Visual Scripting
Towards | nteractive Construction of
Object-Oriented Applications®

Oscar Nierstrasz
Laurent Dami, Vicki de Mey, Marc Stadelmann
Dennis Tsichritzis, Jan Vitek

Abstract

Object-oriented programming techniques are known to improve the flexibility and reusability of
certain kinds of software. Libraries of object classes, however, continue to be difficult both to de-
velop and to reuse. We present an approach to object-oriented application development in which
applications are constructed by interactively “scripting” cooperating, reusable software objects.
A visual scripting tool is being developed within ITHACAZ, an Esprit |1 project which seeks to
produce an integrated environment for the rapid and flexible development of object-oriented ap-
plications for selected application domains.

1. Introduction

Traditional methods of application devel opment are acknowledged to be slow, expensive and er-
ror-prone, and the results typically inflexible and difficult to maintain. With the observation that
large numbers of modern applications are really just slight variations on one another, various
technigues have emerged to exploit these similarities to great effect. Basically these techniques
either (1) provide libraries of reusable software together with browsers, debuggers and software
management tools or (2) provide very high level (VHL) tools or languages for constructing re-
stricted classes of applicationg 3]. The former class of techniquesistypified by Object-Oriented
Programming (OOP) and the latter by application generators and Fourth Generation L anguages.

Obj ect-oriented programming is clearly the more open-ended approach since reusabl e class
libraries can be potentially provided for any application domain. Unfortunately OOP is still pro-
gramming, and programming, even with reusable software, can be atime-consuming, low-level
activity. Although the VHL tools and languages can improve application development and
maintenance for specific classes of applications, their advantages either break down or turn into
disadvantages when exceptional requirements arise [14]. We would like to combine the open-
endedness of OOP with the directness and power of VHL tools.

Visual scripting is adirect manipulation paradigm for constructing applications by coordi-
nating the behaviour of collections of objects. An application developer would use a visua
scripting tool by selecting visually presented application objects, such as electronic forms, mail-
boxes and office procedures, and tailor their behaviour to the application requirements by graph-

1. 0 Dennis Tsichritzis et auteurs, 1990. Tous droits réserveés.

2. ITHACA is a Technology Integration Project (#2705) in the Office & Business section of the Esprit 11
Programme. The partnersare Nixdorf (Berlin), Bull (Paris), Datamont (Milan), Tecnics en Automatitzacio
d’ Oficines (Barcelona), the Foundation of Research and Technology, Hellas (Iraklion) and the Centre Uni-
versitaire d Informatique of the University of Geneva.

2 Visual Scripting

ically editing and linking them. The objects are like character actors who are capable of playing
certain kinds of rolesin avariety of plays. The application devel oper isthen acombination play-
wright and theatre director who assigns specific roles to objects and directs their interactions.

Visual scripting requires (1) that objects to be scripted have a visual presentation, and (2)
that objects have a“ scripting interface” which permits their behaviour to be graphically edited.
Since these scripting interfaces are intended to be used from a direct manipulation editor rather
than a programming language, they differ somewhat from the programming interfacesto objects
that we see in object-oriented languages. A scripting model for an application software library
defines the kinds of scripting interfaces that objects may have, and determines, therefore, the
model for application construction available to the developer.

In section 2 we shall motivate scripting within the broader context of object-oriented de-
velopment as we have defined it for the ITHACA project. We then elaborate the scripting para-
digm through the use of an example, we give an overview of VST, arapid prototype of avisual
scripting tool, and we provide a framework for an object-oriented scripting model. In section 4
we outline an architecture for VISTA, a second-generation scripting tool being developed for the
ITHACA application development environment. We conclude with some remarks on open top-
ics for further exploration.

2. A Scenariofor Object-Oriented Development

The traditional software engineering methods that have worked reasonably well in the past for
stable, long-lived applications fail to yield good results today because of two central assump-
tions that no longer hold: (1) that the application requirements be stable and well-defined, and
(2) that the application runin aclosed and finite universe. Increasingly, modern-day applications
are open systems, which can be “open” in each of the three following wayg 21]:

1. Platform: the hardware and software platform continuously expands.

2. Interoperability: open applications must be prepared to exchange information and oth-
erwise interact with systems that may not yet exist.

3. Evolving requirements: the application must be flexible enough to adapt to continuously
changing requirements.

At thispoint, it isimportant to observethat thereisanother assumption that no longer holds,
namely that every application isunique. It wasthis assumption, we believe, that justified the use
of slow and laborious“waterfall” methods of development. In fact, large numbers of superficial-
ly different applicationsreally perform very similar functions, which isthe secret behind the suc-
cess (however limited) of application generators and fourth generation languages. This suggests
to us that object-oriented techniques, which are well-suited to factoring out common function-
ality into often highly reusable object classes, offer amore general way of allowing many appli-
cationsin similar domainsto share alarge part of their code. Reuse of object classes may or may
not streamline application development — reuse does entail overhead — but it should result in
moreflexible, robust systems. Unfortunately, it isnot possibleto just sit down and writelibraries

O. Nierstrasz, et al. 3

of instantly reusable classes: the design of reusable classesis necessarily an iterative, evolution-
ary process [12].

For this reason we propose a very different model of software development in which appli-
cation engineers are responsible for developing generic, reusable software for specific applica-
tion domains, and application developersaretheir clients, reusing not just object classesbut also
pre-designed generic application frames (GAFs) that guide the developer towards standard
ways of constructing applications. Initially, class libraries and GAFs may be developed by re-
engineering existing applications in an object-oriented way (i.e., so as to factor out common
functionality). As application devel opers encounter more demanding requirements, the software
base must evolve to improve its generality and reusability. Application engineers and applica-
tion devel opers thus cooperate in a producer/consumer relationship (cf. [4][19]).

To support such an object-oriented software life-cycle, it is clear that tools for storing and
managing software information are essential [8] in addition to tools to support the development
of classes and applications. ITHACA1 isa5-year, 100 person-year/year Esprit Il project to build
an environment supporting the devel opment of object-oriented applications[16]. The ITHACA
environment includes an object-oriented language (called CooL) closely integrated with an ob-
ject-oriented database, in addition to tools to support application engineers and application de-
velopers. A central component in the environment is the softwar e information base (SIB) which
stores and manages structured “descriptions’ of software (i.e., interface descriptions of object
classes, GAFs, documentation, etc.). The other tools interact primarily by exchanging and ma-
nipulating information stored in the SIB. They include: aselection tool for browsing and query-
ing the SIB; MaX, amonitoring debugger for CooL classes; RECAST, arequirements collection
and specification tool; and the visual scripting tool.

L et us suppose that our application engineers have stocked the SIB with alibrary of classes
and GAFs for an application domain such as “public administration” (one of several “demon-
strator” domains for ITHACA). We would expect the application developer to proceed in the
following way to produce a specific application:

1. Select an application frame: using only a rough sketch of the application requirements,
the devel oper searches and browses to find a corresponding GAF.

2. Select useful classes: the GAF drives requirements collection and specification accord-
ing to a pre-existing, generic design, thus guiding the devel oper in the selection of reus-
able classes.

3. Tailor classes. the selected classes are incrementally modified by supplying parameters
or by refining their behaviour through inheritance (i.e., by programming, if necessary).

4. Script application: link the selected classestogether by means of a* script” that specifies
how the objects will cooperate to implement the required application.

5. Monitor behaviour: test and validate.

1. ITHACA stands for “Integrated Toolkit for Highly Advanced Computer Applications.”

4 Visual Scripting

6. Continuously develop: as requirements change, adapt the application; as the understand-
ing of the application domain evolves, upgrade the contents of the SIB.

Therole of scripting inthisscenario is(1) to provide avery high-level meansof rapidly and
flexibly constructing applications from reusable classes and (2) to provide concrete guidelines
for developing and evaluating object design. In our view, awell-designed object is one that can
be scripted. To make this notion more precise, we shall explain theidea of scripting through sev-
eral examples.

3. Application Construction by Scripting Objects

A script packages and links a number of software componentsinto arunning application. At the
lowest level, components will correspond to objects (although, aswe shall see, it isalso possible
to script other kinds of software components). A script itself is also a software component and,
depending on how it has been packaged, may be used within higher-level scripts. Every compo-
nent has a number of portsthat parameterize its behaviour. Ports may either be assigned values
statically or they may get their values dynamically by being linked to the port of another com-
ponent. Ports that remain unbound may become ports of the script. Scripting, then, isthe activity
of selecting components, linking or assigning values to their ports, and packaging the result. A
scripting model defines what kind of ports components may have and the rules for linking them.

Inthe discussion that follows, we shall seethat, within thisgeneral framework for scripting,
ports and links may be interpreted in awide variety of useful contexts and that components may
correspond to many different kinds of application objects.

3.1 Scripting Office Procedures

The domain of Office Information Systems contains many generic applicationsthat can be mod-
eled as electronic forms systems. There are three main aspects to most form applications. First,
there aretheformsthat need to be designed. Second, there are simple, repetitive clerk procedures
involving the forms, like selecting the proper formsto build arelevant case, and straightforward
consistency checks, triggers and operations on the forms. Third, there are difficult decisionsand
parameter estimationsthat need to be performed directly by the users. These user actionsare nei-
ther straightforward, nor can they be captured algorithmically. The scripting of forms dealswith
these three aspects in the following way: it provides the right environment to capture the first
and second aspects, and it is then used to build a system in which users can interact graphically
for the third aspect.

Let us consider the case of a mail-order retailer that maintains a catalog of the products it
sells, their current price and stock at hand, as well as a record of customers’ names, addresses
and their current accounts. Various people are responsible for entering orders, maintaining the
customer records, approving orders and so on. We would like to implement an electronic forms
system in which order processing, billing and other activities are supported by automatically
triggered office procedures. Electronic office procedures partially automate office work by han-
dling routine cases and by hel ping the user to detect and manage exceptional cases13][20]. Each

O. Nierstrasz, et al. 5

user will have a virtual desk with an in-tray, form-folders and various tools to support office
work. Users may create, edit, file and retrieve forms and mail them to other users.

We shall illustrate the possibilities of visual scripting by showing how one might interac-
tively script (1) forms and their behaviour, (2) triggered queries that assemble collections of re-
lated forms to support office work, and (3) office procedures that package actions to be per-
formed on such collections.

Scripting Electronic Forms

Since electronic forms are end-user objects visible in running applications, we argue that it is
natural to use this same presentation during their design and implementation. One should design
forms in much the same way that documents are composed using direct manipulation, WY SI-
WIG document editors. In thisway we can script both the appearance of aform (the form tem-
plate) and its behaviour. Given acollection of basic interaction components, like fields, buttons,
sliders or menus, designing an electronic form consists of selecting such components, custom-
izing them and grouping them together. Components may have predefined behaviours that get
coordinated through the form script.

Unlike their real-world counterparts, electronic forms may be active, that is, they may im-
pose constraints on the way fields are filled and modified, they may cause certain fields to be
computed automatically, they may present different views to users depending on the context or
on their current state (or both), and they may cause actions to be triggered [7][15]. Specifying
this behaviour is part of the scripting activity. Scripting forms, then, consists mainly of estab-
lishing part-of links between a form object and its contents, possibly establishing relationships
between the various parts, and setting properties of the form and its parts.

Fields are elementary units of interaction. They have a collection of graphical attributes
like size, location and colour, and they support operations for displaying and editing an associ-
ated value. Various types of fields can be grabbed from a palette (Figure 1) and modified to fit

Field Palette
integer date string
123 13.08.90 abc
Il | August 13th, 1990

Figure 1: a (tiny) palette of available form fields

particular graphical constraints. For a particular field type, it may be possible to choose among
severa views. For example, afield holding an integer value may be displayed either as a string
of digits or as a dider. A simple example of aform is a customer record (Figure 2), which is
easily scripted from existing fields.

6 Visual Scripting

Customer
N — S —
address: | | tel: I:I

Figure 2: a simplified customer form
Our task getsalittle more complicated if we want to add accounting information to the cus-
tomer record. We would like to maintain arecord of the amounts debited and credited to a cus-
tomer’ s account. Since the account record grows during the lifetime of the customer record, it
clearly cannot be modeled as a static form. Instead, we model each debit and credit asasimple
account entry form and the account record as a form containing atable of account entries.

A tableisan object that provides a view on a homogeneous list of forms, presenting some
(or al) of the contents of each form asarow of field values. At thispoint it isworth emphasizing
that there may be many alternative ways of organizing and viewing lists of forms. We shall make
use of formfolders (aniconized, shared list of forms) and in-trays (a privatelist into which other
users may deposit forms, and which may trigger other objects upon the arrival of a new form).

Account
Date $ Debit $ Credit Ref
G | | | | | | | |
| | | | | | | |
PRI | | | | | | |
| | | | | | | |
& Balance]

Figure 3: atable of account entries

In Figure 3 we see an account form that contains atable of account entries, where each entry
has a date, an amount appearing in either the debit or credit field and areferencefield for linking
with bills or payments. Note the presence of a scrollbar for navigating through the table. The ac-
count form also contains a computed field displaying the balance of the account. Such a field
could be scripted by associating a computed subtotal field with each account entry, which sim-
ply appliesthe debit or credit to the subtotal of the previous entry. The balance is then linked to
the subtotal of the last entry in the table.

O. Nierstrasz, et al.

The account form, with its table of account entries, can now be included into the customer
form (Figure 4). This demonstrates that complex data structures are supported by the form sys-
tem: forms can recursively contain other forms.

Customer

name: [] a

address: |

| tel:

Account
Debit Credit

Ref

L

¥

Balance []

Figure 4: the complete customer form

Scripting Queriesand Triggers

Queriesover collections of formsare naturally expressed by overloading form templatesto spec-
ify retrieval criteriain aQuery-by-Example[22] fashion. For example, consider alist of product
forms (Figure 5) recording the name of aproduct, its price and the quantity in stock. The product
form template can be used as an interface for selecting instances from alist by partially filling
in the template. For example, to retrieve the record for a given product, the name field would be
filled. To find out which items are running out, the condition “< 10" might be entered into the
field representing the quantity in stock.

name

Products
price

Q in stock

Figure 5: a product form

Sets of matching forms of different types can be similarly retrieved by linking fields of dif-
ferent templates. Consider the order form in Figure 6. Each order form contains atable of indi-
vidual orders for specific items. To retrieve the matching customer record, one would link the
fromfield of an instance of the order form with the name field of the query template for the cus-

8 Visual Scripting

tomer forms. To retrieve all matching order forms and customer forms, one would link the from
and name fields of query templates for both.

Orders
fom: [approved | |
address: | |
ltems
Product Unit. price Quantity $
G [| | | | | | |
[| | | | |
B[| | | | | | |
[| | | | | | |
Q Total [1]

Figure 6: an order form

So far we have been concerned with ad hoc queries. A triggered query isakind of persis-
tent query that attempts to collect forms matching retrieval criteriawhenever atriggering event
occurs. For example, the query for products whose stock islow may be triggered upon modifi-
cation of the quantity in stock field. The result of this triggered query is alist of products that
may be consulted at any time. As we shall shortly see, triggers can be especially useful for ini-
tiating a set of actions. Failure of atriggered query can in turn trigger other actions or be smply
used to warn the user that manual intervention may be required.

For our order processing application, we require atriggered query to build acase consisting
of an order form, the matching customer record, and the records of all productsordered. Thetrig-
ger condition will bethe arrival of an order formin anin-tray. Oncethe query istriggered, if any
condition fails (for example, if no previous record exists for that customer) the user will be able
to examine the partially constructed case and take exceptional action.

In Figure 7 we see how this might be scripted: the thick, dashed boxes represent triggered
queries. Black arrows represent triggers, grey arrows represent the source or result of matching
forms, and the grey lines represent the fieldsto match. The outer query istriggered by the arrival
of an order form. It then retrieves matching customer records from the customer folder. Thein-
ner query is triggered by the retrieval of the order form and selects a matching product record
for each item ordered. The results of the query are maintained in a case folder.

Scripting Office Procedures

Office procedures in an electronic forms system can be conveniently viewed as a collection of
associated triggered queries and actions. We can script office procedures in much the same way
that we script triggers and queries by ssimply overloading the function of form templates. The
procedures can be directly specified on the templates representing the forms retrieved by atrig-
gered query or, asin this example, an output case of atriggered query can be used as input for
the procedure which is defined in a Programming-by-Example fashion [9]. In Figure 8 we script

O. Nierstrasz, et al. 9

Orders

from: approved []
address:

name: i Customers ia: []
address: [] tel: []
Account
Date $ Debit $ Credit Ref
G []]]
[] [] [] 1
B |]] T
Q 1 C—1 1] |]
Balance [1
)}
Iltem
Product Unit. price Quantity $
[C——1 | | | | |)]
1
\
Products
Name Price Qin stock
[| | | [] |
@ @
Orders Products Case Customers

Figure 7: building a case with a triggered query

thefollowing actions: (1) create an account entry, (2) fill in the current date, amount to debit and
the reference to the order form, (3) debit the customer’s account (i.e., insert the account entry
into the customer’ s account table), (4) compute the new quantity in stock and update the product
form, (5) approve the order form and (6) forward the approved order to shipping. The thin black
arrows copy values or references from one object to another, and the thick grey arrows insert
formsinto tables or in-trays. The order in which the actions occur depends on the availability of
information from the case.

10

Office Procedure

(_approved g)

: Product

Orders
from:; |:| approved [¥]
adess []
Items
Unit. price Quantity $

Account Entr
Debitg Credit Ref!I|E

——
~—— Date $
= [| |
ame: [] Customers | ia: [|
ddress: [] tel: []
Account
Date $ Debit $ Credit Ref
G [] [] [] [|
[] [] [] [|
|] [] [] [|
?l—”—‘
Q Balance []

ltem g
Product Unit. price Quantity $
[| | | | —7 | Iy e
Products //
Name Price Qin stock /
[| | | | A
Shipping Case

Figure 8: scripting the actions of an office procedure

Visual Scripting

$2
$1
$1-$2

=

O. Nierstrasz, et al. 11

3.2 VST —A Unix-Based Visual Scripting Tool

We have implemented a proof-of-concept prototype of aVisual Scripting Tool (VST) based on
aUnix scripting model [18]. Unix was chosen as abasis mainly because of the ready availability
of alarge collection of existing software components (i.e., Unix commands) and because Unix
provides powerful mechanisms for connecting existing commands by means of pipes, file redi-
rection and environment variables.

For the purposes of demonstrating the potential of visual scripting, we have selected those
mechanisms of the Unix shell that lend themselves well to visualization and expressed them as
a scripting model. In this model, components are (1) Unix commands or shell scripts, (2) Unix
files, (3) strings or (4) visua scripts. Any given port of a component is directed, depending on
whether values are input or output at that port. The types of ports provided in the prototype are
(2) text ports (used mainly to provide arguments to Unix commands), (2) stream ports and (3)
sequencing portsto control the execution order of commands (if necessary). Links may be made
between input and output ports of the same type (as links are made, they are checked for consis-
tency). Links are also used to define the ports of a script being encapsul ated as a new component
by connecting internal portsto the border of the script.

stepd

Execute | List | script | Mask Miscellaneous

: & execution window
w525 the
samEel 197 of
il 152 a
gl 14m fr
A 119 to
smEEel 118 and
il 1m5 in
E 92 script
86 component
84 1=
62 editor

il a3 with

222l 43 components
42 user

&[] 34 port

Enter the string: 34 by

32 can

31 this
38 pH]

Figure 9: scripting a word frequency counter

12 Visual Scripting

In Figure 9 we see avisual script of the word frequency counter problem[2]. Thisscript ex-
tracts the n most frequently occurring words in a file and reports how many times they occur.
Thelcstring component isapreviously packaged visual script that convertsall alphabetic strings
in itsinput to lower case, separating them by a character given as a parameter. In this case we
separate all words by newline characters (\012). We sort the resulting list of words, count each
occurrence with the command uniq -c, re-sort the output in reverse numerical order, and finally
extract the 25 most common words. In the figure we see the output of aprevioustest of the script
till visible in a separate execution window. Note that the stream input port to Icstring has been
connected to the border of the script; if this script is now packaged as a component, it will gen-
erate word frequency counts for files connected to that port.

Although the prototype falls short of demonstrating that avisual scripting interface ismore
“natural” or “user-friendly” than, say, a shell script (the equivalent shell scripts are typically
much more compact), it should be clear that the logic and organization of applications are often
better expressed visually than textually. In the case of this example, visualization is straightfor-
ward because the Unix scripting model is heavily dataflow-oriented. Many other visual pro-
gramming tools[17], such as Fabrik[11], similarly exploit dataflow. Scripting, however, can be
used for the construction of amuch larger variety of applications.

Miscellaneous

Execute

Neu_Requestf:::

iScript]

Immigration Office
Papaia City
PAPATA

Sat Feb 17 18:13:41 1990

4 visa for [ENERENE

This request was evaluated by

Decision: request Elgugekias
Date: Sat Feb 17 18:15:46 1990

<G

|
Restore complete

That’s all folks.
Thank You for Yeur Cooperation
Don‘t worry, be happy.

Figure 10: scripting a visa approval application

In Figure 10 we see the script of asimple visa approval application implemented asahier-
archy of menus. The top-level menu provides access to sub-menus for (1) generating new visa

O. Nierstrasz, et al. 13

requests and filing them in applicants.db, (2) retrieving pending requests, (3) approving or reject-
ing visarequests and (4) browsing thefile of visas.

On the basis of the two examples, we can make the following observations:

» Visua software components have an enormous potential for self-documentation since
the ports of a component are immediately visible. On-line help should be closely inte-
grated to obtain quick explanations of the behaviour of a component or any of its ports.

+ Direct manipulation should be exploited wherever possible. Forms and menus, asin the
visa example, are better represented directly, rather than as boxes with ports.

» Careful integration of a browser is essential for locating software components quickly.
It must be possible to generate queries of the sort: “tell me what | can connect here,” or
“tell me what has been connected here in other scripts” automatically.

» Examples of existing scripts can be extremely useful as documentation and as a step to-
wards designing a new script. In this sense, a script itself can function as a GAF (82).

» The ability to toggle between editing and executing a script can be very useful when de-
bugging.
The prototype was implemented in Objective-C [4] using the ICpak 2011 user interface class i-

brary and runs on Sun workstations (3/50s, 3/60s and SPARCs). Visual scripts are translated to
Unix C-shell scripts[1] and passed to the C-shell interpreter.

3.3 Object-Oriented Scripting Models

The examples of visual scripting presented thus far have emphasized either direct manipulation
of office objects or visualization of dataflow using Unix streams. We have seen avariety of soft-
ware components and different kinds of ports and links, but we have not yet demonstrated the
relevance of object-oriented programming. We shall now argue that scripting models map nat-
urally to a setting in which the software components are objects.

First, we note that all ports tend to be either input or output ports and have an associated
type. Next, we note that links always fall into one of the following categories:

» Valuelinks. provide afixed value to an input port (e.g., options to Unix commands)

* Referencelinks: establish aclient/server relationship between two components (e.g., be-
tween a Unix command and a stream, or between an office procedure and the input tray
that triggersit)

» Export links: specify which ports internal to a script are accessible to externa clients
(e.g., when packaging a Unix script or when defining which fields of aform may be en-
tered and modified by the user)

In the case of value links, the port type may be either a primitive data type or, more generally,
that of a complex object. Reference links differ from value links primarily in that the objects
passed by avalue link become private to the receiving object, whereas areference link passes a

1. Objective-C and ICpak 201 are registered trademarks of Stepstone.

14 Visual Scripting

handle to a shareable object. (Ultimately, of course, areference is also avaue.) The type of a
reference link is simply “reference to object of some type,” for example, a Unix command ex-
pects to be connected to something of the type stream, supporting the operationsread and write.
Office procedures expect to be connected to trays and form folders containing forms of a given
type. Finally, an export link simply copiesthe type of aninternal port to the interface of a script.

Notethat at the level of scripting, we do not “ pass messagesto objects.” Instead, weinstan-
tiate and introduce objects that communicate by “message-passing.” Vaue links permit us to
vary the pre-packaged behaviour of objects according to instantiation parameters. Reference
links permit usto vary the way in which objects cooperate by specifying who is acquainted with
whom. An object-oriented scripting model then, isaspecification of the parameters availablefor
creating objects and the types of the relationships that can be established between objects.

The essence of scripting is gluing elements into a whole, i.e. composing software compo-
nents into executable applications. Object-oriented languages traditionally support two major
composition principles, namely inheritance and message passing, both of which imply directed
forms of communication between related entities. For scripting we need more flexible compo-
sition principles based on events and triggers. Objects can raise events, and other objects (“ sen-
sors’) wait on events and react by triggering a sequences of actions or further events. This dif-
fersfrom message passing in object-oriented languages since the client-server relationship isre-
versed: the object communicating an event is providing a service, not initiating a request.
Sensors can be created, removed or even modified at run-time. They therefore add a degree of
flexibility to composition, and can be used to model dynamic changesin the rules governing an
executing system.

4. VISTA — An Object-Oriented Visual Scripting Tool

We are presently implementing VISTA, a second generation scripting tool to be part of an
integrated suite of application development toolsfor theITHACA environment. We shall briefly
summarize some of the design requirements and architectural considerations. First, VISTA itself
isintended to be an open system. In particular:

» VISTA will support scripting models for multiple application domains.

e Scripting should be (largely) target-language independent. Initially C++ and CooL (82)
will be supported.

* Intheinterest of portability, storage of scripts, scripting models and software component
descriptions will be independent of VISTA.

» The environment must be open to new tools; context-switching and tool cooperation
(i.e., through a programmers’ interface) must therefore be provided.

A nucleus of common functionality is needed to serve as afoundation for toolsto share re-
sources and communicate. This functionality includes persistent storage, a workspace for ob-
jects shared by the tools, and a platform for acommon user interface.

O. Nierstrasz, et al. 15

Vista & cooperating tools

' ¢

tools application
object -
scripts
> SIB object store l«—]
selection

Figure 11: architectural overview

Persistent storage is divided into the object store, which contains the object instances of
running applications, and the Software Information Base (SIB), which contains descriptions of
software for use by the application development tools (see Figure 11). During a tools session,
information will be retrieved from the SIB into the workspace either directly by the user brows-
ing and querying viathe selection tool, or indirectly, by the tools generating queries.

In the interest of developing a portable, common user interface, all tools will run as X cli-
ents, and the Motif toolkit will be availablefor user interface development. In addition, toolswill
be ableto make use of Labyrinth (Laby), ageneral-purpose core for building graphical and CAD
tools, being developed within ITHACA. Laby is a constraint-driven graphical editor that main-
tains graphs of connected “cells.”

VISTA will support user interaction modes similar to that of a powerful debugger that al-
lows the application devel oper to toggl e between editing operations and running the application.
Furthermore, VISTA will generate script specifications (possibly in a compiled form) that will
permit applicationsto run in astand-alone mode (i.e., independently of the toolsused for itscre-
ation and of the SIB).

5. Concluding Remarks

Asking how much can be done by scripting islike asking where automobiles can go. The answer
is, everywhere there are roads. For scripting, the answer is, you can do practically everything,
provided you have theright scripting model and adequate components. Scripting isnot supposed
to be complete in the sense of a general-purpose programming language. It is, however, open-

16 Visual Scripting

ended. In our environment, for example, we are using scripting ideas in several very disparate
areas. animation, music, and “objectsheets.”

We haveimplemented a system for computer animation in which scripting controlsthe syn-
chronization of animated actors [6]. The set of motions to be performed in a scene is specified
hierarchically: local behaviours of actors, either programmed or scripted, can be encapsulated
and then coordinated with other actors through the use of scripting operators that specify tem-
pora relationships between participants. Although textual and not visual, this system uses
scripting ideas heavily: it provides a generic framework for computer animation in which both
the set of animated components and the set of temporal operators can be easily extended for
meeting more particular needs.

Computer music is often confronted with problems of connections between components,
either for controlling the flow of musical events or, at the sound generation level, for coordinat-
ing various primary devices like oscillators that are involved in a sound synthesis technique. A
small prototype for structuring and modifying musical events, similar in several aspects to the
animation system, is described in [5]. We are currently working on the integration of musical
eventsin amore general user interface framework so that musical devices can be easily integrat-
ed into an application’ sinterface, either for sound feedback or as input devices (the rich variety
of signals that can be generated on modern musical keyboards provides, in some situations, an
interesting alternative to traditional input from the mouse).

Visual scripting resembles the way users work with spreadsheets. Some of the interesting
features of spreadsheets are their intuitive presentation of data, their easy-to-use interface and
their ssmple model of computation based on aglobal name space of cells. Another important fea-
ture is that they mix programming and execution: any change, be it to the value of cell or to a
formula, triggers automatic global recalculation. We see potential to apply the spreadsheet met-
aphor to scripting, not only as away of presenting object-oriented systems but also as a general
philosophy behind a tool which would be easy to use and support a high degree of exploratory
programming. We can apply the raster layout of spreadsheets to organize aworkspace of collab-
orating components. Just as cells of a spreadsheet are related by formulas, cells of the “ object-
sheet” hold objects and are related through scripting formulas that link objects together to form
an application. Objects may be directly manipulated via form-like representations. Modifica-
tions to an object can trigger computation in other cells. A Generic Application Frame can be
seen asa* generic objectsheet” in which certain objects and formulas are already filled in. Final -
ly, we feel that objectsheets can help to manage the complexity of large object-oriented systems
since object addressability and relationships between components and subsystems are naturally
addressed by varying the visual layout of objects on the screen.

References

[1] G. Anderson and P. Anderson, The UNIX C-shell Field Guide, Prentice-Hall, 1986.
[2] J. Bentley, “Programming Pearls,” Communications of the ACM, vol. 29, no. 6, pp. 471-483, June 1986.

[3] T.J Biggerstaff and C. Richter, “Reusability Framework, Assessment and Directions,” |EEE Software, vol.
4, no. 2, pp. 41-49, March 1987.

O. Nierstrasz, et al. 17

[4]
(3]
(6]
[7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

B.J. Cox, Object Oriented Programming — An Evolutionary Approach, Addison-Wesley, Reading, Mass.,
1986.

L. Dami, “Musical Scripts,” in Active Object Environments, ed. D.C. Tsichritzis, pp. 162-171, Centre Uni-
versitaire d' Informatique, University of Geneva, June 1988.

E. Fiume, D.C. Tsichritzisand L. Dami, “A Temporal Scripting Language for Object-Oriented Animation,”
Proceedings of Eurographics 1987 (North-Holland), Elsevier Science Publishers, Amsterdam, 1987.

N. Gehani, “ The Potential of Formsin Office Automation,” |EEE Transactions on Communications, vol.
Com-30, no. 1, pp. 120-125, Jan 1982.

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz and X. Pintado, “ Class Management for Software Commu-
nities,” CACM, Fall 1990, To appear.

D.C. Halbert, “Programming by Example,” Ph.D. Thesis, Dept. of EE and CS, University of California, Ber-
keley CA, 1984, Also OSD-T8402, XEROX Office Systems Division.

J. Hogg, O.M. Nierstrasz and D.C. Tsichritzis, “ Office Procedures,” in Office Automation: Concepts and
Tooals, ed. D.C. Tsichritzis, pp. 137-166, Springer Verlag, Heidelberg, 1985.

D. Ingalls, “Fabrik: A Visua Programming Environment,” Object-Oriented Programming Systems Languag-
esand Applications (OOPSLA), Special Issue of SIGPLAN Notices, vol. 23, no. 11, pp. 176-190, Nov. 1988.
R.E. Johnson and B. Foote, “Designing Reusable Classes,” Journal of Object-Oriented Programming, vol. 1,
no. 2, pp. 22-35, 1988.

G. Kappel, J. Vitek, O.M. Nierstrasz, B. Junod and M. Stadelmann, “ Scripting Applicationsin the Public Ad-
ministration Domain,” SIGOIS Bulletin, vol. 10, no. 4, pp. 21-32, Dec 1989.

SK. Misraand P.J. Jdic, “ Third-Generation versus Fourth-Generation Software Development,” |EEE Soft-
ware, val. 5, no. 4, pp. 8-14, July 1988.

O.M. Nierstrasz and D.C. Tsichritzis, “Integrated Office Systems,” in Object-Oriented Concepts, Databases
and Applications, ed. W. Kim and F. Lochovsky, pp. 199-215, ACM Press and Addison-Wesley, 1989.

A-K. Profrock, D.C. Tsichritzis, G. Miller and M. Ader, “ITHACA: An Integrated Toolkit for Highly Ad-
vanced Computer Applications,” in Object Oriented Development, ed. D.C. Tsichritzis, pp. 321-344, Centre
Universitaire d' Informatique, University of Geneva, July 1989.

Nan C. Shu, Visual Programming, Van Nostrand Reinhold company, 1988.

M. Stadelmann, G. Kappel and J. Vitek, “ITHACA Visual Scripting Tool: A First Implementation Based on
the UNIX Shell Scripting Model,” ITHACA.CUI.89.E4.#5, Centre Universitaire d' Informatique, University
of Geneva, December 8, 1989.

D. Thomasand K. Johnson, “ Orwell — A Configuration Management System for Team Programming,” ACM
SIGPLAN Notices, Proceedings OOPSLA ’88, vol. 23, no. 11, pp. 135-141, Nov 1988.

D.C. Tsichritzis, F. Rabitti, S.J. Gibbs, O.M. Nierstrasz and J. Hogg, “A System for Managing Structured
Messages,” |EEE Transactions on Communications, vol. Com-30, no. 1, pp. 66-73, Jan 1982.

D. Tsichritzis, “Object-Oriented Development for Open Systems,” Information Processing 89 (Proceedings
IFIP’89), pp. 1033-1040, North-Holland, San Francisco, Aug 28-Sept 1, 1989.

M.M. Zloof, “Query-by-Example: A Database Language,” IBM System Journal, vol. 16, no. 4, pp. 324-343,
1977.

