A Guide to
Specifying Concurrent Behaviour withAbacus

Oscar Nierstragz

Abstract

We present the syntax, semantics and usage of Abacus, an executable notation for specifying con-
current computations that extends CCS wathel prefixingandfiltering operators for encapsu-

lating systems of communicating agents apaternmechanism for parameterizing behaviour
expressions. Abacus is intended to be used as a semantic target and a prototyping tool for the
specification of concurrent object-based languages and systems. We illustrate the use of Abacus
through a series of standard concurrency examples, concluding with an executable specification
of SAL a Simple Actor Language.

1. Introduction

Abacus is a notation for specifying the behaviour of concurrent systems, intended primarily as
a prototyping tool to support the design of concurrent object-based languages and systems. One
may either directly specify concurrent systems with Abacus or one may use it as a semantic tar-
get for the specification of language constructs. Syntactic patterns of a programming language
are thus mapped to behavioural patterns expressed in Abacus in a denotational fashion [7]. Since
Abacus specifications are executable, one immediately obtains a running prototype of an inter-
preter for the language being designed. In this way the benefits of exploratory prototyping sup-
port and complement those of formal specification techniques.

Abacus is based on Milner’s process calculus and provides the standard operators of the ba-
sic calculus [15]. Value-passing, on the other hand, is simulatealtt®yns which are functions
that evaluate to agents of the calculus. Patterns also serve as semantic functions taking as argu-
ments syntactic constructs of a source language and returning Abacus specifications.

The rule-based specification of the calculus and of the corresponding implementation
makes it very easy to add new operators more convenient for modeling certain kinds of behav-
iours. These may either be added as patterns or as new primitive operators in the notation. We
presentabel prefixingandfiltering, which are particularly useful for encapsulating systems of
cooperating agents.

We shall present the syntax and semantics of Abacus in 82. We then proceed to illustrate
the use of Abacus through a series of progressively more ambitious examples from the standard
concurrency literature, concluding with an executable specificati8Abfa Simple Actor Lan-
guage [1]. As an appendix we provide the code for a minimal implementation in Prolog.

1. InObject Managemened. D.C. Tsichritzis, CUI, University of Geneva, July 1990, pp. 267-293.

2. Author’s address: Centre Universitaire d’Informatique, 12 rue du Lac, CH-1207 Geneva, Switzerland.
E-mail: oscar@cui.unige.ch, oscar@cgeuge51.bitnet. Tel: +41 (22) 787.65.80. Fax: +41 (22) 735.39.05.

2 A Guide to Abacus

2. Abacus Syntax and Semantics

Computations in Abacus are modeled as systems of communicating agents. Two agents may
communicate if autput offerfor a communication event made by one agent is matched by a
correspondingnput offerfrom another agent. Whenever a communication event takes place the
two participating agents replace themselves by their new behaviour.

The current state of any agent or system of agents is captured explicithebg\aour ex-
pression which determines what input and output offers are made by agents or subsystems and,
consequently, which events may take place. The occurrence of an event yields a new behaviour
expression for each of the participating agents, and thus for the whole system. We shall first
present the abstract syntax of agent declarations and behaviour expressions and then the seman-
tic rules that permit us to interpret them.

2.1 Abstract syntax

Abacus is essentially equivalent to CCS [15], modifying the syntax somewhat to simplify im-
plementation, and adding two new operators that are convenient for encapsulating systems of
cooperating agents. In the following stands for amgent namgB for abehaviour expression

E for anevent labelandX for aprefix For the present we shall suppose that agent names are
identifiers. When we introdugeatterns we shall see that agent names may be parameterized,
thus giving us the possibility of defining a set of agent names with a single declaration. Event
labels are either identifiers or tuples enclosed in [square brack&is$ #in event label ankia

prefix, thenX:E is also an event label.

An agent name is bound to a behaviour expression by a declaration of tha fern:

Behaviour expressions have the following syntax:

1. A Behaviour of agent A

2. nil Inactive agent

3. B&B Concurrent composition

4. B+B Summatiorfexclusive choice)
5. E!B Output offer

6. E?B Input offer

7. X:B Prefixing'

8. BuX Filtering

9. B\E Restriction

10.B/[EIE, ...] Relabelling

Table 1 The syntax of behaviour expressions

1. The ternprefixingis used in CCS to refer to input and output offers preceding a behaviour expression;
we shall use “prefixing” in this paper to refer to label prefixing.

O.M. Nierstrasz 3

The operators are listed in order from loosest to tightest binding so, for exagpia:x
will be parsed agi & (q + (u\:x)) .

2.2 Transition semantics

We define the semantics of behaviour expressions by atsahsition rules For every behav-
iour expression there may be sevetiaible transitiongo replacement behaviour expressions,
corresponding toffersto communicate, and sevemavVisible transitionscorresponding to in-
ternal communications.

We writep g p’ to indicate that offers to inpute and replace itself by, andp 5 p’
if p offers to outpue and become’. Furthermore, we adopt the convention tieat e f
a = b we say that offera andb match

If p represents a system of concurrent agents, these agents may communicate with one an-
other. In this case we wrife 5 p' to indicate thahay make an invisible transition o.
Such a transition is “invisible” because it is no longer visible as an offer to agents external to
As we shall see, it is possible tipatnay simultaneously support both visible and invisible tran-
sitions.

In the semantic rules that follow, the expressions over the bar represent preconditions and
those under the bar the conclusions. The symbepresents a visible transitionan invisible
transition, andx represents either.

Input, Output and Summation
e7p S p elp S p p+as p p+as ¢
The first rule tells us thatnil describes an agent that offers to inpand then becoms (i.e.,

it terminates or becomes inactive). Similarly, the second rule tells usrihaitll outputa and
becomenil, and that!b!nil will first outputa, thenb and then terminate.

The two rules for summation tell us thahil+b?nil offers to inputkithera orb, then termi-
nate. Note that summation is both associative and commutativesthasquivalent tg+p and
(p+q)+v IS equivalent t@+(g+v). [The equivalent forms in CCS fepp andelp are respectively
e.pande.p. The+ operator is identical to that of CCS.]

Concurrent composition
e 12 e 12 a ! a U
P-P,.9-49 P- P g-dg
p&q - p&q p&q % p&q p&q % p&q

The first composition rule tells us that concurrent agents may communicate if they present
matching input and output offers, thalsinil & a?nil+b?nil may silently change state kil & nil
by an internal communicatian

The next two rules tell us that concurrent agents may communicate independently with oth-
er agents that may be present, thiusil & a?nil+b?nil may output arm to an external agent and
becomen!nil & a?nil+b?nil or it may input either aa or ab to become!b!nil & nil.

4 A Guide to Abacus

We can also conclude that th@perator is both associative and commutative.

[In CCS, one writeg|q instead op&g. In Abacusy binds more tightly tha&, thus reducing
parentheses in most of our examples, whereas in &ls more tightly tham.]

Restriction and Relabelling

pl p, aded pl p
pel ple pf1' prt]

Restriction is used to hide input and output offers for a particular event label with the effect that
the corresponding communication canly occur internally. For example, in the expression
(alb'nil & a?nil+b?nil)\a thea offers are hidden from external agents. Thus either an internal com-
munication may take place, yieldignil & nil)\a, or an external agent may communicate a
yielding (a!b!nil & nil)\a. In the latter case, no further actions are possible, since the output offer
for a can neither be matched internally, nor is it visible externally. [In CCS one may restrict a
set of labels, as ipMa,b}. To do so in Abacus one restricts each member of the setp\as.ip

Relabelling is used to change the label of a visible transition. Relabelling functions are writ-
ten as a finite sequencereplacement/transitiomappings, such a&b,c/d], which maps toa
andd to c. All transitions not explicitly mentioned are mapped to themseilvesr(ever rela-
belled). For example, in the expressigato!nil)/[b/a] & a?nil+b?nil)\a the output offer foa has
been relabelled as an offer torThe first agent is therefore equivalenbtanil.

There are three possible transitions:
1. Aninternal event yielding: ('nil)/[b/a] & nil)\a
2. An external output af by the first agent yielding(o!nil)/[b/a] & a?nil+b?nil)\a
3. An external input of by the second agent yielding!b!nil)/[b/a] & nil)\a

In all three cases further transitions are possible.

[Relabelling is identical to the corresponding operator in CCS, except no slash is required
before the function, i.e., in CCS, one would wpitgb,c/d] instead op/[a/b,c/d].]

Prefixing and Filtering
e T , xe y:e T |
P-DP P-DP P—- P P—- P, X%y P-D
x:.e , T , e , ye T '
X:pS Xp X:p - Xp p\:x S p'\:x p\:x’S p'\ix p\::X - p'\:X

The first rule tells us that a prefix applied to a behaviour expression (rather than to just a single
offer) has the effect that all offers of that agent and its descendents will be prefixedb!aw)

is equivalent tocalx:b!nil. The second rule tells us that prefixing has no effect on internal transi-
tions. For finite label sets, one can simulate prefixing by a relabelling function, for example, the
preceding expressions are also equivale(u!bmil)/[x:a/a,x:b/b].

Filtering is used to hide atixceptprefixed offers. If the filter argument matches the prefix,
it is stripped off, otherwise the prefix remains. For exanfpknil+b?nil)\:x permits only a vis-

O.M. Nierstrasz 5

ible offer to inputa. Since the prefix matches, it is removed. bhafer is not prefixed, so it
does not pass through the filter.

Filtering is useful for encapsulating systems of cooperating agents. Whereas restriction can
be used to hide a specific list of visible transitions, filtering hidesxakptprefixed transitions.
As we shall see, this will provide us with a convenient mechanism for specifying the visibility
scope of an offer by using prefixes to represent the name of a scope.

[There is no direct equivalent to filtering in CCS, though one can generally simulate it by
a combination of restriction and relabelling.]

Agent declarations

When we bind an agent name to a behaviour expression, that name may in future be used to stand
for that expression. Itis by this means that we may define non-terminating, recursive behaviours,
such astes := a?res + b?res. This agent repeatedly offers to input eitheaam ab.

It should be clear that occurrences of an agent name appearing in its own recursive defini-
tion must beguarded[11][15], i.e., preceded by an input or output offer. For example,

p=p.
defines nothing at all, as our inference rules do not allow us to coneltde’ for any

3. Communication, Concurrency and Synchronization

Let us take the recursively-defined agestintroduced above and use it to model a shared re-
source for a number of concurrent clients:

res := a?res + b?res.
Clientsc1 andc2 each present two output offers and then terminate:

cl := alahil.
c2 = blbnil.

We may compose the resource with its two clients as follows:
examplel :=res & c1 & c2.

Within example1, res will accept the offers afl andc2 interleaved arbitrarily (there are six pos-
sible interleavingsaabb, abab, abba, baab, baba andbbaa). In all cases, the final configuration

will be: res & nil & nil. Since thanil agents contribute nothing to the behaviour of this system, it is
equivalent taes. We shall make use of such basic equivalences to simplify many of the exam-
ples.

Suppose that clients require exclusive access to a resource for a period during which they
may make multiple requests. One way of accomplishing this is for clients to synchronize by
means of a binary semaphore [3][6]:

bsem := p!v?bsem + v?bsem.

6 A Guide to Abacus

Recall that to acquire a semaphore one performs a P and to release it, abd&nOagent is
initially available, offering @ to any interested client. (We could just as well have maate

input offer, but we find it more intuitively appealing to think of cliemtguestingap butissuing

av.) Once @ has been deliveragem replaces itself by?bsem, which refuses all furtherre-
guests until & has been received. Note tha¢m will alwaysaccept a request, but that it sim-

ply discards multiple’s. (In the next section we shall see how to model a counting semaphore).

Within the systenexample2, clientsc3 andc4 synchronize viasem before communicating
with the resource:

c3 :=pralalvhnil.

c4 = p?blb!vInil.

example2 :=res & bsem & ¢3 & c4.
Now there are only two possible computation paths, napaelypbbv andpbbvpaav, with ¢c3 and
c4 having exclusive accessris.

4. Encapsulation

It is often useful to encapsulate subsystems by restricting the visibility of offers to a certain
scope. Abacus provides two complementary sets of operators for encapsulation: restriction and
relabelling, which are used to hide only selected offers, and filtering and prefixing, which are
used to hide abut a selected set of offers. In most of our examples we shall use filtering and
prefixing, as they yield very compact specifications, however we shall encounter at least one sit-
uation in which restriction is more convenient.

Let us consider the specification of a counting semaphore. The semaphore is initially avail-
able, permitting @ event, but it also remembers how margvents have occurred and accepts
onep request for every matching We can specify such a semaphore as follows:

sem = plv?sem + v?(d?s:sem & avail\:x)\:s.

avail := s:p!x:d!nil + s:v?(d?avail & avail\:x).
The agentem permits one event, with replacementsem, or onev event, with replacement
(d?s:sem & avail::x)\:s. Upon eaclv event, a nevavail agent is created to “remember” theThe
incremented semaphore is encapsulated\kyfitter, which permitsonly prefixed offers to be
exported. As a consequence, the agesntem must wait for a matching offer from the agent
avail:x. If ad event occurs, it will be internal to the encapsulated semaphorevdihe agent
is itself encapsulated by\a filter. This permits us tdink together the agents internal to the
semaphore. At most oreail agent will ever be able to communicate with external agents; all
others will be forced to wait for their neighbour to consumetier.

Since the entire semaphore is encapsulateayaitragent can only communicate with ex-
ternal agents by prefixing its offers with Note that the offersp ands:v pass througkwo fil-
ters. They first pass unaltered throughand then they pass through the filterwhich strips
off the s: prefix. The offers visible to the outside are simglandv?. Let us step through the
state changes eém when composed with the agentv!p?p?nil. First, av event yields:

vivip?p?nil & (d?s:sem & (avail)\:x)\:s

O.M. Nierstrasz 7

Two morev events:

vip?p?nil & (d?s:sem & (d?avail & (avail)\:x)\:x)\:s
p?p?nil & (d?s:sem & (d?avail & (d?avail & (avail)\:x)\:x)\:x)\:s

At this point it may help to visualize the agents of the system to see how they are linked together:

v?

p? -
P g

avail

\:x

\:x

\:x

\is

Figure 1 Communication offers in a counting semaphore agent

The arrows in this figure represent offers to communicate. Thus, the innexaiosgent
can communicate with the external agent becausaitglv offers use the unique pre®of the
enclosing filter. The other agents internal to the semaphore are linked because they are each en-
closed by a non-unique filter.

A p event yields:
p?nil & (d?s:sem & (d?avail & (d?avail & (x:d!nil)\:x)\:x)\:x)\:s

Now an internabl event takes place. Thai offer is only visible to the nearest adjacevil
agent as the prefix is immediately consumed by:tHdter:

p?nil & (d?s:sem & (d?avail & (avail)\:x)\:x)\:s
Anotherp and another internal

nil & (d?s:sem & (d?avail & (x:dnil)\:x)\:x)\:s
nil & (d?s:sem & (avail)::x)\:s

As expected, we finally obtain the same semaphore that we had after a.single

We can specify an equivalent semaphore using restriction and relabelling. Theagent
is adapted from an example by Milner:

rsem := plv?rsem + v?(pos/[unlink/done] & unlink?rsem) \ unlink.

pos := p!done!nil + v?(pos/[unlink/done] & unlink?pos) \ unlink.
In this case we build up a chainmk agents to count theevents. To ensure that each agent
only communicates with its nearest neighbour, it offers to outpariea which is immediately
translated to aanlink by the relabellingunlink/done]. Theunlink is then hidden by the restriction
\unlink from surrounding agents. Let us see what happens when we compatenil & rsem.
First, the twov offers are accepted:

vIp?p?nil & (pos/[unlink/done] & unlink?rsem)\unlink

p?p?nil & ((pos/[unlink/done]&unlink?pos)\unlink/[unlink/done] & unlink?rsem)\unlink
Since the» andv offers ofpos are neither restricted nor relabelled, they are visible to the outside.
Next, ap is accepted:

8 A Guide to Abacus

p?nil & (((done!nil)/[unlink/done]&unlink?pos)\unlink/[unlink/done] & unlink?rsem)\unlink

Thedone offer is relabelled as amlink and consumed by the neighbourimgink?pos. Sinceun-
link offers are restricted, they are not visibletink?rsem:

p?nil & (pos\unlink/[unlink/done] & unlink?rsem)\unlink
Anotherp is accepted:

((done!nil\unlink/[unlink/done] & unlink?rsem)\unlink
And finally the internalinlink yields:

(rsem)\unlink

Note thatrsem\unlink is equivalent tesem, since in any case it makes waink offers. In fact, it
is relatively simple to prove tha¢gm andrsem are equivalent specifications, since they have pre-
cisely the samexternalbehaviourt

As an aside, it is interesting to note that Abacus is computationally complete since it is pos-
sible to simulate a Turing machine by using a slight variation of our counting semaphore. We
can exploit the fact that each semaphore effectively stataskof avail or pos agents. It is quite
easy to define a binary stack that stores and returns O or 1 values by modifgg sipecifi-
cation. The infinite tape of a Turing machine can then be modelled by two such stacks, one for
the tape symbols to the left, and the other for those on the right. We can change the current po-
sition by popping a value off one stack and pushing it onto the other. The finite logic of the Tur-
ing machine can be also expressed as an Abacus specification. Since we can model a Turing ma-
chine usingeither prefixing and filtering or restriction and relabelling, this means that either set
of operators is as powerful as the other. They do not have the same expressive capabilities, how-
ever, and there appears to be no straightforward way to translate specifications using one set to
those using the other.

5. Using Patterns to Model Value-Passing

Patterns are simply functions that evaluate to agents. Syntactically, patterns are parameterized
behaviour expressions or agent names. Patterns can be used to express value-passing, but they
are also more generally useful for defining classes of agents, agents with dynamically modifi-
able behaviour, new operators and, as we shall see, semantic functions for defining program-
ming language constructs.

Our approach to modelling value-passing between agents differs somewhat from that of
Milner, but has the same general flavour in the sense that patterns ultimately translate to agents
of the basic notation. Since the Abacus interpreter is implemented in Prolog, we exploit Prolog’s
unification mechanism to interpret patterns. (Aside from the ability to define new operators, we
generally avoid the use of advanced features of Prolog in the examples; it should therefore be
possible for the reader to follow the examples without having any prior exposure to Prolog.)

1. They ar@bservation equivalefft5] since we can establish a “bisimulation” relation between the reach-
able states of either; furthermore, since Isatin andrsem arestable— that is, they do not initially seek

to change state through an internal event — we can conclude that thbgemation congruente., equal

as specifications.

O.M. Nierstrasz 9

Variables in Prolog begin with upper case letters. We may define a parameterized agent just
as we would an ordinary agent by supplying Prolog variables as parameters to the agent’'s name
and using those variables in the behaviour expression bound to that name. Furthermore, all vari-
ables used in any behaviour expression must be introéitbedas parameters to the ageoits
as parameters to an input offer.

Let us take as a simple example the specification of an agent that simulates the tuple space
of Linda [4]. Linda provides a small set of primitives to allow concurrent processes to commu-
nicate and synchronize by writing and reading tuples to a so-called tuple space. A process may
write a tuple using the non-blockiogt primitive, and a process may read a tuple either destruc-
tively with thein primitive, or non-destructively with thel primitive. Both read primitives
block if no matching tuple exists. The following agéintia, supports these three primitives:

linda := [out,T]?(linda & tuple(T)).
tuple(T) :=[in,T]!nil + [rd,T]'tuple(T).

In this example we introduce compound event labels as tuples enclosed in squarelbhackets
response to ajut,T] requestjinda will generate auple agent that stores the valneAn agent
attempting to inpuin, T] will block unless such a tuple exists. fnT] event is destructive, caus-
ing the tuple to be consumed, whereg@s, @ event is non-destructive.

In the specification oduple(T) the only variable that occurs is a parameter to the agent. We
can interpret this as a definition osatof agentsuple(T), for all possible values af, i.e.,

tuple(a) := [in,a]!nil + [rd,a]!tuple(a).
tuple(b) := [in,b]!nil + [rd,b]!tuple(b).

and so on. In this interpretation, eaghle(T) is a new agent name.

In the specification aofnda, on the other hand, the variablés not an agent parameter but
is introduced in an input offer. In this case we must understand the definitiata @fs an infi-
nite sum of behaviour expressidnst, T]?(linda & tuple(T)) for all possible values df, i.e.,

linda ::Z [out, T]?(linda & tuple(T)) .

We can simulate the behaviour of a counting semaphore by genenatitegsam) for each
V and consuming one for each P. Our synchronizing clients now look like this:

c5 := [in,sem]?alal[out,sem]!nil.
c6 := [in,sem]?b!b![out,sem]!nil.

And the system looks like this:
linda & tuple(sem) & res & ¢5 & c6

We must start with a single instanceupie(sem) to permit an initial P. As before5 andcé6 ob-
tain exclusive access to the resource by acquiring the semaphore.

1. We adopt this convention primarily to improve readability: there is nothing to prevent us, for example,
from writing out(T) rather tharjout, T] , but we then risk confusing the parameterieeent labebut(T)
with a parameterizedgentcalledout(T).

10 A Guide to Abacus

Incidentally, theeval primitive of Linda can be easily simulated by creating an agent that
evaluates an expression before replacing itself by a tuple. The non-blocking variaras@f
rd (inp andrdp) are more problematic, however, as they require the ability to detextisbace
of a particular tupfk

6. Using Patterns to Specify Agents

Specifying Classes of Agents

There is no inherent reason why pattern parameters must be restricted to the domain of event
labels. Consider the following alternative specification of a counting semaphore:

psem := plv?psem + v?inc(psem).

inc(S) := p!S + v?inc(inc(S)).
As with the example of the previous section, we can interprétdisg pattern as defining set
of agents with namesc(psem), inc(inc(psem)) etc. Provided a pattern is well-defined, the seman-
tics of a pattern is that of the agents it evaluates to.

The agenpsem is equal (observation congruent) to bgidim andrsem defined earlier, even
though it performs no internal events. In this sense Abacus specifications (just as CCS specifi-
cations) ardully abstract they specify only external behaviour, not implementations. Any two
specifications that exhibit identical external behaviour are to be considered interchangeable.

Specifying Operators

The patternnc(S) can also be viewed as aperatorover the domain of behaviour expressions.
We may similarly define binary operators over behaviour expressions as patterns. Let us sup-
pose that we have instructed Prolog to recognias a right-associative infix operatoie
could then define as dinking operator as follows:
P~Q:=P &Q\x.
(Of course, this means that the prefinas become “special” since it has its own operator.)
We may now define a version of the counting semaphore using the linking operator:

Isem := plv?lsem + v?(d?s:Isem ~ next)\:s.
next ;= s:p!x:d!nil + s:v?(d?next ~ next).

Since-~ is extremely useful for linking together a series of communicating agents, we actu-
ally provide it as a supplementary operator to Abacus rather than as a pattern. This has the con-
venient side-effect that linking will be visible in all reachable states, rather than being translated
to its equivalent form using and\:x. For example, after threeeventsjsem reaches the state:

(d?s:Isem~d?next~d?next~next)\:s
which is equivalent to its (more verbose) translation:

(d?s:lsem & (d?next & (d?next & next\:x)\:x)\:x)\:s

1. One way of modelling this would be to introduce a “clearinghouse” agent that keeps track of which tu-
ples currently exist in the tuple space.

2. This is done using the built-in predica@3, as in :- op(660,xfy,~).

O.M. Nierstrasz 11

Linking is notassociative, singe-q~u = p~(q~u) = p & (q & u\:x)\:x, which is not the same as:
(p~g)~u = (p & q\:x) & u\:x.

A Concurrent Queue

We can use the linking operator to specify a queue whose head and tail may be accessed concur-
rently by a producer and a consumer:

queue := [put,X]?(head(X) ~ tai)\:q.

head(X) := g:[get,X]!ok!nil.

tail := g:[put,X]?(x:0k?head(X) ~ tail) + x:0k?q:queue.
The queue initially accepts onlyjmut,X] request. Subsequent states consist of a chain of agents
starting with ahead(X) agent that attempts to deliver its contents to a consumer, zero or more
head agents each waiting to become the true head of the queueaintia accepts further
[put,X] requests.

Suppose we have the following producer and consumer:

prod := [put,a]![put,b]![put,c]!nil.

cons = [get,X]?[get,Y]?[get,Z] ?nil.
In the system(cons & queue & prod) the put and get requests may be arbitrarily interleaved (pro-
vided there are no more gets than puts!). If the producer succeeds in outputting all its values be-
fore the consumer reads any, the queue will reach the state:

(head(a)~x:ok?head(b)~x:0k?head(c)~tail)\:q
After the consumer finishes reading the queue, we reach the state:
(nil~nil~ok!nil~tail)\:q

An internalok yields (nil~nil~nil~g:queue)\:q, which is equivalent tqueue.

Concurrent Bounded Buffers

Linking is also useful for passing responsibilities amongst a collection of cooperating agents. As
an example we shall specify a pattern for arbitrary-length concurrent bounded buffers. We shall
model the buffer as a chain of agents that may hold the values written to the buffer. There is al-
ways at most one agent at the head of the chain respondjngxpoffers and always at most

one at the tail responding [tgt,X] offers. Whenever a value is read or written, the responsibility

of being the head or the tail passes on to the next agent. When the end of the chain is reached,
the responsibility cycles back to the beginning of the chain. When the buffer is empty or full,
requests to get or put are respectively blocked.

Initially the buffer is empty and asmpty agent acts as the tail. If a value is written, this
agent becomes the head and passes the responsibility of being the tail to the agent “behind it” by
communicatingk. (There is always fee agent or thend of the buffer followingempty.)

empty := b:[put,X]?ok!head(X).

free := x:ok?tail.

Whentail accepts aut request it knows that the buffer is not empty and so becomesex)
agent that waits to become the head until that responsibility is passed to it:

12 A Guide to Abacus

tail := b:[put,X]?0ok!taken(X) + x:ok?empty.
taken(X) := x:ok?head(X).

If the responsibility of being the head passeasitadhen we know that the buffer is empty again,
andtail simply becomesmpty.

When the buffer is not empty the head attempts to deliver its value to a consumer. If the
responsibility of being the tail passes to the head then we know the buffer is full:

head(X) := b:[get,X]!ok!free + x:ok?full(X).
full(X) := b:[get,X]!ok!tail.

In addition, we need to handle the eventuality that the last agent in the chain tries to pass
the responsibility to the “next” agent. We close the loop with the agerhat simply repeats
the communication to the agent at the start of the chain. Theszgepasses the communica-
tion on to the first agent in the chain:

end := x:ok?a:x:ok!end.
start := ok?ok!start.

Finally, a bounded buffer is an encapsulated system consistinga@fagent and a chain
of agents of the forrampty~free~free~...~end:

buf(Chain) := (start & Chain\:a\:x)\:b.

To see the buffer pattern in action, let us consider the sysies® buf(empty~free~end) & prod)
consisting of a consumer, a two-slot buffer and a producer, wigrandcons are:

prod := [put,a]![put,b]![put,c]!nil.
cons := [get,X]?[get,Y]?[get,Z] ?nil.

If we follow one possible computation path, we see the buffer undergo the following transitions:

[put,a] — (start & ((ok!'head(a)~free~end)\:a)\:x)\:b

ok — (start & ((head(a)~tail~end)\:a)\:x)\:b

[put,b] — (start & ((head(a)~ok!taken(b)~end)\:a)\:x)\:b
ok — (start & ((head(a)~taken(b)~a:x:oklend)\:a)\:x)\:b
ok — (ok!start & ((head(a)~taken(b)~end)\:a)\:x)\:b
ok — (start & ((full(a)~taken(b)~end)\:a)\:x)\:b
[get,a] — (start & ((ok!tail~taken(b)~end)\:a)\:x)\:b

ok — (start & ((tail~head(b)~end)\:a)\:x)\:b

[put,c] — (start & ((ok!taken(c)~head(b)~end)\:a)\:x)\:b
ok — (start & ((taken(c)~full(b)~end)\:a)\:x)\:b
[get,b] — (start & ((taken(c)~ok!tail~end)\:a)\:x)\:b

ok — (start & ((taken(c)~tail~a:x:ok!end)\:a)\:x)\:b
ok — (ok!start & ((taken(c)~tail~end)\:a)\:x)\:b

ok — (start & ((head(c)~tail~end)\:a)\:x)\:b

[get,c] — (start & ((ok!free~tail~end)\:a)\:x)\:b

ok — (start & ((free~empty~end)\:a)\:x)\:b

Note that in our specification of the bounded buffer, there is no global “locking” of the buff-
er to synchronize or inhibit concurrent requests to put or get values as is the case with a solution
based on monitors [10]. Instead, our solution permits producers and consumers to concurrently
access the buffer, as in solutions using critical sections [8] or synchronizing resources [2], except
that we achieve synchronization by distributing responsibilities rather than by maintaining glo-
bal knowledge of the state of the buffer.

O.M. Nierstrasz 13

A Concurrent Prime Sieve

In certain situations it is convenient to define agents that compute the value of simple expres-
sions. We shall make use of such agents to specify a concurrent primgesigyé). is an agent
that outputs the valugsst,J] for all values ofi up toN. It will be used to generate a list of num-
bers for the sieve to test:
gen(J,N) := [test,J]!gen(K,N) - J<N, Kis J+1.
gen(N,N) := [test,N]'nil.
We express the behaviourgeih(J,N) through the use of a Horn clause that verifies ilstess
thanN and then computes the valuexdior the replacement behaviour. Otherwise=i, then
the next value to test is generated and the agent terminates. As with our previous pattern exam-
ples, we interpret this as the definition of a set of agents ngengxb), gen(0,1), etc.:
gen(0,0) := [test,0]!nil .
gen(0,1) := [test,0]'gen(1,1) .
gen(1,1) := [test,1]!nil .
gen(0,2) := [test,0]'gen(1,2) .

gen(1,2) := [test,1]!gen(2,2) .
gen(2,2) := [test,2]!nil .

We similarly define agentsy(X,Y), which reports whethet is equal tov, div(N,P), which
reports whethex is divisible byP, andsquare(P), which outputs the value of:

eq(X,Y) := truelnil - X=Y.

eq(X,Y) := false!nil - not(X=Y).
div(N,P) := true!nil - 0is N mod P.
div(N,P) := false!nil :- not(0 is N mod P).
square(P) := [val,P2]!nil - P2is P+P.

The prime sieve itself consists of a chain of agents, each of which stores a prime number
and performs tests on candidate primes, and a prime generator, which adds new primes to the
end of the chain. If a candidate fails a test it is discarded. If it passes a test it is forwarded to the
next prime in the chain for testing. A candidate that passes all division tests up to its square root
is approved as a prime. A sieve to compute primes Npdalefined as the following pattern:

primes(N) := gen(3,N) ~ last(2,4) ~ genprime.
The agenten(3,N) generates integers to test starting with 3. i&&eP,P2) agent approves as a
prime any number less th&aa (the square of the prin® since that number is not divisible by
any prime up to its square root. When it encourrtensself, that number is discarded (since it
is divisible byP), and the agent replaces itselfdiyve(P), which performs division tests on can-
didates and forwards those that pass the test to the next agent in the chain.

last(P,P2) := x:[test,N]?(eq(N,P2) & findprime(N,P,P2)).
findprime(N,P,P2) := true?sieve(P) + false?p:[prime,N]!last(P,P2).

sieve(P) := x:[test,N]?(div(N,P) & dotest(N,P)).
dotest(N,P) := true?sieve(P) + false?[test,N]!sieve(P).

Finally, genprime is the prime generator, whose responsibility it is to append new primes to the
end of the chain:

genprime := p:[prime,P]?((square(P) & [val,P2]?last(P,P2)) ~ genprime).

14

A Guide to Abacus

As a demonstration, consider the following execution trapenads(10) and note how the work
performed by the various agents is interleaved to reflect their concurrent execution:

[test,3]

false

— gen(4,10)~(eq(3,4)&findprime(3,2,4))~genprime
— gen(4,10)~p:[prime,3]!last(2,4)~genprime

p:[prime,3] — gen(4,10)~last(2,4)~(square(3)&[val,X]?last(3,X))~genprime

[test,4]
true
[test,5]
false
[val,9]
[test,5]
[test,6]
true
[test,7]
false

false

— gen(5,10)~(eq(4,4)&findprime(4,2,4))~(square(3)&[val,X]?last(3,X))~genprime
— gen(5,10)~sieve(2)~(square(3)&[val,X]?last(3,X))~genprime

— gen(6,10)~(div(5,2)&dotest(5,2))~(square(3)&[val,X]?last(3,X))~genprime
— gen(6,10)~[test,5]!sieve(2)~(square(3)&[val,X]?last(3,X))~genprime

— gen(6,10)~[test,5]!sieve(2)~last(3,9)~genprime

— gen(6,10)~sieve(2)~(eq(5,9)&findprime(5,3,9))~genprime

— gen(7,10)~(div(6,2)&dotest(6,2))~(eq(5,9)&findprime(5,3,9))~genprime
— gen(7,10)~sieve(2)~(eq(5,9)&findprime(5,3,9))~genprime

— gen(8,10)~(div(7,2)&dotest(7,2))~(eq(5,9)&findprime(5,3,9))~genprime
— gen(8,10)~[test,7]!sieve(2)~(eq(5,9)&findprime(5,3,9))~genprime

— gen(8,10)~[test,7]!sieve(2)~p:[prime,5]!last(3,9)~genprime

p:[prime,5] — gen(8,10)~[test,7]!sieve(2)~last(3,9)~(square(5)&[val,X]?last(5,X))~genprime

[test,7]

[test,8]

true

[test,9]

false

false

— gen(8,10)~sieve(2)~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime
— gen(9,10)~(div(8,2)&dotest(8,2))~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime
— gen(9,10)~sieve(2)~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime
— gen(10,10)~(div(9,2)&dotest(9,2))~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime
— gen(10,10)~[test,9]!sieve(2)~(eq(7,9)&findprime(7,3,9))
~(square(5)&[val,X]?last(5,X))~genprime
— gen(10,10)~[test,9]!sieve(2)~p:[prime,7]!ast(3,9)
~(square(5)&[val,X]?last(5,X))~genprime

p:[prime,7] - gen(10,10)~[test,9]!sieve(2)~last(3,9)~(square(5)&[val,X]?last(5,X))

[test,9]

[test,10]

true

true

[val,25]
[val,49]

~(square(7)&[val,Y]?last(7,Y))~genprime
— gen(10,10)~sieve(2)~(eq(9,9)&findprime(9,3,9))~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime
— ((div(10,2)&dotest(10,2))~(eq(9,9)&findprime(9,3,9))~(square(5)&[val, X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime)\:x
— (sieve(2)~(eq(9,9)&findprime(9,3,9))~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime)\:x
— (sieve(2)~sieve(3)~(square(5)&[val,X]?last(5,X))
~(square(7)&[val,Y]?last(7,Y))~genprime)\:x
— (sieve(2)~sieve(3)~last(5,25)~(square(7)&[val,Y]?last(7,Y))~genprime)\:x
— (sieve(2)~sieve(3)~last(5,25)~last(7,49)~genprime)\:x

O.M. Nierstrasz 15

7. Defining a Programming Language

As we stated initially, our purpose in developing Abacus was to use it as a specification and pro-
totyping tool to support the design of computational models and language constructs for concur-
rent object-based programming languages. We shall now step through an example of how one
might use Abacus to specify a small programming language. Rather than invent a new language
we shall take SAL, the Simple Actor Language introduced by Agha [1] to explain the actor mod-

el. In this way we not only demonstrate at least some degree of generality in our approach, but
we also show how a notation based on synchronous message passing and dynamic agent creation
(i.e., Abacus) is at least as powerful as one based on asynchronous message passing (i.e., SAL),
thus reinforcing the observation of Liskov et al. [13] that either asynchrony or an extendible pro-
cess structure are necessary to obtain adequate expressive power for concurrent or distributed
computing.

We shall start by giving a short introduction to actors before presenting the syntax and in-
formal semantics of SAL. We use a standard example of a factorial actor to illustrate some of
the features of SAL. Then we provide an overview of the Abacus specification of SAL, followed
by the specification itself. We close with part of the trace of the running factorial actor to dem-
onstrate the correspondence between SAL’s actor model and Abacus agents.

7.1 Actors

Actors are computational entities that communicate by asynchronous message-passing[1][9].
An actor consists of a queue of pending messages and a “behaviour” that accepts and responds
to messages. Every actor is associated with a unique identifier which is the “mail address” of its
message queue. An actor may know the mail addresses of other actors whidcgraitgan-

ces When an actor accepts a message, it can do three things:

1. Create new actors.
2. Send messages to its acquaintances.
3. Specify the replacement behaviour to handle the next message.

An actor automatically becomes acquainted with any new actors it creates. This permits it
to send messages to a new actor, or to send its mail address to another actor that will become
acquainted with it. (An actor that has no pending messages and with which no other actor is ac-
quainted is effectively dead.) An actor is normally acquainted with itself, and so can always send
itself messages. The replacement behaviour may be specified at any time, thus permitting an ac-
tor to begin processing the next message concurrently with the processing of the current one.

7.2 SAL

We have modified the syntax of SAL only slightly in order to take advantage of Prolog’s ability
to support user-defined operators. We give the abstract syntax for SAL below in extended BNF.
Non-terminals are inalics, optional items are withifall square brackets], and zero or more rep-
etitions are withifbrace brackets}* with a trailing asterisk. Keywords and literals areadid . beh-

name, selector, target andname are all identifiersacquaintance-list andparameter-list are instances

of name-list.

16 A Guide to Abacus

initial-behaviour = initially command

behaviour-definition ::= def beh-name [with acquaintance-list]
accept selector [: parameter—list] => command
{or selector[: parameter—list] => command }*

name-list »=[name {, name }*]

command == skip | command ; command | { command }
| send selector[: expression-list | to target
| become self

| become beh-name [with expression—/ist]
| if logical-expression then command [else command]
| let name = expression { and name = expression }* in { command }

expression ::= number | name | expression-list
| expression + expression | expression - expression
| expression «+ expression | expression | expression
| new beh-name [with expression-list

expression-list ::= [expression{ , expression }* |

logical-expression ::= expression = expression

A SAL program consists of a set of actor behaviour definitions and an initial behaviour (a com-
mand to execute). Each actor has a uniqgue mail address, a queue of pending messages, and a cur-
rent behaviour responsible for handling the next message. An actor may have a list of acquain-
tances, which are the mail addresses of other actors it may send messages to. An actor may al-
ways send a message to itself by using the pseudo-vaséitbées a target. Messages contain a
selectorand an optional list of values. A behaviour specifies how to handle the next message by
indicating for each possible selector what command to execute.

An actor may evaluate arithmetic and logical expressions (to keep SAL simple, we only
provide a tiny set of arithmetic and logical operators), send messages to acquaintances, create
new actors and specify its replacement behaviour. It is possible to temporarily assign names to
the values of expressions using thecommand. It is important to note that the names bound to
acquaintances, message contents and expression resotis\aneables: théet command only
provides a temporary scope during which a name is bound to some value; after that scope has
ended the old value bound to that name (if any) is exposed. As a consequence the only way to
model state change is by using teeome command.

The become command indicates which behaviour is to handle the next message in the
gueue. It may be executed before the handling of the current message has been completed, thus
allowing the possibility of internal concurrency. If no replacement is specified, the default is to
copy the current behaviour (i.e.,decome self).

Let us consider Hewitt's standard example of a factorial actor [9] and complete Agha’s
pseudo-code [1] for a SAL implementation:

O.M. Nierstrasz 17

def recFact accept fact:[n,client] =>

become self ;

if (n=0)

then send result:[1] to client

else let ¢ = new factCust with [n,client]

in { send fact:[n-1,c] to self }.

def factCust with [n,c] accept result:[k] => send result:[n«K] to c.

The behaviourecFact accepts requests of the fofamt:[n,client] to compute the factorial efand
eventually causes the messagsult:[factorial of n] to be sent back to the client. If the request is
for the factorial of 0, the factorial actor responds immediately. Otherwise it dynamically creates
acustomemwhose acquaintances arandclient, and it sends itself a request to compute the fac-
torial of n-1 and send the result to the customer:

The customer will eventually receive this result, compute the producraf the factorial
of n-1 and send the value to the client. For a request to compute n factoriakdhan will end
up creating n customers, thus simulating an execution stack [1].

SincerecFact maintains no state information itself (it uses the customer to remember the
original client) it immediately specifies its replacemendeifsto begin processing the next mes-
sage. As a consequence, the factorial actor may service multiple requests concurrently.

Now all we need is a client definition andiainally declaration to create the factorial actor,
its client and two requests to compute factorials:

def factClient accept result:[n] => skip.

initially let f = new recFact
and c = new factClient
in { send fact:[5,c] to f ; send fact:[3,c] to f }.

7.3 Mapping Actors to Agents

In order to specify SAL computations in terms of Abacus patterns we must decompose actors
into a number of agents that cooperate to give us the required behaviour. We shall give an over-
view of the approach before going into the details of the specification of each pattern.

We model every SAL program in terms of three kinds of agestsmanandagent that per-
forms theinitially command, dactory agent that creates new actors, and a number of dynami-
cally createdactor agents. The initial command agent is responsible for creating the first actor
agents and sending the messages that will start the computation. The factory agent is responsible
for creating new actor agents and assigning a unique mail address to each. This address is report-
ed to the actor requesting the creation.

Actor agents are encapsulated systems of agents consistimgestage quewsgent and
abehaviouragent. A behaviour agent consists ofearironmentagent that keeps track of the
actor’s acquaintances and other values to remembandieragent that accepts the next mes-
sage and proceeds to respond to it, adléa@nupagent responsible for starting the replacement
behaviour at the appropriate time. The main interactions are shown in Figure 2.

18 A Guide to Abacus

- |
0 [create,Bname,Alist]
-

[created,|d]

[msg,ld,Msq] creates

ﬂactor \
(mq > [nextmsg,Msg]
beh \
e

[env,Name,Val] done

- /

Figure 2 Mapping Actors to Agents

The cleanup agent will create a default replacement behaviour if none has already been
specified by the time the handler reports that it has terminated by outputiindf an early
replacement has already been requested, it remembers this fact and does not create a second one.

The handler agent accepts a message from the queue and replaces itself by an environment
agent that binds the message contents to local names, and a command agent that performs the
appropriate actions. The command agent is responsible for reparnitp the cleanup agent.

Commands may send messages to other actors, specify replacement behaviours, or cause
expressions to be evaluated by creatingxmessioragent. An expression agent optionally per-
forms some computation and eventually outputs the value of the expression in the scope of the
current environment. A new scope is created fer @ammand, which requires that a sequence
of expressions be evaluated, a new environment binding names to the values of those expres-
sions be created, and a command be executed with those names visible. The command following
thelet command executes within the old scope.

/beh \

l:top

- /

Figure 3 Lexical scoping in SAL

[endscope,l:top]

In Figure 3 we see the currently running command agent inside a scope:toallgdhen
the command terminates, it communicdé@sscope,l:top] to the command agent waiting “out-

O.M. Nierstrasz 19

side.” All names bound are accessible to the running command with the exception that names
bound locally hide previous bindings of those names. When the scope terminates, the subsequent
command sees only the bindings previously in effect. An environment for a given scope termi-
nates when it receives the communicatupiit,Scope].

The complete set of communications exchanged and their interpretation is as follows:

[create,Bname,Alist] — create a new actor (behaviour Bname, acquaintances Alist)
[created,Id] — the actor created has mail address Id
[msg,ld,Msq] — message Msg is sent to address Id
[nextmsg,Msg] — the next message for a given actor is accepted
mgnext — next message in the queue becomes the head
[env,Name,Val] — the name Name is currently bound to Val
[endscope,Scope] — Scope has just ended

[quit,Scope] — the bindings of Scope are discarded

done — the current handler has terminated
[replacement,Bname,Alist] — a replacement behaviour is created
[replacement,self] — the replacement is the current behaviour
[val,E\V] — expression E has the value V

As a specification shortcut, we simulate the syntax of SAL by declaring SAL keywords and
operators as prefix and infix operators to be recognized by li’nmd;irg] theop/3 predicate (we
do not consider this a particularly convenient way to define the syntax of a language, but it is
adequate for small examples):

;- 0p(990,fx,[def,initially]) . :- op(945,xfy,[then]) .

:- op(980,xfy,[accept,or]) . :- 0p(940,fx,[send,become,let]) .
- op(970,xfy,[=>]) . ;- 0p(935,xfy,[in]) .

;- 0p(960,xfy,[;]) . :- op(930,xfy,[to,and]) .

;- 0p(955,fy,[if]) . ;- op(600,fy,[new]) .

:- op(950,xfy,[else]) . ;- op(600,xfx,[with]) .

7.4 An Abacus Specification of SAL

We shall now proceed with the specification of the patterns that interpret the semantics of SAL
programs as Abacus agents. The patterns are specified in a denotational fashion, defining the se-
mantics of SAL language constructs in terms of patterns that interpret their parts. The patterns
correspond to the agents we introduced in the previous section.

To generate new actors and mail addresses, we make use of the following “actor factory”:

factory(Num) := [create,Bname,Alist]?
(actor([id,Num],Bname,Alist)
& [created,[id,Num]]!factory(NextNum)) - NextNum is Num + 1.
An agent requesting the creation of a new actor is expected to wait for the reply containing the
mail address of the actor created. Mail addresses are of thgdfeinm], rather than simplyum
to distinguish them from numerical values in expressions (we wish to prevent actors from per-
forming computations with mail addresses and mailing to computed addresses). To prevent con-

1. The effect of this is that SAL declarations will be parsed as Prolog expressions. For example, the dec-
laration offactCust has an abstract syntax tree with the linear representation:
def(accept(with(factCust,[n,c]),((result:[k]) => send(to((result:[n*k]),c)))))

20 A Guide to Abacus

fusion between multiple requests, the factory refuses new requests until the mail address is de-
livered.

An actor simply consists of a message queue and a behaviour. The actor is encapsulated
using a\:a filter so that only requests to create new actors and messages between actors will be
externally visible. The message queue is similar taythee agent we defined earlier, except
that it only accepts messages sent to the mail address

actor(ld,Bname,Alist) := (mq(ld) & beh(ld,Bname,Alist))\:a.

mq(ld) := a:[msg,ld,X]?(head(X) ~ tail(ld))\:q.

head(X) := g:[nextmsg,X]!mgnext!nil.

tail(1d) := a:[msg,ld,X]?(x:mgnext?head(X) ~ tail(Id)) + x:mgnext?q:mq(ld).

The initial configuration consists of an agent that realizesitéy command and an actor
factory. The agental is defined only if amitially command has been declared. As we shall see,
the second and third arguments todine pattern are the current scope and the command con-
tinuation.

sal := cmd(Cmd,top,nil)\:a & factory(0) :- initially Cmd.

For everydef declaration we obtaint&h pattern that realizes the behaviour defined. The
body of a behaviour consists of anvironmenthat stores the bindings of names to values, a
handlerthat accepts and handles the next message,dedrapagent responsible for creating
the replacement behaviour. There are two possible cases, sinte ttlause is optional for ac-
tors with no acquaintances:

beh(ld,Bname,Alist) := body(ld,Bname,Anames,Alist,Handler)

:- def Bname with Anames accept Handler.
beh(ld,Bname,[]) := body(ld,Bname,[],[],Handler) .- def Bname accept Handler.

body(ld,Bname,Anames,Alist,Handler) := (env(alist,[self|Anames],[Id|Alist])
& handler(Handler)
& cleanup(ld,Bname,Alist)) \: b.

Environments are identified by a currexcbpe and manage a set of name to value bind-
ings. The outermost scope is caltgidt, and contains the mail addresses of the acquaintances
and ofself. The next is calledrgs and is created when a message is accepted. The scope of the
command to execute is calleg, and all other scopes createdidaycommands are calletbp,
l:;top, and so on. The environment self-destructs when it receives the migssagepe]. The
lookup agent services requests to look up name bindings. It is defined recursively in terms of a
list of names and a list of values. (In Prolpgy,] is a list withx as the first element andas the
rest of the list.) Note the use of thef parameter to thieokup pattern that enables it to replace
itself by the same environment after servicing each request:

env(Scope,Names,Vals) := [quit,Scope]?nil + lookup(Names,Vals,env(Scope,Names,Vals)).

lookup([N1|Names],[V1|Vals],Self) := [env,N1,V1]!Self + lookup(Names,Vals,Self).

Thehandler pattern simply accepts any of a series of messages and starts up an environment
containing the message content bindings anddaagent that executes the handler command
and reportsione when the handler has terminated.

handler(Msg => Cmd) := handle(Msg => Cmd).
handler(Msg => Cmd or Others) := handle(Msg => Cmd) + handler(Others).

O.M. Nierstrasz 21

handle(Sel:Vars => Cmd) := hbody(Sel:Vars => Cmd).
handle(Sel => Cmd) := hbody(Sel:[] => Cmd) .- atom(Sel).

hbody(Sel:Vars => Cmd) := b:[nextmsg,Sel:Args]?(env(args,Vars,Args)

& cmd(Cmd,top,done!nil)).

Thecleanup pattern handles requests to start the replacement behaviour, making sure that
at most one such replacement is created. ddhe message is received and no replacement has
been created, a copy of the current behaviour is createdrgsrandalist environments are told
to self-destruct (this is optional, since in any case they will not be accessible to the replacement
behaviour):

cleanup(ld,Bname,Alist) := atend(b:beh(ld,Bname,Alist))

+ [replacement,self]?(atend(nil) & b:beh(ld,Bname,Alist))

+ [replacement,self,NewAlist]?(atend(nil) & b:beh(ld,Bname,NewAlist))
+ [replacement,Rname,NewAlist]?(atend(nil) & b:beh(ld,Rname,NewAlist)).

atend(End) := done?[quit,args]![quit,alist]'End.

Thecmd pattern serves as a semantic function for SAL commands. The first argument is a
SAL command, the second the name of the current scope, and the third the behaviour expression
of the commandontinuation i.e., the agent that realizes the rest of the computation. The first
three rules are straightforward. Tsiep command does nothing; a semi-colon separates two
commands to perform sequentially; and brace brackets simply serve as parentheses:

cmd(skip,Scope,Cont) := Cont.

cmd((C1;C2),Scope,Cont) := cmd(C1,Scope,cmd(C2,Scope,Cont)).

cmd({C},Scope,Cont) := cmd((C),Scope,Cont).

There are two versions of tkend command since message contents are optional. The mes-
sage expression is evaluated, the mail address of the target is retrieved from the environment,
and the message is sent.

cmd(send Sel:Expr to Target, Scope, Cont) :=
expr(Expr) & [val,Expr,Val]?[env,Target,ld]?a:[msg,ld,Sel:Val]!Cont .

cmd(send Sel to Target, Scope, Cont) := [env,Target,Id]?a:[msg,ld,Sel:[]]'!Cont :- atom(Sel).
Thebecome command simply sends a request toctesnup agent:

cmd(become self, Scope, Cont) := [replacement,self]!Cont.

cmd(become Bname, Scope, Cont) := [replacement,Bname,[]]!Cont.

cmd(become Bname with Elist, Scope, Cont) :=

expr(Elist) & [val,Elist,Alist]?[replacement,Bname,Alist]!Cont.

Theif command evaluates the logical expression and then decides to execute eiiber the
part or theslse part. If theelse clause is missing, skip command is inserted:

cmd(if Bool then C1 else C2, Scope, Cont) := expr(Bool) & [val,Bool,true]?cmd(C1,Scope,Cont)

+ [val,Bool,false]?cmd(C2,Scope,Cont).

cmd(if Bool then C1,Scope,Cont) := cmd(if Bool then C1 else skip, Scope, Cont).

Thelet command is specified by means of bivel pattern, which generates agents to eval-
uate a list of expressions, and then creates a new environment in which the values of the expres-
sion list are bound to a list of names. The base case occurs when there is only one expression to
evaluate. At this point a new environment callscope is created together with the command

22 A Guide to Abacus

to be executed within this scope. Both are encapsulated usingdhmattern, which uses re-
striction to ensure that the names defined locally hide any prior bindings of those names in en-
closing scopes. Bindings of names not locally defined are, of course, still accessible (lexical
scoping applies). The continuation waits until the scope terminates. The continuation must be
outsidethe new scope since it must be able to access the old bindings.

cmd(let Bindings in {Cmd}, Scope, Cont) := bind(let Bindings in {Cmd},Scope,[],[],Cont).

bind(let Name = Expr and Bindings in {Cmd},Scope,Names,Vals,Cont) := expr(Expr)
& [val,Expr,Val]?bind(let Bindings in {Cmd},Scope,[Name|Names],[Val|Vals],Cont).

bind(let Name = Expr in {Cmd},Scope,Names,Vals,Cont) :=
expr(Expr)
& [val,Expr,Val]?
(hide(Names,
env(l:Scope,[Name|Names],[Val|Vals])
& cmd(Cmd,l:Scope,endscope(l:Scope)))
& [endscope,l:Scope]?Cont).

endscope(l:Scope) := [quit,l:Scope]![endscope,l:Scope]'nil.
hide([N|Names],P) := hide(Names,P)\[env,N,].
hide([],P) := P.

The remaining patterns deal with expressions. Expressions always terminate by reporting
[val,E,V], whereE is the expression to be evaluated &nd its value. Since there are never any
local side-effects in the computation of an expression (names cannot be re-bound) subexpres-
sions can be computed concurrently. The expression to be evaluated is repeated in the reply to
disambiguate the results of concurrent subexpressions. (If the same numerical expression is
computed in two subexpressions, both evaluations will yield the same result.)

The evaluation of numbers, names and lists of expressions is straightforward:
val(E,V) := [val,E,V]'nil.

expr([]) := val((L[]).
expr([E|[Elist]) := expr(E) & expr(Elist) & [val,E,V]?[val,Elist,Vlist]?val([E|Elist],[V|Vlist]).

expr(N) := val(N,N) :- number(N).
expr(X) := [env,X,Val]?val(X,Val) .- atom(X).

Thenew expression simply forwards the request to the actor factory and evaluates to the
mail address of the newly created actor:

expr(new Bname) := create(new Bname,Bname,[]) :- atom(Bname).
expr(new Bname with Elist) :=
expr(Elist) & [val,Elist,Alist]?create(new Bname with Elist,Bname,Alist).

create(E,Bname,Alist) := a:[create,Bname,Alist]!a:[created,Id]?val(E,Id).

To evaluate arithmetic and logical expressions we concurrently evaluate the subexpres-
sions and then ask Prolog to compute the result. One simple way of doing this is as:follows

1. This solution is somewhat verbose but easy to follow. In order to factor out the redundancy we may
make use of Prolog’s “univ” predicate to decompose E1 Op E2 and construct V1 Op V2.

O.M. Nierstrasz 23

expr(E1+E2) := expr(E1l) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(E1+E2,V1+V2).
expr(E1-E2) := expr(E1l) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(E1-E2,V1-V2).
expr(E1+E2) := expr(E1l) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(E1+E2,V1xV2).
expr(E1/E2) := expr(E1l) & expr(E2) & [val,E1,V1]?[val,E2,V2]?arith(EL/E2,V1/V2).
arith(E,VE) := val(E,V) -Vis VE.
expr(E1=E2) := expr(E1) & expr(E2) & [val,E1,V1]?[val,E2,V2]?bool(E1=E2,V1=V2).

bool(E,Bool) := val(E,true) :- Bool.
bool(E,Bool) := val(E,false) :- not(Bool).

7.5 Executing SAL Programs

This completes our specification of SAL. To execute a SAL program, we need only declare our

behaviour definitions and our initial configuration and then execute the sagjdret us take as
our example the recursive factor actor defined earlier:

def recFact accept fact:[n,client] =>

become self ;

if (n=0)

then send result:[1] to client

else let ¢ = new factCust with [n,client]

in { send fact:[n-1,c] to self }.
def factCust with [n,c] accept result:[k] => send result:[n«k] to c.
def factClient accept result:[n] => skip.

initially let f = new recFact
and c = new factClient
in { send fact:[5,c] to f ; send fact:[3,c] to f }.

The complete computation is rather tedious to follow (there are over 400 events!) but it is
instructive to see the computation state (of one possible execution trace) after the first few
events. Here we have grouped together event sequences that start with a visible actor event (i.e.,
message sending or actor creation). Notice that the factorial actor services the two requests con-

currently:

[create,recFact,[]] » [created,[id,0]] — [val,new recFact,[id,0]] »

[create,factClient,[]] » [created,[id,1]] - [val,new factClient,[id,1]] - [env,f,[id,0]] —
[env,c,[id,1]] - [val,5,5] — [val,c,[id,1]] — [val,[],[]] - [val[c],[[id,1]]] - [val,[5,c],[5,id,1]]] =

[msg,[id,0],fact:[5,[id,1]]] - [env,f,[id,0]] » [env,c,fid,1]] - [val,3,3] - [val,c,[id,1]] - [val,[][]] -
[val,[c],[[id, 1]]] — [val,[3,c],[3,[id,1]]] -

[msg,[id,0],fact:[3,[id,1]]] = [quit,l:top] - [endscope,litop] — [nextmsg,fact:[5,[id,1]]] - mgnext -
[replacement,self] - [nextmsg,fact:[3,[id,1]]] - mgnext - [env,n,5] - [val,n,5] - [val,0,0] -
[val,n=0,false] — [env,n,5] - [env,client,[id,1]] - [val,n,5] — [val,client,[id,1]] —» [val,[],[]] -
[val,[client],[[id,1]]] - [val,[n,client],[5,[id,1]]] -

[create,factCust,[5,[id,1]]] —» [created,[id,2]] —» [val,new factCust with[n,client],[id,2]] -
[env,self,[id,0]] - [env,n,5] - [env,c,[id,2]] - [val,n,5] - [val,1,1] - [val,n-1,4] - [val,c,[id,2]] -
[val,[L.[11 - [val.[c][lid,2]]] - [val,[n-1,c].[4,[id,2]]] -

24 A Guide to Abacus

a:[msg,[id,0],fact:[4,[id,2]]] = [quit,l:top] — [endscope,l:top] — done — [quit,args] — [quit,alist] -
[replacement,self] - [nextmsg,fact:[4,[id,2]]] - mgnext — [env,n,3] - [val,n,3] - [val,0,0] -»
[val,n=0,false] — [env,n,3] - [env,client,[id,1]] - [val,n,3] - [valclient,[id,1]] - [val[].[]] -
[val,[client],[[id,1]]] - [val,[n,client],[3,[id,1]]] -

[create,factCust,[3,[id,1]]] —» [created,[id,3]] —» [val,new factCust with[n,client],[id,3]] —»
[env,self,[id,0]] - [env,n,3] - [env,c,[id,3]] - [val,n,3] - [val,1,1] - [val,n-1,2] - [val,c,[id,3]] -
[val,[L.[11 - [val,[c][lid,3]]] - [val,[n-1,c].[2,[id,3]]] -

a:[msg,[id,0],fact:[2,[id,3]]] — [quit,l:top] — [endscope,l:top] —» done — [quit,args] — [quit,alist] —
[replacement,self] -

The state we reach at this point in the computation is:

((head(fact:[2,[id,3]])~tail([id,0]))\:q
& (env(alist,[self],[[id,0]])
& env(args,[n,client],[4,[id,2]])
& expr(n)
& expr(0)
& [val,n,V1]?[val,0,V2]?bool(n=0,V1=V2)
& [val,n=0,true]?cmd(send result:[1]to client,top,done!nil)
+[val,n=0,false]?cmd(let c=new factCust with[n,client]
in{send fact:[n-1,c]to self},
top,done!nil)
& atend(nil)
& b:(beh([id,0],recFact,[]))\:b)\:a
& actor([id,1],factClient,[])
& actor([id,2],factCust,[5,[id,1]])
& actor([id,3],factCust,[3,[id,1]])
& factory(4)

that is, we have one factorial actor with mail address 0 and a request in its mail queue to compute
the factorial of 2 and send the result to mail address 3, one client with mail address 1, two cus-

tomers and an actor factory. The factorial actor has just created its replacement so it can concur-
rently begin processing the next message while it evaluatésctramand.

8. Concluding Remarks

We have presented the syntax, semantics and usage of Abacus by means of a series of progres-
sively more advanced examples of concurrency specifications, concluding with a specification

of a small actor-based concurrent programming language. We have shown how two new opera-
tors, label prefixing and filtering, can be useful for encapsulating concurrent systems, and we
have introducegatternsas a means of specifying higher-level constructs that evaluate to
agents.

Our goal is to provide a platform for prototyping executable language specifications for
concurrent object-based languages. Although we have not discussed class inheritance, it turns
out not to be very difficult to model with patterns. One can either follow the approach of Cook
[5] and construct a pattern for a class by meaggwératorsor one can directly simulate meth-
od lookup by forwarding messages to superclass agendgketgmtio{19]. We explore the pos-
sibilities of modelling objects as communicating agents in [17].

O.M. Nierstrasz 25

One limitation of our current approach is that it only deals with the translati@idpro-
grams; it does not provide any means for expressing what programs may be syntactically sound
but semantically defective. For example, there is nothing to prevent SAL actors from attempting
to use unbound names in expressions, or numerical values as mail addresses. In such cases, ac-
tors will simply deadlock as they wait for an event that can never occur. Syntactically correct
but semantically invalid SAL programs will be translated to agents that just stop functioning
when the error is encountered. We are presently working on a type theory for active objects that
allows one to specify basic safety and liveness constraints for well-behaved agents in terms of
the expected possible interactions between an agent and its clients[17][18].

There are several interesting directions in which Abacus could evolve. One is to develop a
general-purpose pattern mechanism whose semantics can be defined directly by translation to
Abacus. Although we use patterns in a disciplined way so that the mapping from a pattern to the
agent that realizes it is always well-defined, it is not clear in general what algebraic properties
patterns may exhibit. In particular, patterns make it possible to specify systerdgmeithically
varying linkagg15], for example, actors may become dynamically acquainted with new actors.

In such cases it may be difficult to reason about the behaviour of systems from the properties of
their parts.

At present we are experimenting with Prolog to determine what are the minimal require-
ments to be able to conveniently express solutions to real problems using patterns. A related as-
pect is the convenient supportsyhtacticpatterns. Prolog supports only infix, prefix and postfix
operators, and there are some subtle restrictions on how expressions are parsed. We feel a better
solution would be to provide either a fixed set of generally useful syntactic patterns that may be
overloaded, or a grammar-based tool that allows one to specify arbitrary syntactic patterns.

Another direction is to better support the execution of specifications by providing finer
monitoring control, or even by generating simple compilers so that larger examples can be test-
ed. The current implementation though reasonably fast is not blindingly so — the factorial exam-
ple takes over a minute when using a Prolog compiler — mainly because event searching is ex-
haustive for every step of the computation. It is an open issue whether acceptable compilers
could actually be generated automatically from Abacus specifications.

Appendix: A Minimal Prolog Implementation

What follows is a minimal, but complete implementation of Abacus in Prolog. The full imple-
mentation provides a form of “garbage collection” by re-writing behaviour expressions to sim-
pler equivalent forms and by removing instances of diéadents. Simple pretty-printing of be-
haviour expressions is provided to help isolate the individual agents of a behaviour expression.
The full implementation also supports options to print intermediate states of a computation and
to force the interpreter to search for all possible computation paths.

An earlier implementation of Abacus [16] did not take advantage of Prolog’s ability to de-
fine new operators, and thus exhibited little of the flexibility and compactness of the present ap-
proach. In the implementation given below, there is a one-to-one mapping between rules of the
transition semantics given earlier and the Prolog rules that implement them: for every visible

26 A Guide to Abacus

transition there is asffer rule, and for every invisible transition there isarule. The rules for

each operator are largely independent, making it very easy to add new operators, such as prefix-
ing, filtering and linking. To our knowledge, the only other attempt to develop a similar inter-
preter for a CCS-based specification language is an interpreter for LOTOS [12][14]. The focus
there, however, is on the specification of distributed systems rather than on the specification of
concurrent programming languages.

;- op(690,xfx,:=).
;- op(670,xfy,&).

:- op(660,xfy,~).

:- op(500,yfx,+).

;- op(460,xfy,[1,?]).
;- 0p(440,xfy,:).

;- 0p(400,yfx,\).

;- 0p(400,yfx,\).

:- op(400,yfx,/).

offer(E?R,(E,?),R).
offer(E!R,(E,"),R).
offer(B+_,0,R)
offer(_+B,0,R)
offer(B&X,0,R&X)
offer(X&B,0,X&R)
offer(B\E,O,R\E)
offer(B/F,FO,R/F)
offer(B,0O,R)
offer(F:B,(F:E,G),F:R)
offer(B\:F,O,R\:F)
offer(B1~B2,0,R1~R2)

tau(B+_,0,R)
tau(_+B,0,R)
tau(B1&B, E, B1&R)
tau(B&B2, E, R&B2)
tau(B1&B2, E, R1&R2)
tau(B\H,E,R\H)
tau(B/F,E,R/F)
tau(B,E,R)
tau(F:B,E,F:R)
tau(B\:F,E,R\:F)
tau(B1~B2,E,R1~R2)

match((E,?),E,(E,")).
match((E,"),E,(E,?)).

relabel((FE/E|_],(E,G),(FE,G)).

relabel([_|F],O,FO)
relabel([],0,0).

exports((F:E,G),F,(E,G)).
exports((FF:E,G),F,(FF:E,G)).

abc(B)

path(B,(E->P),F)
path(F,F,F).

% Naming

% Composition
% Linking

% Summation
% Output/Input
% Prefixing

% Filtering

% Restriction
% Relabelling

:- offer(B,0,R).

:- offer(B,0,R).

:- offer(B,0,R).

:- offer(B,0,R).

:- offer(B,0,R), not(match(O,E,_)).
:- offer(B,0,R), relabel(F,O,FO).

:- B := BE, offer(BE,O,R).

:- offer(B,(E,G),R).

:- offer(B,FO,R), exports(FO,F,0).
:- offer(B1&B2\:x,0,R1&R2\:x).

:- tau(B,0O,R).

:- tau(B,0O,R).

.- tau(B,E,R).

.- tau(B,E,R).

.- offer(B1,01,R1), offer(B2,02,R2), match(O1,E,02).
- tau(B,E,R).

:- tau(B,E,R).

:- B := BE, tau(BE,E,R).

:- tau(B,E,R).

:- tau(B,E,R).

;- tau(B1&B2\:x,E,R1&R2\:x).

- relabel(F,0,FO).

:- write(Initial configuration: ’), write(B), nl, path(B,P,F),
write('Final configuration:), write(F), nl.

:- tau(B,E,R), write(E), write(’ ->), nl, path(R,P,F).

O.M. Nierstrasz 27

References

[1]

(2]
3]

[4]
[5]
[6]

[7]
(8]

[9]

[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

G.A. Agha,ACTORS: A Model of Concurrent Computation in Distributed SystEinesMIT Press, Cam-
bridge, Massachusetts, 1986.

G.R. Andrews, “Synchronizing Resources,” ACM TOPLAS, vol. 3, no. 4, pp. 405-430, Oct 1981.

G.R. Andrews and F.B. Schneider, “Concepts and Notations for Concurrent Programming,” ACM Comput-
ing Surveys, vol. 15, no. 1, pp. 3-43, March 1983.

N. Carriero and D. Gelernter, “How to Write Parallel Programs: A Guide to the Perplexed,” ACM Computing
Surveys, vol. 21, no. 3, pp. 323-357, Sept 1989.

Wm. Cook, “A Denotational Semantics of Inheritance,” ACM SIGPLAN Notices, Proceedings OOPSLA
'89, vol. 24, no. 10, pp. 433-443, Oct 1989.

E.W. Dijkstra, “Co-operating Sequential ProcessesPrimgramming Languagesd. F. Genuys, pp. 43-112,
Academic Press, New York, 1968.

M.J.C. Gordon;The Denotational Description of Programming Languad@winger-Verlag, 1979.

A.N. Habermann, “Synchronization of Communicating Processes,” Communications of the ACM, vol. 15,
no. 3, pp. 171-176, March 1972.

C. Hewitt, “Viewing Control Structures as Patterns of Passing Messages,” Artificial Intelligence, vol. 8, no.
3, pp. 323-364, June 1977.

C.A.R. Hoare, “Monitors: An Operating System Structuring Concept,” Communications of the ACM, vol.
17, no. 10, pp. 549-557, Oct 1974.

C.A.R. HoareCommunicating Sequential Procesdesentice-Hall, 1985.

1ISO8807, “Information Processing Systems — Open Systems Interconnection — LOTOS — A formal descrip-
tion technique based on the temporal ordering of observational behaviour,” International Standard ISO 8807,
1989.

B. Liskov, M. Herlihy and L. Gilbert, “Limitations of Synchronous Communication with Static Process
Structure in Languages for Distributed Computing,” 13th Symposium on Principles of Programming Lan-
guages, St. Petersburg Beach, Florida, Jan 13-15, 1986.

L. Logrippo, A. Obaid, J.P. Briand and M.C. Fehri, “An Interpreter for LOTOS, A Specification Language
for Distributed Systems,” Software — Practice and Experience, vol. 18, no. 4, pp. 365-385, April 1988.

R. Milner, Communication and Concurrendyrentice-Hall, 1989.

O.M. Nierstrasz, “Abacus: a Notation for Describing Concurrent Computatior@jact Oriented Devel-
opmented. D.C. Tsichritzis, pp. 247-275, Centre Universitaire d’'Informatique, University of Geneva, July
1989.

O.M. Nierstrasz and M. Papathomas, “Viewing Objects as Patterns of Communicating Agents,” Proceedings
OOPSLA '90, 1990, (to appear).

O.M. Nierstrasz and M. Papathomas, “Towards a Type Theory for Active ObjedBhjent Management
ed. D.C. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1990, (Working Paper).

L.A. Stein, “Delegation is Inheritance,” ACM SIGPLAN Notices, Proceedings OOPSLA '87, vol. 22, no. 12,
pp. 138-146, Dec 1987.

	A Guide to Specifying Concurrent Behaviour with Abacus
	1. Introduction
	2. Abacus Syntax and Semantics
	2.1 Abstract syntax
	2.2 Transition semantics

	3. Communication, Concurrency and Synchronization
	4. Encapsulation
	5. Using Patterns to Model Value-Passing
	6. Using Patterns to Specify Agents
	7.1 Actors
	7.2 SAL
	7.3 Mapping Actors to Agents
	7.4 An Abacus Specification of SAL
	7.5 Executing SAL Programs

	8. Concluding Remarks

