
An Implementation of Hybrid

A Concurrent, Object-Oriented Language∗

D. Konstantas
O. Nierstrasz

M. Papathomas

Abstract

This paper is a report on a prototype implementation of Hybrid, a strongly-typed, concur-
rent, object-oriented language. The implementation we describe features a compile-time system
for translating Hybrid object type definitions into C, a run-time system for supporting commu-
nication, concurrency and object persistence, and a type manager that mediates between the
two.

1 Introduction

This paper reports on a prototype implementation of Hybrid, a language for programming with
active objects. Hybrid is a general-purpose programming language intended to address application
domains (such as office systems) where concurrency, distribution and code reusability are important
issues. As such, the design of Hybrid attempts to integrate three different object models:

1. objects as instances of reusable object classes

2. objects as typed entities

3. objects as independent active entities

The object class model adopted by Hybrid is basically a variant of the Smalltalk model, supporting
multiple inheritance and parameterized object classes. The type model insists on compile-type-
time correctness of all expressions, while accommodating polymorphism and dynamic binding.
The main innovation in Hybrid is the concurrency model, which provides for objects to use a
uniform paradigm for communication regardless of their degree of independence. The mechanisms
for creating, interleaving and scheduling threads of control are, respectively, reflexes, delegation and
delay queues [Nierstrasz 1987].

The prototype that we will describe implements a significant subset of the Hybrid language, and
of the functionality of an environment for active objects. In particular, pseudo-concurrency and
object persistence are supported, whereas distribution is not. The implementation consists of three

∗In Active Object Environments, ed. D.C. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva,
June 1988, pp. 61-105.

2 An Implementation of Hybrid

main components: a type manager that manages all information related to object types, a compiler
that generates C language code from Hybrid type definitions, and a run-time system that handles
communication, pseudo-concurrency, and persistence.

The following table outlines the structure of the report:

1. Introduction
2. The Hybrid Language

2.1. Object Types
2.2. Communication

3. System Overview
4. The Hybrid Compiler

4.1. Parse Trees and Type-checking
4.2. Code Generation

5. The Type Manager
5.1. Basic Types
5.2. Type Interface Manager

5.2.1. Abstract Types
5.2.2. Enumeration and Range Types
5.2.3. Variant Types
5.2.4. Array Types

5.3. Version Management
5.4. Object Instantiation
5.5. Implementation of Mechanisms

5.5.1. Multiple Inheritance
5.5.2. Type Parameters
5.5.3. Type Casting
5.5.4. A Global View

6. Run-Time Support
6.1. The Thread Manager
6.2. The Activity Controller

6.2.1. Support for Activities and Domains
6.2.2. Delay Queues
6.2.3. Object Ids
6.2.4. Reflexes and Delegation

6.3. Communication Manager
7. A Hybrid Example
8. A Note on Design and Implementation
9. Future Work
10. Conclusions
11. Appendix A: Language

11.1. Names in Hybrid
11.2. Operators
11.3. Grammar

12. Appendix B: Bounded Buffer Example
References

Readers who only wish to get an idea of the system and its implementation should look at sections
2, 3, and 7-10. Sections 4-6 contain more detailed descriptions of the three components of the
prototype.

Konstantas, Nierstrasz and Papathomas 3

2 The Hybrid Language

This overview is intended to provide the background necessary to understand the discussion that
follows on implementation issues. It does not provide a complete description of the language. A
more detailed exposé of the language constructs and of the semantics of the concurrency mechanisms
can be found in [Nierstrasz 1987a,b,c].

An application written in Hybrid is a collection of cooperating active objects, possibly distributed
amongst a number of separate object environments. The granularity of concurrency is defined by
domains, which can be thought of as independent “top-level” objects. All activity within a domain
is sequential, but there may be many domains concurrently executing within an environment.

Objects are active when they are responding to a message. Since all objects are instances of
abstract data types, this means that objects are active when they are responding to an operation
invocation, or when they themselves receive a response to request they have issued. The basic
model of communication is that of remote procedure calls. We can therefore trace threads of
control, called activities as sequences of call and return messages between objects, whether they
communicate within a domain or between domains.

“Programs” in Hybrid consist purely of object type definitions. The language requires that all
expressions be statically type-correct, but provides for dynamic binding and type polymorphism.

We shall provide brief overviews of how types are defined, and of the mechanisms for manipulating
threads of control.

2.1 Object Types

Every object in Hybrid is an instance of an object type. Type definitions have the following general
form1:

type typeName parameters :
typeSpec ;

private
implementation

The typeSpec describes the interface to instances of the type. The interface is typically a set of
operations that may be invoked (including the specification of argument and return types), but
may also include “visible instance variables”. In addition to named operations, one may define and
overload a set of infix and prefix operators recognized by the language.

Interfaces are described using a number of type constructors, the most general of which is abstract,
which requires the programmer to explicitly provide the list of visible operations associated with
the type. The other constructors are inherits, for defining subtypes that inherit operations from
multiple parents, enum for defining enumerated types, oid for defining object identifiers, array for
defining homogeneous arrays, and range and variant for defining records and variant types. A
type may also be defined as a range of integer values (ranges of values from enumerated types are
not yet handled).

1See the appendix for the precise grammar of the implemented prototype.

4 An Implementation of Hybrid

Type parameters may be supplied to define generic types. The parameters may be used either in
the interface definition or in the body of the implementation, but must be bound to actual types
before instances can be created.

The implementation specifies the persistent instance variables for instances of the type, as well
as the implementation of all visible and hidden operations (i.e., the methods). For all of the type
constructors except abstract, the implementation is typically omitted, since it can be inferred from
the typeSpec. Subtypes may, however, override inherited methods. One may also define abstract
types with no implementation, but these types cannot be instantiated.

The interface to an object is its effective type. The actual type of an object is determined by its
implementation. A type T1 conforms to another type T2 if supports at least the same interface,
i.e., if it supports at least the same set of operations with the same specifications. (We also say T1

is a subtype of T2.) Expressions are type correct if operation invocations are consistent with the
effective types of the target and argument subexpressions. Variables may be dynamically bound to
the value of any expression that conforms to the declared type of the variable.

Type casting is required to inform the compiler that the effective type of an expression conforms to
another, expected type. In the implementation, this step guarantees that the appropriate method
lookup table will exist so that the type-cast object can efficiently respond to messages intended
for objects of the type it conforms to. For example, instances of Spline must be cast to the more
general type GraphicalObject before they can be passed to a tool that only recognizes objects of the
latter type. Once type-casting has been performed, there is only a small, fixed overhead in looking
up the method for, say, a display operation.

Hybrid also supports a check statement for disambiguating variant types at run-time, and for
determining whether an object actually belongs to a subtype of its effective type (e.g., to check
whether a GraphicalObject is really a Spline).

Hybrid has an if statement and a switch statement for selectively executing code. Repetition is
provided by a loop statement, which may be repeated with a continue statement, or exited with
a break statement. A block is similar to a loop, except that it can only be exited, not repeated.
In case of nested loops or blocks, a label may be supplied to either break or continue.

2.2 Communication

Messages between objects are generally either call messages, requesting an object to execute one
of its methods, or return messages sent after the successful completion of a method. A start
message is used to initiate a new activity. (Exceptions were envisaged as a necessary alternative
to return messages, but were not included in the initial language design.) An activity traces a
thread of call and return messages amongst a set of objects. Messages may be delivered either
synchronously when communication is between objects within the same domain, or asynchronously
when communicating objects are independent. When an object sends a call message to a remote
target, the object’s domain ordinarily blocks until a response is received. (Recursive calls, related
to the blocking activity, are permitted.) An activity can always be viewed as being at a unique
location, either within an object executing a method, or buffered in a message queue. Similarly,
domains can always be viewed as being in one of three states: idle, running, or blocked.

New activities are created by invoking a special kind of operation called a reflex. When a reflex is
invoked, a start message is sent to the object, and accepted as soon as the object’s domain is idle.

Konstantas, Nierstrasz and Papathomas 5

Figure 1: Multi-user support

Since reflexes do not return anything, the effect is to initiate a new thread of control.

Two additional mechanisms are required in order to be able to program interesting active objects.
Delegation is a mechanism for interleaving threads of control. An expression of the form:

delegate (target op args)

will always be evaluated by asynchronous message-passing, and will leave the calling domain idle,
that is, free to accept messages related to other activities. The context of the delegated expression
is saved, and later resumed when the return message is eventually received. Aside from interleaving
of activities, delegated expressions behave just like non-delegated expressions.

Delay queues are used to schedule activities when there are operations that cannot always be
performed. These operations are declared as using a named delay queue, and the object manages
the queue of buffered messages by opening and closing the queue during the execution of other
methods. The delay queue is typically used to represent either the availability of a resource, or
status of an awaited condition, much in the same way that condition variables are used in monitors.
The main difference is that opening or closing a delay queue does not entail an immediate transfer
of control, as is the case with waits and signals [Hoare 1974]

For examples of object types that use these mechanisms, the reader is referred to section 7 of this
paper and to Appendix B.

3 System Overview

The Hybrid execution model is that of a distributed collection of object environments, each of which
provides support for persistent active objects and for communication between objects in different
environments. The prototype implementation is currently restricted to a single object environment,
but with support for multiple users, as is shown in figure 1.

The Hybrid object manager effectively functions an “object server” for users’ client processes.
In the sample applications implemented using the prototype, the user processes are responsible
for connecting to object manager, and for managing the user interaction objects (e.g., windows).

6 An Implementation of Hybrid

Figure 2: Compile-time view

Objects in the client’s environment have corresponding “shadow” objects in the Hybrid object
environment, which forward messages to the client.

The object manager is implemented as a single UNIXprocess that manages the workspace of active
objects. Persistence is provided by storing the workspace in a file. The workspace is therefore
limited by the size of virtual memory. Pseudo-concurrency is provided by light-weight processes
implemented using a coroutine extension to the C language.

The system consists of three main components, the Hybrid compiler, the type manager, and the
run-time system. After considering the alternatives, it appeared that the fastest and most flexible
way to implement the compiler was to use the C programming language as a high-level “assem-
bler”. Dynamic linking was not considered a high-priority item for the prototype, so the present
implementation does not integrate the Hybrid compiler into the object manager. We therefore
distinguish between the compile-time and run-time views of the system.

In figure 2, we see Hybrid type definitions translated to C, compiled into run-time libraries, and
linked in with the object manager. The type manager keeps track of a database of all information
concerning object types, other than the actual executable code for the methods. The type database
is stored directly in the persistent workspace. The type manager provides the mechanisms for the
realization of multiple inheritance, code resubality, type parameterization, overloading and version
management. The compiler communicates with the type manager in order to verify type-correctness
of new type definitions, and generates information concerning new types to be stored in the type
database for later use.

In figure 3 we see the run-time view of the system. The run-time system mediates between active
objects and the client processes. The system implements Hybrid activities as light-weight processes.
Communication with clients is supported by providing special object types that know how to
communicate with the outside world. These types, as well as all basic Hybrid types, exist in the
run-time type library. The type manager is responsible for the method lookup tables needed to
support dynamic binding, and for the information needed to create and delete objects.

Konstantas, Nierstrasz and Papathomas 7

Figure 3: Run-time view

4 The Hybrid Compiler

The Hybrid compiler has been implemented as a three pass compiler: source code parsing and syntax
checking occur during the first pass, semantic control during the second, and code generation during
the third. Lexical analysis and parsing of the Hybrid source code, are performed with the help of
the UNIX lex and yacc utility programs [Lesk and Schmidt 1975; Johnson 1975].

During lexical analysis, a small number of preprocessing statements is recognized and processed.
These statements contain an underscore as the first character of the line. The statements recognized
are include <file Name>, for including the body of another file, and <number> [<file Name>],
for changing the compiler’s notion of the current line and file name.

Comments are stripped out during lexical analysis. Hybrid supports two styles of comments:
single-line comments, preceded by #, and nested comments, surrounded by #{ and #}. Nested and
single-line comments can be combined to comment out one another.

During the first pass of the compiler, a parse tree and a symbol table are created for the Hybrid
source program. Syntax errors are detected and reported. The parse tree also contains information
regarding the line number and file name corresponding to each node. This information is used
during the second pass for error reporting.

At the end of the first pass the symbol table is scanned and information concerning the referenced
types is requested from the type manager. If unknown type names are referenced, error messages
are given and the compilations ends. During the same scan, parameter types, operation arguments,
methods and private instance variables are identified and indexing information is inserted in the
symbol table, to be used during the third pass.

The second pass is responsible for semantic checking of the source code. For the prototype we
have implemented only a very basic semantic control. That is, we only identify visible operations
of types, obtain their return value type, and check basic expression type-correctness. Arguments
passed to operations, consistency of private and public parts, and further semantic consistency are

8 An Implementation of Hybrid

not checked. If errors are encountered during this pass (i.e., unknown operations, expression-type
mismatches etc.) error messages are given and the compilation stops at the end of the pass.

Code generation takes place during the third pass. When this pass is initiated, it is assumed that
the program is correct, and that all information needed is available in the symbol table and the
parse tree. Intermediate C code is generated for the methods and local procedures defined for the
new type. The generated code is placed in a file whose name is that of the compiled type followed
by a .c suffix. The created C file is then been compiled, and added to the type library. In addition,
type information from the public and private parts is passed to the type manager and inserted into
the type database.

Hybrid type definitions are stored, as mentioned, as UNIX text files. Although it is possible to have
a single file containing several type definitions, the present implementation of the compiler does not
recognize references between these new types. The reason is that information regarding the new
types is inserted in the type database during the third pass for all types in the file. Consequently
they are not known to the type manager during the first and second passes, when the references
must be resolved.

4.1 Parse Trees and Type-checking

A question we had to answer when implementing the Hybrid compiler, was which aspects of the
language can be checked on the syntax level and which on the semantic level. Our intention was to
check as much as possible on the syntax level, that is at the first pass. We soon realized that the
skeleton parser we had was not adequate for our needs. Many of its rules had ambiguous semantic
interpretation, depending on the context in which they appeared. Furthermore, the skeleton parser
was accepting features that either we did not intend to implement in the first prototype or were
invalid. For example, one could write

type A : inherits { abstract { }, variant { ... } } ;

which is not a valid type definition. For these reasons we modified the grammar and the parser,
adding more rules and simplifying others so that each rule would have only one semantic interpre-
tation.

The nodes of the parse tree are effectively variant records, with some common fields for all nodes,
and variant fields depending on the kind of node. Leaf nodes corresponding to primitive expressions
are either type-independent, meaning that their type is fixed, or type-dependent, meaning that the
type of the expression depends on a neighbouring node. For example, in x.y, the type of y depends
on the type of x, but x itself is type-independent. The nodes of the parse tree fall into the following
four categories:

• type-generating nodes:
These are leaf nodes, whether type-dependent or type-independent.

• type-modifying nodes:
These nodes produce a new type, possibly making use of the types associated with their
subtrees. An example is operation invocation.

• neutral nodes:
Nodes that neither modify nor generate a type, but simply forward type information to higher

Konstantas, Nierstrasz and Papathomas 9

nodes. The node for expr is an example.

• untyped nodes:
These nodes have no associated type. Typical examples are loop and if, which deal with
statements rather than expressions.

Type-checking, which takes place in the second pass of the compiler, is performed by traversing
the parse tree, starting with the type-independent leaf nodes, and passing type information up the
tree. When reaching parent nodes with multiple children, type information may be passed down
to unchecked subtrees to determine the parent’s type.

4.2 Code Generation

After semantic checking has been completed, the parse tree and the symbol table are made available
to the code generation pass of the compiler. During code generation two parallel activities take
place: C code is generated, and the type manager is given information regarding the new type.

First the type definition part of the parse tree is traversed. From that all information regarding
the interface of the type is passed to the type manager. Then, if the type is an abstract type, the
private part is traversed. Information regarding instance variables is given to the type manager.
At this point the type manager has all the information it needs concerning the new type.

Next, the branches of the parse tree describing methods are traversed, and code generation starts.
First the C header files are printed (the same for all types). Methods (whether private or public)
are translated according to a standard model. All information regarding the kind of the method
(i.e., reflex, infix etc.) is ignored at this stage, since this is semantic information not relevant at
run-time.

As an example, consider the method:

reflex method (argument1 : A ; argument2 : B) -> ...

Upon translation we will have:

static bl_Start method (argList, curObject, ivOffset, paramOffset)
bl_Start argList, curObject ;
int ivOffset, paramOffset ;

The C type bl Start is used for offsets within the workspace. So, the arguments of the Hybrid
method are packed as a list, the pointer to the executing object is provided, and then we have the
offsets to the instance variables and parameters (discussed later). The methods are translated to
static functions so that we avoid name clashing when creating the methods library.

Next we deal with automatic variables and executable code. Automatic variables (i.e., local to a
method) are instantiated at run-time. They are freed just before the return of the method. If the
operation uses a delay queue, a call to check the state of the queue is inserted at the beginning of
the generated code.

Statements consisting of an executable expressions are evaluated left to right (or as required by
operator priority and parentheses). Since the result of an expression may be used as either a target

10 An Implementation of Hybrid

or an argument of an enclosing expression, a reference to the object is always generated rather
than just a value. If the value of the expression needs to be sent in a message to another object,
a temporary copy is made. When the statement has been evaluated, the temporary objects are
freed. The code generated for the statement consists of a C block containing:

• temporary object declarations,

• temporary object initializations,

• expression executables, and

• freeing of temporary objects.

For integer literals and strings, we generate code that will create temporary instances of integer
and string, and initialize them to the appropriate values.

Hybrid loop statements are translated to C for(;;) statements. If the statements have a label
then the following statements are added

_CONTINUE_labelName : continue ;
_BREAK_labelName : break ;

just before the end of the for loop. Hybrid break and continue statements are translated to
break and continue, if they do not have a label, and to goto BREAK labelName and goto
CONTINUE labelName if they do have a label.

Block statements are treated as loop statements, except that the statements added before the end
of the for loop are:

_CONTINUE_labelName : ;
_BREAK_labelName : break ;

This way a continue labelName statement will behave as a break2. The Hybrid if - else , check and
switch statements are translated using C if - else statements. Return and end statements are
translated to return. Delegate, oidCalls, reflexes etc. are translated to run-time library calls.

After translation of all methods is completed, a table containing the C functions that implement
the methods is created, and a function that returns this table is defined. The function is public and
has a unique name, constructed from the type name. It is called by the type manager whenever
the system comes up, to initialize the function pointers in the method table.

5 The Type Manager

The type manager handles all information generated by the Hybrid compiler regarding object
types. This information is stored in a type database within the persistent workspace, in order to
be accessible to active objects at run-time.

The type manager consists of three components:
2Note that a continue statement is illegal inside a block. This is something that the semantic pass should find,

but is not done in the current implementation.

Konstantas, Nierstrasz and Papathomas 11

• the type interface manager

• the version manager, and

• the type manager Coordinator.

The type interface manager handles all information concerning the visible interface of object types;
the version manager keeps track of versions of type realizations; and the type manager Coordinator
coordinates the other two, providing an interface to the external world. In addition to these
modules, there is a run-time interface to the type manager that is mainly responsible for handling
run-time errors. (The run-time interface is not actually part of the type manager, but cooperates
closely with it.)

All items in the type database have a unique identifier (id), each containing three fields:

• the item field, indicating the kind of item the id refers to (i.e., a type, a version, a table, etc.)

• the environment or index field, identifying either the environment of the id (for types and
versions) or the specific entry in a table (e.g., the fifth operation in the method table).

• the key field, which uniquely identifies the item in its environment.

5.1 Basic Types

Basic types are those provided directly within the system. Basic types are either primitive or
generic. The primitive types are those at the lowest level in the type hierarchy, used to construct
more complex types. Examples are integers, booleans, and delay queues.

For practical reasons, there are some restrictions on the way primitive types can be used:

• Primitive types cannot be inherited. For example, one cannot define a new type inheriting
from integers and booleans.

• Instances of some of the primitives types cannot be copied, in particular, delay queues and
displays.

Generic types are blue-prints for only defining other types. The generic types in Hybrid are array,
enum, and oid. For example, all arrays have the same interface, but differ in the index type and
in the type of elements they hold. Thus, arrays cannot be considered to belong to the same type,
but rather each defines a new type, with a similar interface and methods. The generic array type
holds all information needed for the creation of an array type. An array without its parameters
bound is not a true type, and cannot be instantiated. Furthermore, array is a reserved word, so
an attempt to define a variable as:

var x : array ;

will yield a syntax error. Types constructed using generic types share the pre-defined methods.

All basic types have been implemented in C and are integrated into the system. They are loaded
by the type manager whenever the workspace is initialized.

12 An Implementation of Hybrid

5.2 Type Interface Manager

All types in the type database are referred to by their type id (described above). The item field
directly indicates what type constructor was used to define the type, i.e., abstract, record, oid,
etc. The environment field is intended for types defined in a distributed setting, and is therefore
not used in this prototype. The key field is used to search a table containing the name of the type
and the location of the type information structure. If a type is defined as an alias for an existing
type, as in:

type newType : oldType ;

then newType will be given a new type id, but it will point to the the same entry as oldType.

The type information structures vary depending on the type constructor used in the definition.
The most common is the abstract type structure. The three others are for: enumeration and range
types, variant types and array types.

5.2.1 Abstract Types

Abstract types are the most common types in Hybrid. Their type information structure is the most
general and the most complicated one! The following tables are needed for an abstract type:

• The public operation table.
Each entry contains the name of the operation (or operator), the lists of type ids for the
argument and return values3, other information concerning the nature of the operation (i.e.,
infix, prefix etc. and whether it uses a delay queue), and the type id of the type where the
operation was originally defined. This last piece of information is needed to support multiple
inheritance, to be explained later.

• The public instance variables table.
Each entry holds the name of the instance variable, its type id, and the type id of the type
in which it was introduced (for supporting multiple inheritance).

• The type parameter list.
Abstract types can be parameterized. The parameters are constrained to be subtypes of some
given type. (NB: an unconstrained parameter is “constrained” to be a subtype of the most
general type, object.) For each parameterized type we store the ids of the constraint types
and the origin type of the parameter (for multiple inheritance).

• The parameter offset table.
This table is used in support of multiple inheritance, and will be explained later.

• The casting table.
Any object may be cast to an effective type to which its actual type conforms. The number
and order of the visible operations and instance variables may be different after casting. Each
entry of the casting table holds the type id of a type to which instances can be cast, and
points to two lists containing the mapping between operations and instance variables of the
two types (more details will be given in the section about type casting).

3Note that the language does not currently support compound return values.

Konstantas, Nierstrasz and Papathomas 13

• The parent list.
For supporting multiple inheritance, we keep track of the list of type ids of ancestor types
from which a child ultimately inherits.

• The version list.
For each type we keep track of the list of its versions. The “top” entry is the most current
version of the type. In order to allow sharing of the version list of generic types, the number
of versions that a type can have is limited to a pre-defined maximum. Inheriting types have
new versions automatically created when an ancestor is updated.

• The type reference table.
Parameterized types used in type specifications must have all their parameters bound, either
to existing types or to the parameters of the type being defined, as in:

type newType : oldType of (integer, boolean) ;

or:

type newType of (parameterType :< boolean) :
oldType of (integer, parameterType) ;

The type reference table keeps track of the parameter bindings.

• The string table.
For each type in the type database, all of the strings (names) used in the type definition are
stored in the string table, which is a single, contiguous block. Occurrences of these strings
are translated into name ids, which are offsets into the string table.

Finally, for each type there is a tinfo table that holding the pointers to all of the above tables. The
type id is redundantly stored as a means to check consistency of the type database.

5.2.2 Enumeration and Range Types

Because the semantics of enumeration and range types similar, we use the same type information
structure for both. Given an enumeration type, such as:

type colors : enum {white, yellow, red, green, blue, black} ;

we assign a number to each element of the enumeration type and use this number in compilation.
This way the above is finally seen as a range from 1 to 6. Whenever the item green is referenced
we instead use 4. This is done during the second pass of the compiler after ensuring the type
correctness of an expression. Thus, the tables held for enumeration types are:

• The enumeration element list.
This holds the names of the enumeration elements. Range types have a null list.

• The range list.
This is a list of ranges in the form from .. to, specifying the values of a range type. (Multiple
ranges could thus be handled, though the language does not support them.)

14 An Implementation of Hybrid

In addition to the above tables, the tinfo table includes pointers to the following generic enumeration
type tables:

• The operation table.

• The version list.

• The string table.

These tables are as described for the abstract types. Note that for enumerated types, inheritance
is not supported.

5.2.3 Variant Types

Variant types are virtual types, that is, no versions are attached or can be attached to them.
Variant type objects are null objects (no operations, no instance variables) until they are bound
(dynamically) to an instance of the list of variant types. Here we must note that message passing
in variant type objects can be done only after performing a run-time type-check to disambiguate
the actual type of the instance (i.e., using the check statement provided by the language).

The tables for the variant types are

• The variant list.
This holds the names of the variant types and their type ids.

• The string table.

• The tinfo table.

Note that inheritance of variant types is not allowed in this implementation.

5.2.4 Array Types

Arrays are specially handled by the type manager. First, there is a generic type array that provides
the array operations. Second, array types serve as blueprints for their instances. The number of
instance variables is determined from the index parameter. The bounds are stored with the instance
variables and are returned by the lower and upper operations. Array types have the following
tables:

• The parameter list.
Containing the parameter constraints, as for abstract types.

• The array elements table.
This holds the upper and lower index bounds, and the type id of the array elements.

• The operation table.

• The version list.

Konstantas, Nierstrasz and Papathomas 15

• The string table.

The last three tables are those defined for the generic array, and are shared by all array types. Note
that also for arrays, inheritance is not supported.

5.3 Version Management

Each version in the type manager is associated with a version id. The fields of the id are the same
as for the type ids. In contrast with the type interface manager, the version manager uses a single
structure for all versions. For each entry the following tables are held:

• The method table.
This table holds the C function pointers identifying the executable code of the methods for a
type.

• The instance variable template.
This describes how to instantiate objects. It includes the names of the instance variables,
their type ids, the original ancestor’s type id and, if the type of the instance variable is
parameterized, the list of parameter bindings.

• The public to private instance variable mapping table.
This table identifies which actual instance variables in the realization of a type correspond to
those defined publicly in the interface. This is necessary since there will typically be other,
private instance variables as well, and different realizations may require different mappings.

• The instance variable offset table.
The table is used for the support of multiple inheritance and will be described shortly.

• The string table.
As before.

• The vinfo table.
This table holds the pointer to the other tables and also the version id and the type id of the
corresponding type.

5.4 Object Instantiation

An object, that is, an instance of an object type, is represented by a structure containing pointers
to various tables. All objects, independently of their type, are represented using the same structure.
In the discussion that follows, when we say “the pointer to the object” we mean the pointer to the
structure containing the object’s representation.

There are two kinds of tables in the object instance structure: private tables specific to that
instance, and shared tables from the type database. The object instance structure contains the
following fields:

• The actual type id.
This identifies the type of which the object is an instance, i.e., the type providing its realiza-
tion.

16 An Implementation of Hybrid

• The effective type id.
This identifies the type that the instance currently appears to belong to. This must be a type
to which its actual type conforms. The effective type is changed by type-casting.

• The version id.
Identifies the realization version of the instance (which may be older than the most current
version of that type).

• The instance variable array. (private)
This is an array of pointers to the instance structures of the values bound to the instance
variables.

• The parameter binding list. (private)
Instances of parameterized types have a copy of the list of types bound to the parameters.

• The method table. (shared)
From the version entry.

• The operation casting table. (shared)
When the actual and effective types differ, the casting table must be used to correctly index
the method table. This is a shared table from the type interface entry.

• The public to private instance variable mapping table.
From the version entry.

• The instance variable casting table. (shared)
From the type interface entry.

• The instance variable offset table. (shared)
From the version entry.

• The parameter offset table. (shared)
From the type interface entry.

• The link counter. (private)
A counter indicating the number of objects that are referencing it. When the counter reaches
zero, the object can be deleted.

• The deletion flag. (private)
When an object issues a delegated call, the result of the call must be returned to the object.
But if in the meantime the object attempts to delete itself, we defer deletion until the delegated
call returns, raising the flag to indicate that.

We must note, however, that instances of basic types (i.e., integers, booleans, etc.) are handled
differently. The instance variable array, instead of holding pointers to further instance structures,
directly contains the C value corresponding to the value of the instance.

5.5 Implementation of Mechanisms

5.5.1 Multiple Inheritance

Multiple inheritance can be implemented in several ways, depending on when properties are to
be inherited, and to what degree sharing is an issue. For example, one can create realizations

Konstantas, Nierstrasz and Papathomas 17

of children at compile-time, and automatically create new versions when parents are modified, or
create the type interface at compile-time and defer realization creation until an instance is actually
needed. There is a trade-off in the two approaches between compile-time and run-time overhead.
Another implementation decision is whether children and parent should share not only source code
but also executable. In our implementation we chose to defer realization creation until and instance
was needed, and to generate code that can be shared between both parents and children.

The main problem with generating sharable methods is that instance variables may have a differ-
ent relative location in parents and children. Suppose parent1 is an abstract type with operations
op11, op12 and instance variables iv11, iv12. Similarly, parent2 is an abstract type with oper-
ations op21, op22 and instance variables iv21, iv22.

Instance variables are accessed by indexing an array holding the values they are currently bound
to. Since all objects have a fixed size representation, this indexing is equivalent to the use of an
offset into the instance variable array.

In an instance of type parent1 the instance variable array will have entries (iv11, iv12), and
the method table will be (op11, op12). If op11 accesses iv11, then the index used to access the
instance variable array will be 1, and it will be hardcoded in the executable method.

If we now define type child : inherits (parent1 and parent2) ;, then child will have four
operations and four instance variables. The version’s method table will point to the executable
methods of the parents. The array of instance variables for an instance of child will be (iv11,
iv12, iv21, iv22), and the operations will be (op11, op12, op21, op22). As we said the child
will use the same code for the operations as the parent. So when op21 is called (which uses iv21)
it should access not the first instance variable, but the third. But the index is hardcoded to be 1.
In order to solve this problem the instance variable offset table from the version is used (which is
included in the instance). In this case the table will be (0,0,2,2) and upon compilation of the
methods instead of directly using the instance variable index, we use ivOffsetTab[<operation
Index>] + index, where <operation Index> is the index of the executing operation.

Back to our example now, op21 has index number 3, and thus it will access the instance variable
2 + 1 which is iv21.

Obviously abstract types will have only zeros in their instance variable offset table.

Another problem that arises in multiple inheritance is name clashing. There are several criteria for
uniquely identifying an operation name. If more than one operations have the same name, then
the arguments of the operation are checked. If the argument types are also the same, then the
originating type must be specified. 4

It is also possible that a child may multiply inherit from the same parent. For example, in:

type child1 : inherits (parent1 and parent2) ;
type child2 : inherits (parent2 and parent3) ;

type child3 : inherits (child1 and child2) ;

we optimize child3 by including parent2 only once, thus avoiding the name clashing problem.

4This is not supported in the current implementation of the language.

18 An Implementation of Hybrid

5.5.2 Type Parameters

Abstract types may be parameterized. The type parameters may be used in the type specification
and in the realization of the type as though they were actual types, but they must be bound, before
instances can be created (just as with the basic type array). Type parameters were not difficult
to implement, but combining them with multiple inheritance posed some problems that were not
easy to solve.

We shall first describe how simple parameterization is implemented, and then we will extend the
description to deal with multiple inheritance.

Parameters can be used in Hybrid as if they were actual types. Upon instantiation, a list of bound
type ids is associated with the instance.

When we compile a parameterized type, we recognize the parameters, and instead of placing a type
id in the code, we reference the corresponding entry in the parameter binding list of the instance.
At run-time the correct type id will be found.

In the case of constrained parameters, the type that a parameter is bound to must be a subtype
of the constraining type. Type casting is used to ensure that methods will be correctly accessed.
Instances of the type bound to the parameter are cast to the constraining type, and accessed via
the restricted interface.

Combining parameterization with multiple inheritance poses a problem similar to that of resolving
instance variables and operations, namely, to have the parameterized parent access the correct
parameters. The solution we provide is similar to the one used for instance variables and operations.
We use an offset to correct accessing of the parameter binding list. The parameter offset list has
one entry per operation and is indexed via the operation’s index.

5.5.3 Type Casting

Recall that objects in Hybrid may have both an actual type, which is the type providing the
realization of its instance variables and methods, and an effective type, which may be any supertype
of the actual type. For example, the declared type of an instance variable is generally an effective
type, since variables may be dynamically bound to values whose actual type is not known till
run-time. Objects must be type-cast in order to change their effective type. This procedure is
important not only for statically verifying that expressions are type-correct, but actually causes code
to be generated that ensures that the object’s instance variables and methods will be consistently
accessed.

The following example illustrates the realization of type casting in the prototype.

Suppose that type1 is a type with operations op1, op2, op3, op4 and instance variables iv1,
iv2, iv3 iv4, and that type2 has operations op2, op4 and instance variables iv1, iv4, iv2.
If the common operations of the types take the same arguments and return the same values, and
the common instance variables are of the same type, then type1 is viewed as a subtype of type2,
and so instances of type1 may be cast to type2.

Suppose that we have a variable of declared type type2 which is bound at run-time to an instance
of type1. The code generated by the compiler, however, will be based on the variable’s effective
type. Since operation invocations are translated into indices in a method lookup table, a call to
operation op2 will be translated to the index 1. For an instance of type1, however, op2 is the second

Konstantas, Nierstrasz and Papathomas 19

operation in the table. Access to methods and instance variables is therefore corrected through
the use of a casting table that provides the mapping from the effective type of an expression to
the actual type of its value. Casting tables are stored in the type database together with the type
interface information concerning the actual type involved in the mapping.

The casting tables required for the example to cast from type1 to type2 are:

• operation casting table: (2, 4)

• instance variable casting table: (1, 4, 2).

Casting tables play a very important role in the prototype. They are not only used for accessing
the method table, but also in every case where an operation index is needed. That is, for accessing
parameters, instance variables, etc. In the next section we present a global view of the combined
usage of the various mechanisms we have presented.

5.5.4 A Global View

A large number of transformation and mapping tables are used for reaching instance variables and
methods. We have tables for offset correction due to inheritance, tables for the mapping parameters
and tables for type casting. All these tables must be used together, since the mechanisms can be
combined. That means that on code generation we must reference an operation through a number
of tables, in order to end up with the correct method.

As an example, consider the following parameterized type:

type newType of (parameter :< Y ...) :
abstract { ... } ;

private {
instance variables
var iv1 : A ;
var iv2 : B ;
...
operation : (arg1 : A ; arg2 : B) -> ;
{

var y : parameter ;
var x : X ;
...
x.op1() ;
x.iv2 ;
arg1 := y ;
iv1 := z ;
...

}
}

The C code generated for the operation will be:

static bl_Start operation(argList, curObject, ivOffset, paramOffset)

20 An Implementation of Hybrid

bl_Start argList, curObject ;
int ivOffset, paramOffset ;

Inside the operation code we have two automatic variables. One is of a known type X, and the other
is of the parameter type. Before starting execution the two variables will be created. Instantiating
variable x is trivial since its actual type is known at compile-time. For y, however, we must refer
to the object’s parameter list. Since the object’s type may have been defined through inheritance,
the parameter list may contain inherited parameters from other parents. The part that refers to
this type starts at offset paramOffset. Since the parameter is the first in the list, we will find the
type id of the type it has been bound to at:

curObject->paramTab[paramOffset+1]

Instance variables are similarly accessed via ivOffset.

Accessing methods and instance variables of a remote object is more complicated. Casting tables
need to be used at every step. The index of the method must be found via the operation casting
table. Instance variable and parameter offsets are obtained from the corresponding tables via the
operation index. But the index must be corrected via the casting table. Thus the translation of
the x.op1() call will be (assuming that op1 has index 1):

*(x→opTab[x→castOpTab[1]])
(<packed Arguments>, x,
x→ivOffsetTab[x→castOpTab[1]],
x→paramOffsetTab[x→castOpTab[1]])

For the instance variables another level of indirection is needed, since the instance variable table
contains all the private instance variables, and we only know at compile-time the public ones. That
is, in order to access x.iv2, we need:

x->ivTab[x->pub2real[x->ivCastTab[2]]]

Of course, one thing that we must not forget is that all tables (specifically, all persistent data) are
referenced using offsets into the workspace. Thus, when we must access, say, the argList, we must
translate the workspace offset to an actual address. The address of argList, for example, would be
(char *)(StartOfWorkspace + argList).

A final point to consider is that it is quite common for objects to have the same actual and effective
type. The casting tables in these cases are trivial, i.e., (1, 2, 3, ...). Similarly, since many types are
not defined using inheritance, the offset tables will also be trivial, i.e., (0, 0, 0 ...). Such tables are
null tables, and can be omitted from the instance. When we access methods and instance variables
for objects with null tables, no correction needs to be performed. Code is generated that checks at
run-time for the presence of these null tables. If the table does exist, then it is used to correct the
offset, otherwise no correction is necessary. For example, if we want to access the 4th entry in a
casting table, the following code will be generated:

((castTab == 0) ? (4) : castTab[4])

Konstantas, Nierstrasz and Papathomas 21

6 Run-Time Support

The run-time system provides an execution environment for active objects. It is composed of:

• a persistent workspace,

• a thread manager that implements light-weight processes (threads),

• an activity controller that provides support for Hybrid activities in terms of threads,

• a communication manager that handles communication with the outside world, and

• support for system objects.

The run-time environment is implemented as a single UNIX process that acts as a server commu-
nicating with client processes. The persistent workspace is effectively the virtual memory of this
process, which is saved in a file whenever a session ends (or as frequently as required by the running
applications). The workspace contains all persistent data, other than the executable code of the
run-time system. Since objects’ methods are linked into the run-time system when new types are
compiled, the workspace may be relocated in virtual memory from session to session. For this
reason pointers in the workspace are represented as offsets rather than virtual memory addresses.

Concurrent threads execute within the shared workspace, and are themselves persistent. Separate,
protected address spaces for threads are, in principle, not required, since Hybrid provides no mech-
anisms for accessing arbitrary memory locations (as is the case with C pointers). Furthermore,
implementation of threads as, for example, UNIX processes, would make context switching and
interprocess communication far more expensive. A similar approach to memory protection has
been taken in the Cedar system [Swinehart et al. 1986] for much the same reasons.

Rather than implementing active objects as threads that communicate using a message-passing
facility, it was far more natural to model objects as passive data structures that become active
when a thread enters them. The reason is that objects may schedule and switch activities using
the mechanisms of delegation and delay queues. Activities are therefore more readily modeled as
threads that synchronize with respect to shared, passive data. (Multiple threads will be needed
to represent activities in a distributed implementation.) The thread manager therefore provides
monitor-like passive objects for implementing the shared, persistent data of Hybrid objects.

The activity controller provides an extra layer of support to threads that implement Hybrid ac-
tivities. These threads must synchronize access to shared passive objects so that the semantics of
active objects is preserved. The interface provided by this component is used in the code generated
by the Hybrid compiler.

The communication manager acts as an intermediary between Hybrid objects and the outside
world. It uses BSD sockets and the UNIX facilities for asynchronous I/O. The communication
manager uses the synchronization primitives of the thread manager to suspend and resume threads
requesting I/O.

Objects interact with the run-time system either directly through calls generated by the compiler
when certain language constructs are encountered, or indirectly by communicating with pre-defined
system objects provided by the run-time system. Other system objects supported by the run-time
system include delay queues and object ids.

22 An Implementation of Hybrid

6.1 The Thread Manager

The thread manager implements lightweight processes (i.e., threads) that run within a (heavyweight)
UNIX process. Monitor-like passive objects are provided for thread synchronization. Once the
thread manager has been initialized at the beginning of a session, everything executes as a thread,
that is, not just Hybrid activities, but also parts of the system, such as the communication manager.

Threads execute in a non pre-emptive fashion, yielding control to the thread manager when they
terminate, when they execute a hold instruction (generated automatically by the Hybrid compiler),
or when they must wait to access a passive object. They are scheduled in a simple round-robin
fashion.

The use of hold instructions is similar to the approach taken to simulate concurrency in Concurrent
Euclid [Holt 1983]. An alternative approach we experimented with was to interrupt executing
threads using the UNIX alarm signals, and to schedule threads in a time-sliced fashion. Threads
could be assigned different time slices according to need. Critical sections were provided by blocking
alarm signals for short instruction sequences. A stand-alone time-slicing thread manager was
implemented, but was not used for the Hybrid prototype because other parts of the system had
already been developed without pre-emptive scheduling in mind.

Threads execute on the UNIX process stack. When a thread is suspended, its stack is copied into
the persistent workspace, and the stack of the next thread to be scheduled is copied back to the
process stack. Although this approach seems highly inefficient, the alternative would be to allocate
stacks for threads directly in the workspace. The difficulty would be in ensuring that stacks do
not overflow and corrupt the workspace. The overhead of copying stacks was preferred to that of
repeatedly testing for stack overflows (at least for the purposes of a prototype implementation).

The thread manager provides a C type, called monitor, for synchronizing threads. It can be used
to implement monitor-like behaviour for shared, passive objects. The following set of operations is
used to simulate monitor behaviour:

• An enter operation used for gaining access to a monitor (i.e., in order to perform an operation
on the shared data it protects).

• A leave operation to give up control of the monitor.

• A wait operation that implements waiting on a monitor’s condition variable. This operation
takes as an argument a queue that is used for suspending the thread.

• A signal operation, taking as argument a queue of threads, implements a signal on a moni-
tor’s condition variable. If the queue is not empty, the first thread in the queue is awakened,
and the invoking thread is suspended.

Monitor-like behaviour for a C type is accomplished by including a monitor variable, and restricting
access to functions that perform enter and leave on the monitor before and after accessing the
type’s variables. The functionality of condition variables for monitors is provided by applying
signal and wait to variables of type queue in between the enter and leave calls. The C types
domain and port described later have been implemented using this facility. In the rest of the
section we shall refer to such objects simply as monitors.

Konstantas, Nierstrasz and Papathomas 23

6.2 The Activity Controller

The activity controller uses the threads and passive objects provided by the thread manager to im-
plement the behaviour of Hybrid activities and domains. As we have outlined earlier, the prototype
implements active objects by modeling them as passive objects shared by active threads (rather
than as lightweight processes passing messages). The semantics of message-passing in Hybrid, which
is based on remote procedure calls, led naturally to this approach. The activity controller provides
the extra layer of control needed for threads to behave like activities. This layer is invoked through
instructions generated by the Hybrid compiler implementing concurrent language constructs, and
through pre-defined basic object types, such as delay queues and object ids, which are concerned
with communication between concurrent objects.

6.2.1 Support for Activities and Domains

Hybrid domains are implemented as shared passive objects. Recall that a domain becomes active
when it accepts a message. In the implementation, domains become active when they are accessed
by activities. Synchronization is achieved by requiring activities to acquire a domain lock before
accessing the domain.

All activities are assigned a unique activity id when they are created. This identifier is used for
synchronization purposes. It also points to a data structure that contains information concerning
the current status of the activity.

An activity may acquire a domain lock by calling an operation of a domain monitor (see 6.1)
associated with the domain.

The domain monitor maintains the following information for activity synchronization:

• a status, indicating whether the domain lock has been acquired by some activity,

• an activity id, that identifies the activity currently holding the domain lock,

• a lock counter used for nested locking.,

• a condition variable used for suspending activities unable to acquire the domain lock when it
is already held by another activity, and

• a circular linked list of condition variables, including those that represent open delay queues,
and the one for activities waiting to acquire the domain lock.

When an activity wishes to enter a domain, it performs an operation to acquire the domain lock,
providing its activity id. If the lock is available, it is granted. If it is held by another activity, the
activity is suspended on a condition variable, i.e., it is added to a queue. If the lock is already held
by the activity, the lock counter is incremented and the activity may proceed.

When an activity leaves a domain, it performs another operation that decrements the lock counter,
and releases the domain lock when the counter falls to zero. When the domain lock can be released,
the next non-empty condition variable in the circular list is signaled. If all conditions are empty
the domain status becomes idle, and the lock becomes available to new requests.

24 An Implementation of Hybrid

6.2.2 Delay Queues

Delay queues are predefined system objects. Recall that they are used by objects that need to
control when certain operations may be invoked – messages are accepted when the delay queue is
open, and delayed when it is closed.

The information maintained by delay queue objects includes their domain, their status, and a
unique identifier associating the delay queue with a condition variable in the corresponding domain
monitor. Each domain monitor of a domain with delay queues maintains a circular list of condition
variables representing the open queues. The domain monitor cycles through its list to avoid simple
forms of starvation that could occur if certain delay queues were preferred.

Open and close operations on delay queues are implemented by inserting or removing the associated
condition variable from the domain monitor’s circular list. Removing the condition from this list
means that the activities waiting on the condition will not be awakened when the domain becomes
idle.

Since association of operations with delay queues is statically determined, the compiler generates
special code for invoking these operations. This code first checks whether the delay queue is open
or closed. If it is closed, the activity must decrement its lock counter and wait on the associated
condition variable. (Deadlock is possible if the object has been poorly programmed.) If the queue
is open, it checks whether there are other activities waiting on the associated condition. If there
are it signals the condition and then waits on it.

6.2.3 Object Ids

Communication between objects in separate domains is performed using object identifiers, pro-
vided by the system type oid. As a consequence, all Hybrid operation invocations can be directly
translated into C function calls, with remote communication between objects being handled di-
rectly in the implementation of object ids. When an operation is invoked using an object id, it
checks whether the domain of the referenced object actually differs from the current one, and, if
so, attempts to acquire the necessary domain lock. The oid contains the information needed to
determine the referenced object’s location and its domain.

Oids will play an important role in a distributed implementation of the Hybrid system. They will
provide the mechanism for objects in different environments to communicate with one another. In
this case oids will identify not only objects and their domains, but also an indication of the object’s
environment. Communication with objects in remote environments will require support from the
communication manager for reliably delivering messages to the remote object manager.

6.2.4 Reflexes and Delegation

The Hybrid compiler translates ordinary operation invocations directly to C function calls. This is
not the case with reflexes and delegated calls.

Recall that reflexes are special operations for starting a new activity. Whenever a reflex is invoked
the compiler generates a call that allocates and initializes a structure representing the new activity
and creates a thread for that activity. When the new thread starts it is bound to a function
implementing the reflex on the target object.

Konstantas, Nierstrasz and Papathomas 25

If the target is a local object, then the new thread must first lock the domain in which it is to
execute. If the target is remote, the operation is executed using an oid, which will take care of
locking the domain. At the end of the operation, the domain is unlocked, the activity structure is
freed and the thread terminates, returning control to the thread manager.

For delegated calls the compiler generates code that calls a domain operation that releases the
domain lock and saves the value of the lock counter in the stack of the running thread. Then the
thread calls the operation on the target object of the delegated call. When the operation returns,
it first must re-lock the old domain (recall that delegation is intended to permit interleaving of
activities within a domain), and resets the lock counter to the saved value.

See section 7 for an example using delegated calls.

6.3 Communication Manager

The communication manager handles all communication with client processes. Communication is
asynchronous, so as not to interfere with the thread manager (the object manager must not block
on I/O while there are runnable threads).

Threads generally interact with the communication manager through the medium of system-defined
port objects that are implemented as monitors (see section 6.1). Ports hide the details of manip-
ulating UNIX file descriptors, and provide the means for synchronizing threads that communicate
with clients. The following information is associated with a port:

• the port’s status, which may be unused, active or suspended,

• a file descriptor used for communication,

• a condition variable for suspending threads requesting unavailable input,

• a condition variable for suspending threads requesting service when the port itself is sus-
pended, and

• a queue for incoming messages.

An active port is associated with a file descriptor actually being used to communicate with a client.
Requests by threads to send a message through the port are handled immediately by writing the
message using the file descriptor.

A suspended port is available to running threads, but no longer has an associated file descriptor.
A thread requesting communication through that port will be suspended. The port may become
active again when a client requests that connection to that port be resumed. Threads suspended
on output may then be signaled.

When a message arrives on the file descriptor associated with the port, the message is inserted in
the port’s message queue and the condition of threads suspended for input is signaled.

Communication from the clients is handled by a special input thread created when the session
starts. Whenever input is available, the object manager receives asynchronous notification via a
UNIX SIGIO signal. The signal handler passes control to the input thread either directly, or by
informing the thread manager that it needs to be scheduled. The input thread then determines

26 An Implementation of Hybrid

which file descriptors need to be read (using the UNIX select system call), and passes the input to
the appropriate port objects.

Requests from clients wishing to connect to a port are handled using the BSD socket mechanism,
which enables a process to receive messages asynchronously at a known address. The request may
be either for a new port, in which case an unused port is allocated, or for a suspended port to be
resumed.

7 A Hybrid Example

The capabilities and restrictions of the prototype Hybrid implementation can be best illustrated
by an example. A simple example utilizing oids and delegated calls, is an administator. An
administrator is an object that manages a set of workers. Clients (not shown) send requests to
the administrator to have jobs performed, and the administrator distributes them to the workers.
Since the administrator and the workers are implemented as independent Hybrid domains, they
may execute concurrently. The administrator distributes jobs using delegation in order to be able
to switch its attention to new requests without waiting for the workers to finish their jobs.

In our example the worker is very simple. It has just two methods: one for initialization and one
for processing.

#
A worker
#
type worker : abstract {

init : (integer) -> ;
doit : (integer, string) -> string ;

} ;
private {

var workerId : integer ;

init : (id : integer) -> ;
{

workerId := id ;
...
return ;

}

doit : (fromClient : integer ; message : string) -> string ;
{

var returnMessage : string ;
Process the data
return (returnMessage) ;

}
}

The administrator also has two methods: one for initilization and one through which the clients
make requests. A private method is used for selecting a worker to pass the request.

Konstantas, Nierstrasz and Papathomas 27

#
The administrator
#
type administrator : abstract {

init : -> ;
work : (integer, string) -> string ;

} ;
private {

var worker : workersArray ;
var jobs : workersJobs ;

init : -> ; # initialize the workers
{

var i : integer ;

i := worker.lower ;
loop {

create a worker as a new domain:
worker[i] <- export(worker) ;

call via an oid:
@(worker[i]).init(i) ;
++i ;
if (i >? worker.upper) {

break ;
}

}
return ;

}

selectWorker : -> integer ; # select a worker to pass the work to.
{

#
A trivial selection algorithm: the one with the least jobs!
#
var i : integer ;
var workerId : integer ;

select the least loaded one
i := jobs.lower ;
workerId := i ;
loop {

if (jobs[i] <? jobs[workerId]) {
workerId := i ;

}
++i ;
if (i >? jobs.upper) {

break ;
}

28 An Implementation of Hybrid

}
++jobs[workerId] ; # One more job for the worker
return (workerId) ;

}

work : (fromClient : integer ; message : string) -> string ;
{

var workerId : integer ;
var returnMesage : string ;

workerId := selectWorker () ;
returnMessage := delegate(

@(worker[workerId]).doit(fromClient,message)
) ;
--jobs[workerId] ;
return (returnMessage) ;

}

}

The administrator has two (private) instance variables. One that holds the oids of the workers, and
one that holds the queue of jobs for each worker (used by the selection method). When the init
method is called, the workers are created and initialized. The export call will create each worker
as a separate domain, returning the oid of the new worker. The worker is initialized via an oid call
(i.e., using the @ symbol).

When a client makes a request to the administrator, it calls the work operation via the oid of the
administrator. The administrator will select a worker (in the example the one with the smallest
queue) and delegate the work to it. By delegating the call, the administrator may switch its
attention to other clients’ requests while the worker handles the job. That is, the administrator’s
domain does not block during call, as would be the case if the call were not delegated. When
the job is finished and the administrator is ready to accept the worker’s response, the activity is
resumed within the administrator, and it delivers the finished job back to the client.

8 A Note on Design and Implementation

The ideas behind Hybrid developed over several years, beginning with the development of another
experimental object-oriented language called Oz [Nierstrasz et al. 1983; Nierstrasz 1985]. Oz was
also based on the idea of active objects, but the interface to an object was a set of triggers rather
than operations. In Hybrid, triggers can be implemented using the more primitive mechanisms of
delegation and delay queues.

An initial language design was completed by the beginning of 1987 [Nierstrasz 1987a]. A skeleton
parser (i.e., recognizer and pretty-printer) for Hybrid was implemented by Oscar Nierstrasz, using
the yacc and lex compiler-writing tools, as well the routines for managing the persistent workspace.
Around this time, a co-routine package for C was implemented by Michalis Papathomas. The
co-routines package was later used to provide concurrent threads for the object manager.

Konstantas, Nierstrasz and Papathomas 29

Implementation began in earnest in the spring of 1987, beginning with the implementation of the
run-time support for active objects, and a parser and type manager for use by the compiler. At this
point the plan was to implement object methods by translating them to an intermediate form that
would be interpreted at run-time. It appeared at the time that this was the most flexible approach
for supporting run-time addition of new object types. An abstract machine language was partially
implemented.

A major turning point for the project took place in the fall of 1987, when we decided to abandon
the abstract machine approach and translate Hybrid methods to C code. An abstract machine
may be useful for enhancing the portability of a stable language, but it significantly complicates
the prototype implementation of an experimemtal language. By choosing to translate to C, we
avoided the problem of designing, implementing and debugging an abstract machine before getting
to the real problem of building the Hybrid prototype. The C compiler together with the run-time
system would provide us with a reliable abstract machine.

The most intensive implementation effort occurred during the final six months. The Hybrid com-
piler and the type manager were implemented by Dimitri Konstantas. The run-time system was
implemented by Michalis Papathomas. The total implementation effort comprised roughly two
man-years over the period from March 1987 to May 1988.

The source code lines of the major components of the Hybrid prototype are of the following sizes:

Compiler 18,102 lines
Type Manager 10,016 lines
Thread Manager 5,497 lines
Basic User Interface 5,426 lines

In addition, there were the following smaller components:

Run-time Type Manager Interface 1,882 lines
Persistent Workspace Module 1,969 lines
User Interface 1,806 lines
Test Programs 229 lines

The total size of the source code is 44,927 lines of C code.

Although the performance of the Hybrid examples implemented using the prototype appeared
acceptable, we have not yet used Hybrid to implement realistic applications, nor do we have any
measure yet of the performance as compared with other object-oriented or concurrent systems.

On the other hand, the performance of the compiler can be easily measured. The Hybrid compiler
translates Hybrid source code to C at a rate of about 100 lines per second on a Sun 3/50 workstation.
The C compiler is quite slow at compiling the translated code: around 200 seconds for 800 C code
lines (or 100 hybrid source lines). The reason for this is that accessing of methods and instance
variables in the generated code requires a large number of indirections through various lookup
tables. For example, a method call expands to a 20 line C statement (more that 1500 characters)
containing 23(!) conditional expressions.

9 Future Work

Since Hybrid was conceived as an experimental language and system rather than as a product,
there are quite a few directions in which this work may continue.

30 An Implementation of Hybrid

First of all, the prototype needs to be extended to handle distributed object environments. In
principle this should not be too difficult, since remote object managers can be viewed as special
kinds of client processes. One difficulty, however, with a correct implementation would be the need
for guaranteeing global consistency. Cooperating object managers need to provide the illusion of
a global, persistent workspace. If an object manager’s machine crashes, simply backing up to the
last stable version of the local workspace may cause messages to be lost, and therefore leave remote
objects blocked and waiting for a lost activity.

The current implementation of the compiler implements only a subset of Hybrid, and ignores a
number of semantic issues. In-line type definitions, for example, are not supported. The type
manager should be extented to allow local type definitions. This way we will be able to have in-line
type definitions and also local type databases for each user. Each “user” (person or object) will be
able to define a local type database as an extension of the global one. New types can then be first
tested as local types, and then added to the global type database. The next step will be to have
a distributed type manager. Possible approaches are to either have a centralized type manager
serving the network, or distinct type managers for each environment.

Dynamic linking of libraries is a feature that once incorporated will better support dynamic inher-
itance and local type databases.

The language itself needs to be re-designed and extended. Exception handling is clearly essen-
tial, and must be integrated with the type model. Variant types and the run-time type-checking
construct (check) should be replaced by a mechanism supporting dynamic inheritance. (Dynamic
inheritance would provide a means for expanding the interface to an object without violating en-
capsulation.)

We need to use the prototype to build concurrent and distributed applications to see how well Hy-
brid addresses these areas. The implementation effort also provides us with a very clear indication
of the language constructs that are costly, and those whose semantics were poorly conceived. In
particular, Hybrid’s approach to dynamic binding makes it almost impossible for the compiler to
generate efficient code for finding and executing methods. A choice between static and dynamic
binding must be offered, since the proportion of cases where the latter is really needed is quite
limited. This experience will contribute to the re-design, with the goal of achieving a more simple
and expressive language without requiring the programmer to sacrifice efficiency.

There are several other worthwhile directions to pursue. On the practical side, it is clear that
without a suitable programming environment, object-oriented languages offer only marginal ad-
vantages over traditional programming languages. Object design tools, large, reusable software
bases, intelligent browser, and prototyping, debugging and monitoring tools are all needed to help
object-oriented languages deliver the promise of faster, more reliable, open application development.

Finally, on the more theoretical side, we need computational models to help us describe and un-
derstand the semantics of concurrent and object-oriented languages.

10 Conclusions

The implementation of Hybrid finally required a great deal more effort than was originally estimated
(about four times the expected effort and time). The reasons for this were mainly: (1) Hybrid was
a new language rather than an extension of an existing, implemented language, (2) the semantics of
Hybrid was not formally defined, and contained many inconsistencies, (3) the run-time functionality

Konstantas, Nierstrasz and Papathomas 31

(concurrency, persistence, etc.) had to be build from scratch, (4) some time and effort was wasted
because the original implementation plan proved unrealistic, and had to be changed in mid-stream.

The overwhelming lesson from the point of view of language design was that exception-handling
must be a fundamental part of the language if we are to make sense of strong-typing in a distributed
environment of active objects. Time and again, when semantic difficulties were encountered, it was
apparent that exceptions were needed to notify objects when unexpected events occurred during
execution, and that the exceptions that could be raised must be part of an object’s interface.

Some of our problems would have gone away if more time had been spent on the language design,
but there were many issues that would not have been uncovered without an early prototype. The
feedback from the implementation effort will be invaluable for ironing out language design problems,
and will also provide a forum for testing whether our ideas were valid or not. One of the surprises
was that the reusability mechanisms, the strong-typing, and the concurrency constructs were not
as orthogonal as was originally thought. Since their semantics were defined independently, the
interference was not discovered until the implementation had started.

Another surprise was that the natural way to implement Hybrid’s message passing active objects
(within a single UNIX process), was to model them as passive resources shared by lightweight
processes. This is less surprising if we consider that message-passing in Hybrid is intentionally pat-
terned after remote procedure calls, so that threads of control can be easily mapped to lightweight
processes. It will be interesting to see what happens to this mapping if we consider implementing
Hybrid on a machine with a highly parallel architecture ...

11 Appendix A: Language

11.1 Names in Hybrid

Names of types, variables, and operations in Hybrid are composed of letters and digits; the first
character must be a letter. Upper and lower case letters are distinguished. The names can be of
arbitrary length. Keywords like type, of, array, variant etc. are reserved.

Numbers are decimal integers with or without a minus (-) sign.

Strings are enclosed between double quotes and can contain any printable ascii character. Double
quotes within the string should be escaped with a backslash (i.e., \").

11.2 Operators

Operator names in Hybrid are made up from the following set of characters

* / % + - ^ | < = > \ $ & ~ ?

plus the assign operator := . They can be of any length.

Operators are recognized as assign operators when their last character is an equal sign (=) .

Boolean relation operators have ? as the final character.

The single character operators * / % are recognized as priority operators.

32 An Implementation of Hybrid

Operations in Hybrid are parsed from left to right, with the priority operations parsed first.

11.3 Grammar

typeDef :: type typeName
indexTypeParamNamesOPT typeParamNamesOPT :
typeSpecOrConstr ;
privatePartOPT

typeName :: identifier

indexTypeParamNames :: [paramTypeLIST]

typeParamNames :: of paramTypeArgs

paramType :: typeName constraintOPT

constraint :: :< typeName

paramTypeArgs :: paramType
| (paramTypeLIST)

typeSpecOrConstr :: typeConstr
| typeSpec

typeConstr :: enum { constNameLIST }
| record { varPubDec ; varPubDecSEQ }
| abstract { varPubDecSEQ operationStub* }

typeRef :: typeName indexTypeParamsBindOPT typeParamsBindOPT

typeSpec :: typeRef
| rangeEnumVal .. rangeEnumVal
| oid of typeName
| array indexTypeParam typeParam
| variant { typeName variantCase+ }
| inherits { typeName parentType+ }

indexTypeParamsBind :: [argTypeLIST]

indexTypeParam :: [typeSpec]

typeParam :: of typeRef

typeParamsBind :: of argTypes

argTypes :: argType

Konstantas, Nierstrasz and Papathomas 33

| (argTypeLIST)

argType :: identifier

varPubDec :: var varPubLIST : typeName

varPub :: identifier

constName :: identifier

rangeEnumVal :: integerVal

variantCase :: or typeName

parentType :: and typeName

operationStub :: operationTypeDec : argTypesOPT returnDecOPT ;
delayDecOPT

returnDec :: → argTypesOPT

| → var argType

delayDec :: uses typeName ;

operationTypeDec :: mutable operationDec
| operationDec

operationDec :: prefix prefix
| infix infix
| operationNameDec
| reflex operationNameDec

operationNameDec :: identifier

prefix :: priorityOp
| operator

infix :: priorityOp
| relationalOp
| operator
| assignmentOp

privatePart :: private { privDecSEQ operation* }
| private ‘{ cCode ‘}

cCode :: Ctoken
| cCode Ctoken

34 An Implementation of Hybrid

privDec :: insVarDec
| valuesDec

insVarDec :: var insVarLIST : typeName indexTypeParamsBindOPT

typeParamsBindOPT

insVar :: varName initOPT

dec :: varDec
| valuesDec

varDec :: var varLIST : typeName indexTypeParamsOPT typeParamsOPT

var :: varName initOPT

init :: ← constExpr

varName :: identifier

constExpr :: element

indexTypeParams :: [typeNameLIST]

typeParams :: of typeArgs

typeArgs :: typeName
| (typeNameLIST)

valuesDec :: values valuesNameLIST

operation :: operationSpec compoundStmt

operationSpec :: operationType : argsOPT returnDecOPT ; delayDefOPT

operationType :: mutable operationDef
| operationDef

operationDef :: prefix prefix
| infix infix
| operationNameDec
| reflex operationNameDec

args :: ()
| (argDec argDecSEQ)

argDec :: varNameLIST : typeName

delayDef :: uses varName ;

Konstantas, Nierstrasz and Papathomas 35

stmt :: ;
| ‘{ cCode ‘}
| expr ;
| compoundStmt
| check (varName :? typeName) compoundStmt elsePartOPT

| if (expr) compoundStmt elsePartOPT

| block labelPartOPT { decSEQ stmt* }
| loop labelPartOPT { decSEQ stmt* }
| break labelPartOPT ;
| continue labelPartOPT ;
| switch element { casePart+ defaultPartOPT }
| return elementOPT ;
| end ;

compoundStmt :: { decSEQ stmt* }

elsePart :: else compoundStmt

labelPart :: : identifier

casePart :: case enumCase compoundStmt

defaultPart :: default compoundStmt

enumCase :: enumVal
| enumVal .. enumVal

enumVal :: integerVal
| constName

expr :: termLIST

| ‘Cexpr‘

term :: binary
| binary ← term
| binary assignmentOp term

binary :: priority
| binary operator priority

priority :: unary
| priority priorityOp unary
| priority relationalOp unary

unary :: primary typeCastOPT

| priorityOp unary
| operator unary

36 An Implementation of Hybrid

typeCast :: : typeName

primary :: element
| primary [expr]
| procedureCall
| operationCall (exprOPT)
| operationCallReflex (exprOPT)
| instanceVar
| export (typeName)
| delegateOp

delegateOp :: delegate (binary assignmentOp term)
| delegate (binary operator priority)
| delegate (operationCall (exprOPT))

procedureCall :: operationName (exprOPT)

operationCall :: primary . operationName

operationCallReflex :: primary ! operationName

instanceVar :: primary . instanceVarName

element :: const
| constOrVarNameOrTypeName
| oidCall constOrVarNameOrTypeName
| (expr)
| oidCall (expr)

oidCall :: @

const :: integerVal
| stringVal

constOrVarNameOrTypeName :: identifier

instanceVarName :: identifier

operationName :: identifier

12 Appendix B: Bounded Buffer Example

A simple Hybrid example utilizing delay queues is a bounded buffer.

Konstantas, Nierstrasz and Papathomas 37

In our example the bounded buffer has three methods: one for initializing, one for writing data
and one for reading data. The last two methods use delay queues for synchronization.

#
The buffer
#

type boundedBuffer : abstract {
put : string -> ; uses delay ;
get : -> string ; uses delay ;
init : -> ;

} ;

private {
var putDelay, getDelay : delay ; # the delay queues
var putIdx , getIdx : integer ; # position in the buffer.
var buffer : strArray ; # the buffer area

init : -> ;
{

putDelay.open() ; # allow writing of data
getDelay.close() ; # nothing to read
putIdx := buffer.lower() ;
getIdx := buffer.lower() ;

}

get : -> string ; uses getDelay ;
{

var nextPoss : integer ;
var newString : string ;

wrap around the bounds of the buffer
nextPoss := getIdx + 1 ;
if (nextPoss >? buffer.upper()) {

nextPoss := buffer.lower() ;
}

newString := buffer[getIdx] ; # read the data

getIdx := nextPoss ;
if (getIdx =? putIdx) { # close the reading queue if

getDelay.close() ; # all data have been read
}
putDelay.open() ; # open the queue for writing
return(newString) ;

}

put : (newString : string) -> ; uses putDelay ;

38 An Implementation of Hybrid

{
var nextPoss : integer ;

wrap around the bounds of the buffer
nextPoss := putIdx + 1 ;
if (nextPoss >? buffer.upper()) {

nextPoss := buffer.lower() ;
}

buffer[putIdx] := newString ;
getDelay.open() ; # open the reading queue

putIdx := nextPoss ;
if (putIdx =? getIdx) { # close the writing queue if

putDelay.close() ; # the buffer is full
}
return ;

}

}

The buffer is used by a producer and a consumer, who will respectively write and read information.
Examples of a producer and a consumer follows:

#
The producer
#

type producer : abstract {
init : (oidBB) -> ;
reflex put : -> ;

};

private {
var oidBuffer : oidBB ;

init : (bufOid : oidBB) -> ; # set the buffer’s oid
{

oidBuffer <- bufOid ;
return ;

}
reflex put : -> ;
{

var line : string ;

....
@oidBuffer.put(line) ; # store the data in the buffer

Konstantas, Nierstrasz and Papathomas 39

....

return ;
}

}

#
The consumer.
#
type consumer :
abstract {

init : (oidBB) -> ;
reflex get : -> ;

};

private {
var oidBuffer : oidBB ;

init : (bufOid : oidBB) -> ; # set the buffer oid
{

oidBuffer <- bufOid ;
return ;

}
reflex get : -> ;
{

var lineOut : string ;

....
lineOut := @oidBuffer.get() ; # read data from the buffer
....
return ;

}
}

The bounded buffer has two delay queues: one for writing and one for reading. Upon initialization,
the write queue is opened (i.e., the clients can write), and the read queue is closed (i.e., there is
nothing to be read).

When a client has data to write into the buffer, it will call the put method via an oid call. If
the write queue is closed, the call will block until the queue is opened. If the queue is open, then
method will be executed. The data will be stored and the read queue will be opened. Then if this
last write fills the buffer, the write queue will be closed, thus blocking all write requests until empty
slots are again available. Similarly, read requests will be blocked if no data are available, will open
the write queue after reading the data, and will close the it read queue if the buffer is empty.

References

40 An Implementation of Hybrid

[Hoare 1974] C.A.R. Hoare, “Monitors: An Operating System Structuring Concept”, CACM, vol.
17, no. 10, pp. 549−557, Oct 1974.

[Holt 1983] R.C. Holt, Concurrent Euclid, the UNIX system, and TUNIS, Addison-Wesley, 1983.

[Johnson 1975] S.C. Johnson, “Yacc: Yet Another Compiler Compiler”, Computer Science Tech-
nical Report #32, Bell Laboratories, Murray Hill, NJ, 1975.

[Lesk and Schmidt 1975] M.E. Lesk and E. Schmidt, “Lex − A Lexical Analyzer Generator”,
Computer Science Technical Report #39, Bell Laboratories, Murray Hill, NJ, 1975.

[Nierstrasz, et al. 1983] O.M. Nierstrasz, J. Mooney and K.J. Twaites, “Using Objects to Im-
plement Office Procedures”, Proceedings of the Canadian Information Processing Society
Conference, pp. 65−73, Ottawa, May 1983.

[Nierstrasz 1985] O.M. Nierstrasz, “An Object−Oriented System”, in Office Automation: Concepts
and Tools, ed. D.C. Tsichritzis, pp. 167−190, Springer Verlag, Heidelberg, 1985.

[Nierstrasz 1987a] O.M. Nierstrasz, “Hybrid −− A Language for Programming with Active Ob-
jects”, in Objects and Things, ed. D.C. Tsichritzis, pp. 15−42, Centre Universitaire d’Informa-
tique, University of Geneva, March 1987.

[Nierstrasz 1987b] O.M. Nierstrasz, “Triggering Active Objects”, in Objects and Things, ed. D.C.
Tsichritzis, pp. 43−78, Centre Universitaire d’Informatique, University of Geneva, March
1987.

[Nierstrasz 1987c] O.M. Nierstrasz, “Active Objects in Hybrid”, ACM SIGPLAN Notices, Pro-
ceedings OOPSLA ’87, vol. 22, no. 12, pp. 243−253, Dec 1987.

[Swinehart, et al. 1986] D. Swinehart, P. Zwellweger and R. Beach, “A Structural View of the
Cedar Programming Environment”, ACM TOPLAS, vol. 8, no. 4, pp. 419−490, Oct 1986.

