

aturally
rs to try
 [22],
bjects

succeed-
 that is

 of:

 using a
] and

-

,
he
itle
ion
.

Viewing Objects as

Patterns of Communicating Agents1

Oscar Nierstrasz
Michael Papathomas

Université de Genève
Centre Universitaire d’Informatique

12 rue du Lac, CH-1207 Geneva, Switzerland
E-mail: {oscar,michael}@cui.unige.ch, oscar@cgeuge51.bitnet

Tel: +41 (22) 787.65.80, Fax: +41 (22) 735.39.05

Abstract
Following our own experience developing a concurrent object-oriented language as well of that
of other researchers, we have identified several key problems in the design of a concurrency mod-
el compatible with the mechanisms of object-oriented programming. We propose an approach to
language design in which an executable notation describing the behaviour of communicating
agents is extended by syntactic patterns that encapsulate language constructs. We indicate how
various language models can be accommodated, and how mechanisms such as inheritance can be
modeled. Finally, we introduce a new notion of types that characterizes concurrent objects in
terms of their externally visible behaviour.

1. Introduction

The message-passing model of communication in object-oriented languages appears to n
support concurrent execution of autonomous objects. This fact has led many researche
to exploit this autonomy in developing concurrent object-oriented languages [2], [15], [17],
[23], [30], [32]. Various forms of active, message-passing objects, and passive, lockable o
have been proposed and implemented. Unfortunately none of these approaches has yet
ed in resolving basic conflicts between concurrency mechanisms and the encapsulation
needed for the safe use and reuse of object-oriented code [6], [14], [26], [27], [28].

We claim that the difficulty of the language design problem is due largely to the lack

• widely accepted and well-understood models of concurrency

• good tools for prototyping languages

• a good understanding of reuse criteria for encapsulated software

We propose a practical approach to the design of concurrent object-oriented languages
well-defined computational model of communicating agents based on Milner’s CCS [20
Hoare’s CSP [13]. A compact executable notation called Abacus [24] characterizes the behav

1. © ACM. In Proceedings OOPSLA/ECOOP ’90, Ottawa, Oct 21-25, 1990, SIGPLAN Notices Vol. 25
No. 10, pp. 38-43. Permission to copy without fee all or part of this material is granted provided that t
copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the t
of the publication and its date appear, and notice is given that copying is by permission of the Associat
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission

O. Nierstrasz, M. Papathomas 2

els can
e com-
ned by

forward
rpreter.

y be
curren-
e then
 and we
lly, we
rrent ob-
tions of

 of the

 agents
 internal
 input

ur are
e same

s [24],

f each
iour ex-

 agents.

 see
 agent

iour of agents in terms of possible communications with other agents. Various object mod
be easily captured by varying the mapping between objects and agents, and by varying th
munication patterns that may take place. Programming language constructs are desig
mapping syntactic patterns to behavioural patterns. Since these mappings are straight
translations to an executable notation, this can lead to a rapid prototype of a language inte

In the following sections we will introduce our notation and outline how objects ma
modeled. We shall then describe the design space for approaches to object-oriented con
cy, detailing some specific requirements for a consistent model of concurrent objects. W
show how classes, inheritance and genericity can be modelled as patterns of behaviour,
argue the need for explicit reuse criteria to be associated with concurrent objects. Fina
demonstrate that signatures are inadequate to express the valid use and reuse of concu
jects, and we propose a new approach that views types and subtypes as partial specifica
the externally visible behaviour of objects.

2. Viewing Objects as Communicating Agents

We take the position that objects, whether they be “active” or “passive,” and regardless
particular object model of a language, are naturally modeled as communicating agents. An agent
is an entity that may change state when it communicates with another agent. Complex
that encapsulate a collection of cooperating agents may also change state due to hidden
communications. Communication is synchronous, occurring only if there exist matching
and output offers to communicate between two agents. Concurrency and reactive behavio
easily captured in such a model. The model is fully abstract in the sense that agents with th
external behaviour can be viewed as equivalent [20].

We have designed and implemented (in Prolog) an executable notation called Abacu
modelled closely after CCS [20] and CSP [13]. A behaviour expression specifies the behaviour
of an agent or of a system of agents by indicating the current input and output offers o
agent, and the replacement behaviour of the agent should the offer be accepted. A behav
pression consists of event names and agent names composed as follows:

e ! p offer output e with replacement behaviour p

e ? p offer input e with replacement p

p + q behave like either p or q (exclusive choice)
p & q p and q may communicate (concurrent composition)
nil make no offers

Additionally there are several operators that help to encapsulate systems of cooperating
These include restriction and relabelling to hide or relabel selected offers, and label prefixing
and filtering to define scopes beyond which only “prefixed” offers are visible (for details
[24]). Event names only appear in the context of input and output offers. Wherever an
name appears in the above, a behaviour expression may be used instead. Finally:

p := behaviour-expression .

3 Viewing Objects as Patterns of Communicating Agents

-

i-
ay in
hat the
using

vioural

-
tterns of
amples

e

per-

tput of-

-

ectively

 speci-
l [1].

els.

s.
binds the name p to the expression that follows. The operators ! and ? have the highest prece
dence, and are followed, in order, by +, & and :=. A formal semantics of Abacus is easily spec
fied by a set of transition rules [24]. These rules are implemented in a straightforward w
Prolog, specifying for any given behaviour expression what events may take place, and w
replacement expression will be. We further exploit Prolog in the examples that follow by
functors as agent names and lists and tuples as event names.

A trivial example of a behaviour expression is:

e?nil & e!nil

This permits the communication event e to take place between the agents specified by e?nil and
e!nil, with the net replacement:

nil & nil

Note that nil & nil is equivalent to nil, as nothing further can happen.

In order to define a programming language, we map language constructs to beha
patterns in a denotational fashion [12]. We use the term pattern to refer to any function that eval
uates to Abacus agents. The arguments may be arbitrary values, agents or syntactic pa
the language being defined. To give a flavour of the approach, we provide a few short ex
of defining the semantics of statements for a programming language. The stmt pattern takes two
arguments: a statement, and the continuation, that is the agent that will perform the rest of th
computation. For example, a skip statement does nothing, so the semantics of skip is simply that
of the continuation:

stmt(skip,Cont) := Cont.

(We follow the Prolog convention of indicating variables by identifiers with a leading up
case character.) The semi-colon is a statement separator. The interpretation of S1;S2 is simply
an agent that interprets S1 with the continuation being the agent that interprets S2:

stmt((S1;S2),Cont) := stmt(S1,stmt(S2,Cont)).

Suppose that Boolean expressions are computed by agents that terminate with an ou
fer of either true or false. We could then specify an if command as follows:

stmt(if Bool then S1 else S2,Cont) := expr(Bool) &
true?stmt(S1,Cont) + false?stmt(S2,Cont).

In this example, the first agent expr(Bool) evaluates the expression Bool and outputs either the val
ue true or false. The second agent consumes the value and becomes the agent that sel
evaluates the appropriate clause of the if command.

For a more complete illustration of the approach, we refer the reader to the Abacus
fication of SAL [24], Agha’s Simple Actor Language developed to explain the actor mode

Within this framework, it is relatively straightforward to express a variety of object mod
To this end, it is convenient to model messages as compound events, expressed as lists or tuple
As a reference model, let us consider the following restrictions:

O. Nierstrasz, M. Papathomas 4

d-

den-

 it
 guaran-

roach

ive ob-
ake use

od, the
led in a
e take

current
tency.

ests, it
clients
ulation
hould

ently

ts not
equest
• An object is an agent with a unique identity. It communicates with other objects by sen
ing call or reply messages, which are compound events with the receiver explicitly i
tified.

• call messages from a client object with identity Client to a server object with identity
Server are of the form [Server,Msg,Client].

• reply messages to a client with identity Client are of the form [Client,Reply].

An object with identity Id is characterized by the behavioural pattern accept(Id):

accept(Id) := [Id,Msg,Client] ? (call(Id,Client) + reply(Id,Client)) .
call(Id,Client) := [Server,Msg,Id] ! wait(Id,Client) .
wait(Id,Client) := [Id,Reply] ? (call(Id,Client) + reply(Id,Client)) .
reply(Id,Client) := [Client,Reply] ! accept(Id) .

That is, object Id can accept a request from a Client, issue requests to other Server objects, and
eventually reply to Client. The pattern accept(Id) is a partial specification of behaviour, since
says nothing about the contents of messages or the other objects used as servers. It only
tees that no new requests will be accepted while there is a pending request.

A thread of control can be seen as a trace of call and reply events, with the control at any
point being with the object in one of the abstract states call, or reply. Note that the idea of defining
objects as agents that conform to certain patterns of behaviour is similar to Minsky’s app
of characterizing behaviour by a set of laws [21]. By introducing variations in accept(Id) (i.e., by
considering different sets of laws), we can express the behaviour of both active and pass
jects, multi-threaded objects, asynchronously communicating objects, and objects that m
of a variety of concurrency control mechanisms.

3. A Design Space for Concurrent Object Models

Although encapsulation of single-threaded, passive objects is reasonably well-understo
same is not true of concurrent objects. Depending on the way that concurrency is hand
language, encapsulation may be violated in a number of ways. In the simplest case, if w
an object designed for use in a single-threaded application and expose it to multiple con
clients, the concurrent execution of methods can compromise the object’s internal consis

On the other hand, even when an object is able to protect itself from concurrent requ
may be necessary to expose implementation details in order to protect the integrity of its
(for example, to avoid deadlock). For a language design to offer a reasonable encaps
model for concurrent objects, we suggest that at least the following minimal set of criteria s
be met:

• Protection: all objects should be guaranteed of their internal consistency independ
of their environment or the presence of multiple threads.

• Scheduling: an object must be able to selectively refuse or delay certain reques
only on the basis of its internal state, but also depending on the contents of the r
message [18].

5 Viewing Objects as Patterns of Communicating Agents

in its
hould
spend-
bjects

ntrol at

-

d-

nd be-
n view

wing

s in
ust

an-
urrent

ch ob-

 of
L/1

unicat-
 of the
orm the
phore or

 either
:

-

• Interleaving: the desired external behaviour of an object should not over-constra
internal behaviour, for example, internal concurrency should be permitted, as s
multiple “readers” for methods that do not cause state changes. Mechanisms for su
ing and interleaving threads must not compromise the consistency of “nearby” o
(e.g., enclosing objects, subclass instances).

Protection and scheduling are naturally modeled by agents, as they exercise complete co
all times over the messages they accept. For example, a single-slot buffer with identity b can be
trivially specified as:

buf := [b,(put,Value),Prod] ? [Prod,ok] ! [b,get,Cons] ? [Cons,Value] ! buf .

A producer p would send [b,(put,Value),p] messages, waiting for the [p,ok] response, and a con
sumer c would send [b,get,c] messages, picking up the [c,Value] response. More elaborate sche
uling of requests can be effected by the use of internal message queues.

Interleaving of threads can be modeled by relaxing the restriction that objects respo
fore accepting new requests. Internal concurrency is straightforward to model, as we ca
complex agents as being composed of more primitive agents.

With these criteria in mind, we may now consider our design space according to follo
language classes [26], [27]:

1. The Orthogonal approach: objects and concurrency constructs are independent, a
Smalltalk-80 [11], Emerald [4] or Trellis/Owl [22]. Semaphores, locks or monitors m
be judiciously utilized to achieve object protection.

2. The Heterogeneous approach: both data objects similar to those found in sequential l
guages and protected “concurrent” objects are supported. The protection of conc
objects may be accomplished by transactions, as in PAL [3], or by considering su
jects as being active, as in the following approach.

3. The Homogeneous approach: threads are explicitly associated with objects, instead
being an independent programming construct. Hybrid [23], POOL-T [2] and ABC
[32] fall into this category.

Objects conforming to any one of these language classes can be easily modeled by comm
ing agents simply by varying the synchronization policies observed. For example, objects
orthogonal class would accept any request at any time, creating an internal agent to perf
method associated with the request. The method agents synchronize by consulting sema
lock agents, such as:

lock(Name) := [acquire,Name] ? [release,Name] ? lock(Name) .

Scheduling and interleaving of threads can be facilitated by introducing asynchrony while
sending or accepting either calls or replies, resulting in a variety of communication styles

• Asynchronous call: the client object creates a messenger agent that delivers the mes
sage; the client is free to continue some other activity.

• Message queues: the server object contains an autonomous queue agent that filters and
queues requests; the server can schedule multiple requests.

O. Nierstrasz, M. Papathomas 6

 serv-

e fu-

terms of
kaging
id not
 result,
ual

 nec-
pplied.
mon-
reads
heth-

ftware

are the
.

er-

names

encapsu-
eterized

rward
classes
rate, for

 ways
t us con-
ment-
bles. A
• Asynchronous reply: the server object creates a messenger to deliver the reply; the
er can immediately switch to another request.

• Futures: instead of the actual client accepting the reply, it is picked up by a future agent
[1], which saves the reply until it is needed; if the client asks for the reply before th
ture has received it, it will block.

These language classes and concurrency mechanisms may be technically equivalent in
expressive power, but there are profound differences in terms of convenience when pac
objects for re-use. As a concrete example, the first version of ConcurrentSmalltalk [30] d
support satisfactory mechanisms for scheduling and interleaving concurrent threads. As a
the implementation given of a bounded buffer has a more complex interface than the usput

and get operations: the producer and consumer are required to check the return value of put and
get in order to find out whether the buffer is empty or full, and suspend their own activity, if
essary. A wake-up method to be invoked asynchronously by the buffer must also be su
This problem was corrected in a later version of ConcurrentSmalltalk [31] by providing a
itor-like synchronization mechanism which enabled the buffer itself to suspend client th
when the buffer is empty or full. In this way the integrity of the buffer does not depend on w
er its clients are well-behaved.

4. Software Composition with Reusable Patterns

The three mechanisms most notably responsible for the reusability of object-oriented so
are object classes, class inheritance and genericity:

• Classes: all objects are instances of an object class, a template for objects that sh
same internal structure and the same methods for responding to clients’ requests

• Class inheritance: subclasses can be defined as incremental modifications [29] of sup
classes, with which they share some structure and some methods.

• Genericity: a generic class is a template for an object class, parameterized by the
of other object classes used within its specification.

Each of these mechanisms can be viewed as a means to reusing a behavioural pattern
lated as a parameterized syntactic pattern. Object classes are templates for objects param
by initialization values: an object instance is generated by calling a constructor for the class, op-
tionally supplying values used to initialize the new object. Generic classes are a straightfo
extension of this idea, with the main difference being that the parameters may be object
rather than just values. A generic “container” class, such as a list, can be used to gene
example, a list of integers as well as a list of windows.

We can view inheritance in the same way, by distinguishing between the two different
in which a class may be used, namely to generate objects or to generate subclasses. Le
sider, for example, an object model in which each object consists of a control agent imple
ing the methods, and a hidden set of concurrent agents implementing the instance varia
class might be defined by a pattern, as follows:

7 Viewing Objects as Patterns of Communicating Agents

rotect
sing the
ables
ide

s, we
l be-

ur of the
should
 param-

ay that
lt be-
ed. (At
on for

rators”
jects,
tive be-
get.

 sub-
f incre-
ic con-
 robust

ct-ori-
ritance
e an
classA(Id) := aMethods(Id) & aVars .

We shall ignore, for the sake of brevity, initialization of variables, and how the object can p
its instance variables from being accessed by other objects. (This can be done either by u
restriction operator mentioned earlier to hide communication offers involving instance vari
[20], or one may use filtering to hide all but selected offers to communicate with the outs
world [24].)

The pattern classA(Id) can only be used to generate objects. In order to define a subclas
need the concept of a generator, which is a template for a class, parameterized by additiona
haviour (i.e., methods and instance variables):

genA(Id,MRest,VRest) := aMethods(Id) + MRest & aVars & VRest .

A class is instantiated from its generator by binding the “additional” behaviour to nil:

classA(Id) := genA(Id,nil,nil) .

A subclass, on the other hand, could be created by supplying as parameters the behavio
additional instance variables and methods. To permit further subclassing, however, we
first create a subclass generator, adding the new behaviour and possibly introducing new
eters:

genB(Id,MRest,VRest) := genA(Id, bMethods(Id)+MRest, bVars & VRest) .
classB(Id) := genB(Id,nil,nil) .

The subclass pattern classB(Id) then results as if it had been directly defined by:

classB(Id) := aMethods(Id) + bMethods(Id) & aVars & bVars .

Overriding of inherited methods and instance variables could be handled in the same w
constructors permit default initialization of instance variables to be overridden: if the defau
haviour of a method or instance variable is not what is desired, it can be simply re-assign
present we support no means to do this in Abacus; “overriding” and name-conflict resoluti
multiple inheritance is only possible by explicitly stating what to inherit.)

Note that our approach resembles somewhat that of Cook [9] who uses both “gene
and “wrappers” to develop a denotational semantics for functional objects. Functional ob
however, are pure values, and thus cannot be used to directly model side effects or reac
haviour, in contrast to the case where communicating agents are used as a semantic tar

Although we do not argue that inheritance in object-oriented languages should be
sumed by parameterized software templates, we feel that modeling inheritance in terms o
mental modifications in the behaviour of communicating agents helps to expose semant
fusion in the design of an inheritance mechanism for a language, and thus leads to more
language design.

5. Viewing Types as Partial Specifications of Behaviour

The key problem in designing a concurrency model consistent with the principles of obje
ented programming is how to package concurrent objects so that instantiation and inhe
can be safely applied without violating encapsulation [6], [14], [26], [28]. Signatures provid

O. Nierstrasz, M. Papathomas 8

f sub-
h in-
opose
tability

er with
s to ac-
ons [8].
ects and
 time:

 argu-
pe re-
in error

nger

mpt

 mul-

bject
eaning
 and (2)

viour

 an
 object

ssible
 speci-

othing

cers
abstract view of objects hiding implementation details, and thus furnish useful notions o
stitutability, subtyping and type-checking. Unfortunately signatures fail to provide enoug
formation about the externally visible behaviour of objects to guarantee valid use. We pr
a new notion of types as partial specifications of external behaviour that extends substitu
and subtyping to concurrent objects.

A signature is a list of the operations (messages) understood by the object, togeth
their argument and return types; a subtype may add operations, permit existing operation
cept a wider range of argument types, or restrict the range of values returned by operati
Signatures are inadequate to describe the possible interactions between concurrent obj
their clients, primarily because they do not take into account variations in behaviour over

• Mutability: an operation that allows one to set the state of an object, taking as an
ment the “value” to be set, cannot be included in a subtype signature if the subty
fines the value space, since the more specific arguments required can put a client
(see the discussion on “aging functions” in [10]).

• Changing roles: an object that presently conforms to a type specification may no lo
conform in the future: teenager can therefore not be viewed as a subtype of person, even
though the former may be signature compatible to the latter.

• Scheduling: concurrent objects exhibit non-uniform service availability as they atte
to schedule requests. Although a bounded buffer may support a read operation, there is
no guarantee the request will return if no matching write has been issued.

• Interleaving: signatures in no way capture the interactions between an object and
tiple concurrent clients.

From the client’s point of view, a type should specify just enough information about an o
to express the valid patterns of communication. We can interpret this in our context as m
that (1) neither the client nor the server sends any inappropriate messages (i.e., safety),
requests will be serviced (i.e., liveness).

It is convenient to think of types and subtypes in terms of partial specifications of beha
and substitutability. In this view, to say that object x is of type t is the same as saying that t(x) is
true. Furthermore, if s is also a type, and we know that all objects that satisfy s also satisfy t, then
we say that s is a subtype of t. In effect, a type describes a “software contract” [19] between
object and its clients: a subtype is simply a stronger contract. For a client that expects an
of type t, we may substitute any object of subtype s.

In the domain of communicating agents, a concurrent type partially specifies the po
interactions between an agent and its peers. Consider, for example, the following partial
fication of single-slot buffers:

buf0(Id) := [Id,(put,X),Prod] ? [Prod,ok] ! buf1(Id) .
buf1(Id) := [Id,get,Cons] ? [Cons,Y] ! buf0(Id) .

This says that buf0 alternately accepts requests from producers and consumers, but says n
about the values that will be returned to the consumer (since Y is unbound). The implementation
of the single-slot buffer buf given earlier satisfies this specification in the sense that produ

9 Viewing Objects as Patterns of Communicating Agents

m val-

er of
hen the
s

nt. For
e

justify
the cli-
ange of

, con-
et

sti-
ints on

oblem.

cisely
hich

pecify
pted

) are pure
e objects
and consumers that expect an object of type buf0 will be satisfied with buf. Note that buf0 can
equivalently be viewed as a specification of a non-deterministic agent that provides rando
ues to consumers. In this sense, buf is simply more deterministic than buf0.

Interestingly, signatures are completely subsumed by this view of types:

bufsig(Id) := [Id,(put,X),Prod] ? [Prod,ok] ! bufsig(Id)
+ [Id,get,Cons] ? [Cons,Y] ! bufsig(Id) .

bufsig is a partial specification of an unbounded buffer, since there is no limit to the numb
put requests that can be made. It also permits the buffer to return arbitrary values, even w
buffer is empty. Note that bufsig can be viewed as a subtype of buf0, since any object that satisfie
bufsig can be safely used where an object of type buf0 is expected.

We would like to define a subtype relation, s:<t, where s is a subtype of t, with the following
properties:

1. s accepts at least the input offers of t

2. s presents at most the output offers of t

3. if s makes some input or output offer e with replacement sr, where e is an offer also made
by t (thus expected by clients), then there is a replacement tr of t upon event e such that
sr:<tr

4. if t makes some offer, then s must make at least one offer that t does

These criteria apply only to computation paths reachable by communications with the clie
example, the second condition doesn’t apply to responses that s would make to a request that th
client will not make (i.e., because t does not permit it).

According to these criteria, we can conclude that bufsig(Id):<buf0(Id). Note that we treat input
and output offers asymmetrically, in contrast to e.g., observation equivalence [20]. We
this view by noting that input offers correspond to safety conditions (i.e., what messages
ent can safely send), whereas output offers correspond to liveness conditions (i.e., the r
possible values the client can expect as a reply).

Unfortunately, our conditions appear to be necessary, but not sufficient. For example
sider an agent funnybuf that behaves just like buf, except that it blocks if a consumer tries to g
a value before the producer puts anything, i.e.,

funnybuf := buf + [b,get,Cons]?nil .

This agent would conform to buf0 according to our requirements, but would non-determini
cally deadlock in the presence of concurrent producers and consumers. Further constra
the “services” specified by types and subtypes appear to be necessary to resolve this pr

Within this framework for understanding concurrent types, we plan to investigate pre
which kinds of specifications will be useful for characterizing reuse criteria, and under w
the circumstances type-checking will be feasible and practical. (If types are allowed to s
too much, “type-checking” becomes equivalent to program verification!) We have not attem
to unify object types and message types, since objects are agents, but messages (events
values. In particular, an object cannot be sent as part of the contents of a message, sinc

O. Nierstrasz, M. Papathomas 10

, or even
ontents
].

] as a
se a re-
r of an
perties
ions

 open
ed lan-
 notation

ed and
 suffi-
 mini-
echa-
 much
encap-
notion
viour.

d lan-

bject-

t ob-

v-

s the
th cli-
are not values: one may send an object id, or a value representing the state of the object
a value representing the behaviour of the object, but not the object itself. Since message c
are values, type-checking of communications can be handled in a more traditional way [8

Two promising directions for further work are (1) to reconsider path expressions [7
means to describe abstract behaviour, perhaps along the lines of Procol [5], and (2) to u
stricted form of temporal logic [16] using abstract states to express the external behaviou
object in terms of liveness and safety conditions. We are presently investigating the pro
of interaction conformance, which characterizes agents in terms of their possible interact
with a set of observers [25].

6. Concluding Remarks

The clean integration of concurrency features into object-oriented languages is still an
problem. We have proposed a reference model for the design of concurrent object-orient
guages based on communicating agents, and we have presented a compact executable
which can be used as a semantic target for language specification.

Although a large variety of powerful and expressive mechanisms have been propos
included in various languages, it has proved difficult to devise an approach that is at once
ciently powerful to easily express solutions to standard concurrency problems, and also
mizes the difficulties of reusing concurrent objects, whether by inheritance, or by other m
nisms for software composition. We claim that the majority of these problems result not so
from a particular choice of concurrency mechanisms as from a lack of good methods for
sulating objects and specifying reuse criteria. To rectify this situation, we propose a new
of object type that characterizes concurrent objects in terms of their externally visible beha

We are working towards the design of a new generation of concurrent object-oriente
guage by:

• Identifying and attempting to resolve the key conflicts between concurrency and o
oriented software composition [26], [27].

• Continuing to use Abacus as a platform for exploring various models of concurren
jects [24].

• Developing a pattern language that will permit syntactic patterns to be bound to beha
ioural patterns in Abacus.

• Developing a polymorphic type model for concurrent objects that partially specifie
behaviour of objects in terms of safety and liveness conditions over interactions wi
ents [25].

11 Viewing Objects as Patterns of Communicating Agents

ro-

ald,”

ro-

he Eu-

ions,”
ci-

om-

A

 Sur-

ceed-
versity

age,”

ril

truc-
ages,

IG-

he Eu-

22,
References

[1] G.A. Agha, ACTORS: A Model of Concurrent Computation in Distributed Systems, The MIT Press, Cam-
bridge, Massachusetts, 1986.

[2] P. America, “POOL-T: A Parallel Object-Oriented Language,” in Object-Oriented Concurrent Program-
ming, ed. A. Yonezawa, M. Tokoro, pp. 199-220, The MIT Press, Cambridge, Massachusetts, 1987.

[3] A. Björnerstedt and S. Britts, “AVANCE: An Object Management System,” ACM SIGPLAN Notices, P
ceedings OOPSLA ’88, vol. 23, no. 11, pp. 206-221, Nov 1988.

[4] A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, “Distribution and Abstract Data Types in Emer
IEEE Transactions on Software Engineering, vol. SE-13, no. 1, pp. 65-76, Jan 1987.

[5] J. van den Bos, “PROCOL -- A Parallel Object Language with Protocols,” ACM SIGPLAN Notices, P
ceedings OOPSLA ’89, vol. 24, no. 10, pp. 95-102, Oct 1989.

[6] J-P. Briot and A. Yonezawa, “Inheritance and Synchronization in Concurrent OOP,” Proceedings of t
ropean Conference on Object-oriented Programming, pp. 35-43, Paris, France, June 15-17, 1987.

[7] R.H. Campbell and A.N. Habermann, “The Specification of Process Synchronization by Path Express
in Operating Systems, International Symposium, ed. E. Gelenbe, C. Kaiser, Lecture Notes in Computer S
ence 16, pp. 89-102, Springer-Verlag, 1974.

[8] L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,” ACM C
puting Surveys, vol. 17, no. 4, pp. 471-522, Dec 1985.

[9] Wm. Cook, “A Denotational Semantics of Inheritance,” ACM SIGPLAN Notices, Proceedings OOPSL
’89, vol. 24, no. 10, pp. 433-443, Oct 1989.

[10] S. Danforth and C. Tomlinson, “Type Theories and Object-Oriented Programming,” ACM Computing
veys, vol. 20, no. 1, pp. 29-72, March 1988.

[11] A. Goldberg and D. Robson, Smalltalk 80: the Language and its Implementation, Addison-Wesley, May
1983.

[12] M.J.C. Gordon, The Denotational Description of Programming Languages, Springer-Verlag, 1979.

[13] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[14] D.G. Kafura and K.H. Lee, “Inheritance in Actor Based Concurrent Object-Oriented Languages,” Pro
ings of the Third European Conference on Object-oriented Programming, pp. 131-145, Cambridge Uni
Press, Nottingham, July 10-14, 1989.

[15] B.B. Kristensen, O.L. Madsen, B. Møller-Pedersen and K. Nygaard, “The BETA Programming Langu
in Research Directions in Object-Oriented Programming, ed. B. Shriver, P. Wegner, pp. 7-48, The MIT
Press, Cambridge, Massachusetts, 1987.

[16] L. Lamport, “Specifying Concurrent Program Modules,” ACM TOPLAS, vol. 5, no. 2, pp. 190-222, Ap
1983.

[17] H. Lieberman, “Concurrent Object-Oriented Programming in Act 1,” in Object-Oriented Concurrent Pro-
gramming, ed. A. Yonezawa, M. Tokoro, pp. 9-36, The MIT Press, Cambridge, Massachusetts, 1987.

[18] B. Liskov, M. Herlihy and L. Gilbert, “Limitations of Synchronous Communication with Static process S
ture in Languages for Distributed Computing,” 13th Symposium on Principles of Programming Langu
St. Petersburg Beach, Florida, Jan 13-15, 1986.

[19] B. Meyer, Object-oriented Software Construction, Prentice Hall, 1988.

[20] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[21] N.H. Minsky and D. Rozenshtein, “A Law-Based Approach to Object-Oriented Programming,” ACM S
PLAN Notices, Proceedings OOPSLA ’87, vol. 22, no. 12, pp. 482-493, Dec 1987.

[22] J.E.B. Moss and W.H. Kohler, “Concurrency Features for the Trellis/Owl Language,” Proceedings of t
ropean Conference on Object-oriented Programming, pp. 223-232, Paris, France, June 15-17, 1987.

[23] O.M. Nierstrasz, “Active Objects in Hybrid,” ACM SIGPLAN Notices, Proceedings OOPSLA ’87, vol.
no. 12, pp. 243-253, Dec 1987.

O. Nierstrasz, M. Papathomas 12

d for

per).

a,

n Eval-

ices,

 and

5-17,

setts,

s,

CM
[24] O.M. Nierstrasz, “A Guide to Specifying Concurrent Behaviour with Abacus,” in Object Management, ed.
D.C. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1990, (To be submitte
publication).

[25] O.M. Nierstrasz and M. Papathomas, “Towards a Type Theory for Active Objects,” in Object Management,
ed. D.C. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1990, (Working Pa

[26] M. Papathomas, “Concurrency Issues in Object-Oriented Programming Languages,” in Object Oriented De-
velopment, ed. D.C. Tsichritzis, pp. 207-245, Centre Universitaire d’Informatique, University of Genev
July 1989.

[27] M. Papathomas and D. Konstantas, “Integrating Concurrency and Object-Oriented Programming – A
uation of Hybrid ,” in Object Management, ed. D.C. Tsichritzis, Centre Universitaire d’Informatique, Uni-
versity of Geneva, July 1990.

[28] C. Tomlinson and V. Singh, “Inheritance and Synchronization with Enabled Sets,” ACM SIGPLAN Not
Proceedings OOPSLA ’89, vol. 24, no. 10, pp. 103-112, Oct 1989.

[29] P. Wegner and S. B. Zdonik, “Inheritance as an Incremental Modification Mechanism or What Like Is
Isn’t Like,” in Proceedings of the European Conference on Object-oriented Programming, ed. S. Gjessing
and K. Nygaard, Lecture Notes in Computer Science 322, pp. 55-77, Springer Verlag, Oslo, August 1
1988.

[30] Y. Yokote and M. Tokoro, “Concurrent Programming in ConcurrentSmalltalk,” in Object-Oriented Concur-
rent Programming, ed. A. Yonezawa, M. Tokoro, pp. 129-158, The MIT Press, Cambridge, Massachu
1987.

[31] Y. Yokote and M. Tokoro, “Experience and Evolution of ConcurrentSmalltalk,” ACM SIGPLAN Notice
Proceedings OOPSLA ’87, vol. 22, no. 12, pp. 406-415, Dec 1987.

[32] A. Yonezawa, J-P Briot and E. Shibayama, “Object-Oriented Concurrent Programming in ABCL/1,” A
SIGPLAN Notices, Proceedings OOPSLA ’86, vol. 21, no. 11, pp. 258-268, Nov 1986.

	Viewing Objects as Patterns of Communicating Agents
	1. Introduction
	2. Viewing Objects as Communicating Agents
	3. A Design Space for Concurrent Object Models
	4. Software Composition with Reusable Patterns
	5. Viewing Types as Partial Specifications of Behaviour
	6. Concluding Remarks

