Viewing Objects as
Patterns of Communicating Agents

Oscar Nierstrasz
Michael Papathomas

Université de Genéeve
Centre Universitaire d’Informatique
12 rue du Lac, CH-1207 Geneva, Switzerland
E-mail: {oscar,michael}@cui.unige.ch, oscar@cgeuge51.bitnet
Tel: +41 (22) 787.65.80, Fax: +41 (22) 735.39.05

Abstract

Following our own experience developing a concurrent object-oriented language as well of that

of other researchers, we have identified several key problems in the design of a concurrency mod-
el compatible with the mechanisms of object-oriented programming. We propose an approach to
language design in which an executable notation describing the behaviour of communicating
agents is extended by syntactic patterns that encapsulate language constructs. We indicate how
various language models can be accommodated, and how mechanisms such as inheritance can be
modeled. Finally, we introduce a new notion of types that characterizes concurrent objects in
terms of their externally visible behaviour.

1. Introduction

The message-passing model of communication in object-oriented languages appears to naturally
support concurrent execution of autonomous objects. This fact has led many researchers to try
to exploit this autonomy in developing concurrent object-oriented languages [2], [15], [17], [22],
[23], [30], [32]. Various forms of active, message-passing objects, and passive, lockable objects
have been proposed and implemented. Unfortunately none of these approaches has yet succeed-
ed in resolving basic conflicts between concurrency mechanisms and the encapsulation that is
needed for the safe use and reuse of object-oriented code [6], [14], [26], [27], [28].

We claim that the difficulty of the language design problem is due largely to the lack of:
» widely accepted and well-understood models of concurrency

» good tools for prototyping languages

» a good understanding of reuse criteria for encapsulated software

We propose a practical approach to the design of concurrent object-oriented languages using a
well-defined computational model of communicating agents based on Milner's CCS [20] and
Hoare’s CSP [13]. A compact executable notation callesicus[24] characterizes the behav-

1. © ACM. In Proceedings OOPSLA/ECOOP 90, Ottawa, Oct 21-25, 1990, SIGPLAN Notices Vol. 25,
No. 10, pp. 38-43. Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

O. Nierstrasz, M. Papathomas 2

iour of agents in terms of possible communications with other agents. Various object models can

be easily captured by varying the mapping between objects and agents, and by varying the com-
munication patterns that may take place. Programming language constructs are designed by
mapping syntactic patterns to behavioural patterns. Since these mappings are straightforward
translations to an executable notation, this can lead to a rapid prototype of a language interpreter.

In the following sections we will introduce our notation and outline how objects may be
modeled. We shall then describe the design space for approaches to object-oriented concurren-
cy, detailing some specific requirements for a consistent model of concurrent objects. We then
show how classes, inheritance and genericity can be modelled as patterns of behaviour, and we
argue the need for explicit reuse criteria to be associated with concurrent objects. Finally, we
demonstrate that signatures are inadequate to express the valid use and reuse of concurrent ob-
jects, and we propose a new approach that views types and subtypes as partial specifications of
the externally visible behaviour of objects.

2. Viewing Objects as Communicating Agents

We take the position that objects, whether they be “active” or “passive,” and regardless of the
particular object model of a language, are naturally modeled as communacgirtg An agent

is an entity that may change state when it communicates with another agent. Complex agents
that encapsulate a collection of cooperating agents may also change state due to hidden internal
communications. Communication is synchronous, occurring only if there exist matching input
and outpubffersto communicate between two agents. Concurrency and reactive behaviour are
easily captured in such a model. The model is fully abstract in the sense that agents with the same
external behaviour can be viewed as equivalent [20].

We have designed and implemented (in Prolog) an executable notation called Abacus [24],
modelled closely after CCS [20] and CSP [13p&haviour expressiospecifies the behaviour
of an agent or of a system of agents by indicating the current input and output offers of each
agent, and the replacement behaviour of the agent should the offer be accepted. A behaviour ex-
pression consists @vent nameandagent namesomposed as follows:

elp offer outpute with replacement behaviogr

e?p offer inpute with replacement

p+q behave like eithes or g (exclusive choice)

p&q p and g may communicate (concurrent composition)
nil make no offers

Additionally there are several operators that help to encapsulate systems of cooperating agents.
These includeestriction andrelabelling to hide or relabel selected offers, daldel prefixing
andfiltering to define scopes beyond which only “prefixed” offers are visible (for details see
[24]). Event names only appear in the context of input and output offers. Wherever an agent
name appears in the above, a behaviour expression may be used instead. Finally:

p := behaviour-expression .

3 Viewing Objects as Patterns of Communicating Agents

binds the name to the expression that follows. The operataad? have the highest prece-
dence, and are followed, in order,Hy and:=. A formal semantics of Abacus is easily speci-

fied by a set of transition rules [24]. These rules are implemented in a straightforward way in
Prolog, specifying for any given behaviour expression what events may take place, and what the
replacement expression will be. We further exploit Prolog in the examples that follow by using
functors as agent names and lists and tuples as event names.

A trivial example of a behaviour expression is:
e?nil & elnil

This permits the communication evertb take place between the agents specifiesbhiyand
e'nil, with the net replacement:

nil & nil
Note thatil & nil is equivalent tail, as nothing further can happen.

In order to define a programming language, we map language constructs to behavioural
patterns in a denotational fashion [12]. We use the patternto refer to any function that eval-
uates to Abacus agents. The arguments may be arbitrary values, agents or syntactic patterns of
the language being defined. To give a flavour of the approach, we provide a few short examples
of defining the semantics of statements for a programming languagsmt pattern takes two
arguments: a statement, and toatinuation that is the agent that will perform the rest of the
computation. For example skip statement does nothing, so the semantiekipfs simply that
of the continuation:

stmt(skip,Cont) := Cont.

(We follow the Prolog convention of indicating variables by identifiers with a leading upper-
case character.) The semi-colon is a statement separator. The interpretatisa of simply
an agent that interpresa with the continuation being the agent that interpgets

stmt((S1;S2),Cont) := stmt(S1,stmt(S2,Cont)).
Suppose that Boolean expressions are computed by agents that terminate with an output of-
fer of eithenrue or false. We could then specify ahcommand as follows:

stmt(if Bool then S1 else S2,Cont) := expr(Bool) &
true?stmt(S1,Cont) + false?stmt(S2,Cont).
In this example, the first agesdpr(Bool) evaluates the expressiBool and outputs either the val-
uetrue or false. The second agent consumes the value and becomes the agent that selectively
evaluates the appropriate clause ofitiicemmand.

For a more complete illustration of the approach, we refer the reader to the Abacus speci-
fication of SAL [24], Agha’s Simple Actor Language developed to explain the actor model [1].

Within this framework, it is relatively straightforward to express a variety of object models.
To this end, it is convenient to model message®agound eventexpressed as lists or tuples.
As a reference model, let us consider the following restrictions:

O. Nierstrasz, M. Papathomas 4

* An object is an agent with a unigigentity. It communicates with other objects by send-
ing call orreply messages, which are compound events with the receiver explicitly iden-
tified.

» call messages from a client object with identitient to a server object with identity
Server are of the forniServer,Msg,Client].

» reply messages to a client with identityent are of the forniClient,Reply].
An object with identityd is characterized by the behavioural pattexept(id):

accept(ld) := [Id,Msg,Client] ? (call(ld,Client) + reply(ld,Client)) .

call(ld,Client) := [Server,Msg,Id] ! wait(ld,Client) .

wait(ld,Client) := [Id,Reply] ? (call(Id,Client) + reply(ld,Client)) .

reply(ld,Client) := [Client,Reply] ! accept(ld) .
That is, objectd can accept a request fronTient, issue requests to othesrver objects, and
eventually reply taClient. The patterraccept(ld) is a partial specification of behaviour, since it
says nothing about the contents of messages or the other objects used as servers. It only guaran-

tees that no new requests will be accepted while there is a pending request.

A thread of control can be seen as a traceatifandreply events, with the control at any
point being with the object in one of the abstract state®rreply. Note that the idea of defining
objects as agents that conform to certain patterns of behaviour is similar to Minsky’s approach
of characterizing behaviour by a setafs[21]. By introducing variations iaccept(ld) (i.e., by
considering different sets of laws), we can express the behaviour of both active and passive ob-
jects, multi-threaded objects, asynchronously communicating objects, and objects that make use
of a variety of concurrency control mechanisms.

3. A Design Space for Concurrent Object Models

Although encapsulation of single-threaded, passive objects is reasonably well-understood, the
same is not true of concurrent objects. Depending on the way that concurrency is handled in a
language, encapsulation may be violated in a number of ways. In the simplest case, if we take
an object designed for use in a single-threaded application and expose it to multiple concurrent
clients, the concurrent execution of methods can compromise the object’s internal consistency.

On the other hand, even when an object is able to protect itself from concurrent requests, it
may be necessary to expose implementation details in order to protect the integrity of its clients
(for example, to avoid deadlock). For a language design to offer a reasonable encapsulation
model for concurrent objects, we suggest that at least the following minimal set of criteria should
be met:

» Protection:all objects should be guaranteed of their internal consistency independently
of their environment or the presence of multiple threads.

» Scheduling: an object must be able to selectively refuse or delay certain requests not
only on the basis of its internal state, but also depending on the contents of the request
message [18].

5 Viewing Objects as Patterns of Communicating Agents

* Interleaving: the desired external behaviour of an object should not over-constrain its
internal behaviour, for example, internal concurrency should be permitted, as should
multiple “readers” for methods that do not cause state changes. Mechanisms for suspend-
ing and interleaving threads must not compromise the consistency of “nearby” objects
(e.g., enclosing objects, subclass instances).

Protection and scheduling are naturally modeled by agents, as they exercise complete control at
all times over the messages they accept. For example, a single-slot buffer with idesntitye
trivially specified as:

buf := [b,(put,Value),Prod] ? [Prod,ok] ! [b,get,Cons] ? [Cons,Value] ! buf .

A producerp would sendb,(put,Value),p] messages, waiting for tiigok] response, and a con-
sumerc would sendb,get,c] messages, picking up tfwvalue] response. More elaborate sched-
uling of requests can be effected by the use of internal message queues.

Interleaving of threads can be modeled by relaxing the restriction that objects respond be-
fore accepting new requests. Internal concurrency is straightforward to model, as we can view
complex agents as being composed of more primitive agents.

With these criteria in mind, we may now consider our design space according to following
language classes [26], [27]:

1. The Orthogonal approachpbjects and concurrency constructs are independent, as in
Smalltalk-80 [11], Emerald [4] or Trellis/Owl [22]. Semaphores, locks or monitors must
be judiciously utilized to achieve object protection.

2. TheHeterogeneous approacluoth data objects similar to those found in sequential lan-
guages and protected “concurrent” objects are supported. The protection of concurrent
objects may be accomplished by transactions, as in PAL [3], or by considering such ob-
jects as being active, as in the following approach.

3. The Homogeneous approachhreads are explicitly associated with objects, instead of
being an independent programming construct. Hybrid [23], POOL-T [2] and ABCL/1
[32] fall into this category.

Objects conforming to any one of these language classes can be easily modeled by communicat-
ing agents simply by varying the synchronization policies observed. For example, objects of the
orthogonal class would accept any request at any time, creating an internal agent to perform the
method associated with the request. The method agents synchronize by consulting semaphore or
lock agents, such as:

lock(Name) := [acquire,Name] ? [release,Name] ? lock(Name) .

Scheduling and interleaving of threads can be facilitated by introducing asynchrony while either
sending or accepting either calls or replies, resulting in a variety of communication styles:

» Asynchronous call:ithe client object createsnaessengeagent that delivers the mes-
sage; the client is free to continue some other activity.

* Message queueshe server object contains an autonomyquesueagent that filters and
gueues requests; the server can schedule multiple requests.

O. Nierstrasz, M. Papathomas 6

» Asynchronous replythe server object creates a messenger to deliver the reply; the serv-
er can immediately switch to another request.

» Futures: instead of the actual client accepting the reply, it is picked ugfutye agent
[1], which saves the reply until it is needed; if the client asks for the reply before the fu-
ture has received it, it will block.

These language classes and concurrency mechanisms may be technically equivalent in terms of
expressive power, but there are profound differences in terms of convenience when packaging
objects for re-use. As a concrete example, the first version of ConcurrentSmalltalk [30] did not
support satisfactory mechanisms for scheduling and interleaving concurrent threads. As a result,
the implementation given of a bounded buffer has a more complex interface than thatusual
andget operations: the producer and consumer are required to check the return yaisndf

get in order to find out whether the buffer is empty or full, and suspend their own activity, if nec-
essary. A wake-up method to be invoked asynchronously by the buffer must also be supplied.
This problem was corrected in a later version of ConcurrentSmalltalk [31] by providing a mon-
itor-like synchronization mechanism which enabled the buffer itself to suspend client threads
when the buffer is empty or full. In this way the integrity of the buffer does not depend on wheth-
er its clients are well-behaved.

4. Software Composition with Reusable Patterns

The three mechanisms most notably responsible for the reusability of object-oriented software
are object classes, class inheritance and genericity:

» Classesall objects are instances of an object class, a template for objects that share the
same internal structure and the same methods for responding to clients’ requests.

» Class inheritancesubclassesan be defined as incremental modifications [29] of super-
classes, with which they share some structure and some methods.

» Genericity:a generic class is a template for an object class, parameterized by the names
of other object classes used within its specification.

Each of these mechanisms can be viewed as a means to reusing a behavioural pattern encapsu-
lated as a parameterized syntactic pattern. Object classes are templates for objects parameterized
by initialization values: an object instance is generated by caltogstructorfor the class, op-

tionally supplying values used to initialize the new object. Generic classes are a straightforward
extension of this idea, with the main difference being that the parameters may be object classes
rather than just values. A generic “container” class, such as a list, can be used to generate, for
example, a list of integers as well as a list of windows.

We can view inheritance in the same way, by distinguishing between the two different ways
in which a class may be used, namely to generate objects or to generate subclasses. Let us con-
sider, for example, an object model in which each object consists of a control agent implement-
ing the methods, and a hidden set of concurrent agents implementing the instance variables. A
class might be defined by a pattern, as follows:

7 Viewing Objects as Patterns of Communicating Agents

classA(ld) := aMethods(ld) & aVars .

We shall ignore, for the sake of brevity, initialization of variables, and how the object can protect
its instance variables from being accessed by other objects. (This can be done either by using the
restrictionoperator mentioned earlier to hide communication offers involving instance variables
[20], or one may uséltering to hide all but selected offers to communicate with the outside
world [24].)

The patterrlassA(ld) can only be used to generate objects. In order to define a subclass, we
need the concept ofgenerator which is a template for a class, parameterized by additional be-
haviour (i.e., methods and instance variables):

genA(ld,MRest,VRest) := aMethods(ld) + MRest & aVars & VRest .
A class is instantiated from its generator by binding the “additional” behavialir to

classA(Id) := genA(ld,nil,nil) .
A subclass, on the other hand, could be created by supplying as parameters the behaviour of the
additional instance variables and methods. To permit further subclassing, however, we should
first create a subclass generator, adding the new behaviour and possibly introducing new param-
eters:

genB(ld,MRest,VRest) := genA(ld, bMethods(ld)+MRest, bVars & VRest) .
classB(ld) := genB(ld,nil,nil) .

The subclass pattettassB(ld) then results as if it had been directly defined by:
classB(ld) := aMethods(ld) + bMethods(Id) & aVars & bVars .

Overriding of inherited methods and instance variables could be handled in the same way that
constructors permit default initialization of instance variables to be overridden: if the default be-
haviour of a method or instance variable is not what is desired, it can be simply re-assigned. (At
present we support no means to do this in Abacus; “overriding” and name-conflict resolution for
multiple inheritance is only possible by explicitly stating what to inherit.)

Note that our approach resembles somewhat that of Cook [9] who uses both “generators”
and “wrappers” to develop a denotational semantics for functional objects. Functional objects,
however, are pure values, and thus cannot be used to directly model side effects or reactive be-
haviour, in contrast to the case where communicating agents are used as a semantic target.

Although we do not argue that inheritance in object-oriented languages should be sub-
sumed by parameterized software templates, we feel that modeling inheritance in terms of incre-
mental modifications in the behaviour of communicating agents helps to expose semantic con-
fusion in the design of an inheritance mechanism for a language, and thus leads to more robust
language design.

5. Viewing Types as Partial Specifications of Behaviour

The key problem in designing a concurrency model consistent with the principles of object-ori-
ented programming is how to package concurrent objects so that instantiation and inheritance
can be safely applied without violating encapsulation [6], [14], [26], [28]. Signatures provide an

O. Nierstrasz, M. Papathomas 8

abstract view of objects hiding implementation details, and thus furnish useful notions of sub-
stitutability, subtyping and type-checking. Unfortunately signatures fail to provide enough in-
formation about the externally visible behaviour of objects to guarantee valid use. We propose
a new notion of types as partial specifications of external behaviour that extends substitutability
and subtyping to concurrent objects.

A signature is a list of the operations (messages) understood by the object, together with
their argument and return types; a subtype may add operations, permit existing operations to ac-
cept a wider range of argument types, or restrict the range of values returned by operations [8].
Signatures are inadequate to describe the possible interactions between concurrent objects and
their clients, primarily because they do not take into account variations in behaviour over time:

» Mutability: an operation that allows one to set the state of an object, taking as an argu-
ment the “value” to be set, cannot be included in a subtype signature if the subtype re-
fines the value space, since the more specific arguments required can put a client in error
(see the discussion on “aging functions” in [10]).

» Changing roles:an object that presently conforms to a type specification may no longer
conform in the futureteenager can therefore not be viewed as a subtypeebn, even
though the former may be signature compatible to the latter.

» Scheduling:concurrent objects exhibit non-uniform service availability as they attempt
to schedule requests. Although a bounded buffer may suppart aperation, there is
no guarantee the request will return if no matchirig has been issued.

* Interleaving: signatures in no way capture the interactions between an object and mul-
tiple concurrent clients.

From the client’s point of view, a type should specify just enough information about an object
to express the valid patterns of communication. We can interpret this in our context as meaning
that (1) neither the client nor the server sends any inappropriate messages (i.e., safety), and (2)
requests will be serviced (i.e., liveness).

It is convenient to think of types and subtypes in terms of partial specifications of behaviour
and substitutability. In this view, to say that objec of typet is the same as saying th@j is
true. Furthermore, #is also a type, and we know that all objects that satislyo satisfy, then
we say that is asubtypeof t. In effect, a type describes a “software contract” [19] between an
object and its clients: a subtype is simply a stronger contract. For a client that expects an object
of typet, we may substitute any object of subtgpe

In the domain of communicating agents, a concurrent type partially specifies the possible
interactions between an agent and its peers. Consider, for example, the following partial speci-
fication of single-slot buffers:

bufo(ld) := [Id,(put,X),Prod] ? [Prod,ok] ! bufl1(ld) .

bufl(ld) := [Id,get,Cons] ? [Cons,Y] ! bufO(Id) .

This says thaiufo alternately accepts requests from producers and consumers, but says nothing
about the values that will be returned to the consumer (girscenbound). The implementation
of the single-slot buffeuf given earlier satisfies this specification in the sense that producers

9 Viewing Objects as Patterns of Communicating Agents

and consumers that expect an object of type will be satisfied withbuf. Note thatoufo can
equivalently be viewed as a specification of a non-deterministic agent that provides random val-
ues to consumers. In this sensé,is simply more deterministic thaafo.

Interestingly, signatures are completely subsumed by this view of types:

bufsig(ld) := [Id,(put,X),Prod] ? [Prod,ok] ! bufsig(ld)
+ [Id,get,Cons] ? [Cons, Y] ! bufsig(ld) .
bufsig IS a partial specification of an unbounded buffer, since there is no limit to the number of
put requests that can be made. It also permits the buffer to return arbitrary values, even when the
buffer is empty. Note thaufsig can be viewed as a subtypeab, since any object that satisfies
bufsig can be safely used where an object of typeis expected.

We would like to define a subtype relatiert, wheres is asubtypeoft, with the following
properties:

1. s acceptsat leastthe input offers of
2. s presentat mostthe output offers of

3. if s makes some input or output oftewith replacemendr, wheree is an offer also made
by t (thus expected by clients), then there is a replacemeintupon event such that
Sr:<tr

4. if t makes some offer, thammust make at least one offer thdbes

These criteria apply only to computation paths reachable by communications with the client. For
example, the second condition doesn’t apply to responsestiatd make to a request that the
client will not make (i.e., becauseoes not permit it).

According to these criteria, we can conclude ibbatg(ld):<bufo(ld). Note that we treat input
and output offers asymmetrically, in contrast to e.g., observation equivalence [20]. We justify
this view by noting that input offers correspond to safety conditions (i.e., what messages the cli-
ent can safely send), whereas output offers correspond to liveness conditions (i.e., the range of
possible values the client can expect as a reply).

Unfortunately, our conditions appear to be necessary, but not sufficient. For example, con-
sider an agerttinnybuf that behaves just likeuf, except that it blocks if a consumer tries to get
a value before the producer puts anything, i.e.,

funnybuf := buf + [b,get,Cons]?nil .

This agent would conform teufo according to our requirements, but would non-deterministi-
cally deadlock in the presence of concurrent producers and consumers. Further constraints on
the “services” specified by types and subtypes appear to be necessary to resolve this problem.

Within this framework for understanding concurrent types, we plan to investigate precisely
which kinds of specifications will be useful for characterizing reuse criteria, and under which
the circumstances type-checking will be feasible and practical. (If types are allowed to specify
too much, “type-checking” becomes equivalent to program verification!) We have not attempted
to unify object types and message types, since objects are agents, but messages (events) are pure
values. In particular, an object cannot be sent as part of the contents of a message, since objects

O. Nierstrasz, M. Papathomas 10

are not values: one may send an object id, or a value representing the state of the object, or even
a value representing the behaviour of the object, but not the object itself. Since message contents
are values, type-checking of communications can be handled in a more traditional way [8].

Two promising directions for further work are (1) to reconsider path expressions [7] as a
means to describe abstract behaviour, perhaps along the lines of Procol [5], and (2) to use a re-
stricted form of temporal logic [16] using abstract states to express the external behaviour of an
object in terms of liveness and safety conditions. We are presently investigating the properties
of interaction conformangewhich characterizes agents in terms of their possible interactions
with a set of observers [25].

6. Concluding Remarks

The clean integration of concurrency features into object-oriented languages is still an open
problem. We have proposed a reference model for the design of concurrent object-oriented lan-
guages based on communicating agents, and we have presented a compact executable notation
which can be used as a semantic target for language specification.

Although a large variety of powerful and expressive mechanisms have been proposed and
included in various languages, it has proved difficult to devise an approach that is at once suffi-
ciently powerful to easily express solutions to standard concurrency problems, and also mini-
mizes the difficulties of reusing concurrent objects, whether by inheritance, or by other mecha-
nisms for software composition. We claim that the majority of these problems result not so much
from a particular choice of concurrency mechanisms as from a lack of good methods for encap-
sulating objects and specifying reuse criteria. To rectify this situation, we propose a new notion
of object type that characterizes concurrent objects in terms of their externally visible behaviour.

We are working towards the design of a new generation of concurrent object-oriented lan-
guage by:

« Identifying and attempting to resolve the key conflicts between concurrency and object-
oriented software composition [26], [27].

» Continuing to use Abacus as a platform for exploring various models of concurrent ob-
jects [24].

» Developing gattern languagehat will permit syntactic patterns to be bound to behav-
ioural patterns in Abacus.

» Developing a polymorphic type model for concurrent objects that partially specifies the
behaviour of objects in terms of safety and liveness conditions over interactions with cli-
ents [25].

11

Viewing Objects as Patterns of Communicating Agents

References

[1]
(2]
(3]
[4]

[5]

[7]

(8]

[10]
[11]

[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]

[20]
[21]

[22]

[23]

G.A. Agha,ACTORS: A Model of Concurrent Computation in Distributed SystEinesMIT Press, Cam-
bridge, Massachusetts, 1986.

P. America, “POOL-T: A Parallel Object-Oriented Language Olrject-Oriented Concurrent Program-
ming ed. A. Yonezawa, M. Tokoro, pp. 199-220, The MIT Press, Cambridge, Massachusetts, 1987.

A. Bjornerstedt and S. Britts, “AVANCE: An Object Management System,” ACM SIGPLAN Notices, Pro-
ceedings OOPSLA '88, vol. 23, no. 11, pp. 206-221, Nov 1988.

A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, “Distribution and Abstract Data Types in Emerald,”
IEEE Transactions on Software Engineering, vol. SE-13, no. 1, pp. 65-76, Jan 1987.

J. van den Bos, “PROCOL -- A Parallel Object Language with Protocols,” ACM SIGPLAN Notices, Pro-
ceedings OOPSLA '89, vol. 24, no. 10, pp. 95-102, Oct 1989.

J-P. Briot and A. Yonezawa, “Inheritance and Synchronization in Concurrent OOP,” Proceedings of the Eu-
ropean Conference on Object-oriented Programming, pp. 35-43, Paris, France, June 15-17, 1987.

R.H. Campbell and A.N. Habermann, “The Specification of Process Synchronization by Path Expressions,”
in Operating Systems, International Symposiath E. Gelenbe, C. Kaiser, Lecture Notes in Computer Sci-
ence 16, pp. 89-102, Springer-Verlag, 1974.

L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,” ACM Com-
puting Surveys, vol. 17, no. 4, pp. 471-522, Dec 1985.

Wm. Cook, “A Denotational Semantics of Inheritance,” ACM SIGPLAN Notices, Proceedings OOPSLA
'89, vol. 24, no. 10, pp. 433-443, Oct 1989.

S. Danforth and C. Tomlinson, “Type Theories and Object-Oriented Programming,” ACM Computing Sur-
veys, vol. 20, no. 1, pp. 29-72, March 1988.

A. Goldberg and D. RobsoB8malltalk 80: the Language and its Implementatistidison-Wesley, May
1983.

M.J.C. GordonThe Denotational Description of Programming Languaggwinger-Verlag, 1979.
C.A.R. HoareCommunicating Sequential Procesgegentice-Hall, 1985.

D.G. Kafura and K.H. Lee, “Inheritance in Actor Based Concurrent Object-Oriented Languages,” Proceed-
ings of the Third European Conference on Object-oriented Programming, pp. 131-145, Cambridge University
Press, Nottingham, July 10-14, 1989.

B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen and K. Nygaard, “The BETA Programming Language,”
in Research Directions in Object-Oriented Programmied. B. Shriver, P. Wegner, pp. 7-48, The MIT
Press, Cambridge, Massachusetts, 1987.

L. Lamport, “Specifying Concurrent Program Modules,” ACM TOPLAS, vol. 5, no. 2, pp. 190-222, April
1983.

H. Lieberman, “Concurrent Object-Oriented Programming in Act 10bfect-Oriented Concurrent Pro-
gramming ed. A. Yonezawa, M. Tokoro, pp. 9-36, The MIT Press, Cambridge, Massachusetts, 1987.

B. Liskov, M. Herlihy and L. Gilbert, “Limitations of Synchronous Communication with Static process Struc-
ture in Languages for Distributed Computing,” 13th Symposium on Principles of Programming Languages,
St. Petersburg Beach, Florida, Jan 13-15, 1986.

B. Meyer,Object-oriented Software Constructidrentice Hall, 1988.
R. Milner, Communication and Concurrendyrentice-Hall, 1989.

N.H. Minsky and D. Rozenshtein, “A Law-Based Approach to Object-Oriented Programming,” ACM SIG-
PLAN Notices, Proceedings OOPSLA '87, vol. 22, no. 12, pp. 482-493, Dec 1987.

J.E.B. Moss and W.H. Kohler, “Concurrency Features for the Trellis/fOwl Language,” Proceedings of the Eu-
ropean Conference on Object-oriented Programming, pp. 223-232, Paris, France, June 15-17, 1987.

O.M. Nierstrasz, “Active Objects in Hybrid,” ACM SIGPLAN Notices, Proceedings OOPSLA '87, vol. 22,
no. 12, pp. 243-253, Dec 1987.

O. Nierstrasz, M. Papathomas 12

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

O.M. Nierstrasz, “A Guide to Specifying Concurrent Behaviour with Abacug)bject Managemened.
D.C. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1990, (To be submitted for
publication).

O.M. Nierstrasz and M. Papathomas, “Towards a Type Theory for Active ObjedBhfant Management
ed. D.C. Tsichritzis, Centre Universitaire d’'Informatique, University of Geneva, July 1990, (Working Paper).

M. Papathomas, “Concurrency Issues in Object-Oriented Programming Langua@dgednOriented De-
velopmented. D.C. Tsichritzis, pp. 207-245, Centre Universitaire d’Informatique, University of Geneva,
July 1989.

M. Papathomas and D. Konstantas, “Integrating Concurrency and Object-Oriented Programming — An Eval-
uation of Hybrid ,” inObject Managemened. D.C. Tsichritzis, Centre Universitaire d’Informatique, Uni-
versity of Geneva, July 1990.

C. Tomlinson and V. Singh, “Inheritance and Synchronization with Enabled Sets,” ACM SIGPLAN Notices,
Proceedings OOPSLA '89, vol. 24, no. 10, pp. 103-112, Oct 1989.

P. Wegner and S. B. Zdonik, “Inheritance as an Incremental Modification Mechanism or What Like Is and
Isn’t Like,” in Proceedings of the European Conference on Object-oriented Progragreding. Gjessing

and K. Nygaard, Lecture Notes in Computer Science 322, pp. 55-77, Springer Verlag, Oslo, August 15-17,
1988.

Y. Yokote and M. Tokoro, “Concurrent Programming in ConcurrentSmalltalliQbiect-Oriented Concur-
rent Programminged. A. Yonezawa, M. Tokoro, pp. 129-158, The MIT Press, Cambridge, Massachusetts,
1987.

Y. Yokote and M. Tokoro, “Experience and Evolution of ConcurrentSmalltalk,” ACM SIGPLAN Notices,
Proceedings OOPSLA '87, vol. 22, no. 12, pp. 406-415, Dec 1987.

A. Yonezawa, J-P Briot and E. Shibayama, “Object-Oriented Concurrent Programming in ABCL/1,” ACM
SIGPLAN Notices, Proceedings OOPSLA 86, vol. 21, no. 11, pp. 258-268, Nov 1986.

	Viewing Objects as Patterns of Communicating Agents
	1. Introduction
	2. Viewing Objects as Communicating Agents
	3. A Design Space for Concurrent Object Models
	4. Software Composition with Reusable Patterns
	5. Viewing Types as Partial Specifications of Behaviour
	6. Concluding Remarks

