
Scripting Applications in the Public Administration Domai n

Gerti Kappel t , Jan Vitek, Oscar Nierstrasz
Betty Junod, Marc Stadelman n

Centre Universitaire d'Informatique
University of Genev a

12 Rue du Lac, CH-1207 Geneva, Switzerland
E-mail : oscar@cuisun .unige .ch

ABSTRAC T

Scripting is an approach for constructing open applications from pre -

packaged software components . A scripting model characterizes and stand-
ardizes the interconnection interfaces of software components appropriate t o
an application domain . We present a scripting model for the domain of pub -
lic administration applications, and we provide a scenario of scripting appli-

cations in this domain. This scripting model is being incorporated into a pro -
totype visual scripting tool which provides a graphical editing facility fo r

interactively scripting applications .

Keywords : open applications, application scripting, object-oriented program-
ming, scripting model, public administration domain .

Incentive
One of the outstanding challenges to software engineering is the ability to adapt softwar e
systems rapidly to the evolving needs of the user community . Tn the past, a customer
with unique needs and stable requirements might have been willing to invest a great dea l
of time and effort into a specially-tailored software system which, when it finally ran ,
would run well . With the realization that the needs of most customers are perhaps not s o
unique, "software reusability" became a means to reduce the cost of building systems b y
amortizing the cost of developing generic software components and high-level program-
ming tools . When we additionally consider customers with evolving requirements, how -
ever, rapid development and software reuse are no longer merely steps to reducin g
software costs -- they become imperative as means to maintaining and adapting ope n
software systems .

The two most successful present-day techniques to streamlining software construc-
tion are the use of toolkits, and the use of specialized, high-level programming tools (i .e . ,
languages, environments, etc .) . The former technique is a natural evolution of software
libraries, honed to a fine point through the use of object-oriented features such as multi-
ple inheritance and genericity . The latter technique, on the other hand, packages som e
functionality in such a way as to make it very easy to build a limited range o f

Author's present address : Institute of Statistics and Computer Science, University of Vienna ,
Liebiggasse 4/3-4, A-1010 Vienna, Austria. Email : a4423dac@awiunil l .bitne t

- 21 -



applications very quickly . Spreadsheets, application generators, fourth generation
languages, hypertext systems, expert systems shells, and so on, fall into this categor y
(dBase 1112 and HyperCard 3 are perhaps the best-known examples of such systems) .

Toolkits have the advantage that they are inherently open-ended: new functionality
can always be added . The main disadvantage is that they can be hard to use . The inter -
face is intended primarily for programmers . One cannot use a toolkit without writin g
some code . With very high-level languages and systems, however, the advantage lies i n
the ease-of-use, and the disadvantage in the closed architecture . Although programmin g
interfaces to existing applications and databases are typically provided, it is not normally
possible to extend the functionality of the system itself

We propose scripting as an approach to application development that gives us th e
best of both worlds . In this approach, libraries of software components are designed t o
be "plugged together" according to an interconnection model (called a scripting model )
tailored to a particular application domain. A scripting environment would provide th e
high-level (i .e ., direct manipulation) support for designing applications, finding softwar e
components, and scripting and debugging applications . Such an approach encourage s
investment of energy in the construction of reusable software and generic tools (rather
than in the development of monolithic, hand-coded applications), and, in the long term ,
permits the rapid construction of flexible, open-ended applications. Finally, the approac h
points us towards a long sought-after design method for object-oriented software, i n
which a well-designed software component is always part of a community of component s
that can easily be scripted together.

What is Scripting?

We have adopted the term scripting to capture the idea that applications should be con-
structed by plugging together existing components rather than by individually program-
ming every line of code. A script identifies a set of software components and how the y
are linked together to accomplish some task .

Any piece of reusable software is parameterized by a number of values that must b e
provided either at compile-time or at run-time . These include type parameters, initializa-
tion values, arguments to operations, instance variables and methods (i .e., in object-
oriented languages, when inheriting from a superclass), temporal ordering (of actions) ,
input and output streams, and so on . In the context of scripting, we refer to such parame-
ters in general as the ports of a software component. Within a script, links may be esta-
blished between the ports of a number of selected software components, or between a
port and a fixed value . A script may itself be encapsulated as a component by indicatin g
which ports are to be visible to the clients of the script component .

Clearly, ports may not be arbitrarily linked . For example, ports representing input
streams should only be linked to those representing output streams . Furthermore, it i s
unlikely that one will be able to script applications from components that have not bee n
designed to work together . A scripting model identifies the kinds of ports, links and
components that are appropriate for a particular range of applications .

A scripting model must be defined with great care, after acquiring a good under -
standing of an application domain . Similarly the implementation of the generic software
components of the scripting model is an expensive, iterative process, since one mus t

2 dBase III is a registered trademark of Ashton-Tat e
3 HyperCard is a registered trademark of Apple Inc.

— 22 —



target not just a single specific application, but a range of existing "precursor" applica-
tions as well as anticipated future applications . The payoff is in terms of extremely
reduced development and maintenance costs for future applications . Not only is codin g
and debugging effort reduced, but application specification and design are simplified by
being restricted to the context of an existing scripting model . Finally, the approach i s
open-ended, since one can not only easily incorporate new functionality by adding ne w
components conforming to the existing scripting model (i .e., with the same kinds o f
ports), but one may extend the scripting models themselves, if necessary, by adding ne w
kinds of ports and ways of linking components .

Up to this point we have used the term "software component" freely . What are
these components exactly and how are they built ?

Very generally, any piece of software or template for software could conceivably b e
viewed as a reusable component, but from the point of view of scripting, it is important
to encapsulate functionality in such a way as to promote reuse through a well-defined ,
standard interface . As such, we take objects specified in an object-oriented programming
language as our basic software components . We believe that objects are an ideal basi s
both from the point of view of natural modeling of applications, and from the point o f
view of mechanisms for code reuse . Templates for objects (i .e., classes, generic classes )
and configurations of cooperating objects (i .e., scripts) may then be viewed as higher -
level components .

Although scripting exploits object-oriented techniques, it is distinct from object -
oriented programming per se in that we seek to separate the responsibility of program-
ming the basic components from that of reusing components to build applications . It i s
by this means that we concentrate programming effort where it has the most benefit, an d
we raise the level of programming in such a way as to streamline development and adap-
tation to changing requirements .

Scripting and the Public Administration Domai n
The development of a scripting environment for constructing applications is an integral
part of the ITHACA project (No.2121), supported by the Commission of the Europea n
Communities under its ESPRIT program . The ITHACA project aims to produce a n
integrated application development and support environment based on the object -
oriented approach [Prof89] .

Within ITHACA several "demonstrator" application domains are identified to vali-
date the approach and the usefulness of the environment in constructing real applications .
Out of these target application domains we have chosen the Public Administratio n
Domain (PAD) to develop a scripting model . The main reason behind this decision i s
that we can reuse existing domain knowledge and expertise in building PAD application s
[Kapp89a], which we have gained by studying an application generation system for thi s
domain .

Applications in the public administration domain deal with provided automated sup -
port for work in public institutions . This automation regards highly repetitive tasks per-
formed by public servants . These are typically related to filling-in, sending, and storing
office documents .



PAD Terminolog y
We explain the terminology used for introducing the PAD scripting model with an exam-
ple, which is the "Organization of a Public Event" [Kapp89b] . A glossary of terms i s
given in Appendix A .

The public administration taken as reference in this example is responsible for han-
dling external requests concerning the organization of public events, such as demonstra-
tions, parades, and public celebrations. The request has to be approved both by the pol-
ice and by an internal administration department, otherwise it is rejected .

An office is generally structured as hierarchy of office units . The office itself, in our
case a specific public administration, is the root of this hierarchy . The intermediate
nodes represent departments, divisions, project groups, and other existing working units .
A leaf node is the most specific office unit, to which one or more office workers are
assigned . The edges between the nodes are directed and represent part-of relationships .
For each office unit various responsibilities and privileges are defined, which are inher-
ited down the hierarchy.

Each office worker performs certain steps to meet these responsibilities . All the
steps an office worker might perform are referred to collectively as the workspace of the
office worker . A task requested by a client is handled by the office workers following a
predefined office procedure. The task we are interested in is getting the permission for
organizing a public event .

Information to be processed in an office procedure is encapsulated in office docu-
ments, some of which may be highly structured forms. The office documents concerning
a particular task are referred to collectively as a case .

An office procedure can be broken down into a number of individual steps, each of
which is either performed by a single office worker or processed automatically . Office
procedures, then, are implemented by coordinating both automatically executing step s
and steps which are based on interaction with an office worker .

The office procedure for accomplishing the example public event handling tas k
entails the following steps : An office worker enters all the information concerning a par-
ticular case by filling in the EventRequestDocument . Then a letter is printed and
sent to the police to obtain approval for the event . If the police department accepts, th e
case is presented to another office worker who will decide for the administration . The
request for organizing a public event can be either accepted or rejected . Finally the
appropriate letter will be generated and sent to the client .

PAD Scripting Mode l
A scripting model identifies the kinds of ports, links, and components that are appropriate
for a particular domain . This does not prevent us from reusing software components i n
several application domains, as long as they conform to the relevant scripting model .

In the PAD scripting model the interface of an object is re-packaged. The operation s
composing the object 's interface are mapped to four kinds of ports : attributes, acquain-
tances, actions and events .

Attributes are the visible characteristics of an object . For example, the color and th e
size of a Document object when it is displayed .

Acquaintances are references to external objects with which the object wil l
cooperate . For example, a Document object has to be acquainted to a Printer
object in order to be printed .

- 24 -



Actions are the subset of the operations of an object that can be used for scripting .
For example, the actions of a Document object are edit, print, and display .

Events occur whenever an object changes state . Upon occurrence of an event, a lis t
of actions may be invoked . For example, each alteration to a text field of a Documen t
may reset the date field of that Document . The action-list associated with an even t
may be extended for individual object instances as opposed to the entire class . In the
preceding example, the event-action couple was defined for a particular document object
and not for the whole class .

In Figure 1, the mapping from the set of operations of an object to its ports used i n
scripting is depicted . The former specifies the programming interface of the object, th e
latter specifies its scripting interface . Note that the kinds of attributes, acquaintances ,
actions, and events of an object are specified at the object class level .

Figure 1 : The set of operations of an object is mapped to four kinds of ports (attributes, ac-

quaintances, actions, events) used in scripting.

Our study of the public administration domain has lead us to the design of a hierar-
chy of classes to implement scripting in this domain . In Figure 2, part of the class hierar-
chy is presented. The design distinguishes between application classes that represent th e
application domain knowledge and model classes that represent the application develop-
ment knowledge . The application classes mainly model real world entities, like docu-
ments, letters, and clients . The model classes capture information about scripted applica-
tions, like steps, office procedures, and work spaces .

Coming back to the remark at the beginning of this section about the use of software
components in several domains, it is worth pointing out that the PAD scripting mode l
comprises both domain-independent (i .e. generic) scripting features, and PAD-specifi c
scripting features . The former is the view of a software component being an object with a
scripting interface, the latter are the kinds of software components and how they ar e
linked together to build an application .

Attributes

Acquaintances

r)

0
m

— 25 --



r:i jiCJ'•%l~x na . . . r. fly

ana e~«xa~ ;: ,

Figure 2 : The design of the PAD classes distinguishes between application classes tha t

represent the domain knowledge, and model classes that represent the application develop-
ment knowledge .

PAD Scripts
Scripting PAD applications means constructing ready-to-run applications using a set of
pre-packaged software components . These software components are application classe s
and model classes as outlined in Figure 2 .

We have identified four levels of scripting which are composed out of differen t
kinds of software components. These are :

e scripting a step: defining a unit of work within an office . At this level the component s
are application classes .

• scripting an office procedure : specifying a coordination of different steps to fulfill a
task. The components are the steps scripted in the first level .

• scripting the workspace of an office unit : setting the responsibilities and privileges o f
office units . The possible components are office procedures, steps, and office units .

• scripting the user interface : defining the user interface of the application . The com-
ponents are both application classes and model classes .

The output of each of these levels are scripts that have to be interconnected in order
to build a PAD application. For the purpose of clarity and readability, however, we wil l
investigate each level independently . To be able to compare and combine the variou s
scripting levels we distinguish for each level between (1) kinds of possible components ,
(2) linking ports of the components, and (3) possible encapsulation of the script as a com-
ponent for further reuse .

For all four scripting levels we assume an interactive scripting environment for
building scripts, storing and retrieving components, and executing scripts . Note that
when an object class is made available as component in the scripting environment, th e
mapping from its set of operations to its scripting interface has to be provided . A concise
description of a prototype scripting environment is given in the section on ongoing work .

— 26 —



Scripting a Step

A step represents a unit of work either processed by a single office worker or triggere d
and executed automatically . The functionality of a step is defined by a set of object com-
ponents and actions which are performed on these components in a predefined order .
Scripting a step entails :

e Selecting application classes from the component library . The components of a step
are application objects of the public administration domain, such as a Docu-
mentTemplate for a certain kind of document, a Date field capable of represent-
ing dates in various formats, or an Archive, keeping track of all the document s
coming into the office .

® Linking the ports of the components . For each component an object instance is eithe r
created or retrieved . The ports provided in the component's scripting interface (attri-
butes, acquaintances, actions and events) may be linked to fixed values or to compati-
ble ports of other components . The control flow of invoked actions is specifie d
through linking control ports .

• Encapsulating the script as a parameterized step component for re-use when scriptin g
office procedures .

The objects referred to in a script must correspond to actual object instances when
the script itself is instantiated. These objects may either be pre-existing objects, o r
objects created by the script . To this end, we provide each application object component
with object identifier (old) input and output ports . The oid input port may either b e
linked to the oid output port of an existing object, or it may be left unbound, in whic h
case the object will be created when the script is executed .

To increase the potential of reusability of a step, certain ports of the component s
which compose the step might be left unbound until the step is executed . For this pur-
pose, it is possible to specify input ports of a step, which are linked to input ports of com-
ponents. We can also export values from within the step by specifying output ports of th e
step, which are linked to output ports of components . These user defined ports might b e
of basic type (like integer, real, char, and boolean), or of type object .

Besides these user-defined ports a step component has predefined ports, defined i n
the PAD scripting model, for linking attributes, acquaintances, events, and actions . A
step component has a default execute action which implements the functionalit y
specified in scripting the step .

As an example, consider the Request Initial i s at ion step of our office pro -
cedure described earlier . It is the first step of the office procedure which should create a
document containing all the information for the public event request . This document will
be filled in and added to the archive where all requests are stored . The step will have a s
only output port the created document .

To script this step we start by choosing two components out of the componen t
library, the EventRequestDocument class and the Archive class. We leave the
oid input port of the former unbound, i .e. a new document instance is created wheneve r
this step is executed. We bind the name of an existing archive to the latter, i .e . each
created document instance is stored in this specific archive . Then we link the ports o f
these components . The attribute ports of the EventRequestDocument are bound to
fixed values . They specify the size of the document, and the fonts used for printing . The
only acquaintance port of the document will be connected to a p rinter object. The
action ports are linked to fixed values which represent the actions invoked on the objec t
component. Choosing actions for a component is equivalent, i .e. translates to sending a

- 27 -



message to the object bound to the component, when the step is executed. The edi t
action is selected for the EventRequestDocument that enables the filling in of th e
document . For the Archive component the add_new_document action i s
selected . The onEditing event port of EventRequestDocument will be linked
to the update_document action of the Archive. In general, we can specify a se t
of actions of several object instances to be invoked (i .e., equivalent messages are sent to
the object instances) as response to an event .

Scripting an Office Procedure
An office procedure represents a description of how to accomplish a task. This descrip-
tion is a configuration of steps which together provide the functionality of the office pro-
cedure. Steps which need user interaction can be executed in parallel, but they have t o
be executed in a predefined order concerning a specific case instance . Scripting an offic e
procedure entails :

• Selecting step components from the component library . There are no other kinds of
components than step components in an office procedure. However, a step componen t
might be used several times within the same office procedure .

o Linking the ports of the components . For each step component, we may link its even t
port to the execute action of the successor steps which are automatically triggere d
on completion of execution of the current step . These successor steps must not depen d
on user interaction . In addition, we may bind data input and output ports whic h
represent case specific information .

o Encapsulating the office procedure script as office procedure component which may b e
reused for scripting a workspace .

The links between steps represent either control flow — when the execution of suc-
cessor steps is triggered — or data flow . For supporting conditioned data flow, we encap-
sulate the evaluation of conditions within steps and model an output port for each possi-
ble result . Thereby OR branching of data flow is supported by feeding selected outpu t
ports of a step .

Concerning multiple occurrences of the same step in an office procedure, we encap-
sulate this information with the step . For each occurrence of a step in an office procedur e
we keep its particular bindings (successor steps, values bound to data ports, etc .) . When
a step is executed, in fact, a particular occurrence of the step in an office procedure i s
executed .

We outline the script of the example office procedure for handling public even t
requests . We distinguish six different step components : Request Initialisation ,
PoliceLetterPrinting, PoliceAnswerProcessing, PublicAdmin -
DecisionTaking, Reject ionLetterPrinting, and ApprovalLetter-
Printing . They are linked in the following way : the initialisation step triggers the
printing of a letter which is sent to the police station . In addition, the output port of the
initialisation step referencing the created document is linked to an input port of the lette r
printing step which is bound to a document component . Whenever the answer of the pol-
ice arrives it is processed by the PoliceAnswerProcessing step. This step has
two output ports, both of the same type which is the type of the document manipulated i n
the answer processing step . The step evaluates the answer letter sent by the police ,
updates the EventRequestDocument with the received answer (approved o r
rejected), and transmits the document to either of its output ports for approved request s
and rejected requests . The "rejection" output port is linked to an input port o f

- 28 -



RejectionLetterPrinting. The "approval" output port is linked to an inpu t
port of PublicAdminDecisionTaking, a step for deciding on the request based on
internal information of the public administration . This step has again two output ports of
the same type which are linked to different steps . The approval output port is linked t o
the step for printing the approval letter, and the rejection output port is linked to the ste p
for printing the rejection letter . Note, the RejectionLetterPrinting step is used
two times within our example office procedure .

Scripting the Workspace of an Office Uni t
The workspace of an office unit comprises the set of steps an office unit is responsibl e
for. When scripting the workspace the information about what an office unit is expected
to do is specified, but not how it will do it . Scripting a workspace entails :

e Selecting components representing office procedures, steps and office units from th e
component library .

® Linking the ports of the components . Both office procedure and step components have
an acquaintance port which is linked to office unit components . Hence, workspaces of
several office units can be scripted at a time.

e Encapsulating the workspace script as work space component which is reused whe n
scripting its interface .

Office units are organized hierarchically . The workspace of an office unit is inher-
ited by all office units which are part of this particular unit. Office workers are assigned
to the leaf nodes, thus specifying what the persons working in the office are supposed t o
do .

Concerning the assignment of a step to an office unit, the user can choose betwee n
assigning a step independent of its use in several office procedures, assigning a step as i t
is used in a particular office procedure, and assigning an occurrence of a step in a particu -
lar office procedure .

The concept of an office unit resembles the "user object" in [Nier85] . For each
user object a set of allowed operations may be defined . In our approach, this functionality
is accomplished when specifying the workspace of an office unit . The workspace can b e
both created and updated via scripting .

Scripting the User Interfac e
We assume a graphical user interface to our scripting environment, both for the develop-
ment of scripts and for their execution . Therefore, for all visible software components, a
graphical representation has to be specified . How this can be accomplished depends on
the user interface construction paradigm, hence, on the user interface toolkit we use . But
the minimal requirements will be that software components be built in a way whic h
makes it possible to link them with a graphical representation, and that generic user inter -
face classes, like Button, Menu, and Scro1lbar, are available . For example,
scripting the user interface of a particular work space entails :

e Selecting user interface classes and the workspace component from the componen t
library .

® Linking the ports of the components . The component will be equipped with a special -
purpose port for linking its graphical representation .

Note that there is no encapsulation of a user interface script supported, since we d o
not use such a component in scripting other scripts . Two existing user interfac e

- 29 -



construction systems, InterfaceBuilder of NextStep [Thom89] and Fabrik [Inga88], sup -
port scripting-like features for building user interface objects and linking them to appli-
cation objects .

Ongoing Work
The notion of scripting as an aid for flexible application development has been intro-
duced. A script specifies a set of software components and how they are linked together
to build a specific application. Which kinds of software components, ports, and links ar e
supported is defined in a scripting model . We have developed a scripting model suitabl e
for building applications in the public administration domain . The main motivation
behind this choice was that we could reuse existing application domain knowledge an d
existing application development knowledge which is key for constructing the "right "
software components and linking mechanisms .

The construction of PAD scripts will be supported by an interactive integrate d
scripting environment . This makes it easy to link the several levels of scripting sinc e
everything is done in the same environment . So far, we have implemented a visual script-
ing tool, which allows the graphical construction of scripts, their encapsulation, and re -
use as components in building more complex scripts [Stad89] . For first demonstratio n
purposes, we used the UNIX shell scripting model as underlying scripting model . This
choice was purely pragmatic: software components and script interpreter were readil y
available . An adaptation of the prototype for PAD scripting is underway . Figure 3 is a
glance on the visual scripting tool in use. It shows part of the PublicEventHan-

dling office procedure composed out of three step components .

:onsol e

y?1i5

Which Script :

Coap/Pub11cEventtandiing .scrip t

Execute Script Miscellaneou s

Figure 3 : A glance on scripting the office procedure for public event handling using the visua l
scripting tool .

Furthermore, we are investigating the support of several interfaces for one software
component and domain specific standard protocols for communication between com-
ponents .

— 30 —



References
[Inga88]

D. Ingalls, "Fabrik: A Visual Programming Environment", in Object-Oriented
Programming Systems Languages and Applications (OOPSLA), Special Issue of
SIGPLAN Notices, vol .23, no .11, pp . 176-190, Nov. 1988 .

[Kapp89a]
G. Kappel, "Reusable Software Components for Applications of the Publi c
Administration Domain," ITHACA .CUI.89.E.#12, Sept . 25, 1989 .

[Kapp89b ]
G. Kappel, "Proposed Reference Example for the TWG in ITHACA, "
ITHACA.CUI.89.E.#7, April 30, 1989 .

[Nier85]
O.M. Nierstrasz, "An Object-Oriented System," in Office Automation, ed. D. Tsi-
chritzis, pp . 167-189, Springer.

[Prof89 ]
A.-K. Profrock, D .C. Tsichritzis, G . Muller, M . Ader, "ITHACA: An Integrated
Toolkit for Highly Advanced Computer Applications," in Object Oriented
Development, ed . D.C. Tsichritzis, pp . 321-344, Centre Universitair e
d'Informatique, University of Geneva, July 1989 .

[Stad89 ]
M. Stadelmann, G . Kappel, J . Vitek, "Ithaca Visual Scripting Tool : A First Imple-
mentation based on the Unix Shell Scripting Model," ITHACA .CUI.89 .E.4.#5,
Dec . 8, 1989 .

[Thom89]
T. Thompson, "The NextStep," Byte, vol .14, no .3, pp. 265-271, March 1989 .

APPENDIX A -- Glossary

Task :

A task is an identifiable job to be done in an office . Examples of tasks can be a s
simple as the filling-in of a form, or as complex as the organization of a publi c
event .

Office Procedure :
An office procedure is a (procedural) description of a way to accomplish a task .
Such a procedure will typically break down into a partially ordered collection o f
steps in which various office documents are created, modified and destroyed .

Step :
A step is a logical unit of work within an office procedure, entailing the transforma-
tion of a set of office documents by a single office worker . That is, within a step, a n
office worker starting with some set of office documents relating to a particular task ,
modifies those documents, possibly creating or destroying some . Examples are
"sending a memo" or "taking a decision." Steps may, in some cases, be partially
or fully automated, e .g., filling in today's date. (The precise of a step is lef t
undefined, but in practice should correspond to "the smallest unit of work wort h
talking about .")

Office Documents :

- 31 -



An office document is a multimedia representation of structured and unstructure d
information. Office documents are typically grouped into classes which share a
common organization, such as standard fields for creation date, author, etc ., and a
common format for presentation of text etc .

Form :

A form is a very regularly structured office document, for example, containing only
a fixed number of fields, some repeating fields, and only a limited capability fo r
attaching unstructured text . Forms may be "intelligent," that is, they may require
fields to be filled in a particular order, restrict visibility of information to certai n
office workers, automatically fill in certain fields or forward themselves to another
office worker upon completion of a step . Forms may also be implemented as view s
on a database, in which case they have no autonomous identity .

Case :

A case comprises the collection of office documents concerning a particular task .
The documents of a case may, at any time, be distributed amongst several "loca-
tions" in the office (hence the use of the term "case" rather than "folder" or "dos-
sier") .

Office Unit :
An office unit is an organisational unit within an office for which various responsi-
bilities and privileges are defined. The office itself is organized as hierarchy o f
office units, the root being the whole office and the leaves corresponding to the mos t
specific unit. Each leave office unit is assigned to a set of office workers .

Office Worker :
An office worker is a person responsible for certain work to be done within a n
office .


