Chapter 12

Gluons and the
Cooperation between
Software Components

Xavier Pintado

Abstract A major problemin software engineering is how to specify the patterns
of interaction among software components so that they can be assembled to
perform tasks in a cooperative way. Such cooperative assembly requires that
components obey rules ensuring their interaction compatibility. The choice of a
specific approach to specifying rules depends on various criteria such as the
kind of target environment, the nature of the soffware components or the kind of
programming language. This chapter reviews major efforts to develop and
promote standards that address this issue. We present our own approach to the
construction of a development framework for software applications that make
use of real-time financial information. For this domain, the two main requirements
are (1) to facilitate the integration of new components info an existing system,
and (2) to allow for the run-time composition of software components.The goall
of the development framework is to provide dynamic interconnection
capabilities.The basic idea is to standardize and reuse interaction protocols that
are encapsulated inside special objects called gluons. These objects mediate
the cooperation of soffware components. We discuss the advantages of the
approach, and provide examples of how gluons are used in the financial
framework.

12.1 Introduction

The advent of object-oriented techniques has brought many benefits to the field of soft-
ware engineering. One notable benefit is that objects provide a higher degree of autonomy
than obtained with the traditional separation of software into functions and data structures.
This autonomy promotes component-oriented software construction, since autonomous

Xavier Pintado, “Gluons and the Cooperation between Software Components,” Object-Oriented Software Composition, O. Nierstrasz
and D. Tsichritzis (Eds.), pp. 321-349, Prentice Hall, 1995.

Reproduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and
may not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. Itis not
otherwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
rights reserved.

322 Gluons and the Cooperation between Software Components

objects can be reused in many different context with reasonable integration efforts. Com-
ponent reuse can reduce development time and costs, and can lead to improved reliability,
since reusable components will become thoroughly tested as a consequence of reuse.

Although component-oriented software is fairly promising in terms of its reuse poten-
tial some major problems remain to be solved. Among these, a salient problem is the
definition of the patterns of cooperation between software components, to which consid-
erable effort has already been devoted. We may notice, for instance, that a class interface
condenses assumptions about the objects that can be instantiated from it, but not assump-
tions about the interactions that those objects may have with other objects.

We may better capture the essence of the problem by observing that virtually any kind
of cooperation requires agreement between the cooperating entities [29]. Cooperation
agreements can take many forms, however. They can be specified, for instance, by a “law”
to which all the cooperating entities obey. But cooperation can also rely on bilateral agree-
ments each defining the cooperation between pairs of entities.

In the context of component-oriented software design, the goal is to make software
components cooperate through reliable and flexible mechanisms that appropriately sup-
port and enforce convenient interaction patterns. In this context, the interaction “law” or
cooperation agreement is usually captured by the notion of an object-oriented develop-
ment framework [9] [10]. An object-oriented framework is a collection of classes that are
designed to work together. A framework is intended to provide a development environ-
ment that promotes reuse and reduces development effort by providing a comprehensive
set of classes and development rules. Frameworks come in many different flavours: they
can, for example, target a narrow application domain such as the development of device
drivers (e.g. NeXTStep Driver Kit [19]), or they can address the requirements of a generic
development environment (e.g. Visual C++ framework [4]) comprising multiple sets of
classes and development rules.

The distinguishing characteristic of a framework is the design philosophy that pervades
all aspects of the framework such as the definition of foundation classes, the rules for the
design of new classes and the tools that support the development process. By applying a
consistent design philosophy to all the aspects of the framework, designers attempt to
provide the user with a uniform development model that reduces the learning effort and
defines a generic architecture for applications developed with the framework.

In this chapter we develop a framework for the development of financial applications.
The framework is intended for the development of applications that involve the retrieval
of real-time financial data sources. The typical target environment for the framework is
rapidly evolving, in the sense that the behaviour of the objects and the way they are related
evolves at a fast pace to reflect the real world of finance. The framework focuses on run-
time connection of software components and on capabilities that support the incremental
development of applications. Figure 12.1 shows a typical display of an application devel-
oped with the financial framework.

The distinguishing feature of the framework is the introduction of a special family of
objects, callegluons which are responsible for the cooperation among software compo-

Introduction 323

ReutersLah
Infa Lab
Save Conf Namne

Restare Canf CAC FORTY INDEX

Bid Ask Vaiue High

Low
+1.4015 +1.4025 +1892.66 +1899.64 +1913.97
Close Net Change % Change
vioos0 | s304 || w020 |

e Value High

Namne +3284.01 +3294.18 +3302.74

. Net Change % Change
+51.25 +51.25 +51.25

Close Net Change % Change
wiso B oz | 0o |

Name

Value High

Low
+135.00 +135.50 +135.50
Close Net Change % Change

N AR s aa s

Figure 12.1 Display presenting some of the visualization tools available for the display of
real-time information. Windows 1 and 2 display real-time information about
DEC and IBM stocks in the Zurich stock exchange. Windows 3 and 4 provide
transaction information about foreign exchange rates. Window 5 and 6 display
index values (French Cac 40 and Dow Jones Industrial). Finally, window 7
displays information in page format, and window 8 offers news highlights.

nents. Although gluons essentially encapsulate communication protocols, they play a
prominent role at the design level by promoting a protocol-centered design.

This chapter is organized as follows: the next section provides an overview of how dif-
ferent frameworks address the issue of object cooperation and the patterns of cooperation
that they promote. We focus on standardization proposals promoted by major software
houses since they will most likely have a significant impact on the future architecture of
software applications. Section 12.3 discusses the requirements for the financial frame-
work. Such requirements cannot be easily satisfied with the previously described ap-
proaches and we therefore introduce a new protocol-centered approach. Section 12.4
discusses gluons as special components that enable a protocol-centered approach. Section
12.5 presents the financial framework, focusing on the illustration of commonly used
gluons. We conclude with a summary of the advantages of protocol-centered frameworks.

324 Gluons and the Cooperation between Software Components

12.2 An Overview of Cooperation Patterns

The development of mechanisms that support communication between software compo-
nents is hardly a new problem. A significant effort has been devoted in the past, for in-
stance, to interapplication communication. A typical mechanism is the remote procedure
call (RPC), which allows an application to invoke routines belonging to another applica-
tion. RPC is the kind of cooperation mechanism one expects in software environments
where the principal entities are functions and data structures. In a word of objects, how-
ever, we might expect to have remote message capabilities since the message is the inter-
object communication mechanism.

To the best of our knowledge the first commercially available implementation of remote
messages came bundled with NeXTStep AppKit framework[19]. However, remote mes-
saging only provides a communication layer. For software components to cooperate in a
dependable and flexible way we need to define the laws of cooperation. In what follows
we provide an overview of various standardization efforts that address, in a broad sense,
the problem of defining laws of cooperation in the context of software development
frameworks.

12.2.1 Object Management Group

The Object Management Group (OMG) promotes a standard to support the interaction of
software components within a framework called the Object Management Architecture
(OMA). One of the main goals of OMA is to achieve object distribution transparency,
which means that the interaction between a client component and a server component
through the server’s interface should be independent of its physical location, access path,
and should be relocation invariant. This standard relies on a common object model, the
OMG Object Model which is used by all OMG-compliant technologies.

12.2.1.1 The OMG Object Model

The OMG Object Model defines a way to specify externally visible characteristics of ob-
jects in an implementation-independent way. The visible characteristics of an object are
described as a collection of operation signatures called the object’s interface. The OMG
Object Model definition of an operation signature extends in interesting ways the typical
definition of a method’s signature in order to make it more convenient for distributed com-
puting environments. The optionaleway keyword specifies an exactly-once operation
semantics if the operation successfully returns results or a at-most-once semantics if an
exception is returned. Each parameter is flagged with one of the three qualifietsit—
orinout — to specify the write access to the parameter of the client, the server or both. An
exception is an indication that the request was not performed successfuilysdshkey-

word introduces the list of possible exceptions that can be raised by the operation. Finally,

An Overview of Cooperation Patterns 325

[oneway] <return_type> <operation>(in|out [inout paraml, ..., in|out]inout paramK)
[raises (exceptl, ..., exceptl)]
[context (namel, ..., nameM)]

Figure 12.2 The OMG Object Model operation signature.

thecontext keyword allows for the specification of additional information that may affect

the performance of the operation. These extensions address issues related to distributed
environments such as unreliable communications, and the need for appropriate mecha-
nisms for exception handling.

12.2.1.2 Object Request Broker

The communication between objects is mediated by an Object Request Broker (ORB).
The ORB is responsible for finding the object implementation for the requested operation,
to perform any preprocessing needed to perform an operation, and to communicate any
data associated with the operation. The functionality of object request brokers is defined
in the Common Object Request Broker Architecture (CORBA)[21]. In order to ensure
language independence, CORBA defines a Interface Definition Language (IDL) that
obeys the same lexical rules as C++, although additional keywords are introduced essen-
tially to support distributed environments. However, IDL differs from C++ in thatitis only

a declarative language. In order for object implementations to communicate with the ORB
they need to implement a Basic Object Adaptor (BOA) which deals with such aspects as
interface registration, implementation activation, and authentication and access control.
An important component of the ORB is the interface repository which provides access to
a collection of object interfaces specified in IDL.

To summarize, the OMG provides a standard for the communication of objects in dis-
tributed environments. The standard focuses on interoperability of heterogeneous sys-
tems, where interoperability is achieved through a request broker that defines standard
interface rules which the interacting agents need to obey.

12.2.2 Microsoft DDE and OLE

Microsoft provides two mainstandards for interapplication cooperation: DDE (Dynamic
Data Exchange) and OLE (Object Linking and Embedding). DDE is much simpler than
OLE since it addresses essentially the exchange of data between applications that run on
the same computer. On the other hand, OLE is an ambitious standard that encompasses
many aspects related to the structures of software components.

12.2.2.1 Dynamic Data Exchange

DDE focuses on data exchange between applications based on a client—server model. In
DDE parlance, a client is any application that initiates a DDE connection. Usually a client
requests data after establishing a connection with a server. The connection establishes a

326 Gluons and the Cooperation between Software Components

Client Server
. Client requests data
Coldlink ¢) -
(1) Server notifies client about data update
Warm link ©< ~

(2) Client eventually requests new data

Hot link ©< Server updates data on the client side

Figure 12.3 DDE involves three types of links between clients and servers. The variety
of links reflects the different requirements of applications on how to
maintain client’s data consistent with the corresponding server’s data.

link that according to the way the link deals with data updates on the server side can be one
of three typescold, warmandhot. These three links are illustrated in figure 12.3. With
coldlinks the server plays a passive role: it takes no action whenever data is updated. The
client is, therefore, responsible for implementing the update policy by issuing data
requests when appropriate. Watlarm links the responsibility for data update is shared
between the client and the server: the server notifies the client upon a data update but the
data request to perform the update on the client’s side is initiated by the client. Finally,
with hotlinks the server is responsible for the whole update process on the client’s side.

The three types of links allow for the implementation of data consistency policies
between the client and the server that appropriately reflect the requirements of the client
application. The actions on both the client and the server side are carried out through call-
back functions.

The data organization at the server end follows a three-level hierarchy that recognizes
three entity types: services, topics and items, as illustrated in figure 12.4. Typically, a topic
corresponds to a document (e.g. an open document in a wordprocessor server) but it can
also represent a relation in a relational database since the DDE standard does not specify
what a topic should be. Items are the smallest entities that can be addressed through DDE.
Items can be of any type and format recognized by the Windows clipboard. In order for a
client to request data from a server it needs to know the name of the service provided by
the server, the name of the topic and the name of the item it is looking for. A client can con-
nect to multiple servers and a server can be linked to multiple clients. Although DDE is es-
sentially a mechanism for data exchange among applications it also provides limited
capabilities that allow a client to execute commands on the server side. These capabilities
can be used to implement cooperation mechanisms that are, to some extent, similar to re-
mote messaging in other environments.

An Overview of Cooperation Patterns 327

Service

_TopicB |

ltem1 || tem2 | | Item3 || Item4 | | Item5 || Item®6 |

Figure 12.4 DDE hierarchy showing the service provided by a server and how it is
hierarchically organized in topics and items.

12.2.2.2 OLE 2.0
OLE is another standard defined by Microsoft that enables the cooperation of applica-
tions. In its current 2.0 version [17][18] it shares many similarities with OpenDoc that we
will describe in section 12.2.4.2. For instance, both standards comprise a set of coopera-
tion protocols and a definition for compliant structured documents. OLE 2.0 is relatively
hard to summarize briefly. In fact OLE 2.0 is much more than a application cooperation
standard; itis the foundation for a Microsoft strategy to make MS-Windows migrate to ob-
ject-oriented technology. As such, OLE 2.0 comprises a set of apparently loosely related
standard definitions, models and implementations which provide, as a whole, a coordinat-
ed platform for future object-technology. OLE 2.0 provides standard definitions and im-
plementation support for compound documents, drag-and-drop operations, name
services, linking and embedding of documents, and application interaction automation.
The unifying concept underlying the OLE 2.0 platform is the Component Object Model
(COM). All the other pieces of OLE 2.0 either rely on the COM definitions or use COM
objects, usually called Windows objects [17]. Windows objects differ slightly from the ob-
jects proposed by commonly used programming languages such as C++ or Eiffel. A Win-
dows object is fully defined by its setinferfacesAninterfaceis a collection of function
pointers and there is no such notion as references to Windows objects. When we obtain a
reference to an object it is in fact a reference to one witégfaces Another interesting
aspect of Windows objects is that there is no inheritance mechanism, but because Win-
dows objects provide multiplaterfacesijt is easy to encapsulate Windows objects with
programming languages that offer either single or multiple inheritance. The COM
presents Windows objects essentially as collections of functions [7][1Th{edaces,
which can be fairly confusing for readers acquainted with object-oriented concepts. The
main reason, we believe, is thatthe OLE 2.0 is to be implemented with many different pro-
gramming languages, such as BASIC, C, C++, which may or may not endorse object-ori-
ented techniques. With different programming languages the binding between the object’s
data and the object’s methods may be implemented in different ways that are not specified
in OLE. Microsoft offers an OLE 2.0 software development kit for C++ environments.

328 Gluons and the Cooperation between Software Components

A key feature of OLE 2.0 is the definition of structured documents. Structured docu-
ments contaistoragesandstreamshat are organized in a similar way to traditional file
systemsstreamsare analogous to files whdéoragesact as directories. Sstprageson-
tain eitherstreamsor storages Storages and streams provide support for structured or
composite documents that are organized in a hierarchical structure. OLE 2.0 provides a
standard definition for the document’s structure and also a set of functions that support the
standard operations on structured documents.

The best-known features of OLE 2.0 are probably embedding and linking. A typical
compound document (e.g. a text with graphics, sound, data in spreadsheet format, etc.)
contains data objects that have been created by different applications. The owner of the
compound document, say a wordprocessor, may know how to display most of these items
but cannot deal with the full complexity of retrieving and modifying them. An @itz
taineris any application that can incorporate OLE obj&dtstainersusually display the
OLE objects and accept commands for them. Howeesrtainersare not intended to
process the objects. Objects retain an associatiors@ntierapplications that are respon-
sible for servicing the requests addressed to the objects. The idea here is that clients do not
need to be aware of the internals of the objects they contain. The object (data) together
with its associate server corresponds to the usual notion of object in object-oriented termi-
nology which encapsulates both data and operations on theSdatarsaccept com-
mands, calledverbs that correspond to actions that can be applied to the objects. An
interface is the set of operations that can be applied to an object via its server.

OLE 2.0 offers two ways to integrate an object into a compound documkinig and
embedding Embedding is most frequently used. Tduntainerapplication owns and
stores each embedded object, but the server retrieves the object. The server plays an anon-
ymous role by processing the object on behalf of the container application. Conversely, an
object can be linked into a document. A linked document belongs to a given document
(and is stored in the document’s file) but it is referenced in another document. In this way
severaktontainerscan share a single linked object.

Additionally, OLE 2.0 provides a standard for data transfer called Uniform Data Trans-
fer (UDT) and a standard for scripting called Automation. Automation allows objects
associated with one application to be directed from another application, or to perform op-
erations on a set of objects under the control of a macro language [18].

To summarize the OLE 2.0 standard suite we may say that the Component Object Mod-
el standardizes how an object and an object’s client communicate; compound documents
standardize document structure and storage; Uniform Data Transfer standardizes data
exchange capabilities and Automation provides a support for remote control of applica-
tions.

It should be noted that with OLE version 2.0 the interapplication cooperation primitives
are restricted to the scope of the same machine. However, these mechanisms could easily
be extended to provide the same capabilities across networks and serve, therefore, as a
foundation for distributed computing.

An Overview of Cooperation Patterns 329

. Driver A Data source A
Application | | Driver 4@

Manager Driver B [~ Data source B
Driver C | [~ Data source C

Driver D 4@ Data source D

ODBC interface

Figure 12.5 ODBC 2.0 application architecture.

12.2.3 ODBC 2.0

Although the Open Database Connectivity standard from Microsoft is more a standard for
the interconnection of applications and databases, it is worth mentioning here for two rea-
sons. First, it represents a much-needed standardization effort to isolate applications from
the access to specific databases. Second, databases will be, at least in the near future, one
of the most prominent reusable software components since they are responsible for object
persistence.

The architecture of an ODBC 2.0 application is represented in figure 12.5. From the
view point of the application, the access to the various data sources is transparent through
the ODBC interface. The ODBC 2.0 standard interface provides the following:

» astandard way to connect to databases;

 aset of function calls that allows an application to connect to one or many databases,

execute SQL statements, and retrieve the results;

» astandard representation for data types.

The Driver Manager loads drivers on behalf of the application, while the Drivers imple-
ment ODBC function calls and submit, when appropriate, requests to the associated data
source. The Drivers are responsible for adapting to the specific syntax of the associated
DBMS. ODBC 2.0 does not rely on object-oriented principles and is fairly low level in the
sense that it provides a vendor-independent mechanism to execute SQL statements on
host databases.

12.2.4 Apple’s Interapplication Communication Architecture
and OpenDoc

Like Microsoft, Apple devoted significant efforts to the definition and implementation of
standard mechanism for the cooperation of applications. Also like Microsoft, Apple has a

330 Gluons and the Cooperation between Software Components

Edition Manager Open Scripting Architecture

' '

Event Manager

Program-to-Program Communication toolbox

Figure 12.6 The layers of the Interapplication Communication Architecture.

large developer base and a large software base that did not already fully adopt object-

oriented tools. The consequence is that the migration towards an object-oriented platform

started by the introduction of object-oriented concepts such as message passing into de-
velopment environments that are not object-oriented.

12.2.4.1 Interapplication Communication Architecture

This migration was the driving force for the development of the Interapplication Commu-
nication architecture (ICA), which provides a standard mechanism for communication
among Macintosh applications[1]. More specifically the goal is to allow applications to:

» exchange data through copy-and-paste operations;

» read and write data blocks from and to other applications;
» send and respond to Apple events;

* be controlled through scripts.

A significant effort has been devoted by Apple to define a common vocabulary of high-lev-
el messages, called Apple events, that are published in the Apple Event Registry: Standard
Suites. To the best of our knowledge, this has been the only effort to date to standardize the
messages that applications may respond to.

» Applications typically use Apple events to request services from other applications
or to provide services in response to other applications requesentapplication
is an application that sends an Apple event to request a service, while the application
that provides the service is therver applicationThe client and server applications
can reside on the same machine, or on different machines connected to the same net-
work.

The ICA comprises the following:

An Overview of Cooperation Patterns 331

» TheEdition Managerwhich provides support for copy-and-paste operations among
applications and updating information automatically when data in the source docu-
ment changes.

» TheOpen Scripting Architecturevhich defines the standard mechanisms that allow
for the external control of single or multiple applications. OSA is comparable, to
some extent, to Automation in OLE 2.0. OSA is not tied to any specific scripting
language. Each scripting language has a corresponding scripting component that
translates the scripts into events.

» TheEvent Managemwhich provides the support that allows applications to send and
receive events. The Event Manager standard defines the architecture and the pieces
of Apple messaging backplane.

» The Program-to-Program Communication toolgoxhich provides low-level
support that allows applications to exchange blocks of data in an efficient way. The
Edition Manager and the Open Scripting Architecture provide the user level support.
They both rely on the Event Manager to exchange data and messages across applica-
tions. The Event Manager, in turn, relies on the Program-to-Program Communica-
tion toolbox to transport data. Figure 12.6 illustrates how the different parts of the
ICA are related.

12.2.4.2 OpenDoc

As opposed to OLE, the ICA only deals with the problem of application interaction and
does not define a standard for documents. Apple, together with other companies such as
Novell and IBM, is proposing another standard, OpenDaoc, that is quite similar in scope to
OLE 2.0. It defines both standards for application interaction mechanisms and for struc-
tured documents. In reality, OpenDoc integrates three other standards: (1) System Object
Model (SOM), which originated as a CORBA compliant IBM standard for interapplica-
tion message exchange; (2) BENTO, which standardizes the format of structured docu-
ments and (3) the Open Scripting Architecture that we already mentioned as part of
Apple’s ICA.

BENTO defines the standard elements for structuring documents in OpenDoc. BENTO
documents are stored in containers which are collections of objects. BENTO objects are
organized as schematized in figure 12.7. An object has a persistent ID which is unique
within its container. Objects contain a set of properties, which in turn contain values of
some type. The values are where data is actually stored and their types describe the corre-
sponding formats.

The ideas underlying OpenDoc are quite similar to those on which OLE 2.0 is based:
composite documents may contain heterogeneous objects that are managed and manipu-
lated using a variety of specialized software components. With OLE 2.0 the specialized
components are heavyweight applications such as wordprocessors and spreadsheets. On
the other hand, OpenDoc targets components that are more fine-grained. The goal is to
make the concept of application vanish, giving place to a document-centered approach
that promotes the document as the main user concept. Each part of a document retains an
association with a specialized component that knows how to retrieve it. Naturally, the in-

332 Gluons and the Cooperation between Software Components

Object “Budget”

Property X Property Y

Value of type A Value of type A

Value of type B

Value of type C

Value of type B

Value of type D

Value of type C

Value of type A

Value of type D

Property U

N

Value of type F

Value of type C Property Z

Value of type G
Value of type A

Value of type B

Value of type C

Value of type A
Value of type C Value of type A
Value of type H

Value of type S Y

Figure 12.7 A Bento object contains a collection of properties and properties contain
values which are the placeholders where data is actually stored.

vocation of the retrieving component is transparent to the user, who can easily increase the
variety of the parts that can be incorporated into composite documents by purchasing new
specialized software components.

12.2.5 Discussion

The considerable effort that has been devoted to designing, implementing and promoting
the adoption of these cooperation standards suggests the critical role that such standards
may play in future software technology. We may notice, however, that the various stand-
ards differ considerably in scope.

For example, OMG standards focus on interoperability among heterogeneous subsys-
tems and they essentially provide mechanisms that allow software components to request
services from other software components. Software components need to provide a stand-
ard layer that adapts them to the request broker in much the same way that ODBC 2.0 ap-
plications need drivers to adapt data sources to the ODBC 2.0 interface. Conversely, OLE
2.0 and OpenDoc each provide a complete integration platform-centered on a standard
definition of composite document. The document-centered approach that underlies both
standards seems appropriate for office information systems where the composite docu-
ment seems to be indeed the fundamental user abstraction.

However, there exist many software application domains that do not revolve around the
notion of document. For example, in real-time software and communications software,
the notion of document does not play an important role. We may also notice that these
standards do not promote interaction at the software component level, but rather at the ap-

Requirements for a Financial Framework 333

plication level, even though OpenDoc encourages document retrieval through a set of
small and specialized retrieval units while OLE 2.0 promotes communication among full-
fledged applications such as wordprocessors, spreadsheets, etc.

The ICA from Apple (in particular, the Apple events suite) takes a rather different ap-
proach, focusing on the standardization of operations. The goal is to promote a standard
vocabulary for services so that applications that provide similar services (e.g. spread-
sheets) can be replaced by one another.

Another observation is that any of the standards discussed requires mechanisms that are
specific to object-oriented languages such as inheritance and encapsulation. In fact, they
are being used as a vehicle for the migration towards object-oriented environments by in-
troducing object-oriented concepts expressed in non-object-oriented languages. This is
probably the reason why these standards focus mainly on interaction between applica-
tions; the same interaction rules do not usually apply to interaction of software compo-
nents occupying the same address space.

12.3 Requirements for a Financial Framework

The application cooperation standards we have discussed address the needs of a generic
software environment and reflect many other constraints not all related to software
engineering, such as market constraints and applicability of standards to old development
environments. Our financial framework targets applications that retrieve real-time and
historical data from financial information sources. Typically, these applications display
data such as the price of securities, interest rates and currency exchange rates, and allow
users to explore real-time and financial historical information. These applications present
to the professional user a window into financial activities which provides access to the dis-
tributed world-wide financial market.

Financial markets are characterized by rapidly evolving, complex relationships among
the wide variety of financial instruments. Market relationships that hold among financial
instruments are continuously evolving, and professional investors are constantly tracking
that evolution in order to detect new investment opportunities. Decision support systems
(DSSs) play an important role in supporting the user while finding such investment oppor-
tunities. The user needs to combine financial instruments, test the combination with vari-
ous economic scenarios, look at the present cost of the combination, refine the choice of
instruments, re-evaluate them, and eventually make an investment decision. In order to
provide the appropriate support the DSS should allow the dynamic combination of finan-
cial instruments so that any instrument can be combined with any other instrument. This
asks for a DSS architecture that facilitates the run-time interaction of software compo-
nents. Furthermore, new financial instruments are frequently added so the DSS should be
easily extendable with operational models for new instruments. To summarize, the archi-
tecture needs to provide capabilities for the dynamic connection of software components
and facilitate the integration of new software components.

334 Gluons and the Cooperation between Software Components

12.3.1 Towards a Protocol-Centered Framework

As we already mentioned, the goal of a framework is to provide a set of classes that are de-
signed to work together. This operational compatibility can be achieved in many ways.
The Object Management Group focuses on compatibility mediated by an object request
broker. They impose no restriction on the software components themselves. Their main
concern is to provide interoperability in heterogeneous environments. OLE 2.0 and Open-
Doc emphasize the compound document as the main shared entity. Their main concern is
to provide the most flexible environment for document retrieval. Apple’s ICA approach,
on the other hand, attempts to standardize common operations by defining a standard op-
erations vocabulary and its associated semantics. ICA pursues two main goals. The first
goal is to make the access to core standards functionality, such as common spreadsheet op-
erations, database access and wordprocessor tasks, application independent. The second
goal is to offer powerful scripting capabilities to automate tasks and to compose applica-
tions together.

The goal of the financial framework is to provide support for dynamic control of the in-
teraction between software components. To achieve such a goal we need to provide a
mechanism that allows for dynamic interconnection of software components.

12.3.2 Standardizing a Service’s Vocabulary

During the early stages of the framework’s design we considered a number of alternative
intercomponent interaction principles. The goal was to find a mechanism that could
provide the highest degree of dynamic interconnection for the kind of applications we are
targeting with the financial framework. We tried, for instance, to standardize a set of core
services so that each service is associated to a unique name called a verb, much in the same
way as the Apple events suite standardizes the operations vocabulary of common services
provided by wordprocessors, spreadsheets, databases, etc.

12.3.2.1 The Advantages
The intuition behind this approach is that we can identify among the services provided by
the various software components of a framework many services that, although not identi-
cal, have comparable semantics. For example, most components in our environment pro-
vide services such asaluateprint, andnotify. We attempted to identify within the scope
of the financial framework the principal groups of services and we ended up with the list
shown intable 12.1. Software components may provide other services as well. These serv-
ices belong either to more specialized groups, such as a group that is related to real-time
services, or they do not belong to any group since they are too specific to a particular class
of components.

A major advantage of this approach is simplicity. A service request can be performed by
sending a message, a mechanism that every object-oriented environment offers. The ad-
vantage of standardizing a vocabulary for services is perhaps more compelling for many

Requirements for a Financial Framework 335

Service group name Description

Common services Services that are usually provided by most components
such as: print, show-services, identify-error, and store

Messaging and notification Services related to messaging and event notification such
as: call-back, notify, add-to-broadcast-list, message,
forward-message

Computational Services related to computational servers: evaluate,
iterate, perform-aggregation, set-value, get-value

Display Services related to visual operations such as: display,
undisplay, front, drag-and-drop

Object management Services related to software component management
such as: create, replicate, destroy, add-object, instance-
of-class, component-id

Table 12.1

reasons. First, reusing components is made easier since services with similar or close se-
mantics bear the same name on all the software components, thus simplifying the name
space. Second, dynamic interconnection of software components is improved because if
a component provides a service conforming to a standard protocol, such as a print service,
then that service can be invoked by any client understanding the same protocol. Third, in-
terchangeability of software components is increased since two software components that
provide similar functionality will most probably show a fair degree of commonality in
their interfaces.

12.3.2.2 The Shortcomings

We noticed, however, that this approach is not the best in terms of dynamic interconnec-
tion. The main reason is that, in general, the interaction between two or more components
involves more operations than simply sending a message. Although we can compose soft-
ware components by specifying the appropriate sequences of messages to be exchanged
between the components, a collection of sequences of messages is not the appropriate way
to specify components’ interactions. All but the simplest interactions involve a state, and
the set of permissible messages that can be exchanged between interacting components,
at a given point in time, usually depends on the present state of the interaction. Real-time
financial environments provide many illustrations. Consider, for example, a software
component, called the server, that offers real-time data updating services to other compo-
nents. A component may register to be notified for data updates. Registering starts an in-
teraction that ends, hopefully, when the client component requests the server to stop
notification. Such interaction may comprise many data updates, error messages, notifica-
tion of temporary interruption of real-time services, with subsequent service resumption,
etc. Another example is a database transaction. A server may execute a database trans-
action on a client component’s behalf. The transaction may involve many different opera-

336 Gluons and the Cooperation between Software Components

SEGVC)
Sl @

Figure 12.8 Protocols define compatibility classes inside which members are able to
interact. Protocol X allows interaction between objects A, B, C and D, while
protocol Y defines an interaction pattern between D, C, B and F. Object H
cannot interact with other objects since it does not adhere to any specified
protocol.

tions that individually succeed or fail. The transaction succeeds if all its operations
succeed, otherwise the transaction fails. The interaction between the client and the server
depends on the state of the transaction, which can be defined as the logical “and” of the in-
dividual operation results. Whenever, the state condition switches to fail, the already exe-
cuted operations need to be unrolled before terminating the transaction.

The two examples illustrate the need for a higher-level mechanism to specify compo-
nents’ interactions that allows for interaction states and state-dependent actions. We call
such a mechanism a component’s interaction protocol. These observations lay the founda-
tions that lead us from message-based frameworks to protocol-centered frameworks
which focus on protocols as the main components interaction mechanisms.

12.3.3 Component Interaction Protocols

Software component protocols share many similarities with computer communication
protocols. Both specify object interaction patterns. As such they fulfil two important func-
tions. First, they provide a mechanism or a formalism to specify the rules of interaction be-
tween objects. Second, protocols define compatibility classes in the sense that entities that
obey the same protocol display an interaction compatibility as illustrated in figure 12.8

12.3.3.1 Requirements for Interaction Protocols

Software component interaction protocols should support a number of important features.
First, they should be appropriate to specify various aspects of component interactions
such as synchronization, negotiation and data exchange. Second, they should play the role

Requirements for a Financial Framework 337

of “contracts” or “interaction agreements” that represent the necessary and sufficient con-
ditions for a software component to interact with other software components that comply
with the same “agreement”. Hekhal [12] focus on this important aspect of interactions.
Third, the interaction specifications should be multilateral agreements rather than bilater-
al interaction agreements between two software components.

Another desirable property of component interaction protocols is that their implemen-
tations reside as much as possible outside the components since as an agreement, a proto-
col does not belong to any component. We may observe, looking at programs written in an
object-oriented language, that a significant fraction of a component’s code is devoted to
the communication of the component with other software components. Most of the com-
munication functionality is inside the component. This has two main objectionable conse-
guences. First, components tend to become “hard-wired” to their environments, which has
the undesirable side effect of reducing their reuse potential within other environments.
Second, the intermix of code responsible for interaction with the code that is proper to the
component reduces readability and maintainability. Naturally, it might be impossible and
perhaps undesirable to strip all the interaction code out of a component. The goal is to
leave inside the component only the sufficient interaction functionality that can be used by
many different protocols. For example, we will keep inside the component methods to ex-
port values, methods to notify events, and methods to send generic messages since they do
not implement any interaction among specific components and represent the hooks neces-
sary to build protocols.

12.3.3.2 Roles and Interplay Relations
We will be more precise now about what we mean by a protocol. A protocol specifies the
interaction between software componentgrétocolP = (R, I, F) consists of a set of
roles R, aninterplay relation I, and dinite state automatqifr.

P defines a set of roles:

R ={R,,R,,....R}

Each component that B8 -compliant plays one or more roles. A typical example of
roles are the client and server roles in a client—server protocol, where components can play
either the client’s role, the server’s role, or both depending on the specific responsibility
assigned to the components. In general, the number of roles defined by a protocol is small.

A protocol also defines anterplayrelation that specifies the interaction compatibili-
ties allowed by protoca? . The interplay relation is defined by a set:

I={I,1,0} ,where L, OR, [, #,1<k<i

Moreover, ifR = {r} ,then’ = {1} = {{r,7}} .Inwords,itisalways assumed
for a one-role protocol that all the software components obéying are compatible in the
sense that they are able to interact unfter . Referring to the previous example,
I = {{server,client} } specifies that the protocol allows for the interaction between ob-
jects that play a server’s role and objects that play a client’s role. To specify that the proto-

338 Gluons and the Cooperation between Software Components

col also allows for the interaction between objects that play the role of servers, the
interplay relation should be specified as:

1 = {{server, cliens} ,{server, server'} }

Each object of the environme@ eventually conforms to roles of one or many proto-
cols. Letroles(0O,) denote a function that returns the set of all roles compOpent con-
forms to. A protocolP together with an element (i.e. a set of rdlgs) {x,, ..., x} ,

x O R ofitsinterplay relation defines a domain of interaction compatibility (P, /)

Domains of interaction compatibility play an important role in our framework since they
define which are the components that can potentially interact. The compatibility defined
by a domain of interaction extends not only to the components that exist at the time the
protocol is defined and implemented, but also to all future components that obey the same
protocol and are compatible through an interplay relation.

Finally, each protocol is associated with a finite state automaton that specifies valid se-
guences of interactions between participants in the protocol. (See chapter 4 for a formal
treatment of two-party protocols based on finite state processes.) In the following section
we will see examples of how the state of a protocol can be specified, and how it controls
the interactions between components.

12.4 Gluons

Gluons encapsulate and implement interaction protocols by instantiating an interplay re-
lation for a given protocol. The principle idea underlying gluons is to standardize and en-
capsulate protocols, rather than just standardizing service names, since interaction
protocols should represent one of the primary resources to be reused. Gluons support a
protocol-centered reuse strategy. By embedding interaction protocols inside gluons we
can use them as agents to implement many different interaction strategies.

Applications that we developed with the financial framework show that with this ap-
proach we can achieve the following:

* A high degree of dynamic interconnectiorTe reuse of interaction protocols pro-
vides significantly more flexibility to express interaction patterns than the reuse of a
naming convention. In particular, we typically need a small set of interaction proto-
cols to express interactions that would require a large quantity of standard service
names to achieve the same result. For example, all interactions between two software
components that involve a service request followed by an agreement on the data
types to be exchanged, and ending with a notification of both components about the
result of the operation, can be expressed with just one protocol. Service name stand-
ardization would require standard names for each possible service request, and
would probably ask for additional code to build the sequence of messages needed to
perform the interaction. This point will be better illustrated later with examples of
gluons from the financial framework.

Gluons 339

» Easy integration of new software components into an environméeltiis-stems
from the fact that the unique interoperability constraint is that the new component re-
uses existing interaction protocols that can be instantiated through gluons.

12.4.1 Gluons and Software Design

We already mentioned that in a protocol-centered framework the primary reuse resource
is the protocol. The adoption of a protocol-centered approach has a significant impact in
software design. While methods such as CRC [5] promote an iterative design procedure
that emphasizes identification of the responsibilities and collaboration for each compo-
nent, in a protocol-centered framework the design team attempts to identify the typical in-
teraction protocols for the specific environment prior to any other design decisions. Once
the choice of the basic interaction protocols has been made, we then proceed with the iden-
tification of the components’ responsibilities and the collaborations needed to fulfil such
responsibilities.

At first, we seem to be adding just another layer (i.e. the definition of the reusable inter-
action protocols) to the design process. However, experience shows that, at least in the
case of the financial framework, the addition of such a layer simplifies significantly the
whole design process provided the reusable protocols are properly defined. Our first de-
sign defined only eight protocols that allowed us to express most of the interactions in a
simple system. The reusable interaction protocols represent the “glue” that allow for the
connection of software components.

12.4.2 Anatomy of a Gluon

In terms of its internal structure, a gluon is a software component that handles a finite state
automaton with output to control the execution of a protocol’s interplay relation. It con-
tains a start state and any number of intermediate states. A gluon can provide many end
states (i.e. accepting states in finite automation parlance) but for simplicity it is better to
have a unique end state. Figure 12.9 shows the symbols that can appear in a gluon’s finite
state automaton. States and state transitions are the common constituents that can be
found in any finite state automaton [8]. A participant’s role stores a reference to a software
component that is compatible with the role defined by the interplay relation, while a mes-
sage selector container stores an arbitrary message selector.

A state transition triggers the execution of an action which is composed of operations.
A state transition is fired whenever the gluon receives a message.

There are three types of operations that compose an aogssages senasject as-
signmentandmessage selector assignmeAtsnessage send is what its name implies:
the gluon sends a message to a software component requesting a service. Object assign-
ments allows a gluon to keep a reference to software components. Message selector as-
signments are similar to object assignment operations, the difference lies in the fact that

340 Gluons and the Cooperation between Software Components

Message selector
container

Cstart) (0} (Semer) | MessSel |

State State transition Participant role

Figure 12.9 Symbols for the gluon'’s finite state automaton.

Server)
MessSel

Figure 12.10 The SimpleGluon finite state automaton. SimpleGluons forward
messages to an attached software component called the Server.

the gluon keeps a reference to a message selector instead of a reference to a software com-
ponent. These are the only allowable operations in a gluon’s action. Furthermore, the only
assignments allowed are those that involve either a participant’s role or a message selector
container in the left side of the assignment.

Figure 12.10 shows the finite automaton embedded inside the simplest gluon provided
by the financial framework. The SimpleGluon contains two statesandend, and three
transitions. The diagram also shows a participangdher and a message seleatsss-

Sel that can store an arbitrary message selector. State transition triggers and the actions as-
sociated with state transitions are shown in table 12.2.

The SimpleGluon handles an asymmetric interaction protocol between a server and a
client. The protocol handles message forwarding. The asymmetry stems from the fact that
a gluon is associated with a unique server component while the client can be any compo-
nent that can send a message to the gluon. The association between the server and the
gluon is requested by the server component by sending messgsigeserver to the gluon
(refer to table 12.2). This message triggers state transition O which initiates the gluon’s
protocol. Any component can now send messages to the gluon and these messages are for-
warded to the server with transition 1. Finally, the gluon can be disconnected from the
server by sending it the message SimpleGluons are used in the financial framework

Gluons and the Financial Framework 341

Protocol transitions

Event / action
State Transition State

Source: registerServer{server}

0 Start

Server .= server

<any_obj>: <message>
Start 1 Start MessSel := <message>
<message> - Server

<any_obj>: exit

Start 2 End gluonDisconnecting{self} — Server
Server :=none

Table 12.2 Protocol transition table for the SimpleGluon.

for two main purposes. The first purpose is to isolate services from service providers. By
assigning different components to the server’s role, the clients can be granted services
from different components. The SimpleGluon plays here the role of a proxy. The second
typical usage of SimpleGluons requires a slightly modified gluon with multicasting capa-
bilities. The modified version accepts the registration of multiple servers so that the mes-
sages sent by the clients are forwarded to all the servers.

12.5 Gluons and the Financial Framework

Gluons are the architectural elements of the financial framework that are responsible for
the way in which other components are composed. The financial framework offers other
components as well. One such component, the RealTimeRecord acts as a container for
real-time information. This component plays a central role in the distribution of real-time
information. The RealTimeRecord plays usually the role of a server to clients request up-
date notifications. The structure of RealTimeRecords is illustrated in figure 12.11. Each
entry of the record is a pdkey, obj_ref)where the key allows for the lookup of an object

by name.

Most of the components in an application act as data sinks, data sources or both. They
are connected through notifications chains so that updates are readily broadcast down the
chain. Pure data sources are those components that are either connected to external data
source such as those provided by Reuters, or are associated to files providing streams of
data. Components that act both as data sinks and data sources are data transformers. They
usually get information from data sources, transform it and redistribute it to client compo-
nents. Pure sink components usually correspond either to display components or to com-

342 Gluons and the Cooperation between Software Components

/ DataFeed — \

|
(1) |
7 L @
(BM) @ L —
Il [y (orice) 2343
(DEC) @ | | (vola) 24.34
(high) 235.20
(HP) [] (low) 230,30
(date) 12 jul
(NeXT) ‘ (moves) 123
(news) LRTS
(SUN) @ (yearhg) 235.f
(SG) ‘ | = (yearlo) 200.1 .
(Options) @ I 2838 : e e
(Futures) @ (CS18008 q & o
(CS1900® { ©em @
(Forex) @ (CS2000® (st @
(NESTL)®

-

Figure 12.11 Structure of the RealTimeRecord component. The data is contained in
dictionaries. Dictionary 1, for instance, contains references to all the
information updated in real time by a data source. The other dictionaries
contain either values (2) or references to other objects (3).

ponents that write to files. So an application can be seen as a set of components connected
by a notification web.

The rest of this section illustrates the financial framework by providing two examples
of gluons that play an essential role in the framework: the dragging gluon and the real-time
data notification gluon.

12.5.1 The Dragging Gluon

The dragging gluon implements the common dragging mechanism we are acquainted
with from most windowing systems (see figure 12.12). A drag operation is an operation in-
itiated by a component, the dragging source, that attempts to find a partner component to
cooperate with. The choice of the partner, the destination component, is performed by the
user with the visual assistance of the windowing system. Both the dragging source and the
dragging destination need to be associated with a visual representation since dragging is a
visual operation. Figure 12.13 illustrates the finite state automaton associated with the
dragging gluon, while table 12.3 shows the events that fire each state transition and the as-
sociated actions.

To simplify the understanding of how the dragging gluon works it is useful to consult
simultaneously figure 12.13, which shows the state transitions, and table 12.3, which ex-
hibits the events that trigger a state transition together with the actions executed during the
transition. The three boxes in the lower left corner of figure 12.13 represent the roles of the
components that participate in the dragging process.

Gluons and the Financial Framework 343

ol Graphics Ohject Xl

jm|
S&P INDS INDEX

Gluons

Figure 12.12 User interfaces of some software components available. The gluons that
allow for the connection of the components are indicated by arrows. To
connect the components the user drags the circle from one gluon to another.

The server is the component that initiates the interaction by sending the msessage
Dragging to the gluon with its object identifier as parameter (see table 12.3, transition 0).
Upon receipt of this message the gluon enters statdollowed by the execution of an
action that makes the gluon send the messageragging to the component that plays the
WindowManager role, and assigns object identifiers to the destination and the source
roles. The destination is assigned the void object identifier since at this stage the object that
will play the destination role is not yet determined. The WindowManager responds to the
first the message by sending back to the gluodartigeandidateEntered message. The re-
ception of this message triggers state transition 1 on the gluocandiate object iden-
tifier that is sent as parameter corresponds to the source component since at the beginning
of the drag operation the mouse is over the visual representation of that component. Con-
sequently, the first component that is assigned the destination role is always the same com-
ponent as the one that plays the source role. Later, the assignment will change as the user
drags the mouse out of the source visual representation to enter another visual representa-
tion (i.e. icon) that is associated to a software component that accepts dragging. In the
process of finding the appropriate destination component, the user may move the mouse
in and out of visual representations that accept dragging. This process corresponds to al-
ternations between stateand stat®uT.

If the user releases the mouse button when the gluon is iostgtihen the dragging
operation stops with no side effects since the mouse has been released outside a visual rep-
resentation that accepts dragging. Conversely, if the mouse is released when the gluon is

344 Gluons and the Cooperation between Software Components

Source)
Destination)

(WindowManager)

- /

Figure 12.13 Finite automata for the dragging protocol. The ellipses represent the states while
the the arrows represent state transitions. The three boxes at the lower left
corner represent the roles of the components that participate in the interaction.

in theIN state, the gluon undergoes state transition 2 which puts the gluon iPR&tate

This state corresponds to a pre-operation that is usually a negotiation between the source
and destination components to agree on an operation to be performed. If both agree, the
gluon transits to statePER, which corresponds to execution of the agreed operation be-
tween the source and the destination. If no agreement is reached, then the dragging oper-
ation will end through transition 5. State POST allows for post-operation cleanup before
the interaction ends.

We may notice that stae and stat®©uUT correspond to the visual process of establish-
ing a relationship between two software components: the source and the destination. Like-
wise, state®RE, OPER andPOST manage the negotiation and execution of an operation
between two components.

The dragging gluon illustrates the generality and usefulness of an interaction protocol
specified as a finite state automaton. Such generic protocols are intended to be refined.
Typically, when the source component negotiates an operation with the destination com-
ponent, they agree on another gluon to which both are compatible. This gluon manages the
execution of an operation, or in other terms it mediates the delivery of a service. In the im-
plementation of a visual workbench for the retrieval of real-time financial information,
called ReutersLab [25], which has been implemented with the financial framework we ex-
tensively use the dragging protocol together with another protocol that negotiates the type

Gluons and the Financial Framework 345

Protocol transitions
Event / action

State | Transition | State

Source: startDragging{Source}

0 Start | startDragging{source} — WindowManager
Source := source
Destination := none

WindowManager: dragCandidateEntered{candidate}

Start 1 In Destination := candidate
dragEnter{Source} — Destination

WindowManager: endDragging

In 2 Pre
preOperation{Source} — Destination
Destination: ACK{destination} | Source: ACK{source}
Pre 3 Oper
operation{source} — Destination
Destination: ACK{destination} | Source: ACK{source}
Oper 4 Post _ —
postOperation{Source} — Destination
Destination: NACK{destination}
Pre 5 End
slideDragViewBack — WindowManager
Destination: NACK{destination}
Oper 6 End
slideDragViewBack — WindowManager
Destination: ACK{destination}
Post 7 End
operationComplete{Destination} — Source
WindowManager:dragCandidateExit{candidate}
In 8 Out dragExited — Destination
Destination := none
WindowManager: dragCandidateEntered{candidate}
Out 9 In Destination := candidate

dragEnter{Source} — Destination

WindowManager: endDragging

Out 10 End dragAborted — Source
slideDragViewBack — WindowManager

Source :=none

Table 12.3 Dragging gluon protocol transition table.

346 Gluons and the Cooperation between Software Components

of data to be exchanged between the source and destination components. Once the com-
ponents agree on a data type, they interact under the control of another type of gluon that
establishes a real-time update notification between the components. The real-time notifi-
cation gluon is discussed next.

12.5.2 Real-time Data Notification Gluon

Since the financial framework is intended to support the access to information sources that
are updated in real time, the framework provides a gluon that supports notification be-
tween data sources and client components so that after data updates on the source side the
client can be updated to reflect the information change. In a typical situation the client
component registers with the source to request update notification. The request creates a
link between the source and the client.

In order to provide for flexible notification, the framework allows for three types of no-
tification links — cold, warm and hot — which correspond to the three type of links pro-
vided by Microsoft DDE depicted in figure 12.3. The reason for providing three types of
notification links stems from the fact that different components have different data update
requirements. For example, a client software component that handles a visual display of
real-time data usually needs to be updated as soon as the information changes on the
source side since the user is expecting the fastest update possible. These requirements cor-
respond to a hot link between the client and the source. Other components expect change
notifications but they only need actually to update the values in a few cases. These corre-
spond to the typical requirements for a warm link where the source is in charge of notify-
ing the client while the client is responsible for eventually issuing an update request to the
source. The least demanding kind of link is the cold link in which the client is responsible
for requesting updates to the source at its own pace with no notification from the source.
A typical usage of cold links is portfolio evaluations that require access to market data
only when the portfolio is evaluated with no need for further updates.

Figure 12.14 represents the finite automaton embedded in a real-time data notification
gluon. The protocol defines three roles: the source, the client and the data. The role of the
source and client components has been discussed above, while the component that as-
sumes the data role acts as an information container that is exchanged between the source
and the client. The state®LD, HOT andwARM, correspond to three types of links avail-
able. When the link is established between the source and the client, the gluon enters the
COLD state and waits for a message from the client requesting an update. Upon reception
of the client’s request the gluon enters state in which it waits until an update message
issued by the source puts the gluon back in stat® through transition 3. A gluon can
be requested to switch from one type of link to another provided itis in any one of the three
statescOLD, HOT orWARM, so that the update mechanism can be changed at any pointin
time to adapt to evolving requirements on the client’s side. We may notice thatstate
has a self-looping state transition (i.e. number 11), which is fired when the source notifies
the client for an update, and two transitions (i.e. transitions 9 and 10) with an intermediary

Conclusion 347

-

/

Figure 12.14 Finite automata for a real-time data notification protocol.

statewUP which handles the update request from the client component. As expected, the
actions associated with transitions 9 and 10 are similar to actions associated with transi-
tions 2 and 3 since they perform the same task.

12.6 Conclusion

We have addressed in this chapter the problem of defining patterns of interaction among
software components. We adopt the point of view of component-oriented software design
and development which promotes an approach to software construction based on the con-
nection of software components.

We provide a survey of previous efforts that address similar problems. The focus is on
work from large software houses since they represent significant efforts to standardize and
promote approaches that may have a considerable impact, in the near future, on software
design and development. The survey suggest that the sizeable differences that can be ob-
served between such approaches reflect differences in design goals and differences in the
requirements of the target environments.

Our development framework targets financial applications that retrieve real-time data
and require support that allows for fast reconfiguration of the patterns of interaction

348 Gluons and the Cooperation between Software Components

among the software components as well as mechanisms that facilitate the introduction of
new software components. These requirements can be equated to support for dynamic in-
terconnection of software components. Unfortunately none of the approaches surveyed
achieves the desired level of dynamic interconnection capabilities.

We propose a new approach which focuses on the reuse of component interaction pro-
tocols. We call a framework based on such principle a protocol-centered framework. Our
experience with a financial framework shows that we can achieve a fairly high degree of
dynamic interconnection with a small number of reusable protocols (typically less than
twenty). However, the applications that we developed have a scope that is too narrow to
allow us to infer that the approach is of wide applicability.

References

[1] Apple Computer Incinside Macintosh: Interapplication Communicatjd®93.

[2] Constantin Arapis, “Specifying Object Interactions,Object Compositiored. D. Tsichritzis, Cen-
tre Universitaire d'Informatique, June 1991.

[3] Constantin Arapis, “Dynamic Evolution of Object Behavior and Object Cooperation,” Ph.D. thesis
no. 2529, Centre Universitaire d'Informatique, University of Geneva, Switzerland,1992.

[4] Nabajyoti Barkakati, Peter D. Hipsdvisual C++ Developer's Guidé&sams, Carmel, 1993.

[5] KentBeckand Ward Cunningham, “A Laboratory for Teaclidgect-Oriented ThinkingProceed-
ings of OOPSLA '8 ACM SIGPLAN Noticewol. 24, no. 10, Oct. 1989, pp. 1-6.

[6] Ted J. Biggerstaff and Alan J. Perlggftware Reusability, Volume |, Concepts and Modetmtier
Series, ACM Press, 1989.

[7] Kraig Brockschmidt]nside OLE 2 : The Fast Track to Buiding Powerful Object-Oriented Applica-
tions Microsoft Press, Redmond, Wash., 1993.

[8] Daniel l. A. Cohenintroduction to Computer Theqryohn Wiley, 1986.

[9] L. Peter Deutsch, “Design Reuse and Frameworks in the Smalltalk-80 Syst8offimare Reusabil-
ity, ed. T.J. Biggerstaff and A.J. Perlis, ACM Press, 1989, pp. 57-71.

[10] Erich Gamma, Andre Weinand and Rudolf Marty, “Integration of a Programming Environment into
ET++,” Proceedings of ECOOP '88ritish Computer Society Workshop Series, Cambridge Univer-
sity Press, Cambridge, 1989.

[11] Simon Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz and Xavier Pintado, “Class Man-
agement for Software Communitie€dmmunications of the AGMol. 33, no. 9, Sept. 1990, pp. 90—
103.

[12] Richard Helm, lan Holland and Dipayan Gangopadhyay, “Contracts: Specifying Behavioral Compo-
sitions in Object-Oriented SystemA&CM SIGPLAN Noticesol. 25, no. 10, Oct. 1990, pp.169-180.

[13] Dan Ingalls, “Fabrik: A Visual Programming EnvironmeRtdceedings of OOPSLA '88CM SIG-
PLAN Noticesvol. 23, no. 11, Nov. 1988, pp. 176-190.

[14] Ralph E. Johnson and Brian Foote, “Designing Reusable Cla¥sesyal of Object-Oriented Pro-
gramming vol. 1, no. 2, 1988, pp. 22—-35.

[15] Chris Laffra, “Procol, a Concurrent Object Language with Protocols, Delegation, Persistence, and
Constraints,” Ph.D. Thesis, Amsterdam, 1992.

[16] Michael Mahoney, “Interface Builder and Object-Oriented Design in the NeXTstep Environment,”
Tutorial Notes of CHI '91, available through anonymous ftp at nova.cc.purdue.edu.

References 349

[17]
[18]
[19]
[20]

[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

Microsoft PressQLE 2 Programmer’s Reference: Working with Windows Ohj¥ots1, Redmond,
Wash., 1994.

Microsoft PressQLE 2 Programmer’s Reference: Creating Programmable Applications with Ole Au-
tomation Vol. 2, Redmond, Wash., 1994.

NeXT Computer IncNextStep Concepts Manyuab90.

Oscar Nierstrasz, Dennis Tsichritzis, Vicki de Mey and Marc Stadelmann, “Objects + Scripts = Ap-
plications,” in Object Compositioned. D. Tsichritzis, Centre Universitaire d'Informatique, June
1991, pp. 11-30.

Object Management Grougpommon Object Request Broker: Architecture and Specific49@1.
Object Management GrouPbject Management Architecture Guid€92.

Object Management Group (OMQ@)he Common Object Request Broker: Architecture and Specifi-
cation, Object Management Group and X Og@MG document 91.12.1, revision 1.1, 1992.

Xavier Pintado, Dennis Tsichritzis, “Gluons: Connecting Software ComponenBfjjéct Compo-
sition, ed. D. Tsichritzis, Centre Universitaire d'Informatique, 1991, pp. 73-84.

Xavier Pintado, Betty Junod, “Gluons: A Support for Software Component CooperatiQinjeict
Frameworksed. D. Tsichritzis, Centre Universitaire d'Informatique, 1992, pp. 311-330.

Xavier Pintado, “Gluons: a Support for Software Component Cooperatioftoceedings of
ISOTAS '93, International Symposium on Object Technologies for Advanced Saftv&eNishio
and A. Yonezawa, Kanazawa, Japan, November 1993, Springer-Verlag, pp. 43-54.

Xavier Pintado, “Fuzzy Relationships and Affinity Links,'Givject Compositiored. D. Tsichritzis,
Centre Universitaire d'Informatique, 1991.

Rajendra Raj, Henry Levy, “A Compositional Model for Software Reld®teedings of ECOOP

'89, British Computer Society Workshop Series, Cambridge University Press, Cambridge, 1989, pp.
3-24.

Jeffrey S. Rosenschein and Gilad ZlotlRmjes of encounter : Designing Conventions for Automated
Negotiation Among ComputeMIT Press, Cambridge, Mass., 1994.

AlWilliams, OLE 2.0 and DDE Distilled : A Programmer’s Crash Couyseédison-Wesley, Reading,
Mass., 1994.

350

	Gluons and the Cooperation between Software Components
	12.1 Introduction
	12.2 An Overview of Cooperation Patterns
	12.2.1 Object Management Group
	12.2.2 Microsoft DDE and OLE
	12.2.3 ODBC 2.0
	12.2.4 Apple’s Interapplication Communication Architecture and OpenDoc
	12.2.5 Discussion

	12.3 Requirements for a Financial Framework
	12.3.1 Towards a Protocol-Centered Framework
	12.3.2 Standardizing a Service’s Vocabulary
	12.3.3 Component Interaction Protocols

	12.4 Gluons
	12.4.1 Gluons and Software Design
	12.4.2 Anatomy of a Gluon

	12.5 Gluons and the Financial Framework
	12.5.1 The Dragging Gluon
	12.5.2 Real-time Data Notification Gluon

	12.6 Conclusion

