environment.

9.1 Infroduction

Large numbers of classes, complex inheritance and containment graphs, and diverse
patterns of dynamic interaction all contribute to difficulties in understanding, reusing, de-
bugging, and tuning large object-oriented systems. From the inception of object-oriented
environments, developers and software designers have felt the need for tools that support
the process of understanding the objects, the classes and the relationships provided by
their environments. For example, reuse of existing software components requires naviga-
tion and inspection of classes and how they are related. Inspection and navigation capabil-
ities are also instrumental for the combination of instantiated objects since they allow the

Xavier Pintado, “The Affinity Browser,” Object-Oriented Software Composition, O. Nierstrasz and D. Tsichritzis (Eds.), pp. 245-272,
Prentice Hall, 1995.

Reproduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and
may not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. Itis not
otherwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
rights reserved.

246 The Affinity Browser

user to go back and forth, inspecting objects and combining them. In a similar vein,
discerning global and local patterns of interaction among classes and among objects is
critical for tuning and debugging.

This chapter proposes an approach to browsing for object-oriented environments based
on the notion of affinity. Our tool, the affinity browser, allows for the exploration of col-
lections of objects based on a visual representation of object relationships presented in
terms of affinity. Objects that appear closer in the visual representation are more strongly
related than objects lying farther apart. So, the intensity of a relationship is translated into
distance in the visual representation.

Our approach displays many advantages. First, affinity browsing is not based on point-
to-point navigation. The user is provided with the set of objects that lie within a given
neighbourhood relative to the object currently being inspecting. The affinity browser pro-
motes, therefore, proximity-based navigation whereby exploration proceeds by exploring
first the objects that are close to the current object of interest. Second, the browser allows
for the exploration of dynamically evolving relationships. The evolution of such relation-
ships s visualized as an animation where the change in the relative position of objects con-
veys the change of the underlying relationships expressed in terms of affinity. Third, many
different kinds of object relationships can be translated into affinity representations allow-
ing the same exploration paradigm and the same user interface to be used to explore a large
spectrum of object relationships.

This chapter is organized as follows. Section 9.1.1 addresses the problem of finding and
selecting objects inside an object-oriented environment. It discusses the characteristics of
object-oriented systems that may have an impact on the effectiveness of various browsing
mechanisms. Section 9.1.2 surveys work related to browsing ranging from traditional
graph-based browsing to graphical and spatial browsing. Section 9.2 defines the require-
ments for effective exploration mechanisms in the realm of object-oriented environments.
Section 9.3 presents the affinity browser as a tool that satisfies such requirements. In sec-
tion 9.4 we provide many examples of metrics defined over the objects of an environment
to illustrate how object relationships can be translated in terms of affinity so that they can
be used for the exploration of an environment

9.1.1 Object Selection

We address here the issue of selection in the object-oriented realm. Users may want, for
instance, to select classes, objects, or functionality. Selection in an object-oriented envi-
ronment has many problems, however. First, an application designer has only approxi-
mate selection criteria to select an appropriate reusable object class for developing his or
her application. Second, the object classes and the objects in a running system have rela-
tionships that change dynamically. Third, objects are encapsulated and content selection
has only very limited use.

Furthermore, object-oriented principles applied to software design seem to promote
systems with object relationships that are more complex than in more traditional software

Introduction 247

environments. Many authors think that these principles will allow designers and develop-
ers to create software environments that are an order of magnitude more complex than ex-
isting software systems [19] [4].

A noteworthy supporting reason for such belief is that object-oriented design tech-
niques seem to allow significantly better decomposition of complex problems into units of
manageable complexity. First, by the virtue of encapsulation an object conceals its inter-
nal complexity and it acquires some level of autonomy. Second, incremental definition
through inheritance allows for the endless refinement of object behaviour and functional-
ity without the need to rework the whole hierarchy at each refinement step. These mecha-
nisms, with such desirable features, allow for the implementation of models that integrate
much detail both at the object level and at the level of object relationships. This intuition
is further supported by experience that shows that it is quite easy to introduce complexity
in the design and in the implementation of an object-oriented environment. For instance,
object-oriented programming is more an activitwofng together sets of objects. For the
programmer or for the designer whose task is to build a system through the composition
of objects it might be quite easy to combine them in many different wayfsis is the
producer’s view. On the other hand, for a developer who wants to understand existing
functionality for reuse or maintenance, it may be difficult to comprehend the large number
of functional relationships that have been createthis might be the consumer’s view.

Early experiences with object-oriented environments highlighted the need for tools that
allow for the exploration of object relationships. The Smalltalk environment, for instance,
already provided a sophisticated integrated browsing tool [12]. Interestingly enough, it
has been argued that the Smalltalk browsing tool is one of the most appealing features of
that environment and it is often cited as a reference. For sure, almost every programming
activity on the environment relies on the browser to support navigation needed for the kind
of non-linear programming promoted by object-orientation. The browser is used to code
new obijects, to find reusable classes and to explore object relationships.

9.1.1.1 Querying and Browsing

The two methods commonly applied for selection are querying and browsing. The meth-
ods are usually applied in a complementary manner; we query and browse in alternation,
applying which method seems more appropriate at different stages of the selection proc-
ess.

Querying provides fine selectivity when the structure of the information space is known
and when content selection can be used. For instance, querying is the primary selection
method in database systems. When querying provides good selectivity, browsing dimin-
ishes in importance. Most selected items are appropriate and we only need a crude brows-
ing tool to inspect them.

Querying, however, can have poor results for many reasons. If the selection criteria are
ill-defined and fuzzy querying does not work well, e.g. in information retrieval. If the
structure of the information space changes dynamically, queries are not easy to formulate,
e.g. in financial information systems. Finally, if content selectivity is difficult to exploit,

248 The Affinity Browser

guerying loses a lot of selectivity power, e.g. in multimedia databases. In all these cases
powerful browsing capabilities become indispensable.

9.1.1.2 Dynamically Evolving Relationships

As we already mentioned, the analysis of dynamically evolving relationships plays an im-
portant role in debugging but can also be of invaluable assistance for reuse since it helps
understanding how objects are related in existing applications. However, providing sup-
port for the understanding of dynamically evolving relationships is a challenging task. In
fact, traditional querying technigues usually assume a user with knowledge of the search
structure that supports selection. Such an assumption usually implies structure stability
since it seems unrealistic to assume user knowledge of a quickly evolving structure.

With traditional databases it is usually assumed that their information contents changes
but not their structure— or at least not frequently. For example, widely used query
languages such as SQL provide almost no support for selection in an environment with a
changing structure. The stability of database schemes represents an advantage in terms of
access to information but it makes traditional databases ill-suited for information with
dynamically evolving structures.

The need to cope with dynamically evolving relationships appears in many object
selection problems. For example, we may be interested in finding which are the objects
that interact most frequently with a given object in order to determine its patterns of inter-
action. The change in the interaction patterns depending on what activities the system is
performing may provide useful information about the intended role of an object. This in-
formation can be used, for instance, to assess the potential of reuse for an object in an en-
vironment that may or may not provide the same activity context.

The need for more flexibility than that provided by query mechanisms appeared also in
databases. For example, Motro [20] [21] [22] describes browsing tools that alleawfor
igationin a semantic network extracted from the internal structure of a relational database,
and provide capabilities for fuzzy queries. The approach has been later extended to inte-
grate similar capabilities in an object-oriented environment [23].

9.1.2 Related Work

Because there is an observable trend towards more complex and quickly evolving infor-
mation systems we need to investigate how to enhance browsing capabilities for the explo-
ration of information systems. In this section we describe previous work related to
browsing.

9.1.2.1 The Smalltalk Browser

To the best of our knowledge, the Smalltalk system was the first programming environ-
ment where exploration tools played a major role. Furthermore, the browsing concepts
and mechanisms have been clearly defined [13] [12] and they are quite often cited as the
historical reference to which more recent browsing tools are compared.

Introduction 249

The Smalltalk environment provides capabilities to inspect the message interface of ob-
jects through a system view calledrawser Similarly, the internal state of an object can
be inspected through another system view calledsgp®ctor Furthermore, it is possible
to obtain interface information about sets of objects through another kind of system view
called anessage-set browsédtese views are generated as responses to queries such as:
which classes implement a given message? Which objects send a particular message?

The main way to find out about classes in the environment is to use a system class
browser. The browser presents a hierarchical view of class-related information. It presents
categorieshat organize the classes within the environment, and categories that arrange
messages within each class. Categories provide essentially a way of grouping classes and
messages into meaningful groups.

It should be noted that in the Smalltalk environment the role of the exploration tools is
not restricted to inspection. For exampleirapectorallows users to change interactively
the values of instance variables and to send messages to objects. In general, inspection
tools are used for both inspection and programming purposes. For instance, the creation
of a new class derived from an existing one, and the definition of new methods is also per-
formed through the browser.

Other browsing tools have been described and implemented in various systems. The
browsing mechanisms implemented in the Smalltalk environment have been a continuous
source of inspiration for new browsing tools. For example, the Trellis programming envi-
ronment [24] provides browsing capabilities that are quite similar to those of the Smalltalk
environment [12].

The great majority of existing browsing tools allow f@uant-to-point navigation, i.e.
the navigation paths are defined by a tree or a network structure. For instance, the tree
structure of the Smalltalk browser is based on classification. This approach has proven to
be useful for small collections of objects. But when the number of classes becomes large
users may feel lost because there is no global view and the structure cannot be rearranged
to fit their intuitive perception of the object’s space.

Discerning global and local patterns of interaction among classes is critical for tuning
and debugging. A few authors have already identified this as an important issue and pro-
posed adequate tools. For example, Bocker and Herczeg [1] introslofte/are oscillo-
scopefor visually tracking the interactions between objects in a system. The system’s
dynamic behaviour is inspected by placing obstacles between objects and animating the
flow of messages across them. The tool focuses only on microscopic behaviour, however.
Briiegge, Gottschalk and Luo [3] describe BEE++, an object-oriented application frame-
work for the analysis of distributed applications. BEE++ is fundamentally an event
processing system since it views the execution of distributed activities as streams of
events. Event processing is encapsulated in a set of core base classes that are intended to
be derived for customization.

Other authors such as Kleyn and Gingrich [17] focus on object behaviour issues. Their
tool offers concurrently animated views of the behaviour of an object-oriented system.
These views include graphs of invocations between objects. Podgursky and Pierce address
the problem [30] of retrieving reusable software components based on sampled behaviour.

250 The Affinity Browser

Finally, Rubin and Goldberg [31] sketch an object-oriented design approach based on ob-
ject behaviour analysis and stress the importance of exploration tools to support the design
process.

9.1.2.2 Graphical and Spatial Browsing

In the late 1970s Fields and Negroponte, in a visionary paper [10], expressed the need for
new clues to find data. Among the many approaches they envisioned for locating informa-
tion are spatial referencing and proximity. Shortly after, Donelson [7], Bolt [2], and Herot
[14] published papers about spatial management of information which apply many tech-
niques for information exploration and inspection that will serve as a basis for future sys-
tems. They introduced trepatial data management syst€B@DMS) concept, whereby
information is expressed in graphical form and presented in a spatial framework so that the
information has a structure that is more obvious than in a conventional database. Herot ar-
gues that: “in this way the user can find the information he seeks without having to specify
it precisely or know exactly where in the DBMS it is stored.”

More recently, Caplinger [5] has described a sophisticated browsing tool with a graph-
ical spatial interface that s, in fact, an evolution of the original SDMS idea. A further elab-
oration of SDMS is BEAD [6], a system for the visualization of bibliographical data. In
BEAD, articles in a bibliography are represented by particles in 3-space. The system uses
physically based modelling techniques to take advantage of methods for the approxima-
tion of potential fields. Interparticle forces tend to make similar articles move closer to one
another and dissimilar ones move apart, so that the relationships between articles are rep-
resented by their relative spatial positions. We may also mention the N-Land system [18],
which addresses the problem of visualizing higher dimension information spaces.

The growing interest on hypertext systems generalized the use of browsing as a mech-
anism for information access. Many things have been written recently about hypertext
browsing and hypertext navigation, and we will just mention a few works that seem to
deserve particular interest in the context of this work. SemNet [8] is a system for the three-
dimensional visualization and exploration of large knowledge bases that promotes a hy-
pertext-like navigation paradigm. Feiner's work addresses the problem of how to con-
veniently display hypertext structures [9] so as to facilitate hypertext navigation.

Another interesting approach is described by Stotts and Furuta [34]. The basic ideais to
replace the usual directed graph of an hypertext system by a Petri net. Unlike a directed
graph, a Petri net also allows the specificatiobrofvsing semanti¢s.e. the dynamic
properties of a reader’s experience when browsing a document. So, Petri nets add to the
hypertext system access control capabilities based on a formally sound mechanism. The
authors describe thee -Trellis system that has been implemented to experiment with the
Petri-net-based model. This approach is also discussed in [28] where it is used to explore
hypertext systems with an affinity browser.

A sophisticated browsing tool with advanced capabilities for databases has been devel-
oped by Stonebraker [33], which combines query refinement techniques and browsing.
Jones has described a personal filer with interesting retrieving capabilities [15]. His sys-
tem, ME, is a database of files connected through links which represent weighted terms. A

Browsing Requirements 251

retrieval request is a set of terms, and a spreading activation process is used to match the
files that are most relevant. Finally we cite a browsing tool for specific databases; Gedye
[11] has discussed the problems associated with accessing information related to chip de-
sign, and described a browsing tool to inspect the contents of a chip design database.

9.2 Browsing Requirements

To illustrate our browsing requirements we will use a simple paradigm. Suppose we have
an information base relative to a city. We neettyabrowsermwhich can guide visitors to

plan their stay. For example, suppose we arrive at a hotel and want to go to eat. We would
like the city browser to help us choose a restaurant which is geographically close, within
an interesting and safe walk (or a place easy to reach and park), with good food, nice
surroundings, good service and within our buﬂg&ﬁs obvious that we have multiple
criteria for our choice and it will be very difficult to find a restaurant that is best in all. We
need, therefore, to be guided to reach a compromise. We should also be aware that restau-
rants do not always advertise all their points (especially their shortcomings). They have,
therefore — like encapsulated objects — hidden information which we can only get from
persons that have been there.

To begin, we should point out that if the number of restaurants is small then we don’t
need sophisticated browsing tools. We can explore each one of them according to the mul-
tiple criteria, while keeping the rest in the back of our mind. This approach, however,
breaks down when the number of objects and criteria becomes large.

The first requirement for effective browsing is a notion of locality. The browser should
present us first with the choices that@ose Close implies a measure of distance which
does not necessarily have a single interpretation. For instance it can be geographically
close, public-transportation close, etc. Each definition of closeness is within a certain
context. The browser should, therefore, be capable of dealing with many contexts. Each
context defines a measure of affinity between the objects we are looking for, in this ex-
ample city locations. We should also be in a position to change contexts in our browsing
or combine contexts relating independent selection criteria.

The second requirement is that the measure of distance should be able to change
dynamically. For example, time distances between locations can vary with traffic. The
browser should be able, therefore, to deal with quickly changing definitions of closeness.

The third requirement is that we need a notion of set-at-a-time navigation. The browser
should present us with many choices which could be pursued in the information space.
There are two reasons for this requirement. First, the immediately next objects should all
be presented to allow other more subjective criteria to be considered. Second, if we insist
on point-to-point navigation we may reach many dead-ends and be forced to backtrack.
Backtracking is very confusing especially when trying to find an object according to mul-
tiple criteria.

* Such a system was implemented at Bell Labs for New York city restaurants.

252 The Affinity Browser

Finally, users should be able to visualize the information space they are searching. We
need, therefore, to project a multidimensional information space into a two dimensional
screen. This projection should somehow preserve the definition of closeness and give a
good user interface for identification of choices.

To summarize, we need a browsing capability which can incorporate:

» amultidimensional space;

* ameasure of distance among objects defined according to a certain context;
« afacility for dealing with many contexts independently or in combination;

» adynamic environment where measures can change;

» aset-of-objects-at-a-time navigation;

* visualization of contexts in two dimensions.

9.3 The Affinity Browser

We describe in this section an approach to browsing based on the corafépitpfOur
approach, theaffinity browseris a tool for the exploration of object relationships ex-
pressed as affinity between objects that fulfils the requirements discussed in section 9.2.
The affinity browser is a generic browsing tool for the exploration of information systems.
As a generic tool it is meant to be tailored to specific browsing activities. The tailoring is
accomplished in essentially two ways. First, by defining the appropriate affinity metrics to
describe object relationships of interest among the objects of the system. Second, by add-
ing concepts and visual features that enhance the navigation guidance of the associated
search space.

Most of the browsing tools that have been discussed in the previous sections support
either point-to-point navigation based on hierarchical structures (e.g. the Smalltalk
browser), or they rely on spatial relations for navigation. Our approach is based on the con-
cept of affinity that can be appropriately expressed in visual terms as a spatial relationship:
proximity. Objects that appear close in the representation space are more strongly related
than objects that lie farther apart. A significant advantage of this approach is that a large
spectrum of object relationships can be expressed in terms of affinity provided that we can
devise metrics defined on the objects of the system that appropriately portray the relation-
ships in terms of affinity.

The first step for the realization of a visual representation of a relationship among ob-
jects portrayed in terms of affinity is the choice of a metric that satisfactorily represents the
relationship. The second step is the construction of a multidimensional placement of the
objects based on the affinity information. The dimension of the space, the coordinates and
the measure of distance are chosen in such a way that the position of each object conveys
its relationship to the others. Objects that appear close together should have an affinity to
each other. Finally, the object placement needs to be visualized in order to provide naviga-
tion support for the user. A detailed discussion of the affinity browser can be found in [28].

The Affinity Browser 253

Affinity is a powerful conceptual relationship that humans utilize in everyday life to
construct a cognitive structure over a generally loosely structured world. One of its impor-
tant characteristics is that it is higltigntexisensitive. A set of objects that are close in one
context can appear quite unrelated in another context. Furthermore, different views of the
same set of objects relating to different contexts can be displayed simultaneously and thus
complement one another. Adding new views increases, therefore, the user's understand-
ing about these object relationships.

Once affinity is visually represented, users perform proximity-based navigation. Be-
cause users can explore different contexts, the browser should allow them to explore the
system by choosing, at each step, the context that seems the most appropriate for the next
move and update the other views accordingly. The set of coordinated views are called
synchronized views. This capability seems convenient since objects that appear close to-
gether in one view may lie far apart in another view. Conversely, the user may wish to pur-
sue many explorations concurrently, so the browser should also allow for independent
views. These aspects will be discussed in more detail in the next section.

9.3.1 The Affinity Browser Exploration Paradigm

The intended usage of the affinity browser is the exploration of an information space
assisted by visual representations of object relationships. Each such affinity can be
explored through an affinity browser.

Figure 9.1 represents the typical layout of an affinity browser. Each of the round icons
represents an object. The black icon in the centre of the browsemaitked objectThe
marked object is the object around which exploration recurs; users usually sehek or
an object, and then explore the objects in its neighbourhood. Eventually, during the explo-
ration they will find an object that appears to be more appropriate, in which case they may
select it as the new marked object.

The selection of a new marked object has two main consequences. First, the new
marked object is displayed in the centre of the browser. Second, the set of objects that ap-
pear in the browser are those that correspond to the new marked object’s neighbourhood.
As a consequence of marking a new object, some objects may disappear from the repre-
sentation while others may become visible.

In terms of exploration concepts, marking a new object corresponds to a shift in per-
spective. The user chooses a new navigation focal point and then explores the neighbour-
hood of the new marked object.

In a typical browsing session users select either an object they are acquainted with if
they already have some knowledge of the information space or they selected one of the en-
try points that may be provided by the system.

An exploration path can be characterized by the sequence of marked objects. These
may act as exploration landmarks and it may be interesting to provide a set of exploration
paths that represent relevant guided tours.

254 The Affinity Browser

Figure 9.1 Typical layout of an affinity browser representing an affinity context.
The black icon represents the marked object .

9.3.1.1 Affinity Neighbourhood

An affinity browser does not usually show all the objects of an affinity context at a time.
The displayed objects are those that lie within a user-defined neighbourhood of the
marked object. More precisely, the neighbourhood of an object is controlled by a parame-
ter e J[0, 1] which represents a discriminant threshold: only the objects that have an af-
finity higher thare relative to the marked object are displayed.

Alternatively, the user may specify the maximum number of objects to appear in the dis-
play. In practice this is the most commonly used way of specifying the visual neighbour-
hood range. The reason is that by keeping the same number of objects during exploration
the user avoids situations where the system does not provide enough choices (e.g. few ob-
jects displayed), or situations where the browser presents too many choices in a cluttered
display.

The notion of set-of-objects-at-a-time navigation results from limiting the displayed
objects to those that lie in the specified neighbourhood of an object. This set represents the
inspection alternatives that the browser offers concurrently to the user. Although the
“radius” of the neighbourhood can be changed at any time, it is an essential assumption of
our approach that proximity-based navigation is a convenient exploration paradigm for
most exploration or inspection tasks. Further, we see the neighbourhood restriction rather

The Affinity Browser 255

as a feature than as a limitation. Once users locate a region of interest they should be pre-
sented only with the choices that are close in its exploration context.

9.3.1.2 Synchronised Affinity Browsers

The proximity-based navigation provided by an affinity browser is mainly intended for
“fine-grained” exploration. That is, once users have identified an interesting region, they
explore the alternatives that are close in order to select the most appropriate. However,
when users are exploring the information space “at large”, local navigation alone is usual-
ly not enough.

A powerful mechanism used in human mental processes is association. For example,
users proceed by association to recall entities that are close to a given entity. This mental
process corresponds, in terms of browsing, to proximity-based navigation. A slightly
more elaborate mental process consists of focusing on an object, exploring its neighbours,
and investigating how the neighbouring objects in the present context are related in anoth-
er context, and then exploring the objects that are close in the new context. This is a pow-
erful process since it allows us to reach objects that are not closely related in the first
context. Loosely speaking, we may say that exploration is based on transitive association;
navigation is proximity-based but by alternating the navigation context the user can reach
many other interesting objects. The mechanism that we provide to support this kind of
transitive associations is the synchronization of affinity browsers. The synchronization of
the affinity browsers implies that the object under inspection in one browser is also high-
lighted in the others. Users may pursue exploration in any of the browsers and the same
path is followed in the others provided the inspected object also belongs to the latter con-
text. We may recall here that two objects that are close in one context might not be close,
or may even be unrelated, in another context. Figure 9.2 shows a set of four synchronized
browsers. Synchronized views allow users to inspect objects that would otherwise be un-
reachable if navigation is based on just one exploration context. This stems from the fact
that, in one browser objects that are not related to the marked object are normally not dis-
played. So, to reach non-related objects the user needs to switch to another browser for
which the objects are related in the displayed context. This emphasizes the notion of
navigation based on the strict neighbourhood of the marked object. However, the browsers
allow users to display objects that are not directly related but are related by transitivity.

When objects are transitively related, their affinity is calculated either by a max-min
transitivity rule or by a max-product rule. Refer to [28] for a detailed discussion about
these operations.

Finally, the user may also explore the information space based on multiple independent
browsers or a combination of synchronized and non-synchronized browsers. The syn-
chronization of the browsers is not a symmetric mechanism: saying that browser (a) is
synchronized with browser (b) does not imply that browser (b) is synchronized with
browser (a). To obtain two-way synchronization the user needs to specify it explicitly.

256 The Affinity Browser

Figure 9.2 Synchronous affinity browsers. The black icon represents the marked object.
The user is performing exploration in the lower left browser where the marked
object appears in the centre. Since the browsers are synchronized, the marked
object is the same in all the browsers.

9.3.1.3 Exploration Based on Dynamically Evolving
Affinity Contexts

As we stated in our browsing requirements, affinity browsers are intended to provide nav-
igation guidance based on dynamically evolving object relationships. The browser pro-
vides such support essentially in two ways. First, it is able to track in a visual way and in
interactive time-evolving relationships. Second, the browser provides for a degree of
visual feedback where the movement of the visual objects gives the illusion of dynamic
motion and dynamic interaction. Both aspects are addressed in more depth in [28] and
[25].

One difficulty that users may find with dynamically evolving affinity contexts is that the
changes in object relationships may make some objects disappear from the representation

and others may show up due to the neighbourhood-restricted display. From our ex-
perience, this is quite cumbersome for unstable relationships that evolve at a fast pace.

The Affinity Browser 257

9.3.2 Architectural Elements of an Affinity Browser

The architectural foundation of the affinity browser relies on an approach to software
construction based on the composition of software components. Such an approach em-
phasizes modularity and careful study of component interfaces in order to achieve reusa-
bility and flexibility in software configuration. This flexibility is needed for the affinity
browser since the idea is to provide a generic architecture that can be configured to meet
the exploration requirements that a specific browser is intended to support.

9.3.2.1 Affinity Engine and View Engine

An affinity browser is comprised of two main units: #dfinity engineand theview engine
The affinity engine is responsible for the management of tasks that are related to the trans-
lation of object relationships into a standard form of affinity representation.

The view engine is responsible for display and user interaction management. The affin-
ity engine and the view engine communicate through well-defined protocols. The affinity
engine often incorporates application-domain-dependent functionality in order to en-
hance navigation guidance with domain dependent-features. Similarly, the view engine
can also incorporate visual features specific to the application domain and we frequently
use this capability, in particular for financial tools.

9.3.2.2 Translucency: One Browser, Multiple Contexts

In our architecture, a browser can display multiple contexts simultaneously. This capabil-
ity is made available by the view engine that supports a stack of translucent views so that
the user can see through the views those that lie behind. The user can specify the desired
degree of translucency from completely transparent to completely opaque. In a transpar-
ent view, no objects are visible. In an opaque view, objects hidden behind a front view do
not show up. The superimposition of views is displayed with a visual effect of depth
cueing: views progressively fade away from front to back.

The use of translucency is quite effective because it allows for the simultaneous explo-
ration of many contexts on the same visual space. As a rule of thumb, in order to be useful
the number of displayed views should not usually exceed four since the visual fading ef-
fect makes some views unreadable. Translucent visual layers are also effective to display
domain-dependent information such as names, visual cues, transient information and
alarms.

The interaction protocols between the view engine and the visual layers is well-defined,
which allows the dynamic insertion of new layers into the view stack. The main advantage
of having multiple views displayed in two dimensions is that lengths and distances can be
compared visually, which is not usually the case when display relies on three-dimensional
techniques since projection distorts distances.

258 The Affinity Browser

9.3.3 UserInteraction and Event Management

In order to conveniently support interaction with multiple superimposed visual layers, the
view engine provides an event distribution mechanism through which events from many
sources are distributed to the various layers that are responsible for reacting to them. When
a new event is queued, it is sent first to the topmost layer, which is asked if it is interested
in the event. If the layer is not interested or if the layer does not consume the event, then it
is sent to the next layer in the view stack. The operation is applied recursively down the
view stack until either the event is consumed or the bottom of the view stack is reached.

The order of the visual layers can be changed interactively by the user. Typically, users
bring the layer with which they want to interact to the top of the stack. Furthermore, visual
layers can be added to and deleted from the stack. A new visual layer is inserted, by de-
fault, at the top of the stack. Object relationships displayed in different visual layers of the
same browser can be either synchronized or not, much in the same way as object relation-
ships are displayed in different browsers.

The event distribution mechanism plays an important role in implementing coupled co-
operative strategies between the visual layers. In fact, one of our design goals was to define
an architecture for the view engine independent of the application domain. To achieve this
goal, the interaction between the view engine and the visual layers only supports applica-
tion-independent operations and not intended to be extended. We decided to provide flex-
ibility in the way cooperation between views can be specified through an extended event
distribution mechanism that acts as a messaging backbone.

The event distribution mechanism allows visual layers to communicate spontaneously
or in reaction to user-initiated events. Additionally, the browser can be dynamically con-
trolled by other applications that send events through the event distribution mechanism.

We applied the idea of external browser control to a financial application that displays
real-time evolving relationships [29]. The application, which runs most of the time with-
out user interaction, implements various display strategies aimed at highlighting impor-
tant financial instruments relationships. The display and the relative position of the visual
layers changes under the control of another application that monitors interesting invest-
ment opportunities. This approach to browsing control can be used to provide automatic
navigation for dynamically evolving system.

To summarize, the affinity browser architecture has the following desirable character-
istics for an exploration tool:

» Versatility. Allows users to inspect the underlying system through object relation-
ships expressed in terms of affinity. The exploration can be based both on static or
dynamic relationships, and the exploration perspective can be either local or global.

» ComposabilityUsers can navigate based on multiple object relationships used inde-
pendently or in combination. Multiple views can be active concurrently.

» Extensibility. New object relationships can be easily added to the exploration tool
and combined with previously defined ones.

The Affinity Browser by Example 259

9.4 The Affinity Browser by Example

An intuitive way to describe the affinity browser approach is to say that we “measure” ob-
ject relationships in such a way that the measurements translate the relationships into ob-
ject affinities. Alternatively, we can say that we quantify a relationship in order to express
itin terms of object affinity or proximity. For the affinity browser, these measurements are
always performed between pairs of objects and are called metrics (refer to [28] for a for-
mal presentation of these concepts).

As we may easily anticipate, one of the critical issues related to affinity browsing is the
definition of metrics that portray interesting object relationships. We provide here a few
examples of such metrics describing both static and dynamic relationships. Our main goal
is to illustrate how the affinity browser can help one to understand particular aspects of an
object-oriented environment, and provide typical examples of the kind of information an
affinity browser is intended to provide for a system.

We first discuss metrics based on static analysis of class relationships. This kind of anal-
ysis is usually important to assess design and to understand architectural articulations; it
provides insight into the relationships among classes without actually executing the code.
Therefore, the information is primarily extracted by source code analysis.

Next we address the issue of extracting relationships corresponding to the dynamic
behaviour of the system. We can identify interesting relationships among both classes and
objects. Metrics to portray such relationships are based on dynamic analysis that consists
of collecting statistical information, or simply frequency data during a system’s execu-
tion.

The analysis can be performed either dynamically, in which case the display of the
relationship is synchronized with the execution, or it can be off-line based on the informa-
tion collected. In the latter case, the exploration phase resembles static analysis since the
relationships do not evolve dynamically. It is also possible to collect data about the
dynamic behaviour of the system and perform the analysis off-line. The advantage is that
the analysis can be performed at the user’s pace while still allowing for dynamic display.

9.4.1 Class Relationships

We discuss in this section three examples of metrics aimed at revealing class relationships.
The first example deals with portraying functional commonality among classes. As a
result of inheritance, derived classes inherit functionality from their base classes, and this
raises the issue of the extent to which classes differ. The example discusses metrics related
to this issue.

The second example deals with class acquaintances. In order to perform their tasks, the
methods of a class send messages to other classes to invoke services. Patterns of interac-
tion between a class and its environment may provide useful information about the
required working environment for the class. We discuss metrics intended to reveal class
acquaintances.

260 The Affinity Browser

The third example addresses the problem of class relationships related tbidibject
anddeath More specifically, we are interested in knowing which classes are instantiating
and freeing objects. Because we are focusing here on relationships among classes, we
consider that two classes are related if one class instantiates or frees objects of the other
class.

It should be noted that the extraction of information for building such metrics depends
considerably on the environment and on the language used to define the classes. In partic-
ular, with strongly typed object-oriented languages such as C++ and Eiffel, relationships
like those of the first two examples are usually more accurately portrayed than when met-
rics are derived from classes implemented with weakly typed languages since, with
strongly typed languages, relationships among classes are mostly statically defined.

9.4.1.1 Functional Commonality

In this example we construct a metric aimed at portraying the functional commonality
among classes. For the sake of concreteness, the metric construction is illustrated with the
set of classe§ = {C,,, ..., Cg} depicted in figure 9.3. Following inheritance rules,
classes recursively inherit methods from their superclasses. We further assume that a class
can redefine the methods inherited from its superclasses/ ek be a function that re-
turns the set of methods in the interface to dtass . For ins@nce {a, b, g, 1} . With
this metric we want to convey the extent to which classes provide common functionality.
The measure of affinity between two classes can, therefore, be expressed as the proportion
of methods that are common to the two classes relative to the total number of the methods
defined in both classes. As a candidate measure we define the Aff{tify) between
classY and class by the function:

_ card(M(X) n M(Y))
A7) = card(M(X) O M(Y))

wherecard() is a function that returns the cardinality of a set.

Suppose now that we want to emphasize the fact that redefined functionality might dif-
fer from inherited functionality. We can modify slightly the affinity measure for the case
of redefined functionality. Lez be the inherited methodrahd be its redefinition. In the
case where both amd appeardard(M(X) O M(Y)) then for the affinity calcu-
lation we considem = m' incard(M(X) n M(Y)) whileincard(M(X) O M(Y))
we takem #m' . This produces a slight reduction of the affinity between classes where one
redefines a method from a superclass (such as€lass). From the affinity function we can
derive the table 9.1 of pairwise affinities.

Figure 9.4 shows a view of the affinity browser depicting maty{&, Y) applied to
the classes of figure 9.3. In figure 9.4, the highlighted cldgs, , mdheeditem
selected by the user. Therefore, the exploration is centred on it and the browser displays
the items that lie inside the neighbourhood of the marked item, where the neighbourhood
is defined as the set of objects for which the affinity relative to the current object is higher

The Affinity Browser by Example 261

Figure 9.3 Inheritance structure of a set of classes.

c, | C | G C, C, Cy C, Cy
25 | 12| 12 1/2 217 2/9 208 | 211 ¢,
207 | 27 217 2/3 49 | 2111 411 C,
1/3 1/3 2/9 419 12 | 411 ¢,

1/3 209 | 211 | 2110 213 C,

29 | 211 12 | 213 C,

4111 | 2113 | 413 | C

413 | 8111 | C,

415 | C,

Table 9.1 Functional commonality: pairwise affinity.
than a chosen value. In this case, however, due to the small number of items, they are all
displayed.

9.4.1.2 Meirics Based on Binary Vectors
Many other metrics can be defined to reveal functional commonality. A particularly inter-

esting approach relies on metrics based on binary data. The interest in using binary vectors

262 The Affinity Browser

Figure 9.4 Affinity browser display showing a set of classes.

to build metrics is that many relationships can be expressed in terms of binary vectors to
which we can apply a set of “standard” operations to measure their similarity.

In order to apply these metrics to portray functional commonality we assign to each
class a binary vector of length , whére represents the number of distinct method signa-
tures in the system. Each entry of the vector is associated with a method signature. Refer-
ring to the set of classes depicted in figure 9.3, the binary vector takes the form:

lalbiclde|flglhli jlk[Imniolplqr]

Each entry contains a Boolean value that tells if the associated method signature is
present or absent in the class. For example, the binary vector associated with class
looks like:

'1/1/0/0/0/0/0]/0/00/0]0/0/0/0[0]0]0]

and the vector associated with clags

'1/1/1]/1/1/1/0/0/0/0/0[0]1/1/0[/0/0|0]

The Affinity Browser by Example 263

The construction of an affinity metric from binary vectors consists essentially in meas-
uring to what extent vectors match. These can be defined based on the following auxiliary
parameters:

! !
W = Z min(x;, v;) Wy = Z =Wy
k=1 k=1
!

Wor = D wi—Wy Woo = 1= (Wor +Wyo+Wyy)
k=1

wherex andy represent two binary vectord);; counts the number of times 1 appears
simultaneously in the corresponding entriesanfdy; W, counts the number of times 1
appears ixand 0 iry for corresponding entrie®,, counts the number of times 0 appears
inxand 1 iny for corresponding entries; a, counts the number of times 0 appears
simultaneously in the corresponding entriesafdy. SoW,, and¥,, countthe number

of entries in whickx andy agree, whilé¥,, an#/,, countthe number of disagreements.

We propose three metrics to portray functional commonality based on the binary vector
representation. The first metric is

_ l'I'Jll
AH(X7) = —

whereX andr represent the classes from which the binary vectorsy and are derived.
A4,(X, Y) assesses binary vector similarity in terms of 1-consensus relative to the length
of the binary vectors.

The second metric is
WY
Wi +Wot¥y

A5(X, Y) =

With this metric the proportion of the 1-consensus is evaluated relative to the number of
entries of the vectors excluding those that correspond to a 0-consensus; that is, the metric
assesses affinity in terms of 1-consensus relative to disagreement. This means that
A5(X, Y) isequivalenttad, (X, Y) .

The third metric
Wi %oo
JWP W (W W) (W + W) (Weo + Wor)

A4(X! Y) =

measures binary vector correlation but is not a metric similarity index as,4k¢ Y)
and, consequently, (X, Y)

264 The Affinity Browser

— _class A classC ———
§
ab Lep
lacl_
[adly| ~cd
ECI T

— bal —

[bb]

[bc]

class B 'bd|
_ [bel”

Figure 9.5 A setof cooperating classes. The three classes cooperate by service
exchange. Each slot represents the body of a method and the arrows
represent the activation of a method from the body of another method.

9.4.1.3 Class Acquaintances

The functionality of a class is not usually self-contained. Methods belonging to a class can
invoke services from other classes. This perspective corresponds to a commonly accepted
view of object-oriented systems as sets of collaborating objects.

We are interested in understanding patterns of collaboration between objects. However,
collaboration has many aspects. We can focus, for instance, on the relationships between
classes that can be observed by static analysis of the source code. Alternately, we may
focus on dynamic acquaintances of classes measured by observing message sending
patterns between objects of the classes.

Both perspectives are interesting and are, to a large extent, complementary. The former
perspective usually reflects design decisions since “hard coded” relationships usually
materialize links defined at the architectural level. Such links represent the required work-
ing environment for a class. But this perspective may fall short of providing an accurate
picture if we are looking for working acquaintances between classes. In this case the latter
perspective may be more helpful.

In practice, the collaboration patterns revealed by the two perspectives usually differ
significantly. However, the analysis of the differences might offer useful insight about
mismatch between the collaborations that have been foreseen by the designer and those
that show up in specific execution contexts. We start with a metric intended to portray
static class acquaintances. That is, acquaintances that can be determined without actually
executing the methods of the class.

The Affinity Browser by Example 265

Figure 9.5 represents the analysis context for such a metric. Each class contains a set of
methods and the methods activate methods belonging to other classes that, in turn, trigger
other methods as well. So the execution of a class’s method usually involves the execution
of methods from many classes.

Let [,]< denote the number of times claSs invokes methods fromJclass , gnd let
denote the total number of invocations from cléss to any other class. The following is a
candidate metric to portray class acquaintances:

0y 1,0
A5(K,J) = max%{, %

which means that the acquaintance affinity between two classes is defined as the maxi-
mum of relative invocation frequency of both classes. We may notice, however, that many
different functions can be used insteadneifx() to combine the two “one-sided” ac-
guaintances. We can define a more general metric as follows:

- Eml_§ ags
K J

150 n O

B 00 o 0O

As(K,J) = 1-log - + 10

0 - 0

0 0

0 0

0 0

where A (0, 1) O (1,0) andog(x) hasbase .Thismetricisinspiredfrom afunc-
tion proposed by Frank [1] to define the union operation on fuzzy sets. The reader might
want to refer to [28] for a detailed discussion about other functions that can be used in this
context. This way of doing things may suggest an interpretation \d/f@éfg represents
the affinity degree of an elemeht to affinity&et which depicts the unilateral affinity ac-
guaintance between cla&s and the other classes.

9.4.1.4 Class Acquaintance Similarities

We may also be interested in class acquaintance similarity. In other words, we want to dis-
cover to what extent classes match in terms of the services they ask for from other classes.
Lets. ,, denote a service; that ks, is an association of a class@ame and one of its
methods represented by its method’s signature fKLet denote the frequency of invoca-
tion of services from inside the methods of ckiss . We can associate to eadh class a
vectorv, with entries containing . The dimensibn of vegtor is equal to the number
of different services invoked by the classes of the system.

So, the collection of classes can be represented ih the -dimensional space of the serv-
ices, where each class will appear as a point. The idea is that classes lying close together
in this space ask for similar services. We may want to modify slightly the service weight-

266 The Affinity Browser

ing scheme to improve selectivity. Liet denote the number of classes from which service
s isinvoked, and let denote the number of classes. We can define

Ly = [logyn|—[logyi |+ 1.

A service weighting proportional ;6{ [L, will assign larger weights to services which
are invoked with high frequency in individual classes, but that are only invoked by a few
classes. This type of weighting scheme improves substantially both recall and precision
when applied to document retrieval [32]. Finally, we can define a distance metric between
two classeX and as the Euclidean distance between the associatedyectors and

9.4.2 Creation and Destruction Relationships

In an object-oriented environment, objects are usually created and destroyed by other ob-
jects. Understanding creation and destruction relationships is important for many reasons.
First, it provides essential information about which classes are managing the object pop-
ulation in the system and, in particular, which are the typical procreators of objects that
provide specific kinds of services. Second, this understanding is crucial for debugging
and, in particular, memory allocation related errors. As a matter of fact, the very nature of
object-oriented systems as sets of cooperating agents raises the problem of object clean-
up. Designers need to decide who is responsible for freeing the objects. It is often difficult
to assign this responsibility to its creator, especially if the creator is not the consumer of
the services. The non-destruction of stale objects may become a particularly important is-
sue in the absence of automatic garbage collection.

Creation and destruction relationships can be analyzed either statically or dynamically.
Similar to acquaintance relationships, dynamic and static analysis provide different per-
spectives on the creation and destruction relationship. Static analysis based on source
code scanning essentially provides information about the structure of the creation and
destruction process. We can learn, for instance, which classes can create and destroy in-
stances of given classes.

Dynamic analysis provides another perspective on the relationship by showing which
class instances are actually creating and destroying objects, and also how many objects are
created and destroyed. However, the static perspective falls short of portraying an impor-
tant aspect of software execution: execution phases. A typical software system or subsys-
tem goes through a number of execution phases. It may start with an initialization phase,
then alternate through several phases. Different phases become evident by analysis of both
interclass acquaintances and creation and destruction relationships. Entering a new phase
usually corresponds to a significant modification of interaction patterns and an intense ac-
tivity of object destructior— for phase cleanup— and creation of new objects for the
new execution phase.

The Affinity Browser by Example 267

The information about the creation relationship can be represented by a matrix like

CA,A CA,B CA, C

¢ = CB,A CB,B CB,C

CC,A CC,B CC,C

whereC , represents the number of times creation of an instance df class can be iden-
tified inside the source code specifying cl&ss , if we are in the context of static analysis.
In the context of dynamic analysiS,, , represents the number of times instances of class
X create instances of cla¥s during a given time interval. In order to explore execution
phases we can collect data for several time intervals that should reveal the changes in cre-
ation patterns. The destruction relationship can be represented by afnatrix that has a
similar formtoC where entr,. ,, represents the number of times instances of class
destroy instances of clags during a given time interval.

We can derive a matrix

Cia=DuuaCsp—DypCyhc—Dyc
R=1Cy y=Dy 4 Czp—Dpgp Cpz =Dy ¢

CC,A_DC,A CC,B_DC,B CC,C_DC,C

which might represent an acceptable view of the balance between creation and destruction
responsibilities. For instanc&, ,<0 means that ckass destroyed more instances of
classY than it created during the time interval under analysis. Many insightful metrics can
be derived from the information contained in these matrices.

We convey creation relationships in such a way that classes that are frequently involved
in creation (either by creating or by being created) have more affinity and thus cluster to-
gether in the representation. A candidate metric is:

maX(CX 7 CY,X)
max(C)

44X, Y) =

where max(C) denotes the maximum value in matrix4 (X, Y) fails to show which
one of two classes displaying high affinity is responsible for creation. To obtain such in-
formation we may either define a pair of metrics to be used in exploration with synchro-
nized views or create a metric that highlights asymmetry. Both approaches have already
been discussed in the context of the formulation of previous metrics.

We provide another metric to convey the balance between creation and destruction. The
idea is that instances of a cla8s that create more instances of anothEr class than they
destroy, display more affinity while a negative balance in the creation/destruction process
reduces the affinity between and

268 The Affinity Browser

max(Ry y—min(R), Ry y—min(R))
max (R) —min(R)

A,(X,Y) =

9.4.3 Object Relationships

We discussed in the previous section metrics to portray class relationships. The informa-
tion needed to apply those metrics relies either on static analysis of the class definitions,
on dynamic analysis of execution activity, or on both. We may notice, in passing, that
many of the metrics discussed could be used to portray object relationships as well. In this
section we focus specifically on object relationships that are related to dynamic aspects of
the system’s execution and, therefore, require dynamic behaviour analysis. Understand-
ing the dynamic behaviour of a set of objects that collaborate to perform a task can provide
useful information for reuse and for class management. Dynamic behaviour analysis can
be helpful:

* in giving useful hints about the usage a developer intended for a particular class;

» by showing the typical utilization of classes inside an application;

* totune the performance of classes;

* in providing information for the assessment of class designs;

* in application debugging.
We now discuss candidate metrics intended to portray different aspects of the dynamic be-
haviour of objects defined in terms of object affinity. In order to perform tasks collectively,
objects exchange messages. As a first goal we want to know which objects collaborate
closely. Because we are interested in dynamic patterns of collaboration, the information
needed to build the metrics is collected by monitoring message passing activity.

Let O = {0,,0,,...,0,} denote the set of interacting objects during a given time
interval. We may define an affinity metri€; (X, Y) between objéct O and object
YOO by:

card(send(X, Y)) + card(send(Y, X))
anrd(send(Oi))

Ag(X, Y) =

wheresend(X, Y) isafunction that returns the set of messages sent byXbject to object
Y,andcard(x) returns the cardinality of a set. Sgard(send(O,)) represents the to-
tal number of messages exchanged during the monitored time interval. With such a metric
of affinity, objects that exchange messages frequently will have more affinity and will
therefore cluster together in the affinity browser’s visual representation.

9.4.3.1 Detecting Object Interaction Asymmetry
However, metric4¢(X, Y) does not show asymmetric interaction patterns. Suppose, for
example, that objecY sends messages frequently to dbject while Bbject seldom

The Affinity Browser by Example 269

sends messages to objact . Measiigex, Y) will not reveal this fact. In order to ex-
pose asymmetry we define two metries, (X, Y) ang(X, Y) , that are intended to
be used in two synchronized views:

card(send(src(X, ¥), dest(X, Y)))
z card(send(O,))

card(send(dest(X, Y), src(X, ¥)))
z card(send(O,))

A9a(‘X’ Y) =

Agy(X, Y) =

We introduce the notion afourceanddestinationto cope with the asymmetry between

the two metrics; the functions src() and dest() return respectivedptineeobject and the
destinationobject. The role of these functions is to enforce a rule so that an object that
plays the source role for a given pa{rY) in the first metric plays the destination role for

the same pair in the other metric. Additionally, the rule copes with pair symmetry so that
A, (X, Y) = Ay, (Y, X) and 4,,(X,Y) = 44,(Y,X) . The rule works as follows: for

an affinity context witlh objects we generate th&n —1))/2 pairs that correspond to

the upper right half of a matrix which is illustrated for 4

(01, 0,) (01, 05) (01, 0,)
(05, 05) (0,,04)
(05,0,)

The rule specifies that for each pair, the object that appears on the left-hand side plays
the role of the source and the object on the right plays the role of the destination. Further-
more, for any such paik(Y) the roles for the symmetric pa¥,§) are assigned to the same
objects. For exampl&), plays the role of the source&gnd the role of the destination in
both (0, 0;) and 05, 0)) .

When metrics4,,(X, Y) andi,y, (X, Y) are represented in synchronized views, the
user can spot asymmetry by looking for pairs of objects that appear close in one view and
farther apart in the other. These two metrics provide both global information about collab-
oration as well as information about collaboration asymmetry.

However, if we are mostly interested in detecting asymmetry, it might be more appro-
priate to emphasize pairwise interaction instead of global interaction affinity. To this end
we may consider the replacement of metritg, (X, Y) ang(X, Y) ARy(X, Y)
and4,,,(X, Y) . Let

A(X, Y) = card(send(src(X, Y), dest(X, ¥)) O send(dest(X, Y), src(X, T)))

270 The Affinity Browser

and
_ card(send(src(X, Y), dest(X, ¥)))
AlOa(‘X: Y) A(X, Y)
_ card(send(dest(X, Y), src(X, ¥)))
AlOb(‘X' Y) A()(, Y)
It is also possible to synthesize information about symmetry of message passing in one
metric, although the resulting display might be more difficult to interprgt(.X, Y) isa

candidate measure for such a view. This measure focuses on symmetry of message ex-
changes and, therefore, suppresses information about frequency of communication.

_abs(dy, (X, ¥) = g, (X, 1))
abs(Ay, (X, Y) + Ag, (X, 7))

4,XY) =1

Interaction asymmetry is an important issue at the design level. For instance, Booch [4]
identifies three roles for objects in terms of message passing activity:

» Actor: an object that operates upon other objects but that is never operated upon by
other objects.

» Server. an object that never operates upon other objects; it is only operated upon by
other objects.

» Agent: an object that can both operate upon other objects and be operated upon by
other objects; an agent is usually created to do some work on behalf of an actor or an-
other agent.

Such roles can be identified with metrit;; (X, Y) . The comparison of the roles
assigned to objects during the design phase, with the effective role they play in given exe-
cution contexts, might be instrumental to assess to what extent reusable software compo-
nents are used as intended by their designers.

9.5 Conclusion

This chapter dealt with the exploration of object relationships in the context of object-
oriented environments. We addressed the important issue of understanding how objects
are related because such understanding plays an important role in many key issues related
to software engineering such as reuse, debugging and software maintenance. Early object-
oriented environment designers have identified these issues and provided browsing tools
to help users explore the environment.

We have proposed a new approach to the exploration of an object-oriented environment
where object relationships are translated into affinity relations so that the object relation-
ships can be graphically represented in terms of distance: objects that are strongly related
appear closer in the representation. The approach has the advantage that many different re-
lationships can be represented and explored with the same tool and with the same explo-

References 271

ration paradigm. From the user’s perspective, affinity is a very intuitive concept that has
the advantage of being easily translated into a visual distance.

References

[1]

(2]
3]

[4]
[5]

[6]
[7]
(8]

9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]
[20]

[21]

Hans-Dieter Bdcker, Jirgen Herczeg, “What Tracers are MadeR@f¢eedings of OOPSLA/
ECOOP '9Q ACM SIGPLAN Noticed990, pp. 89-99.

R. Bolt, “Spatial Data Management,” DARPA Report, MIT, Architecture Machine Group, 1979.
Bernd Briiegge, Tim Gottschalk, Bin Luo, “A Framework for Dynamic Program Analy8ecsed-
ings of OOPSLA '93, ACM SIGPLAN Notic#993, pp. 65-82.

Grady BoochQbject Oriented Design With Applicatiqrigenjamin/Cummings, 1991.

Michael Caplinger, “Graphical Database Browsirigrceedings of ACM-SIGQO|ISIGOIS bulletin
vol. 7, no. 2-3, Oct. 1986.

Matthew Chalmers and Paul Chitson, “Bead: Explorations in Information Visualizafimteed-
ings of SIGIR '92June 1992, pp. 330-337.

William Donelson, “Spatial Management of Informatio@8mputer Graphics (Proceedings of SIG-
GRAPH '78) Aug. 1978, pp. 203-209.

Furnas Fairchild, Poltrock, “Semnet:Three-dimensional Graphic Representation of Large Knowl-
edge Bases,” il€ognitive Science and its Applications for Human—Computer InteracimnR.
Guindon, Lawrence Erlbaum, Hillsdale, NJ, 1988.

Steven Feiner, “Seeing the Forest for the Trees: Hierarchical Display of Hypertext StruBares,”
ceedings of COIS '8&®alo Alto, March 1988, pp. 205-212.

C. Fields and N. Negroponte, “Using New Clues to Find Data,” Third International Conference on
Very Large Data Bases, Tokyo, Oct. 1977, pp. 156-158.

David Gedye and Randy Katz, “Browsing the Chip Design Database,” University of California at Ber-
keley, Computer Science Division, Oct. 1987.

Adele GoldbergSmalltalk-80: The Interactive Programming Environmémidison-Wesley, Read-
ing, Mass., 1984.

I. Goldstein and D. Bobrow, “Browsing in a Programming Environme@mnbteedings of the 14th Ha-
walii International Conference on System Sciedaauary 1981.

Charles Herot, “Spatial Management of DafCM Transactions on Database Systevot 5, no. 4,
Dec. 1980, pp. 493-513.

William P. Jones, “On the Applied Use of Human Memory Models: The Memory Extender Personal
Filing System,” International Journal Man—Machine Studies, vol. 25, no. 2, 1986, pp. 191-228.

George Klir, Tina Folgekuzzy Sets, Uncertainty and Informati®nentice Hall, Englewood Cliffs,
NJ, 1988.

M. Kleyn, P. Gingrich, “GraphTrace — Understanding Object-oriented Behaviour Systems Using
Concurrently Animated ViewsProceedings of OOPSLA "88CM SIGPLAN Noticesl988, pp.
191-205.

Jeffrey T. LeBlanc, “N-Land: A Visualization Tool for N-Dimensional Data,” Technical Report Com-
puter Science Department, University of Worcester, May 1991.

Bertrand MeyerQbject-Oriented Software ConstructjdPrentice Hall, 1988.

Amihai Motro, “Browsing in a Loosely Structured Databa&edceedings of ACM-SIGMOD 1984
International Conference on Management of Da@84, pp. 197-207.

Amihai Motro, “BAROQUE: A Browser for Relational Databases,” vol. 4, no. 2, April 1986, pp. 164—
181.

272 The Affinity Browser

[22] Amihai Motro, “VAGUE: A User Interface to Relational Databases that Permits Vague Queries,”
ACM Transactions on Office Information Systevot 6, no. 2, July 1988, pp. 187-214.

[23] Amihai Motro, Alessandro D’Atri, Laura Tarantino, “The Design of KIVIEW: An Object-Oriented
Browser,”Proceedings of the Second International Conference on Expert Database Systgms
ia, 1988, pp. 17-31.

[24] P. O’Brien and D. Halbert and M. Kilian, “The Trellis Programming Environm@&mntteedings of
OOPSLA '87ACM SIGPLAN Notice®©ct. 1987.

[25] Xavier Pintado, Eugene Fiume, “Grafields: Field-directed Dynamic Splines for Interactive Motion
Control,” Computers & Graphigssol. 13, no. 1, Jan. 1989, pp. 77-82.

[26] Xavier Pintado, Dennis Tsichritzis, “An Affinity Browser,” Technical Report, Centre Universitaire
d’Informatique, University of Geneva, June 1988.

[27] Xavier Pintado, “Selection and Exploration in an Object-oriented Environment: The Affinity Brows-
er,” in Object Managemened. D. Tsichritzis, Centre Universitaire d’Informatique, July 1990, pp.
79-88.

[28] Xavier Pintado, “Objects’ Relationships,” Ph.D. Thesis, Centre Universitaire d’Informatique, Uni-
versity of Geneva, Switzerland, 1994.

[29] Xavier Pintado, “Visualization in the Financial Marke¥R '94, Proceedings of the Fourth Annual
Conference on Virtual Realjtilecklermedia, London, 1994, pp. 80-84.

[30] Andy Podgursky, Lynn Pierce, “Retrieving Reusable Software by Sampling Behaxiolt, Trans-
actions on Software Engineering and Methodaleg¥ 2, no. 3, July 1993, pp. 286-303.

[31] Kenneth Rubin, Adele Goldberg, “Object Behaviour Aanly§isinmunications of the AGMol. 35,
no. 9, Sept. 1992.

[32] Gerard Saltorutomatic Text Processing: The Transformation, Analysis, and Retrieval of Informa-
tion by ComputeAddison-Wesley, Reading, Mass. 1988.

[33] Michael Stonebraker and J. Kalash, “Timber: a Sophisticated Database Brensmredings of the
8th International Conference on Very Large Data BaSept. 1982, pp. 1-10.

[34] David Stotts and Richard Furuta, “Petri-Net-Based Hypertext: Document Structure with Browsing
Semantics,ACM Transactions on Information Systewd. 7, no. 1, Jan. 1989.

	The Affinity Browser
	9.1 Introduction
	9.1.1 Object Selection
	9.1.2 Related Work

	9.2 Browsing Requirements
	9.3 The Affinity Browser
	9.3.1 The Affinity Browser Exploration Paradigm
	9.3.2 Architectural Elements of an Affinity Browser
	9.3.3 User Interaction and Event Management

	9.4 The Affinity Browser by Example
	9.4.1 Class Relationships
	9.4.2 Creation and Destruction Relationships
	9.4.3 Object Relationships

	9.5 Conclusion

