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A Guide to

Specifying Concurrent Behaviour with Abacus1

Oscar Nierstrasz2

Abstract

We present the syntax, semantics and usage of Abacus, an executable notation for specifying con-
current computations that extends CCS with label prefixing and filtering operators for encapsu-
lating systems of communicating agents and a pattern mechanism for parameterizing behaviour
expressions. Abacus is intended to be used as a semantic target and a prototyping tool for the
specification of concurrent object-based languages and systems. We illustrate the use of Abacus
through a series of standard concurrency examples, concluding with an executable specification
of SAL, a Simple Actor Language.

1. Introduction

Abacus is a notation for specifying the behaviour of concurrent systems, intended prima
a prototyping tool to support the design of concurrent object-based languages and system
may either directly specify concurrent systems with Abacus or one may use it as a seman
get for the specification of language constructs. Syntactic patterns of a programming lan
are thus mapped to behavioural patterns expressed in Abacus in a denotational fashion [7
Abacus specifications are executable, one immediately obtains a running prototype of an
preter for the language being designed. In this way the benefits of exploratory prototypin
port and complement those of formal specification techniques.

Abacus is based on Milner’s process calculus and provides the standard operators of
sic calculus [15]. Value-passing, on the other hand, is simulated by patterns, which are functions
that evaluate to agents of the calculus. Patterns also serve as semantic functions taking
ments syntactic constructs of a source language and returning Abacus specifications.

The rule-based specification of the calculus and of the corresponding implemen
makes it very easy to add new operators more convenient for modeling certain kinds of 
iours. These may either be added as patterns or as new primitive operators in the notat
present label prefixing and filtering, which are particularly useful for encapsulating systems
cooperating agents.

We shall present the syntax and semantics of Abacus in §2. We then proceed to ill
the use of Abacus through a series of progressively more ambitious examples from the s
concurrency literature, concluding with an executable specification of SAL, a Simple Actor Lan-
guage [1]. As an appendix we provide the code for a minimal implementation in Prolog.

1.  In Object Management, ed. D.C. Tsichritzis, CUI, University of Geneva, July 1990, pp. 267-293.

2. Author’s address: Centre Universitaire d’Informatique, 12 rue du Lac, CH-1207 Geneva, Switzerlan
E-mail: oscar@cui.unige.ch, oscar@cgeuge51.bitnet. Tel: +41 (22) 787.65.80. Fax: +41 (22) 735.39.0
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2. Abacus Syntax and Semantics

Computations in Abacus are modeled as systems of communicating agents. Two agen
communicate if an output offer for a communication event made by one agent is matched 
corresponding input offer from another agent. Whenever a communication event takes plac
two participating agents replace themselves by their new behaviour.

The current state of any agent or system of agents is captured explicitly by a behaviour ex-
pression, which determines what input and output offers are made by agents or subsystem
consequently, which events may take place. The occurrence of an event yields a new be
expression for each of the participating agents, and thus for the whole system. We sh
present the abstract syntax of agent declarations and behaviour expressions and then th
tic rules that permit us to interpret them.

2.1 Abstract syntax

Abacus is essentially equivalent to CCS [15], modifying the syntax somewhat to simplif
plementation, and adding two new operators that are convenient for encapsulating sys
cooperating agents. In the following, A stands for an agent name, B for a behaviour expression,
E for an event label, and X for a prefix. For the present we shall suppose that agent name
identifiers. When we introduce patterns, we shall see that agent names may be parameter
thus giving us the possibility of defining a set of agent names with a single declaration. 
labels are either identifiers or tuples enclosed in [square brackets]. If E is an event label and X a
prefix, then X:E is also an event label.

An agent name is bound to a behaviour expression by a declaration of the form: A := B .

Behaviour expressions have the following syntax:

1. A Behaviour of agent A

2. nil Inactive agent

3. B & B Concurrent composition

4. B + B Summation (exclusive choice)

5. E ! B Output offer

6. E ? B Input offer

7. X : B Prefixing1

8. B \: X Filtering

9. B \ E Restriction

10.B / [ E/E, ... ] Relabelling

Table 1   The syntax of behaviour expressions

1. The term prefixing is used in CCS to refer to input and output offers preceding a behaviour expressio
we shall use “prefixing” in this paper to refer to label prefixing.
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The operators are listed in order from loosest to tightest binding so, for example: p&q+u\:x
will be parsed as: p & (q + (u\:x)) .

2.2 Transition semantics

We define the semantics of behaviour expressions by a set of transition rules. For every behav-
iour expression there may be several visible transitions to replacement behaviour expression
corresponding to offers to communicate, and several invisible transitions corresponding to in-
ternal communications.

We write  to indicate that p offers to input e and replace itself by p ,́ and 
if p offers to output e and become p .́ Furthermore, we adopt the convention that .

 we say that offers a and b match.

If  p represents a system of concurrent agents, these agents may communicate with
other. In this case we write  to indicate that p may make an invisible transition to p´.
Such a transition is “invisible” because it is no longer visible as an offer to agents externap.
As we shall see, it is possible that p may simultaneously support both visible and invisible tra
sitions.

In the semantic rules that follow, the expressions over the bar represent preconditio
those under the bar the conclusions. The symbol e represents a visible transition, τ an invisible
transition, and α represents either.

Input, Output and Summation

The first rule tells us that a?nil describes an agent that offers to input a and then become nil (i.e.,
it terminates or becomes inactive). Similarly, the second rule tells us that a!nil will output a and
become nil, and that a!b!nil will first output a, then b and then terminate.

The two rules for summation tell us that a?nil+b?nil offers to input either a or b, then termi-
nate. Note that summation is both associative and commutative, thus p+q is equivalent to q+p and
(p+q)+v is equivalent to p+(q+v). [The equivalent forms in CCS for e?p and e!p are respectively
e.p and e.p. The + operator is identical to that of CCS.]

Concurrent composition

The first composition rule tells us that concurrent agents may communicate if they p
matching input and output offers, thus a!b!nil & a?nil+b?nil may silently change state to b!nil & nil

by an internal communication a.

The next two rules tell us that concurrent agents may communicate independently wi
er agents that may be present, thus a!b!nil & a?nil+b?nil may output an a to an external agent and
become b!nil & a?nil+b?nil or it may input either an a or a b to become a!b!nil & nil.

p p′e→ p p′e→
e
=

e=
a b=

p p′τ→

e? p p
e→

-----------------------
e! p p

e→
----------------------- q q′α→

p q+ q′α→
-----------------------------p p′α→

p q+ p′α→
-----------------------------

p p′α→
p&q p′&q

α→
------------------------------------- q q′α→

p&q p&q′α→
-------------------------------------p p′e→ q q′e→,

p&q p′&q′τ→
-----------------------------------------
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We can also conclude that the & operator is both associative and commutative.

[In CCS, one writes p|q instead of p&q. In Abacus, + binds more tightly than &, thus reducing
parentheses in most of our examples, whereas in CCS, | binds more tightly than +.]

Restriction and Relabelling

Restriction is used to hide input and output offers for a particular event label with the effe
the corresponding communication can only occur internally. For example, in the expressi
(a!b!nil & a?nil+b?nil)\a the a offers are hidden from external agents. Thus either an internal c
munication may take place, yielding (b!nil & nil)\a, or an external agent may communicate ab

yielding (a!b!nil & nil)\a. In the latter case, no further actions are possible, since the output
for a can neither be matched internally, nor is it visible externally. [In CCS one may rest
set of labels, as in p\{a,b}. To do so in Abacus one restricts each member of the set, as in p\a\b.]

Relabelling is used to change the label of a visible transition. Relabelling functions are
ten as a finite sequence of replacement/transition mappings, such as [a/b,c/d], which maps b to a
and d to c. All transitions not explicitly mentioned are mapped to themselves (τ is never rela-
belled). For example, in the expression: ((a!b!nil)/[b/a] & a?nil+b?nil)\a the output offer for a has
been relabelled as an offer for b. The first agent is therefore equivalent to b!b!nil.

There are three possible transitions:

1. An internal b event yielding: ((b!nil)/[b/a] & nil)\a

2. An external output of b by the first agent yielding: ((b!nil)/[b/a] & a?nil+b?nil)\a

3. An external input of b by the second agent yielding: ((a!b!nil)/[b/a] & nil)\a

In all three cases further transitions are possible.

[Relabelling is identical to the corresponding operator in CCS, except no slash is re
before the function, i.e., in CCS, one would write p[a/b,c/d] instead of p/[a/b,c/d].]

Prefixing and Filtering

The first rule tells us that a prefix applied to a behaviour expression (rather than to just a
offer) has the effect that all offers of that agent and its descendents will be prefixed, so x:(a!b!nil)

is equivalent to x:a!x:b!nil. The second rule tells us that prefixing has no effect on internal tra
tions. For finite label sets, one can simulate prefixing by a relabelling function, for exampl
preceding expressions are also equivalent to (a!b!nil)/[x:a/a,x:b/b].

Filtering is used to hide all except prefixed offers. If the filter argument matches the pref
it is stripped off, otherwise the prefix remains. For example, (x:a?nil+b?nil)\:x permits only a vis-

p p′α→ α e e,{ }∉,
p\e p′ \eα→

------------------------------------------------- p p′α→
p/[ f ] p′ /[ f ]

f α( )→
----------------------------------------------

p p′e→
x: p x: p′x:e→

---------------------------------- p p′τ→
x: p x: p′τ→
------------------------------ p p′x:e→

p\:x p′ \:xe→
--------------------------------- p p′y:e→ x y≠,

p\:x p′ \:xy:e→
-------------------------------------- p p′τ→

p\:x p′ \:xτ→
---------------------------------
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does not pass through the filter.

Filtering is useful for encapsulating systems of cooperating agents. Whereas restricti
be used to hide a specific list of visible transitions, filtering hides all except prefixed transitions.
As we shall see, this will provide us with a convenient mechanism for specifying the visi
scope of an offer by using prefixes to represent the name of a scope.

[There is no direct equivalent to filtering in CCS, though one can generally simulate
a combination of restriction and relabelling.]

Agent declarations

When we bind an agent name to a behaviour expression, that name may in future be used
for that expression. It is by this means that we may define non-terminating, recursive beha
such as: res := a?res + b?res. This agent repeatedly offers to input either an a or a b.

It should be clear that occurrences of an agent name appearing in its own recursive
tion must be guarded [11][15], i.e., preceded by an input or output offer. For example,

p := p.

defines nothing at all, as our inference rules do not allow us to conclude for any α.

3. Communication, Concurrency and Synchronization

Let us take the recursively-defined agent res introduced above and use it to model a shared
source for a number of concurrent clients:

res := a?res + b?res.

Clients c1 and c2 each present two output offers and then terminate:

c1 := a!a!nil.
c2 := b!b!nil.

We may compose the resource with its two clients as follows:

example1 := res & c1 & c2.

Within example1, res will accept the offers of c1 and c2 interleaved arbitrarily (there are six pos
sible interleavings: aabb, abab, abba, baab, baba and bbaa). In all cases, the final configuration
will be: res & nil & nil. Since the nil agents contribute nothing to the behaviour of this system, 
equivalent to res. We shall make use of such basic equivalences to simplify many of the e
ples.

Suppose that clients require exclusive access to a resource for a period during whic
may make multiple requests. One way of accomplishing this is for clients to synchroni
means of a binary semaphore [3][6]:

bsem := p!v?bsem + v?bsem.

p:=q q q′α→,
p q′α→

----------------------------------

p p ′α→
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Recall that to acquire a semaphore one performs a P and to release it, a V. Our bsem agent is
initially available, offering a p to any interested client. (We could just as well have made p an
input offer, but we find it more intuitively appealing to think of clients requesting a p but issuing
a v.) Once a p has been delivered bsem replaces itself by v?bsem, which refuses all further p re-
quests until a v has been received. Note that bsem will always accept a v request, but that it sim-
ply discards multiple v’s. (In the next section we shall see how to model a counting semaph

Within the system example2, clients c3 and c4 synchronize via bsem before communicating
with the resource:

c3 := p?a!a!v!nil.
c4 := p?b!b!v!nil.
example2 := res & bsem & c3 & c4.

Now there are only two possible computation paths, namely paavpbbv and pbbvpaav, with c3 and
c4 having exclusive access to res.

4. Encapsulation

It is often useful to encapsulate subsystems by restricting the visibility of offers to a c
scope. Abacus provides two complementary sets of operators for encapsulation: restrict
relabelling, which are used to hide only selected offers, and filtering and prefixing, whic
used to hide all but a selected set of offers. In most of our examples we shall use filtering
prefixing, as they yield very compact specifications, however we shall encounter at least o
uation in which restriction is more convenient.

Let us consider the specification of a counting semaphore. The semaphore is initially
able, permitting a p event, but it also remembers how many v events have occurred and accep
one p request for every matching v. We can specify such a semaphore as follows:

sem := p!v?sem + v?(d?s:sem & avail\:x)\:s.
avail := s:p!x:d!nil + s:v?(d?avail & avail\:x).

The agent sem permits one p event, with replacement v?sem, or one v event, with replacement
(d?s:sem & avail\:x)\:s. Upon each v event, a new avail agent is created to “remember” the v. The
incremented semaphore is encapsulated by a \:s filter, which permits only prefixed offers to be
exported. As a consequence, the agent d?s:sem must wait for a matching d offer from the agent
avail\:x. If a d event occurs, it will be internal to the encapsulated semaphore. The avail\:x agent
is itself encapsulated by a \:x filter. This permits us to link together the agents internal to th
semaphore. At most one avail agent will ever be able to communicate with external agents
others will be forced to wait for their neighbour to consume a p offer.

Since the entire semaphore is encapsulated, an avail agent can only communicate with ex
ternal agents by prefixing its offers with s:. Note that the offers s:p and s:v pass through two fil-
ters. They first pass unaltered through \:x, and then they pass through the filter \:s, which strips
off the s: prefix. The offers visible to the outside are simply p! and v?. Let us step through the
state changes of sem when composed with the agent v!v!v!p?p?nil. First, a v event yields:

v!v!p?p?nil & (d?s:sem & (avail)\:x)\:s
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v!p?p?nil & (d?s:sem & (d?avail & (avail)\:x)\:x)\:s
p?p?nil & (d?s:sem & (d?avail & (d?avail & (avail)\:x)\:x)\:x)\:s

At this point it may help to visualize the agents of the system to see how they are linked to

The arrows in this figure represent offers to communicate. Thus, the innermost avail agent
can communicate with the external agent because its p and v offers use the unique prefix s of the
enclosing filter. The other agents internal to the semaphore are linked because they are e
closed by a non-unique \:x filter.

A p event yields:

p?nil & (d?s:sem & (d?avail & (d?avail & (x:d!nil)\:x)\:x)\:x)\:s

Now an internal d event takes place. The x:d offer is only visible to the nearest adjacent avail

agent as the prefix is immediately consumed by the \:x filter:

p?nil & (d?s:sem & (d?avail & (avail)\:x)\:x)\:s

Another p and another internal d:

nil & (d?s:sem & (d?avail & (x:d!nil)\:x)\:x)\:s
nil & (d?s:sem & (avail)\:x)\:s

As expected, we finally obtain the same semaphore that we had after a single v.

We can specify an equivalent semaphore using restriction and relabelling. The agenrsem

is adapted from an example by Milner:

rsem := p!v?rsem + v?( pos/[unlink/done] & unlink?rsem ) \ unlink.
pos := p!done!nil + v?( pos/[unlink/done] & unlink?pos ) \ unlink.

In this case we build up a chain of pos agents to count the v events. To ensure that each age
only communicates with its nearest neighbour, it offers to output a done, which is immediately
translated to an unlink by the relabelling /[unlink/done]. The unlink is then hidden by the restriction
\unlink from surrounding agents. Let us see what happens when we compute v!v!p?p?nil & rsem.
First, the two v offers are accepted:

v!p?p?nil & (pos/[unlink/done] & unlink?rsem)\unlink
p?p?nil & ((pos/[unlink/done]&unlink?pos)\unlink/[unlink/done] & unlink?rsem)\unlink

Since the p and v offers of pos are neither restricted nor relabelled, they are visible to the outs
Next, a p is accepted:

availd?avail
d?

d?avail
d?

d?s:sem
d?

p?p?nil
p?

p!

v?

\:x
\:x

\:x
\:s

Figure 1   Communication offers in a counting semaphore agent
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p?nil & (((done!nil)/[unlink/done]&unlink?pos)\unlink/[unlink/done] & unlink?rsem)\unlink

The done offer is relabelled as an unlink and consumed by the neighbouring unlink?pos. Since un-

link offers are restricted, they are not visible to unlink?rsem:

p?nil & (pos\unlink/[unlink/done] & unlink?rsem)\unlink

Another p is accepted:

((done!nil)\unlink/[unlink/done] & unlink?rsem)\unlink

And finally the internal unlink yields:

(rsem)\unlink

Note that rsem\unlink is equivalent to rsem, since in any case it makes no unlink offers. In fact, it
is relatively simple to prove that sem and rsem are equivalent specifications, since they have p
cisely the same external behaviour.1

As an aside, it is interesting to note that Abacus is computationally complete since it i
sible to simulate a Turing machine by using a slight variation of our counting semaphor
can exploit the fact that each semaphore effectively stores a stack of avail or pos agents. It is quite
easy to define a binary stack that stores and returns 0 or 1 values by modifying the sem specifi-
cation. The infinite tape of a Turing machine can then be modelled by two such stacks, o
the tape symbols to the left, and the other for those on the right. We can change the cur
sition by popping a value off one stack and pushing it onto the other. The finite logic of the
ing machine can be also expressed as an Abacus specification. Since we can model a Tu
chine using either prefixing and filtering or restriction and relabelling, this means that eithe
of operators is as powerful as the other. They do not have the same expressive capabilitie
ever, and there appears to be no straightforward way to translate specifications using on
those using the other.

5. Using Patterns to Model Value-Passing

Patterns are simply functions that evaluate to agents. Syntactically, patterns are param
behaviour expressions or agent names. Patterns can be used to express value-passing
are also more generally useful for defining classes of agents, agents with dynamically m
able behaviour, new operators and, as we shall see, semantic functions for defining pr
ming language constructs.

Our approach to modelling value-passing between agents differs somewhat from 
Milner, but has the same general flavour in the sense that patterns ultimately translate to
of the basic notation. Since the Abacus interpreter is implemented in Prolog, we exploit Pr
unification mechanism to interpret patterns. (Aside from the ability to define new operator
generally avoid the use of advanced features of Prolog in the examples; it should there
possible for the reader to follow the examples without having any prior exposure to Prolo

1. They are observation equivalent [15] since we can establish a “bisimulation” relation between the reach-
able states of either; furthermore, since both sem and rsem are stable – that is, they do not initially seek
to change state through an internal event – we can conclude that they are observation congruent, i.e., equal
as specifications.
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Variables in Prolog begin with upper case letters. We may define a parameterized ag
as we would an ordinary agent by supplying Prolog variables as parameters to the agent
and using those variables in the behaviour expression bound to that name. Furthermore, 
ables used in any behaviour expression must be introduced either as parameters to the agents or
as parameters to an input offer.

Let us take as a simple example the specification of an agent that simulates the tupl
of Linda [4]. Linda provides a small set of primitives to allow concurrent processes to com
nicate and synchronize by writing and reading tuples to a so-called tuple space. A proce
write a tuple using the non-blocking out primitive, and a process may read a tuple either dest
tively with the in primitive, or non-destructively with the rd primitive. Both read primitives
block if no matching tuple exists. The following agent, linda, supports these three primitives:

linda := [out,T]?(linda & tuple(T)).
tuple(T) := [in,T]!nil + [rd,T]!tuple(T).

In this example we introduce compound event labels as tuples enclosed in square brack1. In
response to an [out,T] request, linda will generate a tuple agent that stores the value T. An agent
attempting to input [in,T] will block unless such a tuple exists. An [in,T] event is destructive, caus
ing the tuple to be consumed, whereas a [rd,T] event is non-destructive.

In the specification of tuple(T) the only variable that occurs is a parameter to the agent.
can interpret this as a definition of a set of agents tuple(T), for all possible values of T, i.e.,

tuple(a) := [in,a]!nil + [rd,a]!tuple(a).
tuple(b) := [in,b]!nil + [rd,b]!tuple(b).
...

and so on. In this interpretation, each tuple(T) is a new agent name.

In the specification of linda, on the other hand, the variable T is not an agent parameter bu
is introduced in an input offer. In this case we must understand the definition of linda as an infi-
nite sum of behaviour expressions [out,T]?(linda & tuple(T)) for all possible values of T, i.e.,

We can simulate the behaviour of a counting semaphore by generating a tuple(sem) for each
V and consuming one for each P. Our synchronizing clients now look like this:

c5 := [in,sem]?a!a![out,sem]!nil.
c6 := [in,sem]?b!b![out,sem]!nil.

And the system looks like this:

linda & tuple(sem) & res & c5 & c6

We must start with a single instance of tuple(sem) to permit an initial P. As before, c5 and c6 ob-
tain exclusive access to the resource by acquiring the semaphore.

1. We adopt this convention primarily to improve readability: there is nothing to prevent us, for exampl
from writing out(T) rather than [out,T] , but we then risk confusing the parameterized event label out(T)
with a parameterized agent called out(T).

linda  := [out,T]?(linda  &  tuple(T))  .
T

 ∑
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Incidentally, the 

 

eval

 

 primitive of Linda can be easily simulated by creating an agent 
evaluates an expression before replacing itself by a tuple. The non-blocking variants of 

 

in

 

 and

 

rd

 

 (

 

inp

 

 and 

 

rdp

 

) are more problematic, however, as they require the ability to detect the 

 

absence

 

of a particular tuple

 

1

 

.

 

6. Using Patterns to Specify Agents

 

Specifying Classes of Agents

 

There is no inherent reason why pattern parameters must be restricted to the domain o
labels. Consider the following alternative specification of a counting semaphore:

 

psem := p!v?psem + v?inc(psem).
inc(S) := p!S + v?inc(inc(S)).

 

As with the example of the previous section, we can interpret the 

 

inc(S)

 

 pattern as defining a 

 

set

 

of agents with names 

 

inc(psem), inc(inc(psem))

 

 etc. Provided a pattern is well-defined, the sema
tics of a pattern is that of the agents it evaluates to.

The agent 

 

psem

 

 is equal (observation congruent) to both 

 

sem

 

 and 

 

rsem

 

 defined earlier, even
though it performs no internal events. In this sense Abacus specifications (just as CCS s
cations) are 

 

fully abstract

 

: they specify only external behaviour, not implementations. Any t
specifications that exhibit identical external behaviour are to be considered interchangea

 

Specifying Operators

 

The pattern 

 

inc(S)

 

 can also be viewed as an 

 

operator

 

 over the domain of behaviour expression
We may similarly define binary operators over behaviour expressions as patterns. Let u
pose that we have instructed Prolog to recognize 

 

~

 

 as a right-associative infix operator

 

2

 

. We
could then define 

 

~

 

 as a 

 

linking

 

 operator as follows:

 

P ~ Q := P & Q\:x.

 

(Of course, this means that the prefix 

 

x has become “special” since it has its own operator.)

We may now define a version of the counting semaphore using the linking operator:

lsem := p!v?lsem + v?(d?s:lsem ~ next)\:s.
next := s:p!x:d!nil + s:v?(d?next ~ next).

Since ~ is extremely useful for linking together a series of communicating agents, we 
ally provide it as a supplementary operator to Abacus rather than as a pattern. This has 
venient side-effect that linking will be visible in all reachable states, rather than being tran
to its equivalent form using & and \:x. For example, after three v events, lsem reaches the state:

(d?s:lsem~d?next~d?next~next)\:s

which is equivalent to its (more verbose) translation:

(d?s:lsem & (d?next & (d?next & next\:x)\:x)\:x)\:s

1. One way of modelling this would be to introduce a “clearinghouse” agent that keeps track of which t
ples currently exist in the tuple space.

2. This is done using the built-in predicate op/3, as in  :- op(660,xfy,~).
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Linking is not associative, since p~q~u = p~(q~u) = p & (q & u\:x)\:x, which is not the same as
(p~q)~u = (p & q\:x) & u\:x.

A Concurrent Queue

We can use the linking operator to specify a queue whose head and tail may be accessed
rently by a producer and a consumer:

queue := [put,X]?(head(X) ~ tail)\:q.
head(X) := q:[get,X]!ok!nil.
tail := q:[put,X]?(x:ok?head(X) ~ tail) + x:ok?q:queue.

The queue initially accepts only a [put,X] request. Subsequent states consist of a chain of ag
starting with a head(X) agent that attempts to deliver its contents to a consumer, zero or 
head agents each waiting to become the true head of the queue, and a tail that accepts further
[put,X] requests.

Suppose we have the following producer and consumer:

prod := [put,a]![put,b]![put,c]!nil.
cons := [get,X]?[get,Y]?[get,Z]?nil.

In the system: (cons & queue & prod) the put and get requests may be arbitrarily interleaved (p
vided there are no more gets than puts!). If the producer succeeds in outputting all its val
fore the consumer reads any, the queue will reach the state:

(head(a)~x:ok?head(b)~x:ok?head(c)~tail)\:q

After the consumer finishes reading the queue, we reach the state:

(nil~nil~ok!nil~tail)\:q

An internal ok yields (nil~nil~nil~q:queue)\:q, which is equivalent to queue.

Concurrent Bounded Buffers

Linking is also useful for passing responsibilities amongst a collection of cooperating agen
an example we shall specify a pattern for arbitrary-length concurrent bounded buffers. W
model the buffer as a chain of agents that may hold the values written to the buffer. Ther
ways at most one agent at the head of the chain responding to [put,X] offers and always at mos
one at the tail responding to [get,X] offers. Whenever a value is read or written, the responsib
of being the head or the tail passes on to the next agent. When the end of the chain is r
the responsibility cycles back to the beginning of the chain. When the buffer is empty o
requests to get or put are respectively blocked.

Initially the buffer is empty and an empty agent acts as the tail. If a value is written, th
agent becomes the head and passes the responsibility of being the tail to the agent “behin
communicating ok. (There is always a free agent or the end of the buffer following empty.)

empty := b:[put,X]?ok!head(X).
free := x:ok?tail.

When tail accepts a put request it knows that the buffer is not empty and so becomes a taken(X)

agent that waits to become the head until that responsibility is passed to it:
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tail := b:[put,X]?ok!taken(X) + x:ok?empty.
taken(X) := x:ok?head(X).

If the responsibility of being the head passes to tail, then we know that the buffer is empty agai
and tail simply becomes empty.

When the buffer is not empty the head attempts to deliver its value to a consumer.
responsibility of being the tail passes to the head then we know the buffer is full:

head(X) := b:[get,X]!ok!free + x:ok?full(X).
full(X) := b:[get,X]!ok!tail.

In addition, we need to handle the eventuality that the last agent in the chain tries t
the responsibility to the “next” agent. We close the loop with the agent end that simply repeats
the communication to the agent at the start of the chain. The agent start passes the communica
tion on to the first agent in the chain:

end := x:ok?a:x:ok!end.
start := ok?ok!start.

Finally, a bounded buffer is an encapsulated system consisting of a start agent and a chain
of agents of the form empty~free~free~...~end:

buf(Chain) := (start & Chain\:a\:x)\:b.

To see the buffer pattern in action, let us consider the system (cons & buf(empty~free~end) & prod)

consisting of a consumer, a two-slot buffer and a producer, where prod and cons are:

prod := [put,a]![put,b]![put,c]!nil.
cons := [get,X]?[get,Y]?[get,Z]?nil.

If we follow one possible computation path, we see the buffer undergo the following transi

[put,a] → (start & ((ok!head(a)~free~end)\:a)\:x)\:b
ok → (start & ((head(a)~tail~end)\:a)\:x)\:b
[put,b] → (start & ((head(a)~ok!taken(b)~end)\:a)\:x)\:b
ok → (start & ((head(a)~taken(b)~a:x:ok!end)\:a)\:x)\:b
ok → (ok!start & ((head(a)~taken(b)~end)\:a)\:x)\:b
ok → (start & ((full(a)~taken(b)~end)\:a)\:x)\:b
[get,a] → (start & ((ok!tail~taken(b)~end)\:a)\:x)\:b
ok → (start & ((tail~head(b)~end)\:a)\:x)\:b
[put,c] → (start & ((ok!taken(c)~head(b)~end)\:a)\:x)\:b
ok → (start & ((taken(c)~full(b)~end)\:a)\:x)\:b
[get,b] → (start & ((taken(c)~ok!tail~end)\:a)\:x)\:b
ok → (start & ((taken(c)~tail~a:x:ok!end)\:a)\:x)\:b
ok → (ok!start & ((taken(c)~tail~end)\:a)\:x)\:b
ok → (start & ((head(c)~tail~end)\:a)\:x)\:b
[get,c] → (start & ((ok!free~tail~end)\:a)\:x)\:b
ok → (start & ((free~empty~end)\:a)\:x)\:b

Note that in our specification of the bounded buffer, there is no global “locking” of the b
er to synchronize or inhibit concurrent requests to put or get values as is the case with a s
based on monitors [10]. Instead, our solution permits producers and consumers to concu
access the buffer, as in solutions using critical sections [8] or synchronizing resources [2],
that we achieve synchronization by distributing responsibilities rather than by maintainin
bal knowledge of the state of the buffer.
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A Concurrent Prime Sieve

In certain situations it is convenient to define agents that compute the value of simple e
sions. We shall make use of such agents to specify a concurrent prime sieve. gen(J,N) is an agent
that outputs the values [test,J] for all values of J up to N. It will be used to generate a list of num
bers for the sieve to test:

gen(J,N) := [test,J]!gen(K,N) :- J<N, K is J+1.
gen(N,N) := [test,N]!nil.

We express the behaviour of gen(J,N) through the use of a Horn clause that verifies that J is less
than N and then computes the value of K for the replacement behaviour. Otherwise, if J=N, then
the next value to test is generated and the agent terminates. As with our previous pattern
ples, we interpret this as the definition of a set of agents named gen(0,0), gen(0,1), etc.:

gen(0,0) := [test,0]!nil .
gen(0,1) := [test,0]!gen(1,1) .
gen(1,1) := [test,1]!nil .
gen(0,2) := [test,0]!gen(1,2) .
gen(1,2) := [test,1]!gen(2,2) .
gen(2,2) := [test,2]!nil .
...

We similarly define agents eq(X,Y), which reports whether X is equal to Y, div(N,P), which
reports whether N is divisible by P, and square(P), which outputs the value of P2:

eq(X,Y) := true!nil :- X=Y.
eq(X,Y) := false!nil :- not(X=Y).
div(N,P) := true!nil :- 0 is N mod P.
div(N,P) := false!nil :- not(0 is N mod P).
square(P) := [val,P2]!nil :- P2 is P*P.

The prime sieve itself consists of a chain of agents, each of which stores a prime n
and performs tests on candidate primes, and a prime generator, which adds new prime
end of the chain. If a candidate fails a test it is discarded. If it passes a test it is forwarded
next prime in the chain for testing. A candidate that passes all division tests up to its squa
is approved as a prime. A sieve to compute primes up to N is defined as the following pattern:

primes(N) := gen(3,N) ~ last(2,4) ~ genprime.

The agent gen(3,N) generates integers to test starting with 3. The last(P,P2) agent approves as a
prime any number less than P2 (the square of the prime P) since that number is not divisible b
any prime up to its square root. When it encounters P2 itself, that number is discarded (since
is divisible by P), and the agent replaces itself by sieve(P), which performs division tests on can
didates and forwards those that pass the test to the next agent in the chain.

last(P,P2) := x:[test,N]?(eq(N,P2) & findprime(N,P,P2)).
findprime(N,P,P2) := true?sieve(P) + false?p:[prime,N]!last(P,P2).

sieve(P) := x:[test,N]?(div(N,P) & dotest(N,P)).
dotest(N,P) := true?sieve(P) + false?[test,N]!sieve(P).

Finally, genprime is the prime generator, whose responsibility it is to append new primes t
end of the chain:

genprime := p:[prime,P]?((square(P) & [val,P2]?last(P,P2)) ~ genprime).
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As a demonstration, consider the following execution trace of primes(10) and note how the work

performed by the various agents is interleaved to reflect their concurrent execution:

[test,3] → gen(4,10)~(eq(3,4)&findprime(3,2,4))~genprime

false → gen(4,10)~p:[prime,3]!last(2,4)~genprime

p:[prime,3]→ gen(4,10)~last(2,4)~(square(3)&[val,X]?last(3,X))~genprime

[test,4] → gen(5,10)~(eq(4,4)&findprime(4,2,4))~(square(3)&[val,X]?last(3,X))~genprime

true → gen(5,10)~sieve(2)~(square(3)&[val,X]?last(3,X))~genprime

[test,5] → gen(6,10)~(div(5,2)&dotest(5,2))~(square(3)&[val,X]?last(3,X))~genprime

false → gen(6,10)~[test,5]!sieve(2)~(square(3)&[val,X]?last(3,X))~genprime

[val,9] → gen(6,10)~[test,5]!sieve(2)~last(3,9)~genprime

[test,5] → gen(6,10)~sieve(2)~(eq(5,9)&findprime(5,3,9))~genprime

[test,6] → gen(7,10)~(div(6,2)&dotest(6,2))~(eq(5,9)&findprime(5,3,9))~genprime

true → gen(7,10)~sieve(2)~(eq(5,9)&findprime(5,3,9))~genprime

[test,7] → gen(8,10)~(div(7,2)&dotest(7,2))~(eq(5,9)&findprime(5,3,9))~genprime

false → gen(8,10)~[test,7]!sieve(2)~(eq(5,9)&findprime(5,3,9))~genprime

false → gen(8,10)~[test,7]!sieve(2)~p:[prime,5]!last(3,9)~genprime

p:[prime,5]→ gen(8,10)~[test,7]!sieve(2)~last(3,9)~(square(5)&[val,X]?last(5,X))~genprime

[test,7] → gen(8,10)~sieve(2)~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime

[test,8] → gen(9,10)~(div(8,2)&dotest(8,2))~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime

true → gen(9,10)~sieve(2)~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime

[test,9] → gen(10,10)~(div(9,2)&dotest(9,2))~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime

false → gen(10,10)~[test,9]!sieve(2)~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime

false → gen(10,10)~[test,9]!sieve(2)~p:[prime,7]!last(3,9)
~(square(5)&[val,X]?last(5,X))~genprime

p:[prime,7]→ gen(10,10)~[test,9]!sieve(2)~last(3,9)~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime

[test,9] → gen(10,10)~sieve(2)~(eq(9,9)&findprime(9,3,9))~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime

[test,10] → ((div(10,2)&dotest(10,2))~(eq(9,9)&findprime(9,3,9))~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime)\:x

true → (sieve(2)~(eq(9,9)&findprime(9,3,9))~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime)\:x

true → (sieve(2)~sieve(3)~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime)\:x

[val,25] → (sieve(2)~sieve(3)~last(5,25)~(square(7)&[val,Y]?last(7,Y))~genprime)\:x

[val,49] → (sieve(2)~sieve(3)~last(5,25)~last(7,49)~genprime)\:x
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7. Defining a Programming Language

As we stated initially, our purpose in developing Abacus was to use it as a specification an
totyping tool to support the design of computational models and language constructs for c
rent object-based programming languages. We shall now step through an example of h
might use Abacus to specify a small programming language. Rather than invent a new la
we shall take SAL, the Simple Actor Language introduced by Agha [1] to explain the actor
el. In this way we not only demonstrate at least some degree of generality in our approa
we also show how a notation based on synchronous message passing and dynamic agen
(i.e., Abacus) is at least as powerful as one based on asynchronous message passing (i.
thus reinforcing the observation of Liskov et al. [13] that either asynchrony or an extendibl
cess structure are necessary to obtain adequate expressive power for concurrent or dis
computing.

We shall start by giving a short introduction to actors before presenting the syntax a
formal semantics of SAL. We use a standard example of a factorial actor to illustrate so
the features of SAL. Then we provide an overview of the Abacus specification of SAL, follo
by the specification itself. We close with part of the trace of the running factorial actor to 
onstrate the correspondence between SAL’s actor model and Abacus agents.

7.1 Actors

Actors are computational entities that communicate by asynchronous message-passin
An actor consists of a queue of pending messages and a “behaviour” that accepts and r
to messages. Every actor is associated with a unique identifier which is the “mail address
message queue. An actor may know the mail addresses of other actors which are its acquaintan-
ces. When an actor accepts a message, it can do three things:

1. Create new actors.

2. Send messages to its acquaintances.

3. Specify the replacement behaviour to handle the next message.

An actor automatically becomes acquainted with any new actors it creates. This per
to send messages to a new actor, or to send its mail address to another actor that will 
acquainted with it. (An actor that has no pending messages and with which no other acto
quainted is effectively dead.) An actor is normally acquainted with itself, and so can alway
itself messages. The replacement behaviour may be specified at any time, thus permittin
tor to begin processing the next message concurrently with the processing of the current

7.2 SAL

We have modified the syntax of SAL only slightly in order to take advantage of Prolog’s a
to support user-defined operators. We give the abstract syntax for SAL below in extended
Non-terminals are in italics, optional items are within [tall square brackets], and zero or more rep-
etitions are within {brace brackets}* with a trailing asterisk. Keywords and literals are in bold . beh-

name, selector, target and name are all identifiers. acquaintance-list and parameter-list are instances
of name-list.
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initial-behaviour ::= initially command

behaviour-definition ::= def  beh-name [ with  acquaintance-list ]
accept  selector [ : parameter-list ] => command
{ or  selector [ : parameter-list ] => command }*

name-list ::= [ name { , name }* ]

command ::= skip  | command ; command | { command }
| send  selector [ : expression-list ] to  target
| become self
| become  beh-name [ with  expression-list ]
| if  logical-expression then  command [ else  command ]
| let  name = expression { and  name = expression }* in  { command }

expression ::= number | name | expression-list
| expression + expression | expression - expression
| expression * expression | expression / expression
| new  beh-name [ with  expression-list ]

expression-list ::= [ expression { , expression }* ]

logical-expression ::= expression = expression

A SAL program consists of a set of actor behaviour definitions and an initial behaviour (a
mand to execute). Each actor has a unique mail address, a queue of pending messages, 
rent behaviour responsible for handling the next message. An actor may have a list of a
tances, which are the mail addresses of other actors it may send messages to. An actor
ways send a message to itself by using the pseudo-variable self  as a target. Messages contain
selector and an optional list of values. A behaviour specifies how to handle the next mess
indicating for each possible selector what command to execute.

An actor may evaluate arithmetic and logical expressions (to keep SAL simple, we
provide a tiny set of arithmetic and logical operators), send messages to acquaintances
new actors and specify its replacement behaviour. It is possible to temporarily assign na
the values of expressions using the let  command. It is important to note that the names boun
acquaintances, message contents and expression results are not variables: the let  command only
provides a temporary scope during which a name is bound to some value; after that sc
ended the old value bound to that name (if any) is exposed. As a consequence the only
model state change is by using the become  command.

The become  command indicates which behaviour is to handle the next message i
queue. It may be executed before the handling of the current message has been comple
allowing the possibility of internal concurrency. If no replacement is specified, the defaul
copy the current behaviour (i.e., to become self ).

Let us consider Hewitt’s standard example of a factorial actor [9] and complete A
pseudo-code [1] for a SAL implementation:



O.M. Nierstrasz 17

 is
eates
ac-

r the
s-

r,

 actors
n over-

ami-
actor
ponsible
is report-

e
s-
nt
def recFact accept fact:[n,client] =>
become self ; 
if (n=0)
then send result:[1] to client 
else let c = new factCust with [n,client]

in { send fact:[n-1,c] to self }.

def factCust with [n,c] accept result:[k] => send result:[n*k] to c.

The behaviour recFact accepts requests of the form fact:[n,client] to compute the factorial of n and
eventually causes the message: result:[factorial of n] to be sent back to the client. If the request
for the factorial of 0, the factorial actor responds immediately. Otherwise it dynamically cr
a customer whose acquaintances are n and client, and it sends itself a request to compute the f
torial of n-1 and send the result to the customer:

The customer will eventually receive this result, compute the product of n and the factorial
of n-1 and send the value to the client. For a request to compute n factorial, then, recFact will end
up creating n customers, thus simulating an execution stack [1].

Since recFact maintains no state information itself (it uses the customer to remembe
original client) it immediately specifies its replacement as self  to begin processing the next me
sage. As a consequence, the factorial actor may service multiple requests concurrently.

Now all we need is a client definition and an initially  declaration to create the factorial acto
its client and two requests to compute factorials:

def factClient accept result:[n] => skip.

initially let f = new recFact 
and c = new factClient 

in { send fact:[5,c] to f ; send fact:[3,c] to f }.

7.3 Mapping Actors to Agents

In order to specify SAL computations in terms of Abacus patterns we must decompose
into a number of agents that cooperate to give us the required behaviour. We shall give a
view of the approach before going into the details of the specification of each pattern.

We model every SAL program in terms of three kinds of agents: a command agent that per-
forms the initially  command, a factory agent that creates new actors, and a number of dyn
cally created actor agents. The initial command agent is responsible for creating the first 
agents and sending the messages that will start the computation. The factory agent is res
for creating new actor agents and assigning a unique mail address to each. This address 
ed to the actor requesting the creation.

Actor agents are encapsulated systems of agents consisting of a message queue agent and
a behaviour agent. A behaviour agent consists of an environment agent that keeps track of th
actor’s acquaintances and other values to remember, a handler agent that accepts the next me
sage and proceeds to respond to it, and a cleanup agent responsible for starting the replaceme
behaviour at the appropriate time. The main interactions are shown in Figure 2.
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The cleanup agent will create a default replacement behaviour if none has alread
specified by the time the handler reports that it has terminated by outputting done. If an early
replacement has already been requested, it remembers this fact and does not create a se

The handler agent accepts a message from the queue and replaces itself by an envi
agent that binds the message contents to local names, and a command agent that perf
appropriate actions. The command agent is responsible for reporting done to the cleanup agent

Commands may send messages to other actors, specify replacement behaviours, 
expressions to be evaluated by creating an expression agent. An expression agent optionally pe
forms some computation and eventually outputs the value of the expression in the scop
current environment. A new scope is created for a let  command, which requires that a sequen
of expressions be evaluated, a new environment binding names to the values of those 
sions be created, and a command be executed with those names visible. The command fo
the let  command executes within the old scope. 

In Figure 3 we see the currently running command agent inside a scope called l:top. When
the command terminates, it communicates [endscope,l:top] to the command agent waiting “out

env handler cleanup

actor

beh

cmd

[msg,Id,Msg]

[create,Bname,Alist]

[created,Id]

[nextmsg,Msg]

done[env,Name,Val]

mq

factory

creates

Figure 2   Mapping Actors to Agents

env (alist)

beh

[endscope,l:top]

env (args)

cmdcmdenv (l:top)

l:top

Figure 3   Lexical scoping in SAL
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side.” All names bound are accessible to the running command with the exception that 
bound locally hide previous bindings of those names. When the scope terminates, the sub
command sees only the bindings previously in effect. An environment for a given scope 
nates when it receives the communication [quit,Scope].

The complete set of communications exchanged and their interpretation is as follow

[create,Bname,Alist] — create a new actor (behaviour Bname, acquaintances Alist)
[created,Id] — the actor created has mail address Id
[msg,Id,Msg] — message Msg is sent to address Id
[nextmsg,Msg] — the next message for a given actor is accepted
mqnext — next message in the queue becomes the head
[env,Name,Val] — the name Name is currently bound to Val
[endscope,Scope] — Scope has just ended
[quit,Scope] — the bindings of Scope are discarded
done — the current handler has terminated
[replacement,Bname,Alist] — a replacement behaviour is created
[replacement,self] — the replacement is the current behaviour
[val,E,V] — expression E has the value V

As a specification shortcut, we simulate the syntax of SAL by declaring SAL keyword
operators as prefix and infix operators to be recognized by Prolog1 using the op/3 predicate (we
do not consider this a particularly convenient way to define the syntax of a language, b
adequate for small examples):

:- op(990,fx,[def,initially]) . :- op(945,xfy,[then]) .
:- op(980,xfy,[accept,or]) . :- op(940,fx,[send,become,let]) .
:- op(970,xfy,[=>]) . :- op(935,xfy,[in]) .
:- op(960,xfy,[;]) . :- op(930,xfy,[to,and]) .
:- op(955,fy,[if]) . :- op(600,fy,[new]) .
:- op(950,xfy,[else]) . :- op(600,xfx,[with]) . 

7.4 An Abacus Specification of SAL

We shall now proceed with the specification of the patterns that interpret the semantics o
programs as Abacus agents. The patterns are specified in a denotational fashion, defining
mantics of SAL language constructs in terms of patterns that interpret their parts. The p
correspond to the agents we introduced in the previous section.

To generate new actors and mail addresses, we make use of the following “actor fa

factory(Num) := [create,Bname,Alist]?
(actor([id,Num],Bname,Alist)
& [created,[id,Num]]!factory(NextNum)) :- NextNum is Num + 1.

An agent requesting the creation of a new actor is expected to wait for the reply contain
mail address of the actor created. Mail addresses are of the form [id,Num], rather than simply Num

to distinguish them from numerical values in expressions (we wish to prevent actors from
forming computations with mail addresses and mailing to computed addresses). To preve

1. The effect of this is that SAL declarations will be parsed as Prolog expressions. For example, the d
laration of factCust has an abstract syntax tree with the linear representation:
def(accept(with(factCust,[n,c]),((result:[k]) => send(to((result:[n*k]),c))))) 
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fusion between multiple requests, the factory refuses new requests until the mail addres
livered.

An actor simply consists of a message queue and a behaviour. The actor is encap
using a \:a filter so that only requests to create new actors and messages between actors
externally visible. The message queue is similar to the queue agent we defined earlier, excep
that it only accepts messages sent to the mail address Id. 

actor(Id,Bname,Alist) := (mq(Id) & beh(Id,Bname,Alist))\:a.

mq(Id) := a:[msg,Id,X]?(head(X) ~ tail(Id))\:q.
head(X) := q:[nextmsg,X]!mqnext!nil.
tail(Id) := a:[msg,Id,X]?(x:mqnext?head(X) ~ tail(Id)) + x:mqnext?q:mq(Id).

The initial configuration consists of an agent that realizes the initially  command and an acto
factory. The agent sal is defined only if an initially  command has been declared. As we shall s
the second and third arguments to the cmd pattern are the current scope and the command c
tinuation.

sal := cmd(Cmd,top,nil)\:a & factory(0) :- initially Cmd.

For every def  declaration we obtain a beh pattern that realizes the behaviour defined. T
body of a behaviour consists of an environment that stores the bindings of names to values
handler that accepts and handles the next message, and a cleanup agent responsible for creatin
the replacement behaviour. There are two possible cases, since the with  clause is optional for ac-
tors with no acquaintances:

beh(Id,Bname,Alist) := body(Id,Bname,Anames,Alist,Handler)
:- def Bname with Anames accept Handler.

beh(Id,Bname,[ ]) := body(Id,Bname,[ ],[ ],Handler) :- def Bname accept Handler.

body(Id,Bname,Anames,Alist,Handler) := ( env(alist,[self|Anames],[Id|Alist])
& handler(Handler)
& cleanup(Id,Bname,Alist) ) \: b.

Environments are identified by a current scope, and manage a set of name to value bin
ings. The outermost scope is called alist, and contains the mail addresses of the acquainta
and of self. The next is called args and is created when a message is accepted. The scope 
command to execute is called top, and all other scopes created by let  commands are called l:top,

l:l:top, and so on. The environment self-destructs when it receives the message [quit,Scope]. The
lookup agent services requests to look up name bindings. It is defined recursively in term
list of names and a list of values. (In Prolog, [X|L] is a list with X as the first element and L as the
rest of the list.) Note the use of the Self parameter to the lookup pattern that enables it to replac
itself by the same environment after servicing each request:

env(Scope,Names,Vals) := [quit,Scope]?nil + lookup(Names,Vals,env(Scope,Names,Vals)).
lookup([N1|Names],[V1|Vals],Self) := [env,N1,V1]!Self + lookup(Names,Vals,Self).

The handler pattern simply accepts any of a series of messages and starts up an envir
containing the message content bindings and a cmd agent that executes the handler comma
and reports done when the handler has terminated.

handler(Msg => Cmd) := handle(Msg => Cmd).
handler(Msg => Cmd or Others) := handle(Msg => Cmd) + handler(Others).
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handle(Sel:Vars => Cmd) := hbody(Sel:Vars => Cmd).
handle(Sel => Cmd) := hbody(Sel:[ ] => Cmd) :- atom(Sel).

hbody(Sel:Vars => Cmd) := b:[nextmsg,Sel:Args]?( env(args,Vars,Args)
& cmd(Cmd,top,done!nil)).

The cleanup pattern handles requests to start the replacement behaviour, making su
at most one such replacement is created. If the done message is received and no replacement 
been created, a copy of the current behaviour is created. The args and alist environments are told
to self-destruct (this is optional, since in any case they will not be accessible to the replac
behaviour):

cleanup(Id,Bname,Alist) := atend(b:beh(Id,Bname,Alist))
+ [replacement,self]?(atend(nil) & b:beh(Id,Bname,Alist))
+ [replacement,self,NewAlist]?(atend(nil) & b:beh(Id,Bname,NewAlist))
+ [replacement,Rname,NewAlist]?(atend(nil) & b:beh(Id,Rname,NewAlist)).

atend(End) := done?[quit,args]![quit,alist]!End.

The cmd pattern serves as a semantic function for SAL commands. The first argume
SAL command, the second the name of the current scope, and the third the behaviour exp
of the command continuation, i.e., the agent that realizes the rest of the computation. The
three rules are straightforward. The skip  command does nothing; a semi-colon separates 
commands to perform sequentially; and brace brackets simply serve as parentheses:

cmd(skip,Scope,Cont) := Cont.
cmd((C1;C2),Scope,Cont) := cmd(C1,Scope,cmd(C2,Scope,Cont)).
cmd({C},Scope,Cont) := cmd((C),Scope,Cont).

There are two versions of the send  command since message contents are optional. The 
sage expression is evaluated, the mail address of the target is retrieved from the enviro
and the message is sent. 

cmd(send Sel:Expr to Target, Scope, Cont) :=
expr(Expr) & [val,Expr,Val]?[env,Target,Id]?a:[msg,Id,Sel:Val]!Cont .

cmd(send Sel to Target, Scope, Cont) := [env,Target,Id]?a:[msg,Id,Sel:[ ]]!Cont :- atom(Sel).

The become  command simply sends a request to the cleanup agent:

cmd(become self, Scope, Cont) := [replacement,self]!Cont. 
cmd(become Bname, Scope, Cont) := [replacement,Bname,[ ]]!Cont. 
cmd(become Bname with Elist, Scope, Cont) :=

expr(Elist) & [val,Elist,Alist]?[replacement,Bname,Alist]!Cont.

The if command evaluates the logical expression and then decides to execute either tthen

part or the else  part. If the else  clause is missing, a skip  command is inserted:

cmd(if Bool then C1 else C2, Scope, Cont) := expr(Bool) & [val,Bool,true]?cmd(C1,Scope,Cont) 
+ [val,Bool,false]?cmd(C2,Scope,Cont). 

cmd(if Bool then C1,Scope,Cont) := cmd(if Bool then C1 else skip, Scope, Cont).

The let  command is specified by means of the bind pattern, which generates agents to ev
uate a list of expressions, and then creates a new environment in which the values of the
sion list are bound to a list of names. The base case occurs when there is only one expre
evaluate. At this point a new environment called l:Scope is created together with the comman
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to be executed within this scope. Both are encapsulated using the hide pattern, which uses re
striction to ensure that the names defined locally hide any prior bindings of those names
closing scopes. Bindings of names not locally defined are, of course, still accessible (
scoping applies). The continuation waits until the scope terminates. The continuation m
outside the new scope since it must be able to access the old bindings.

cmd(let Bindings in {Cmd}, Scope, Cont) := bind(let Bindings in {Cmd},Scope,[ ],[ ],Cont). 
bind(let Name = Expr and Bindings in {Cmd},Scope,Names,Vals,Cont) := expr(Expr) 

& [val,Expr,Val]?bind(let Bindings in {Cmd},Scope,[Name|Names],[Val|Vals],Cont).

bind(let Name = Expr in {Cmd},Scope,Names,Vals,Cont) := 
expr(Expr) 
& [val,Expr,Val]? 

( hide(Names, 
env(l:Scope,[Name|Names],[Val|Vals]) 
& cmd(Cmd,l:Scope,endscope(l:Scope))) 

& [endscope,l:Scope]?Cont).

endscope(l:Scope) := [quit,l:Scope]![endscope,l:Scope]!nil.

hide([N|Names],P) := hide(Names,P)\[env,N,_]. 
hide([ ],P) := P.

The remaining patterns deal with expressions. Expressions always terminate by rep
[val,E,V], where E is the expression to be evaluated and V is its value. Since there are never a
local side-effects in the computation of an expression (names cannot be re-bound) sub
sions can be computed concurrently. The expression to be evaluated is repeated in the
disambiguate the results of concurrent subexpressions. (If the same numerical expres
computed in two subexpressions, both evaluations will yield the same result.)

The evaluation of numbers, names and lists of expressions is straightforward:

val(E,V) := [val,E,V]!nil.

expr([ ]) := val([ ],[ ]). 
expr([E|Elist]) := expr(E) & expr(Elist) & [val,E,V]?[val,Elist,Vlist]?val([E|Elist],[V|Vlist]).

expr(N) := val(N,N) :- number(N). 
expr(X) := [env,X,Val]?val(X,Val) :- atom(X).

The new  expression simply forwards the request to the actor factory and evaluates 
mail address of the newly created actor:

expr(new Bname) := create(new Bname,Bname,[ ]) :- atom(Bname). 
expr(new Bname with Elist) :=

expr(Elist) & [val,Elist,Alist]?create(new Bname with Elist,Bname,Alist).

create(E,Bname,Alist) := a:[create,Bname,Alist]!a:[created,Id]?val(E,Id).

To evaluate arithmetic and logical expressions we concurrently evaluate the sube
sions and then ask Prolog to compute the result. One simple way of doing this is as follo1:

1. This solution is somewhat verbose but easy to follow. In order to factor out the redundancy we m
make use of Prolog’s “univ” predicate to decompose E1 Op E2 and construct V1 Op V2.
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expr(E1+E2) := expr(E1) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(E1+E2,V1+V2). 
expr(E1-E2) := expr(E1) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(E1-E2,V1-V2). 
expr(E1*E2) := expr(E1) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(E1*E2,V1*V2). 
expr(E1/E2) := expr(E1) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(E1/E2,V1/V2).

arith(E,VE) := val(E,V) :- V is VE. 

expr(E1=E2) := expr(E1) & expr(E2) & [val,E1,V1]?[val,E2,V2]?bool(E1=E2,V1=V2).

bool(E,Bool) := val(E,true) :- Bool. 
bool(E,Bool) := val(E,false) :- not(Bool).

7.5 Executing SAL Programs

This completes our specification of SAL. To execute a SAL program, we need only decla
behaviour definitions and our initial configuration and then execute the agent sal. Let us take as
our example the recursive factor actor defined earlier:

def recFact accept fact:[n,client] =>
become self ; 
if (n=0)
then send result:[1] to client 
else let c = new factCust with [n,client]

in { send fact:[n-1,c] to self }.

def factCust with [n,c] accept result:[k] => send result:[n*k] to c.

def factClient accept result:[n] => skip.

initially let f = new recFact 
and c = new factClient 

in { send fact:[5,c] to f ; send fact:[3,c] to f }.

The complete computation is rather tedious to follow (there are over 400 events!) b
instructive to see the computation state (of one possible execution trace) after the fir
events. Here we have grouped together event sequences that start with a visible actor ev
message sending or actor creation). Notice that the factorial actor services the two reque
currently:

[create,recFact,[ ]]→ [created,[id,0]]→ [val,new recFact,[id,0]]→

[create,factClient,[ ]]→ [created,[id,1]]→ [val,new factClient,[id,1]]→ [env,f,[id,0]]→ 
[env,c,[id,1]]→ [val,5,5]→ [val,c,[id,1]]→ [val,[ ],[ ]]→ [val,[c],[[id,1]]]→ [val,[5,c],[5,[id,1]]]→

[msg,[id,0],fact:[5,[id,1]]]→ [env,f,[id,0]]→ [env,c,[id,1]]→ [val,3,3]→ [val,c,[id,1]]→ [val,[ ],[ ]]→ 
[val,[c],[[id,1]]]→ [val,[3,c],[3,[id,1]]]→

[msg,[id,0],fact:[3,[id,1]]]→ [quit,l:top]→ [endscope,l:top]→ [nextmsg,fact:[5,[id,1]]]→ mqnext→ 
[replacement,self]→ [nextmsg,fact:[3,[id,1]]]→ mqnext→ [env,n,5]→ [val,n,5]→ [val,0,0]→ 
[val,n=0,false]→ [env,n,5]→ [env,client,[id,1]]→ [val,n,5]→ [val,client,[id,1]]→ [val,[ ],[ ]]→ 
[val,[client],[[id,1]]]→ [val,[n,client],[5,[id,1]]]→

[create,factCust,[5,[id,1]]]→ [created,[id,2]]→ [val,new factCust with[n,client],[id,2]]→ 
[env,self,[id,0]]→ [env,n,5]→ [env,c,[id,2]]→ [val,n,5]→ [val,1,1]→ [val,n-1,4]→ [val,c,[id,2]]→ 
[val,[ ],[ ]]→ [val,[c],[[id,2]]]→ [val,[n-1,c],[4,[id,2]]]→
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a:[msg,[id,0],fact:[4,[id,2]]]→ [quit,l:top]→ [endscope,l:top]→ done→ [quit,args]→ [quit,alist]→ 
[replacement,self]→ [nextmsg,fact:[4,[id,2]]]→ mqnext→ [env,n,3]→ [val,n,3]→ [val,0,0]→ 
[val,n=0,false]→ [env,n,3]→ [env,client,[id,1]]→ [val,n,3]→ [val,client,[id,1]]→ [val,[ ],[ ]]→ 
[val,[client],[[id,1]]]→ [val,[n,client],[3,[id,1]]]→

[create,factCust,[3,[id,1]]]→ [created,[id,3]]→ [val,new factCust with[n,client],[id,3]]→ 
[env,self,[id,0]]→ [env,n,3]→ [env,c,[id,3]]→ [val,n,3]→ [val,1,1]→ [val,n-1,2]→ [val,c,[id,3]]→ 
[val,[ ],[ ]]→ [val,[c],[[id,3]]]→ [val,[n-1,c],[2,[id,3]]]→

a:[msg,[id,0],fact:[2,[id,3]]]→ [quit,l:top]→ [endscope,l:top]→ done→ [quit,args]→ [quit,alist]→ 
[replacement,self]→

The state we reach at this point in the computation is:

((head(fact:[2,[id,3]])~tail([id,0]))\:q 
& (env(alist,[self],[[id,0]]) 
& env(args,[n,client],[4,[id,2]]) 
& expr(n) 
& expr(0) 
& [val,n,V1]?[val,0,V2]?bool(n=0,V1=V2) 
& [val,n=0,true]?cmd(send result:[1]to client,top,done!nil) 
+[val,n=0,false]?cmd(let c=new factCust with[n,client] 

in{send fact:[n-1,c]to self}, 
top,done!nil) 

& atend(nil) 
& b:(beh([id,0],recFact,[ ])))\:b)\:a 

& actor([id,1],factClient,[ ]) 
& actor([id,2],factCust,[5,[id,1]]) 
& actor([id,3],factCust,[3,[id,1]]) 
& factory(4)

that is, we have one factorial actor with mail address 0 and a request in its mail queue to c
the factorial of 2 and send the result to mail address 3, one client with mail address 1, tw
tomers and an actor factory. The factorial actor has just created its replacement so it can 
rently begin processing the next message while it evaluates the if  command.

8. Concluding Remarks

We have presented the syntax, semantics and usage of Abacus by means of a series of
sively more advanced examples of concurrency specifications, concluding with a specifi
of a small actor-based concurrent programming language. We have shown how two new
tors, label prefixing and filtering, can be useful for encapsulating concurrent systems, a
have introduced patterns as a means of specifying higher-level constructs that evaluat
agents.

Our goal is to provide a platform for prototyping executable language specification
concurrent object-based languages. Although we have not discussed class inheritance,
out not to be very difficult to model with patterns. One can either follow the approach of 
[5] and construct a pattern for a class by means of generators, or one can directly simulate meth
od lookup by forwarding messages to superclass agents à la delegation [19]. We explore the pos-
sibilities of modelling objects as communicating agents in [17].
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One limitation of our current approach is that it only deals with the translation of valid pro-
grams; it does not provide any means for expressing what programs may be syntactically
but semantically defective. For example, there is nothing to prevent SAL actors from attem
to use unbound names in expressions, or numerical values as mail addresses. In such c
tors will simply deadlock as they wait for an event that can never occur. Syntactically c
but semantically invalid SAL programs will be translated to agents that just stop functio
when the error is encountered. We are presently working on a type theory for active obje
allows one to specify basic safety and liveness constraints for well-behaved agents in te
the expected possible interactions between an agent and its clients[17][18].

There are several interesting directions in which Abacus could evolve. One is to dev
general-purpose pattern mechanism whose semantics can be defined directly by transl
Abacus. Although we use patterns in a disciplined way so that the mapping from a pattern
agent that realizes it is always well-defined, it is not clear in general what algebraic prop
patterns may exhibit. In particular, patterns make it possible to specify systems with dynamically
varying linkage [15], for example, actors may become dynamically acquainted with new ac
In such cases it may be difficult to reason about the behaviour of systems from the prope
their parts.

At present we are experimenting with Prolog to determine what are the minimal req
ments to be able to conveniently express solutions to real problems using patterns. A rela
pect is the convenient support of syntactic patterns. Prolog supports only infix, prefix and postf
operators, and there are some subtle restrictions on how expressions are parsed. We fee
solution would be to provide either a fixed set of generally useful syntactic patterns that m
overloaded, or a grammar-based tool that allows one to specify arbitrary syntactic patter

Another direction is to better support the execution of specifications by providing 
monitoring control, or even by generating simple compilers so that larger examples can b
ed. The current implementation though reasonably fast is not blindingly so – the factorial 
ple takes over a minute when using a Prolog compiler – mainly because event searchin
haustive for every step of the computation. It is an open issue whether acceptable co
could actually be generated automatically from Abacus specifications.

Appendix: A Minimal Prolog Implementation

What follows is a minimal, but complete implementation of Abacus in Prolog. The full im
mentation provides a form of “garbage collection” by re-writing behaviour expressions to
pler equivalent forms and by removing instances of dead nil agents. Simple pretty-printing of be
haviour expressions is provided to help isolate the individual agents of a behaviour expr
The full implementation also supports options to print intermediate states of a computatio
to force the interpreter to search for all possible computation paths.

An earlier implementation of Abacus [16] did not take advantage of Prolog’s ability to
fine new operators, and thus exhibited little of the flexibility and compactness of the prese
proach. In the implementation given below, there is a one-to-one mapping between rules
transition semantics given earlier and the Prolog rules that implement them: for every v
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transition there is an offer rule, and for every invisible transition there is a tau rule. The rules for
each operator are largely independent, making it very easy to add new operators, such a
ing, filtering and linking. To our knowledge, the only other attempt to develop a similar i
preter for a CCS-based specification language is an interpreter for LOTOS [12][14]. The
there, however, is on the specification of distributed systems rather than on the specifica
concurrent programming languages.

:- op(690,xfx,:=). % Naming 
:- op(670,xfy,&). % Composition 
:- op(660,xfy,~). % Linking 
:- op(500,yfx,+). % Summation 
:- op(460,xfy,[!,?]). % Output/Input 
:- op(440,xfy,:). % Prefixing 
:- op(400,yfx,\:). % Filtering 
:- op(400,yfx,\). % Restriction 
:- op(400,yfx,/). % Relabelling

offer(E?R,(E,?),R). 
offer(E!R,(E,!),R). 
offer(B+_,O,R) :- offer(B,O,R). 
offer(_+B,O,R) :- offer(B,O,R). 
offer(B&X,O,R&X) :- offer(B,O,R). 
offer(X&B,O,X&R) :- offer(B,O,R). 
offer(B\E,O,R\E) :- offer(B,O,R), not(match(O,E,_)). 
offer(B/F,FO,R/F) :- offer(B,O,R), relabel(F,O,FO). 
offer(B,O,R) :- B := BE, offer(BE,O,R). 
offer(F:B,(F:E,G),F:R) :- offer(B,(E,G),R). 
offer(B\:F,O,R\:F) :- offer(B,FO,R), exports(FO,F,O). 
offer(B1~B2,O,R1~R2) :- offer(B1&B2\:x,O,R1&R2\:x).

tau(B+_,O,R) :- tau(B,O,R). 
tau(_+B,O,R) :- tau(B,O,R). 
tau(B1&B, E, B1&R) :- tau(B,E,R). 
tau(B&B2, E, R&B2) :- tau(B,E,R). 
tau(B1&B2, E, R1&R2) :- offer(B1,O1,R1), offer(B2,O2,R2), match(O1,E,O2). 
tau(B\H,E,R\H) :- tau(B,E,R). 
tau(B/F,E,R/F) :- tau(B,E,R). 
tau(B,E,R) :- B := BE, tau(BE,E,R). 
tau(F:B,E,F:R) :- tau(B,E,R). 
tau(B\:F,E,R\:F) :- tau(B,E,R). 
tau(B1~B2,E,R1~R2) :- tau(B1&B2\:x,E,R1&R2\:x).

match((E,?),E,(E,!)). 
match((E,!),E,(E,?)).
relabel([FE/E|_],(E,G),(FE,G)).
relabel([_|F],O,FO) :- relabel(F,O,FO). 
relabel([ ],O,O).
exports((F:E,G),F,(E,G)).
exports((FF:E,G),F,(FF:E,G)).

abc(B) :- write(’Initial configuration: ’), write(B), nl, path(B,P,F), 
write(’Final configuration: ’), write(F), nl.

path(B,(E->P),F) :- tau(B,E,R), write(E), write(’ -> ’), nl, path(R,P,F). 
path(F,F,F).
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