
f soft-
onomy
tures.
mous

Xavi
and
Repr
may
othe
right
Chapter 12

Gluons and the
Cooperation between
Software Components

Xavier Pintado

Abstract A major problem in software engineering is how to specify the patterns
of interaction among software components so that they can be assembled to
perform tasks in a cooperative way. Such cooperative assembly requires that
components obey rules ensuring their interaction compatibility. The choice of a
specific approach to specifying rules depends on various criteria such as the
kind of target environment, the nature of the software components or the kind of
programming language. This chapter reviews major efforts to develop and
promote standards that address this issue. We present our own approach to the
construction of a development framework for software applications that make
use of real-time financial information. For this domain, the two main requirements
are (1) to facilitate the integration of new components into an existing system,
and (2) to allow for the run-time composition of software components.The goal
of the development framework is to provide dynamic interconnection
capabilities. The basic idea is to standardize and reuse interaction protocols that
are encapsulated inside special objects called gluons. These objects mediate
the cooperation of software components. We discuss the advantages of the
approach, and provide examples of how gluons are used in the financial
framework.

12.1 Introduction

The advent of object-oriented techniques has brought many benefits to the field o
ware engineering. One notable benefit is that objects provide a higher degree of aut
than obtained with the traditional separation of software into functions and data struc
This autonomy promotes component-oriented software construction, since autono
er Pintado, “Gluons and the Cooperation between Software Components,” Object-Oriented Software Composition, O. Nierstrasz
D. Tsichritzis (Eds.), pp. 321-349, Prentice Hall, 1995.
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. It is not
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
s reserved.

322 Gluons and the Cooperation between Software Components

 Com-
liability,
use.

ten-
 is the
nsid-
terface
ssump-

y kind
ration

a “law”
gree-

tware
ly sup-
w” or
velop-
t are
iron-
ensive
s: they
device
neric

ts of

vades
for the
lying a

mpt to
rt and

ions.
rieval
ork is
related
n run-
ental

evel-

ly of
po-
objects can be reused in many different context with reasonable integration efforts.
ponent reuse can reduce development time and costs, and can lead to improved re
since reusable components will become thoroughly tested as a consequence of re

Although component-oriented software is fairly promising in terms of its reuse po
tial some major problems remain to be solved. Among these, a salient problem
definition of the patterns of cooperation between software components, to which co
erable effort has already been devoted. We may notice, for instance, that a class in
condenses assumptions about the objects that can be instantiated from it, but not a
tions about the interactions that those objects may have with other objects.

We may better capture the essence of the problem by observing that virtually an
of cooperation requires agreement between the cooperating entities [29]. Coope
agreements can take many forms, however. They can be specified, for instance, by
to which all the cooperating entities obey. But cooperation can also rely on bilateral a
ments each defining the cooperation between pairs of entities.

In the context of component-oriented software design, the goal is to make sof
components cooperate through reliable and flexible mechanisms that appropriate
port and enforce convenient interaction patterns. In this context, the interaction “la
cooperation agreement is usually captured by the notion of an object-oriented de
ment framework [9] [10]. An object-oriented framework is a collection of classes tha
designed to work together. A framework is intended to provide a development env
ment that promotes reuse and reduces development effort by providing a compreh
set of classes and development rules. Frameworks come in many different flavour
can, for example, target a narrow application domain such as the development of
drivers (e.g. NeXTStep Driver Kit [19]), or they can address the requirements of a ge
development environment (e.g. Visual C++ framework [4]) comprising multiple se
classes and development rules.

The distinguishing characteristic of a framework is the design philosophy that per
all aspects of the framework such as the definition of foundation classes, the rules
design of new classes and the tools that support the development process. By app
consistent design philosophy to all the aspects of the framework, designers atte
provide the user with a uniform development model that reduces the learning effo
defines a generic architecture for applications developed with the framework.

In this chapter we develop a framework for the development of financial applicat
The framework is intended for the development of applications that involve the ret
of real-time financial data sources. The typical target environment for the framew
rapidly evolving, in the sense that the behaviour of the objects and the way they are
evolves at a fast pace to reflect the real world of finance. The framework focuses o
time connection of software components and on capabilities that support the increm
development of applications. Figure 12.1 shows a typical display of an application d
oped with the financial framework.

The distinguishing feature of the framework is the introduction of a special fami
objects, called gluons, which are responsible for the cooperation among software com

Introduction 323

lay a

w dif-
eration
ftware
re of

frame-
d ap-
n 12.4
. Section
used
works.
nents. Although gluons essentially encapsulate communication protocols, they p
prominent role at the design level by promoting a protocol-centered design.

This chapter is organized as follows: the next section provides an overview of ho
ferent frameworks address the issue of object cooperation and the patterns of coop
that they promote. We focus on standardization proposals promoted by major so
houses since they will most likely have a significant impact on the future architectu
software applications. Section 12.3 discusses the requirements for the financial
work. Such requirements cannot be easily satisfied with the previously describe
proaches and we therefore introduce a new protocol-centered approach. Sectio
discusses gluons as special components that enable a protocol-centered approach
12.5 presents the financial framework, focusing on the illustration of commonly
gluons. We conclude with a summary of the advantages of protocol-centered frame

Figure 12.1 Display presenting some of the visualization tools available for the display of
real-time information. Windows 1 and 2 display real-time information about
DEC and IBM stocks in the Zurich stock exchange. Windows 3 and 4 provide
transaction information about foreign exchange rates. Window 5 and 6 display
index values (French Cac 40 and Dow Jones Industrial). Finally, window 7
displays information in page format, and window 8 offers news highlights.

1

2

7

4
3

8

6

5

324 Gluons and the Cooperation between Software Components

ompo-
for in-
edure
lica-

ments
, how-
he inter-

mote
mes-
te in a
llows
sense,
ment

tion of
cture
ncy,
ponent
s path,
el, the

f ob-
ct are
 OMG
pical
com-
on
s if an

th. An

inally,
12.2 An Overview of Cooperation Patterns

The development of mechanisms that support communication between software c
nents is hardly a new problem. A significant effort has been devoted in the past,
stance, to interapplication communication. A typical mechanism is the remote proc
call (RPC), which allows an application to invoke routines belonging to another app
tion. RPC is the kind of cooperation mechanism one expects in software environ
where the principal entities are functions and data structures. In a word of objects
ever, we might expect to have remote message capabilities since the message is t
object communication mechanism.

To the best of our knowledge the first commercially available implementation of re
messages came bundled with NeXTStep AppKit framework[19]. However, remote
saging only provides a communication layer. For software components to coopera
dependable and flexible way we need to define the laws of cooperation. In what fo
we provide an overview of various standardization efforts that address, in a broad
the problem of defining laws of cooperation in the context of software develop
frameworks.

12.2.1 Object Management Group

The Object Management Group (OMG) promotes a standard to support the interac
software components within a framework called the Object Management Archite
(OMA). One of the main goals of OMA is to achieve object distribution transpare
which means that the interaction between a client component and a server com
through the server’s interface should be independent of its physical location, acces
and should be relocation invariant. This standard relies on a common object mod
OMG Object Model which is used by all OMG-compliant technologies.

12.2.1.1 The OMG Object Model

The OMG Object Model defines a way to specify externally visible characteristics o
jects in an implementation-independent way. The visible characteristics of an obje
described as a collection of operation signatures called the object’s interface. The
Object Model definition of an operation signature extends in interesting ways the ty
definition of a method’s signature in order to make it more convenient for distributed
puting environments. The optional oneway keyword specifies an exactly-once operati
semantics if the operation successfully returns results or a at-most-once semantic
exception is returned. Each parameter is flagged with one of the three qualifiers — in , out
or inout — to specify the write access to the parameter of the client, the server or bo
exception is an indication that the request was not performed successfully. The raises key-
word introduces the list of possible exceptions that can be raised by the operation. F

An Overview of Cooperation Patterns 325

ect
tributed
echa-

RB).
ation,
te any

efined
sure
 that
essen-
nly
 ORB
cts as
ntrol.
ss to

n dis-
s sys-
ndard

mic
 than
t run on
passes

odel. In
client
lishes a
the context keyword allows for the specification of additional information that may aff
the performance of the operation. These extensions address issues related to dis
environments such as unreliable communications, and the need for appropriate m
nisms for exception handling.

12.2.1.2 Object Request Broker
The communication between objects is mediated by an Object Request Broker (O
The ORB is responsible for finding the object implementation for the requested oper
to perform any preprocessing needed to perform an operation, and to communica
data associated with the operation. The functionality of object request brokers is d
in the Common Object Request Broker Architecture (CORBA)[21]. In order to en
language independence, CORBA defines a Interface Definition Language (IDL)
obeys the same lexical rules as C++, although additional keywords are introduced
tially to support distributed environments. However, IDL differs from C++ in that it is o
a declarative language. In order for object implementations to communicate with the
they need to implement a Basic Object Adaptor (BOA) which deals with such aspe
interface registration, implementation activation, and authentication and access co
An important component of the ORB is the interface repository which provides acce
a collection of object interfaces specified in IDL.

To summarize, the OMG provides a standard for the communication of objects i
tributed environments. The standard focuses on interoperability of heterogeneou
tems, where interoperability is achieved through a request broker that defines sta
interface rules which the interacting agents need to obey.

12.2.2 Microsoft DDE and OLE

Microsoft provides two main standards for interapplication cooperation: DDE (Dyna
Data Exchange) and OLE (Object Linking and Embedding). DDE is much simpler
OLE since it addresses essentially the exchange of data between applications tha
the same computer. On the other hand, OLE is an ambitious standard that encom
many aspects related to the structures of software components.

12.2.2.1 Dynamic Data Exchange
DDE focuses on data exchange between applications based on a client–server m
DDE parlance, a client is any application that initiates a DDE connection. Usually a
requests data after establishing a connection with a server. The connection estab

[oneway] <return_type> <operation>(in |out |inout param1, ..., in |out |inout paramK)
[raises (except1, ..., exceptL)]
[context (name1, ..., nameM)]

Figure 12.2 The OMG Object Model operation signature.

326 Gluons and the Cooperation between Software Components

 be one
ith
d. The
data

ed
 but the
inally,
ide.

icies
 client
h call-

gnizes
 topic
t it can

 specify
h DDE.
r for a
ded by
n con-
 is es-
mited
bilities
r to re-
link that according to the way the link deals with data updates on the server side can
of three types: cold, warm and hot. These three links are illustrated in figure 12.3. W
cold links the server plays a passive role: it takes no action whenever data is update
client is, therefore, responsible for implementing the update policy by issuing
requests when appropriate. With warm links the responsibility for data update is shar
between the client and the server: the server notifies the client upon a data update
data request to perform the update on the client’s side is initiated by the client. F
with hot links the server is responsible for the whole update process on the client’s s

The three types of links allow for the implementation of data consistency pol
between the client and the server that appropriately reflect the requirements of the
application. The actions on both the client and the server side are carried out throug
back functions.

The data organization at the server end follows a three-level hierarchy that reco
three entity types: services, topics and items, as illustrated in figure 12.4. Typically, a
corresponds to a document (e.g. an open document in a wordprocessor server) bu
also represent a relation in a relational database since the DDE standard does not
what a topic should be. Items are the smallest entities that can be addressed throug
Items can be of any type and format recognized by the Windows clipboard. In orde
client to request data from a server it needs to know the name of the service provi
the server, the name of the topic and the name of the item it is looking for. A client ca
nect to multiple servers and a server can be linked to multiple clients. Although DDE
sentially a mechanism for data exchange among applications it also provides li
capabilities that allow a client to execute commands on the server side. These capa
can be used to implement cooperation mechanisms that are, to some extent, simila
mote messaging in other environments.

Figure 12.3 DDE involves three types of links between clients and servers. The variety
of links reflects the different requirements of applications on how to
maintain client’s data consistent with the corresponding server’s data.

Client requests data

(1) Server notifies client about data update

Cold link

Warm link

Hot link

(2) Client eventually requests new data

Server updates data on the client side

Client Server

An Overview of Cooperation Patterns 327

plica-
t we
opera-
ively
ation
o ob-
elated
rdinat-
d im-
name
tion.
odel
OM
 ob-
 Win-

btain a

e Win-
ith
OM

. The
t pro-
ct-ori-
bject’s
ecified
s.
12.2.2.2 OLE 2.0
OLE is another standard defined by Microsoft that enables the cooperation of ap
tions. In its current 2.0 version [17][18] it shares many similarities with OpenDoc tha
will describe in section 12.2.4.2. For instance, both standards comprise a set of co
tion protocols and a definition for compliant structured documents. OLE 2.0 is relat
hard to summarize briefly. In fact OLE 2.0 is much more than a application cooper
standard; it is the foundation for a Microsoft strategy to make MS-Windows migrate t
ject-oriented technology. As such, OLE 2.0 comprises a set of apparently loosely r
standard definitions, models and implementations which provide, as a whole, a coo
ed platform for future object-technology. OLE 2.0 provides standard definitions an
plementation support for compound documents, drag-and-drop operations,
services, linking and embedding of documents, and application interaction automa

The unifying concept underlying the OLE 2.0 platform is the Component Object M
(COM). All the other pieces of OLE 2.0 either rely on the COM definitions or use C
objects, usually called Windows objects [17]. Windows objects differ slightly from the
jects proposed by commonly used programming languages such as C++ or Eiffel. A
dows object is fully defined by its set of interfaces. An interface is a collection of function
pointers and there is no such notion as references to Windows objects. When we o
reference to an object it is in fact a reference to one of its interfaces. Another interesting
aspect of Windows objects is that there is no inheritance mechanism, but becaus
dows objects provide multiple interfaces, it is easy to encapsulate Windows objects w
programming languages that offer either single or multiple inheritance. The C
presents Windows objects essentially as collections of functions [7][17] (i.e. interfaces),
which can be fairly confusing for readers acquainted with object-oriented concepts
main reason, we believe, is that the OLE 2.0 is to be implemented with many differen
gramming languages, such as BASIC, C, C++, which may or may not endorse obje
ented techniques. With different programming languages the binding between the o
data and the object’s methods may be implemented in different ways that are not sp
in OLE. Microsoft offers an OLE 2.0 software development kit for C++ environment

Service

Topic A Topic B

Item 4

Topic C

Item 3Item 2Item 1 Item 6Item 5

Figure 12.4 DDE hierarchy showing the service provided by a server and how it is
hierarchically organized in topics and items.

328 Gluons and the Cooperation between Software Components

ocu-
le

d or
ides a
ort the

pical
t, etc.)
 of the
 items

-
s do not
gether
 termi-

. An

n anon-
ely, an
ment
s way

ans-
ects
m op-

t Mod-
ments
s data
plica-

tives
ld easily
re, as a
A key feature of OLE 2.0 is the definition of structured documents. Structured d
ments contain storages and streams that are organized in a similar way to traditional fi
systems: streams are analogous to files while storages act as directories. So, storages con-
tain either streams or storages. Storages and streams provide support for structure
composite documents that are organized in a hierarchical structure. OLE 2.0 prov
standard definition for the document’s structure and also a set of functions that supp
standard operations on structured documents.

The best-known features of OLE 2.0 are probably embedding and linking. A ty
compound document (e.g. a text with graphics, sound, data in spreadsheet forma
contains data objects that have been created by different applications. The owner
compound document, say a wordprocessor, may know how to display most of these
but cannot deal with the full complexity of retrieving and modifying them. An OLE con-
tainer is any application that can incorporate OLE objects. Containers usually display the
OLE objects and accept commands for them. However, containers are not intended to
process the objects. Objects retain an association with server applications that are respon
sible for servicing the requests addressed to the objects. The idea here is that client
need to be aware of the internals of the objects they contain. The object (data) to
with its associate server corresponds to the usual notion of object in object-oriented
nology which encapsulates both data and operations on the data. Servers accept com-
mands, called verbs, that correspond to actions that can be applied to the objects
interface is the set of operations that can be applied to an object via its server.

OLE 2.0 offers two ways to integrate an object into a compound document: linking and
embedding. Embedding is most frequently used. The container application owns and
stores each embedded object, but the server retrieves the object. The server plays a
ymous role by processing the object on behalf of the container application. Convers
object can be linked into a document. A linked document belongs to a given docu
(and is stored in the document’s file) but it is referenced in another document. In thi
several containers can share a single linked object.

Additionally, OLE 2.0 provides a standard for data transfer called Uniform Data Tr
fer (UDT) and a standard for scripting called Automation. Automation allows obj
associated with one application to be directed from another application, or to perfor
erations on a set of objects under the control of a macro language [18].

To summarize the OLE 2.0 standard suite we may say that the Component Objec
el standardizes how an object and an object’s client communicate; compound docu
standardize document structure and storage; Uniform Data Transfer standardize
exchange capabilities and Automation provides a support for remote control of ap
tions.

It should be noted that with OLE version 2.0 the interapplication cooperation primi
are restricted to the scope of the same machine. However, these mechanisms cou
be extended to provide the same capabilities across networks and serve, therefo
foundation for distributed computing.

An Overview of Cooperation Patterns 329

rd for
o rea-
s from
ture, one
 object

 the
hrough

bases,

ple-
d data
ciated
 the
ents on

n of
has a
12.2.3 ODBC 2.0

Although the Open Database Connectivity standard from Microsoft is more a standa
the interconnection of applications and databases, it is worth mentioning here for tw
sons. First, it represents a much-needed standardization effort to isolate application
the access to specific databases. Second, databases will be, at least in the near fu
of the most prominent reusable software components since they are responsible for
persistence.

The architecture of an ODBC 2.0 application is represented in figure 12.5. From
view point of the application, the access to the various data sources is transparent t
the ODBC interface. The ODBC 2.0 standard interface provides the following:

• a standard way to connect to databases;
• a set of function calls that allows an application to connect to one or many data

execute SQL statements, and retrieve the results;
• a standard representation for data types.
The Driver Manager loads drivers on behalf of the application, while the Drivers im

ment ODBC function calls and submit, when appropriate, requests to the associate
source. The Drivers are responsible for adapting to the specific syntax of the asso
DBMS. ODBC 2.0 does not rely on object-oriented principles and is fairly low level in
sense that it provides a vendor-independent mechanism to execute SQL statem
host databases.

12.2.4 Apple’s Interapplication Communication Architecture
and OpenDoc

Like Microsoft, Apple devoted significant efforts to the definition and implementatio
standard mechanism for the cooperation of applications. Also like Microsoft, Apple

Application Driver
Manager Driver B

Driver C

Driver D

Driver A

ODBC interface

Data source A

Data source B

Data source C

Data source D

Figure 12.5 ODBC 2.0 application architecture.

330 Gluons and the Cooperation between Software Components

object-
atform
into de-

mu-
ation
 to:

-lev-
andard
ize the

tions

ication
s
me net-
large developer base and a large software base that did not already fully adopt
oriented tools. The consequence is that the migration towards an object-oriented pl
started by the introduction of object-oriented concepts such as message passing
velopment environments that are not object-oriented.

12.2.4.1 Interapplication Communication Architecture
This migration was the driving force for the development of the Interapplication Com
nication architecture (ICA), which provides a standard mechanism for communic
among Macintosh applications[1]. More specifically the goal is to allow applications

• exchange data through copy-and-paste operations;

• read and write data blocks from and to other applications;

• send and respond to Apple events;

• be controlled through scripts.

A significant effort has been devoted by Apple to define a common vocabulary of high
el messages, called Apple events, that are published in the Apple Event Registry: St
Suites. To the best of our knowledge, this has been the only effort to date to standard
messages that applications may respond to.

• Applications typically use Apple events to request services from other applica
or to provide services in response to other applications requests. A client application
is an application that sends an Apple event to request a service, while the appl
that provides the service is the server application. The client and server application
can reside on the same machine, or on different machines connected to the sa
work.

The ICA comprises the following:

Edition Manager Open Scripting Architecture

Event Manager

Program-to-Program Communication toolbox

Figure 12.6 The layers of the Interapplication Communication Architecture.

An Overview of Cooperation Patterns 331

ong
ocu-

low
, to
ting
nt that

and
 pieces

. The
port.
pplica-

nica-
f the

 and
uch as
pe to
struc-
 Object
ica-
 docu-
art of

NTO
ts are
nique
es of
e corre-

ased:
manipu-
alized
eets. On
al is to
roach

tains an
e in-
• The Edition Manager, which provides support for copy-and-paste operations am
applications and updating information automatically when data in the source d
ment changes.

• The Open Scripting Architecture, which defines the standard mechanisms that al
for the external control of single or multiple applications. OSA is comparable
some extent, to Automation in OLE 2.0. OSA is not tied to any specific scrip
language. Each scripting language has a corresponding scripting compone
translates the scripts into events.

• The Event Manager, which provides the support that allows applications to send
receive events. The Event Manager standard defines the architecture and the
of Apple messaging backplane.

• The Program-to-Program Communication toolbox, which provides low-level
support that allows applications to exchange blocks of data in an efficient way
Edition Manager and the Open Scripting Architecture provide the user level sup
They both rely on the Event Manager to exchange data and messages across a
tions. The Event Manager, in turn, relies on the Program-to-Program Commu
tion toolbox to transport data. Figure 12.6 illustrates how the different parts o
ICA are related.

12.2.4.2 OpenDoc
As opposed to OLE, the ICA only deals with the problem of application interaction
does not define a standard for documents. Apple, together with other companies s
Novell and IBM, is proposing another standard, OpenDoc, that is quite similar in sco
OLE 2.0. It defines both standards for application interaction mechanisms and for
tured documents. In reality, OpenDoc integrates three other standards: (1) System
Model (SOM), which originated as a CORBA compliant IBM standard for interappl
tion message exchange; (2) BENTO, which standardizes the format of structured
ments and (3) the Open Scripting Architecture that we already mentioned as p
Apple’s ICA.

BENTO defines the standard elements for structuring documents in OpenDoc. BE
documents are stored in containers which are collections of objects. BENTO objec
organized as schematized in figure 12.7. An object has a persistent ID which is u
within its container. Objects contain a set of properties, which in turn contain valu
some type. The values are where data is actually stored and their types describe th
sponding formats.

The ideas underlying OpenDoc are quite similar to those on which OLE 2.0 is b
composite documents may contain heterogeneous objects that are managed and
lated using a variety of specialized software components. With OLE 2.0 the speci
components are heavyweight applications such as wordprocessors and spreadsh
the other hand, OpenDoc targets components that are more fine-grained. The go
make the concept of application vanish, giving place to a document-centered app
that promotes the document as the main user concept. Each part of a document re
association with a specialized component that knows how to retrieve it. Naturally, th

332 Gluons and the Cooperation between Software Components

ase the
g new

oting
andards
tand-

ubsys-
equest
 stand-
2.0 ap-
y, OLE
andard
s both
 docu-

nd the
ware,
 these
 the ap-
vocation of the retrieving component is transparent to the user, who can easily incre
variety of the parts that can be incorporated into composite documents by purchasin
specialized software components.

12.2.5 Discussion

The considerable effort that has been devoted to designing, implementing and prom
the adoption of these cooperation standards suggests the critical role that such st
may play in future software technology. We may notice, however, that the various s
ards differ considerably in scope.

For example, OMG standards focus on interoperability among heterogeneous s
tems and they essentially provide mechanisms that allow software components to r
services from other software components. Software components need to provide a
ard layer that adapts them to the request broker in much the same way that ODBC
plications need drivers to adapt data sources to the ODBC 2.0 interface. Conversel
2.0 and OpenDoc each provide a complete integration platform-centered on a st
definition of composite document. The document-centered approach that underlie
standards seems appropriate for office information systems where the composite
ment seems to be indeed the fundamental user abstraction.

However, there exist many software application domains that do not revolve arou
notion of document. For example, in real-time software and communications soft
the notion of document does not play an important role. We may also notice that
standards do not promote interaction at the software component level, but rather at

ObjectValue of type A
Value of type B
Value of type C
Value of type D

Value of type C
Value of type A

Property X

ObjectValue of type A
Value of type B
Value of type C
Value of type D

Property Y

ObjectValue of type C
Value of type A
Value of type C
Value of type S

Property Z
ObjectValue of type F

Value of type G
Value of type A
Value of type B

Value of type H
Value of type A

Property U

Object “Budget”

Figure 12.7 A Bento object contains a collection of properties and properties contain
values which are the placeholders where data is actually stored.

Requirements for a Financial Framework 333

set of
 full-

t ap-
ndard
read-

 that are
ct, they
 by in-
This is
pplica-
mpo-

 generic
tware
pment
 and
play

nd allow
esent
e dis-

mong
ncial
cking

stems
ppor-
 vari-

oice of
rder to
finan-
t. This
mpo-
ould be
archi-
nents
plication level, even though OpenDoc encourages document retrieval through a
small and specialized retrieval units while OLE 2.0 promotes communication among
fledged applications such as wordprocessors, spreadsheets, etc.

The ICA from Apple (in particular, the Apple events suite) takes a rather differen
proach, focusing on the standardization of operations. The goal is to promote a sta
vocabulary for services so that applications that provide similar services (e.g. sp
sheets) can be replaced by one another.

Another observation is that any of the standards discussed requires mechanisms
specific to object-oriented languages such as inheritance and encapsulation. In fa
are being used as a vehicle for the migration towards object-oriented environments
troducing object-oriented concepts expressed in non-object-oriented languages.
probably the reason why these standards focus mainly on interaction between a
tions; the same interaction rules do not usually apply to interaction of software co
nents occupying the same address space.

12.3 Requirements for a Financial Framework

The application cooperation standards we have discussed address the needs of a
software environment and reflect many other constraints not all related to sof
engineering, such as market constraints and applicability of standards to old develo
environments. Our financial framework targets applications that retrieve real-time
historical data from financial information sources. Typically, these applications dis
data such as the price of securities, interest rates and currency exchange rates, a
users to explore real-time and financial historical information. These applications pr
to the professional user a window into financial activities which provides access to th
tributed world-wide financial market.

Financial markets are characterized by rapidly evolving, complex relationships a
the wide variety of financial instruments. Market relationships that hold among fina
instruments are continuously evolving, and professional investors are constantly tra
that evolution in order to detect new investment opportunities. Decision support sy
(DSSs) play an important role in supporting the user while finding such investment o
tunities. The user needs to combine financial instruments, test the combination with
ous economic scenarios, look at the present cost of the combination, refine the ch
instruments, re-evaluate them, and eventually make an investment decision. In o
provide the appropriate support the DSS should allow the dynamic combination of
cial instruments so that any instrument can be combined with any other instrumen
asks for a DSS architecture that facilitates the run-time interaction of software co
nents. Furthermore, new financial instruments are frequently added so the DSS sh
easily extendable with operational models for new instruments. To summarize, the
tecture needs to provide capabilities for the dynamic connection of software compo
and facilitate the integration of new software components.

334 Gluons and the Cooperation between Software Components

are de-
ays.
quest

r main
Open-
cern is
ach,
ard op-
he first
heet op-
 second
plica-

e in-
vide a

native
could
e are
f core
he same
ervices

ed by
identi-
nt pro-
e
e list
e serv-
al-time
r class

ed by
he ad-

 many
12.3.1 Towards a Protocol-Centered Framework

As we already mentioned, the goal of a framework is to provide a set of classes that
signed to work together. This operational compatibility can be achieved in many w
The Object Management Group focuses on compatibility mediated by an object re
broker. They impose no restriction on the software components themselves. Thei
concern is to provide interoperability in heterogeneous environments. OLE 2.0 and
Doc emphasize the compound document as the main shared entity. Their main con
to provide the most flexible environment for document retrieval. Apple’s ICA appro
on the other hand, attempts to standardize common operations by defining a stand
erations vocabulary and its associated semantics. ICA pursues two main goals. T
goal is to make the access to core standards functionality, such as common spreads
erations, database access and wordprocessor tasks, application independent. The
goal is to offer powerful scripting capabilities to automate tasks and to compose ap
tions together.

The goal of the financial framework is to provide support for dynamic control of th
teraction between software components. To achieve such a goal we need to pro
mechanism that allows for dynamic interconnection of software components.

12.3.2 Standardizing a Service’s Vocabulary

During the early stages of the framework’s design we considered a number of alter
intercomponent interaction principles. The goal was to find a mechanism that
provide the highest degree of dynamic interconnection for the kind of applications w
targeting with the financial framework. We tried, for instance, to standardize a set o
services so that each service is associated to a unique name called a verb, much in t
way as the Apple events suite standardizes the operations vocabulary of common s
provided by wordprocessors, spreadsheets, databases, etc.

12.3.2.1 The Advantages
The intuition behind this approach is that we can identify among the services provid
the various software components of a framework many services that, although not
cal, have comparable semantics. For example, most components in our environme
vide services such as evaluate, print, and notify. We attempted to identify within the scop
of the financial framework the principal groups of services and we ended up with th
shown in table 12.1. Software components may provide other services as well. Thes
ices belong either to more specialized groups, such as a group that is related to re
services, or they do not belong to any group since they are too specific to a particula
of components.

A major advantage of this approach is simplicity. A service request can be perform
sending a message, a mechanism that every object-oriented environment offers. T
vantage of standardizing a vocabulary for services is perhaps more compelling for

Requirements for a Financial Framework 335

ose se-
 name
ause if
ervice,
ird, in-
ts that
 in

nnec-
onents
e soft-
hanged

iate way
, and
onents,
l-time

ware
ompo-
 an in-
o stop
otifica-
ption,
e trans-
pera-
reasons. First, reusing components is made easier since services with similar or cl
mantics bear the same name on all the software components, thus simplifying the
space. Second, dynamic interconnection of software components is improved bec
a component provides a service conforming to a standard protocol, such as a print s
then that service can be invoked by any client understanding the same protocol. Th
terchangeability of software components is increased since two software componen
provide similar functionality will most probably show a fair degree of commonality
their interfaces.

12.3.2.2 The Shortcomings
We noticed, however, that this approach is not the best in terms of dynamic interco
tion. The main reason is that, in general, the interaction between two or more comp
involves more operations than simply sending a message. Although we can compos
ware components by specifying the appropriate sequences of messages to be exc
between the components, a collection of sequences of messages is not the appropr
to specify components’ interactions. All but the simplest interactions involve a state
the set of permissible messages that can be exchanged between interacting comp
at a given point in time, usually depends on the present state of the interaction. Rea
financial environments provide many illustrations. Consider, for example, a soft
component, called the server, that offers real-time data updating services to other c
nents. A component may register to be notified for data updates. Registering starts
teraction that ends, hopefully, when the client component requests the server t
notification. Such interaction may comprise many data updates, error messages, n
tion of temporary interruption of real-time services, with subsequent service resum
etc. Another example is a database transaction. A server may execute a databas
action on a client component’s behalf. The transaction may involve many different o

Service group name Description

Common services Services that are usually provided by most components
such as: print, show-services, identify-error, and store

Messaging and notification Services related to messaging and event notification such
as: call-back, notify, add-to-broadcast-list, message,
forward-message

Computational Services related to computational servers: evaluate,
iterate, perform-aggregation, set-value, get-value

Display Services related to visual operations such as: display,
undisplay, front, drag-and-drop

Object management Services related to software component management
such as: create, replicate, destroy, add-object, instance-
of-class, component-id

Table 12.1

336 Gluons and the Cooperation between Software Components

tions
 server
 the in-
y exe-

mpo-
e call

ounda-
works

ation
unc-
n be-
ies that
2.8

tures.
ctions
 the role
tions that individually succeed or fail. The transaction succeeds if all its opera
succeed, otherwise the transaction fails. The interaction between the client and the
depends on the state of the transaction, which can be defined as the logical “and” of
dividual operation results. Whenever, the state condition switches to fail, the alread
cuted operations need to be unrolled before terminating the transaction.

The two examples illustrate the need for a higher-level mechanism to specify co
nents’ interactions that allows for interaction states and state-dependent actions. W
such a mechanism a component’s interaction protocol. These observations lay the f
tions that lead us from message-based frameworks to protocol-centered frame
which focus on protocols as the main components interaction mechanisms.

12.3.3 Component Interaction Protocols

Software component protocols share many similarities with computer communic
protocols. Both specify object interaction patterns. As such they fulfil two important f
tions. First, they provide a mechanism or a formalism to specify the rules of interactio
tween objects. Second, protocols define compatibility classes in the sense that entit
obey the same protocol display an interaction compatibility as illustrated in figure 1

12.3.3.1 Requirements for Interaction Protocols
Software component interaction protocols should support a number of important fea
First, they should be appropriate to specify various aspects of component intera
such as synchronization, negotiation and data exchange. Second, they should play

A
B

C

E

G

F

D H

Figure 12.8 Protocols define compatibility classes inside which members are able to
interact. Protocol X allows interaction between objects A, B, C and D, while
protocol Y defines an interaction pattern between D, C, B and F. Object H
cannot interact with other objects since it does not adhere to any specified
protocol.

X

Y

Z

Requirements for a Financial Framework 337

t con-
mply
s.
ilater-

men-
, a proto-
n in an
ted to
 com-
onse-
ch has
ents.

 to the
 and
l is to
ed by
to ex-
 they do
 neces-

s the

le of
an play
ibility
 small.
li-

ed
in the
mple,
 ob-
proto-
of “contracts” or “interaction agreements” that represent the necessary and sufficien
ditions for a software component to interact with other software components that co
with the same “agreement”. Helm et al. [12] focus on this important aspect of interaction
Third, the interaction specifications should be multilateral agreements rather than b
al interaction agreements between two software components.

Another desirable property of component interaction protocols is that their imple
tations reside as much as possible outside the components since as an agreement
col does not belong to any component. We may observe, looking at programs writte
object-oriented language, that a significant fraction of a component’s code is devo
the communication of the component with other software components. Most of the
munication functionality is inside the component. This has two main objectionable c
quences. First, components tend to become “hard-wired” to their environments, whi
the undesirable side effect of reducing their reuse potential within other environm
Second, the intermix of code responsible for interaction with the code that is proper
component reduces readability and maintainability. Naturally, it might be impossible
perhaps undesirable to strip all the interaction code out of a component. The goa
leave inside the component only the sufficient interaction functionality that can be us
many different protocols. For example, we will keep inside the component methods
port values, methods to notify events, and methods to send generic messages since
not implement any interaction among specific components and represent the hooks
sary to build protocols.

12.3.3.2 Roles and Interplay Relations
We will be more precise now about what we mean by a protocol. A protocol specifie
interaction between software components. A protocol P = (R, I, F) consists of a set of
roles, R, an interplay relation, I, and a finite state automaton, F.

 defines a set of roles:

Each component that is -compliant plays one or more roles. A typical examp
roles are the client and server roles in a client–server protocol, where components c
either the client’s role, the server’s role, or both depending on the specific respons
assigned to the components. In general, the number of roles defined by a protocol is

A protocol also defines an interplay relation that specifies the interaction compatibi
ties allowed by protocol . The interplay relation is defined by a set:

Moreover, if , then . In words, it is always assum
for a one-role protocol that all the software components obeying are compatible
sense that they are able to interact under . Referring to the previous exa

 specifies that the protocol allows for the interaction between
jects that play a server’s role and objects that play a client’s role. To specify that the

P

R R1 R2 … Rr, , ,{ }=

P

P

I I1 I2 … Ii, , ,{ } where Ik R Ik ∅ 1 k i≤ ≤,≠,⊆,=

R r{ }= I I1{ } r r,{ }{ }= =
P

P
I server,client{ }{ }=

338 Gluons and the Cooperation between Software Components

, the

roto-
 con-

,
.

they
fined
e the
 same

lid se-
formal
ection
ntrols

ay re-
d en-
raction
pport a
ns we

 ap-

-
 of a

roto-
ervice
ftware

e data
ut the

 stand-
t, and
ded to
s of
col also allows for the interaction between objects that play the role of servers
interplay relation should be specified as:

Each object of the environment eventually conforms to roles of one or many p
cols. Let denote a function that returns the set of all roles component
forms to. A protocol together with an element (i.e. a set of roles)

 of its interplay relation defines a domain of interaction compatibility
Domains of interaction compatibility play an important role in our framework since
define which are the components that can potentially interact. The compatibility de
by a domain of interaction extends not only to the components that exist at the tim
protocol is defined and implemented, but also to all future components that obey the
protocol and are compatible through an interplay relation.

Finally, each protocol is associated with a finite state automaton that specifies va
quences of interactions between participants in the protocol. (See chapter 4 for a
treatment of two-party protocols based on finite state processes.) In the following s
we will see examples of how the state of a protocol can be specified, and how it co
the interactions between components.

12.4 Gluons

Gluons encapsulate and implement interaction protocols by instantiating an interpl
lation for a given protocol. The principle idea underlying gluons is to standardize an
capsulate protocols, rather than just standardizing service names, since inte
protocols should represent one of the primary resources to be reused. Gluons su
protocol-centered reuse strategy. By embedding interaction protocols inside gluo
can use them as agents to implement many different interaction strategies.

Applications that we developed with the financial framework show that with this
proach we can achieve the following:

• A high degree of dynamic interconnection — The reuse of interaction protocols pro
vides significantly more flexibility to express interaction patterns than the reuse
naming convention. In particular, we typically need a small set of interaction p
cols to express interactions that would require a large quantity of standard s
names to achieve the same result. For example, all interactions between two so
components that involve a service request followed by an agreement on th
types to be exchanged, and ending with a notification of both components abo
result of the operation, can be expressed with just one protocol. Service name
ardization would require standard names for each possible service reques
would probably ask for additional code to build the sequence of messages nee
perform the interaction. This point will be better illustrated later with example
gluons from the financial framework.

I server client,{ } server server ′,{ },{ }=

Oi
roles Oi() Oi

P Ik xs … xt, ,{ }=
x R∈ D P Ik,()=

Gluons 339

nt re-

ource
act in
edure
mpo-
al in-

 Once
e iden-

 such

 inter-
t in the
y the
rst de-
s in a

or the

e state
con-
ny end
ter to
’s finite
 can be
ftware
 mes-

tions.

s:
 assign-
ctor as-
ct that
• Easy integration of new software components into an environment — This stems
from the fact that the unique interoperability constraint is that the new compone
uses existing interaction protocols that can be instantiated through gluons.

12.4.1 Gluons and Software Design

We already mentioned that in a protocol-centered framework the primary reuse res
is the protocol. The adoption of a protocol-centered approach has a significant imp
software design. While methods such as CRC [5] promote an iterative design proc
that emphasizes identification of the responsibilities and collaboration for each co
nent, in a protocol-centered framework the design team attempts to identify the typic
teraction protocols for the specific environment prior to any other design decisions.
the choice of the basic interaction protocols has been made, we then proceed with th
tification of the components’ responsibilities and the collaborations needed to fulfil
responsibilities.

At first, we seem to be adding just another layer (i.e. the definition of the reusable
action protocols) to the design process. However, experience shows that, at leas
case of the financial framework, the addition of such a layer simplifies significantl
whole design process provided the reusable protocols are properly defined. Our fi
sign defined only eight protocols that allowed us to express most of the interaction
simple system. The reusable interaction protocols represent the “glue” that allow f
connection of software components.

12.4.2 Anatomy of a Gluon

In terms of its internal structure, a gluon is a software component that handles a finit
automaton with output to control the execution of a protocol’s interplay relation. It
tains a start state and any number of intermediate states. A gluon can provide ma
states (i.e. accepting states in finite automation parlance) but for simplicity it is bet
have a unique end state. Figure 12.9 shows the symbols that can appear in a gluon
state automaton. States and state transitions are the common constituents that
found in any finite state automaton [8]. A participant’s role stores a reference to a so
component that is compatible with the role defined by the interplay relation, while a
sage selector container stores an arbitrary message selector.

A state transition triggers the execution of an action which is composed of opera
A state transition is fired whenever the gluon receives a message.

There are three types of operations that compose an action: messages sends, object as-
signments and message selector assignments. A message send is what its name implie
the gluon sends a message to a software component requesting a service. Object
ments allows a gluon to keep a reference to software components. Message sele
signments are similar to object assignment operations, the difference lies in the fa

340 Gluons and the Cooperation between Software Components

are com-
e only
elector

vided

ions as-

 and a
ct that
ompo-
 and the

luon’s
s are for-
m the
rk
the gluon keeps a reference to a message selector instead of a reference to a softw
ponent. These are the only allowable operations in a gluon’s action. Furthermore, th
assignments allowed are those that involve either a participant’s role or a message s
container in the left side of the assignment.

Figure 12.10 shows the finite automaton embedded inside the simplest gluon pro
by the financial framework. The SimpleGluon contains two states, Start and End, and three
transitions. The diagram also shows a participant, the Server and a message selector Mess-
Sel that can store an arbitrary message selector. State transition triggers and the act
sociated with state transitions are shown in table 12.2.

The SimpleGluon handles an asymmetric interaction protocol between a server
client. The protocol handles message forwarding. The asymmetry stems from the fa
a gluon is associated with a unique server component while the client can be any c
nent that can send a message to the gluon. The association between the server
gluon is requested by the server component by sending message registerServer to the gluon
(refer to table 12.2). This message triggers state transition 0 which initiates the g
protocol. Any component can now send messages to the gluon and these message
warded to the server with transition 1. Finally, the gluon can be disconnected fro
server by sending it the message exit. SimpleGluons are used in the financial framewo

Figure 12.9 Symbols for the gluon’s finite state automaton.

Server0Start MessSel

State State transition Participant role
Message selector

container

Figure 12.10 The SimpleGluon finite state automaton. SimpleGluons forward
messages to an attached software component called the Server.

End

Server

0

2

Start

1MessSel

Gluons and the Financial Framework 341

rs. By
rvices
cond

apa-
 mes-

ble for
 other
iner for
time
st up-
 Each
ct

. They
wn the

rnal data
ams of
rs. They

mpo-
o com-
for two main purposes. The first purpose is to isolate services from service provide
assigning different components to the server’s role, the clients can be granted se
from different components. The SimpleGluon plays here the role of a proxy. The se
typical usage of SimpleGluons requires a slightly modified gluon with multicasting c
bilities. The modified version accepts the registration of multiple servers so that the
sages sent by the clients are forwarded to all the servers.

12.5 Gluons and the Financial Framework

Gluons are the architectural elements of the financial framework that are responsi
the way in which other components are composed. The financial framework offers
components as well. One such component, the RealTimeRecord acts as a conta
real-time information. This component plays a central role in the distribution of real-
information. The RealTimeRecord plays usually the role of a server to clients reque
date notifications. The structure of RealTimeRecords is illustrated in figure 12.11.
entry of the record is a pair (key, obj_ref), where the key allows for the lookup of an obje
by name.

Most of the components in an application act as data sinks, data sources or both
are connected through notifications chains so that updates are readily broadcast do
chain. Pure data sources are those components that are either connected to exte
source such as those provided by Reuters, or are associated to files providing stre
data. Components that act both as data sinks and data sources are data transforme
usually get information from data sources, transform it and redistribute it to client co
nents. Pure sink components usually correspond either to display components or t

Protocol transitions
Event / action

State Transition State

0 Start
Source: registerServer{server}

Server := server

Start 1 Start
<any_obj>: <message>

MessSel := <message>
<message> →Server

Start 2 End
<any_obj>: exit

gluonDisconnecting{self} → Server
Server := none

Table 12.2 Protocol transition table for the SimpleGluon.

342 Gluons and the Cooperation between Software Components

nnected

ples
l-time

ainted
on in-
nent to
 by the
nd the
ing is a

ith the
 the as-

sult
ch ex-
ing the
 of the
ponents that write to files. So an application can be seen as a set of components co
by a notification web.

The rest of this section illustrates the financial framework by providing two exam
of gluons that play an essential role in the framework: the dragging gluon and the rea
data notification gluon.

12.5.1 The Dragging Gluon

The dragging gluon implements the common dragging mechanism we are acqu
with from most windowing systems (see figure 12.12). A drag operation is an operati
itiated by a component, the dragging source, that attempts to find a partner compo
cooperate with. The choice of the partner, the destination component, is performed
user with the visual assistance of the windowing system. Both the dragging source a
dragging destination need to be associated with a visual representation since dragg
visual operation. Figure 12.13 illustrates the finite state automaton associated w
dragging gluon, while table 12.3 shows the events that fire each state transition and
sociated actions.

To simplify the understanding of how the dragging gluon works it is useful to con
simultaneously figure 12.13, which shows the state transitions, and table 12.3, whi
hibits the events that trigger a state transition together with the actions executed dur
transition. The three boxes in the lower left corner of figure 12.13 represent the roles
components that participate in the dragging process.

(IBM)
(DEC)
(HP)
(NeXT)
(SUN)
(SG)
(Options)
(Futures)
(Forex)

(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
(moves) 123
(news) LRTS
(yearhg) 235.7
(yearlo) 200.1

(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
(moves) 123
(news) LRTS
(yearhg) 235.7
(yearlo) 200.1

(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
(moves) 123
(news) LRTS
(yearhg) 235.7
(yearlo) 200.1

(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
(moves) 123
(news) LRTS
(yearhg) 235.7
(yearlo) 200.1

(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
(moves) 123
(news) LRTS
(yearhg) 235.7
(yearlo) 200.1

(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
(moves) 123
(news) LRTS
(yearhg) 235.7
(yearlo) 200.1

(SBC)
(UBS)
(CS1800)
(CS1900)
(CS2000)
(NESTL)

(SBC)
(UBS)
(CS1800)
(CS1900)
(CS2000)
(NESTL)

(SBC)
(UBS)
(CS1800)
(CS1900)
(CS2000)
(NESTL)

(ATL)
(SWI)
(FRF)
(CHF)
(DEM)
(LSTR)

(ATL)
(SWI)
(FRF)
(CHF)
(DEM)
(LSTR)

(ATL)
(SWI)
(FRF)
(CHF)
(DEM)
(LSTR)

Figure 12.11 Structure of the RealTimeRecord component. The data is contained in
dictionaries. Dictionary 1, for instance, contains references to all the
information updated in real time by a data source. The other dictionaries
contain either values (2) or references to other objects (3).

1 2

3

DataFeed

Gluons and the Financial Framework 343

e
n 0).

e
ource

ect that
to the

ginning
t. Con-
e com-

the user
esenta-
 In the
mouse
s to al-

ual rep-
luon is
The server is the component that initiates the interaction by sending the messagstart-
Dragging to the gluon with its object identifier as parameter (see table 12.3, transitio
Upon receipt of this message the gluon enters state Start followed by the execution of an
action that makes the gluon send the message startDragging to the component that plays th
WindowManager role, and assigns object identifiers to the destination and the s
roles. The destination is assigned the void object identifier since at this stage the obj
will play the destination role is not yet determined. The WindowManager responds
first the message by sending back to the gluon the dragCandidateEntered message. The re-
ception of this message triggers state transition 1 on the gluon. The candidate object iden-
tifier that is sent as parameter corresponds to the source component since at the be
of the drag operation the mouse is over the visual representation of that componen
sequently, the first component that is assigned the destination role is always the sam
ponent as the one that plays the source role. Later, the assignment will change as
drags the mouse out of the source visual representation to enter another visual repr
tion (i.e. icon) that is associated to a software component that accepts dragging.
process of finding the appropriate destination component, the user may move the
in and out of visual representations that accept dragging. This process correspond
ternations between state IN and state OUT.

If the user releases the mouse button when the gluon is in state OUT, then the dragging
operation stops with no side effects since the mouse has been released outside a vis
resentation that accepts dragging. Conversely, if the mouse is released when the g

Figure 12.12 User interfaces of some software components available. The gluons that
allow for the connection of the components are indicated by arrows. To
connect the components the user drags the circle from one gluon to another.

Gluons

344 Gluons and the Cooperation between Software Components

 source
ee, the
 be-
g oper-
efore

h-
. Like-

tion

tocol
refined.
 com-
ges the
e im-

tion,
e ex-
e type
in the IN state, the gluon undergoes state transition 2 which puts the gluon in statePRE.
This state corresponds to a pre-operation that is usually a negotiation between the
and destination components to agree on an operation to be performed. If both agr
gluon transits to state OPER, which corresponds to execution of the agreed operation
tween the source and the destination. If no agreement is reached, then the draggin
ation will end through transition 5. State POST allows for post-operation cleanup b
the interaction ends.

We may notice that state IN and state OUT correspond to the visual process of establis
ing a relationship between two software components: the source and the destination
wise, states PRE, OPER and POST manage the negotiation and execution of an opera
between two components.

The dragging gluon illustrates the generality and usefulness of an interaction pro
specified as a finite state automaton. Such generic protocols are intended to be
Typically, when the source component negotiates an operation with the destination
ponent, they agree on another gluon to which both are compatible. This gluon mana
execution of an operation, or in other terms it mediates the delivery of a service. In th
plementation of a visual workbench for the retrieval of real-time financial informa
called ReutersLab [25], which has been implemented with the financial framework w
tensively use the dragging protocol together with another protocol that negotiates th

OPER

POST

PREIN

OUT

0
End

Figure 12.13 Finite automata for the dragging protocol. The ellipses represent the states while
the the arrows represent state transitions. The three boxes at the lower left
corner represent the roles of the components that participate in the interaction.

Start

WindowManager

9

8

10

1 2

3

4

5

6

7

Source

Destination

Gluons and the Financial Framework 345
Protocol transitions
Event / action

State Transition State

0 Start

Source: startDragging{Source}

startDragging{source} → WindowManager
Source := source
Destination := none

Start 1 In
WindowManager: dragCandidateEntered{candidate}

Destination := candidate
dragEnter{Source} → Destination

In 2 Pre
WindowManager: endDragging

preOperation{Source} → Destination

Pre 3 Oper
Destination: ACK{destination} | Source: ACK{source}

operation{source} → Destination

Oper 4 Post
Destination: ACK{destination} | Source: ACK{source}

postOperation{Source} → Destination

Pre 5 End
Destination: NACK{destination}

slideDragViewBack → WindowManager

Oper 6 End
Destination: NACK{destination}

slideDragViewBack → WindowManager

Post 7 End
Destination: ACK{destination}

operationComplete{Destination} → Source

In 8 Out
WindowManager:dragCandidateExit{candidate}

dragExited → Destination
Destination := none

Out 9 In
WindowManager: dragCandidateEntered{candidate}

Destination := candidate
dragEnter{Source} → Destination

Out 10 End

WindowManager: endDragging

dragAborted → Source
slideDragViewBack → WindowManager
Source := none

Table 12.3 Dragging gluon protocol transition table.

346 Gluons and the Cooperation between Software Components

he com-
on that
 notifi-

es that
n be-
 side the
client
eates a

 no-
 pro-
es of
pdate
play of
 on the
ents cor-
change
 corre-
otify-
 to the
sible
ource.
t data

cation
 of the
that as-
e source
il-
ters the
eption
e

 three
int in

otifies
diary
of data to be exchanged between the source and destination components. Once t
ponents agree on a data type, they interact under the control of another type of glu
establishes a real-time update notification between the components. The real-time
cation gluon is discussed next.

12.5.2 Real-time Data Notification Gluon

Since the financial framework is intended to support the access to information sourc
are updated in real time, the framework provides a gluon that supports notificatio
tween data sources and client components so that after data updates on the source
client can be updated to reflect the information change. In a typical situation the
component registers with the source to request update notification. The request cr
link between the source and the client.

In order to provide for flexible notification, the framework allows for three types of
tification links — cold, warm and hot — which correspond to the three type of links
vided by Microsoft DDE depicted in figure 12.3. The reason for providing three typ
notification links stems from the fact that different components have different data u
requirements. For example, a client software component that handles a visual dis
real-time data usually needs to be updated as soon as the information changes
source side since the user is expecting the fastest update possible. These requirem
respond to a hot link between the client and the source. Other components expect
notifications but they only need actually to update the values in a few cases. These
spond to the typical requirements for a warm link where the source is in charge of n
ing the client while the client is responsible for eventually issuing an update request
source. The least demanding kind of link is the cold link in which the client is respon
for requesting updates to the source at its own pace with no notification from the s
A typical usage of cold links is portfolio evaluations that require access to marke
only when the portfolio is evaluated with no need for further updates.

Figure 12.14 represents the finite automaton embedded in a real-time data notifi
gluon. The protocol defines three roles: the source, the client and the data. The role
source and client components has been discussed above, while the component
sumes the data role acts as an information container that is exchanged between th
and the client. The states COLD, HOT and WARM, correspond to three types of links ava
able. When the link is established between the source and the client, the gluon en
COLD state and waits for a message from the client requesting an update. Upon rec
of the client’s request the gluon enters state CUP in which it waits until an update messag
issued by the source puts the gluon back in state COLD through transition 3. A gluon can
be requested to switch from one type of link to another provided it is in any one of the
states, COLD, HOT or WARM, so that the update mechanism can be changed at any po
time to adapt to evolving requirements on the client’s side. We may notice that state WARM
has a self-looping state transition (i.e. number 11), which is fired when the source n
the client for an update, and two transitions (i.e. transitions 9 and 10) with an interme

Conclusion 347

d, the
transi-

mong
esign

he con-

 is on
ze and
oftware
 be ob-
s in the

 data
ction
state WUP which handles the update request from the client component. As expecte
actions associated with transitions 9 and 10 are similar to actions associated with
tions 2 and 3 since they perform the same task.

12.6 Conclusion

We have addressed in this chapter the problem of defining patterns of interaction a
software components. We adopt the point of view of component-oriented software d
and development which promotes an approach to software construction based on t
nection of software components.

We provide a survey of previous efforts that address similar problems. The focus
work from large software houses since they represent significant efforts to standardi
promote approaches that may have a considerable impact, in the near future, on s
design and development. The survey suggest that the sizeable differences that can
served between such approaches reflect differences in design goals and difference
requirements of the target environments.

Our development framework targets financial applications that retrieve real-time
and require support that allows for fast reconfiguration of the patterns of intera

Figure 12.14 Finite automata for a real-time data notification protocol.

Source

7

EndHOT

Start COLD

CUP

WARMWUP

1

2
3

4
5

6

8
9

10

11

12

13

14 15
16

0

Client

Data

348 Gluons and the Cooperation between Software Components

tion of
mic in-

rveyed

on pro-
. Our

ree of
 than
row to

esis

ca-

t into
er-

s Man-
–

mpo-
.

e, and

ent,”
among the software components as well as mechanisms that facilitate the introduc
new software components. These requirements can be equated to support for dyna
terconnection of software components. Unfortunately none of the approaches su
achieves the desired level of dynamic interconnection capabilities.

We propose a new approach which focuses on the reuse of component interacti
tocols. We call a framework based on such principle a protocol-centered framework
experience with a financial framework shows that we can achieve a fairly high deg
dynamic interconnection with a small number of reusable protocols (typically less
twenty). However, the applications that we developed have a scope that is too nar
allow us to infer that the approach is of wide applicability.

References

[1] Apple Computer Inc., Inside Macintosh: Interapplication Communication, 1993.

[2] Constantin Arapis, “Specifying Object Interactions,” in Object Composition, ed. D. Tsichritzis, Cen-
tre Universitaire d'Informatique, June 1991.

[3] Constantin Arapis, “Dynamic Evolution of Object Behavior and Object Cooperation,” Ph.D. th
no. 2529, Centre Universitaire d'Informatique, University of Geneva, Switzerland,1992.

[4] Nabajyoti Barkakati, Peter D. Hipson, Visual C++ Developer's Guide, Sams, Carmel, 1993.

[5] Kent Beck and Ward Cunningham, “A Laboratory for Teaching Object-Oriented Thinking,” Proceed-
ings of OOPSLA ’89, ACM SIGPLAN Notices, vol. 24, no. 10, Oct. 1989, pp. 1–6.

[6] Ted J. Biggerstaff and Alan J. Perlis, Software Reusability, Volume I, Concepts and Models, Frontier
Series, ACM Press, 1989.

[7] Kraig Brockschmidt, Inside OLE 2 : The Fast Track to Buiding Powerful Object-Oriented Appli
tions, Microsoft Press, Redmond, Wash., 1993.

[8] Daniel I. A. Cohen, Introduction to Computer Theory, John Wiley, 1986.

[9] L. Peter Deutsch, “Design Reuse and Frameworks in the Smalltalk-80 System,” in Software Reusabil-
ity, ed. T.J. Biggerstaff and A.J. Perlis, ACM Press, 1989, pp. 57–71.

[10] Erich Gamma, Andre Weinand and Rudolf Marty, “Integration of a Programming Environmen
ET++,” Proceedings of ECOOP ’89, British Computer Society Workshop Series, Cambridge Univ
sity Press, Cambridge, 1989.

[11] Simon Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz and Xavier Pintado, “Clas
agement for Software Communities,” Communications of the ACM, vol. 33, no. 9, Sept. 1990, pp. 90
103.

[12] Richard Helm, Ian Holland and Dipayan Gangopadhyay, “Contracts: Specifying Behavioral Co
sitions in Object-Oriented Systems,” ACM SIGPLAN Notices, vol. 25, no. 10, Oct. 1990, pp.169–180

[13] Dan Ingalls, “Fabrik: A Visual Programming Environment,” Proceedings of OOPSLA '88, ACM SIG-
PLAN Notices, vol. 23, no. 11, Nov. 1988, pp. 176–190.

[14] Ralph E. Johnson and Brian Foote, “Designing Reusable Classes,” Journal of Object-Oriented Pro-
gramming, vol. 1, no. 2, 1988, pp. 22–35.

[15] Chris Laffra, “Procol, a Concurrent Object Language with Protocols, Delegation, Persistenc
Constraints,” Ph.D. Thesis, Amsterdam, 1992.

[16] Michael Mahoney, “Interface Builder and Object-Oriented Design in the NeXTstep Environm
Tutorial Notes of CHI ’91, available through anonymous ftp at nova.cc.purdue.edu.

References 349

 Au-

= Ap-
ne

cifi-

9, pp.

ted
[17] Microsoft Press, OLE 2 Programmer’s Reference: Working with Windows Objects, Vol. 1, Redmond,
Wash., 1994.

[18] Microsoft Press, OLE 2 Programmer’s Reference: Creating Programmable Applications with Ole
tomation, Vol. 2, Redmond, Wash., 1994.

[19] NeXT Computer Inc., NextStep Concepts Manual, 1990.

[20] Oscar Nierstrasz, Dennis Tsichritzis, Vicki de Mey and Marc Stadelmann, “Objects + Scripts
plications,” in Object Composition, ed. D. Tsichritzis, Centre Universitaire d'Informatique, Ju
1991, pp. 11–30.

[21] Object Management Group, Common Object Request Broker: Architecture and Specification, 1991.

[22] Object Management Group, Object Management Architecture Guide, 1992.

[23] Object Management Group (OMG), The Common Object Request Broker: Architecture and Spe
cation, Object Management Group and X Open, OMG document 91.12.1, revision 1.1, 1992.

[24] Xavier Pintado, Dennis Tsichritzis, “Gluons: Connecting Software Components,” in Object Compo-
sition, ed. D. Tsichritzis, Centre Universitaire d'Informatique, 1991, pp. 73–84.

[25] Xavier Pintado, Betty Junod, “Gluons: A Support for Software Component Cooperation,” in Object
Frameworks, ed. D. Tsichritzis, Centre Universitaire d'Informatique, 1992, pp. 311–330.

[26] Xavier Pintado, “Gluons: a Support for Software Component Cooperation,” in Proceedings of
ISOTAS ’93, International Symposium on Object Technologies for Advanced Software, ed. S. Nishio
and A. Yonezawa, Kanazawa, Japan, November 1993, Springer-Verlag, pp. 43–54.

[27] Xavier Pintado, “Fuzzy Relationships and Affinity Links,” in Object Composition, ed. D. Tsichritzis,
Centre Universitaire d'Informatique, 1991.

[28] Rajendra Raj, Henry Levy, “A Compositional Model for Software Reuse,” Proceedings of ECOOP
’89, British Computer Society Workshop Series, Cambridge University Press, Cambridge, 198
3–24.

[29] Jeffrey S. Rosenschein and Gilad Zlotkin, Rules of encounter : Designing Conventions for Automa
Negotiation Among Computers, MIT Press, Cambridge, Mass., 1994.

[30] Al Williams, OLE 2.0 and DDE Distilled : A Programmer’s Crash Course, Addison-Wesley, Reading,
Mass., 1994.

350

	Gluons and the Cooperation between Software Components
	12.1 Introduction
	12.2 An Overview of Cooperation Patterns
	12.2.1 Object Management Group
	12.2.2 Microsoft DDE and OLE
	12.2.3 ODBC 2.0
	12.2.4 Apple’s Interapplication Communication Architecture and OpenDoc
	12.2.5 Discussion

	12.3 Requirements for a Financial Framework
	12.3.1 Towards a Protocol-Centered Framework
	12.3.2 Standardizing a Service’s Vocabulary
	12.3.3 Component Interaction Protocols

	12.4 Gluons
	12.4.1 Gluons and Software Design
	12.4.2 Anatomy of a Gluon

	12.5 Gluons and the Financial Framework
	12.5.1 The Dragging Gluon
	12.5.2 Real-time Data Notification Gluon

	12.6 Conclusion

