A Tour of Hybrid

A Language for Programming with Active Objects*
Oscar Nierstrasz'

Abstract

Object-oriented programming is a powerful paradigm for organizing software into reusable components. There have been
several attempts to adapt and extend this paradigm to the programming of concurrent and distributed applications. Hybrid
is a language whose design attempts to retain multiple inheritance, genericity and strong-typing, and incorporate a notion
of active objects. Objects in Hybrid are potentially active entities that communicate with one another through a message-
passing protocol loosely based on remote procedure calls. Non-blocking calida@andueueare the two basic mecha-

nisms for interleaving and scheduling activities. A prototype implementation of a compiler and run-time system for Hybrid
have been completed. We shall review aspects of the language design and attempt to evaluate its shortcomings. We conclude
with a list of requirements that we pose as a challenge for the design of future concurrent object-oriented languages.

*In Advances in Object-Oriented Software Engineeréwy D. Mandrioli and B. Meyer, Prentice-Hall, 1992, pp. 167-182.

T.Author’s current addresdnstitut fuir Informatik und angewandte Mathematik (IAM), University of Berne , L&nggassstrasse 51,
CH-3012 Berne, Switzerlandel: +41 (31) 631.461&-mail: oscar@iam.unibe.chWWW:http://www.iam.unibe.ch/~oscar

1 Introduction 1. objects as instances of reusaiiigect classes

2. objects atyped entities
An increasing number of today’s software systems can be besg objects as independeattive entities

described as “open systems,” that is, systems that evolve tc%’he main innovation in the language is the concurrency

keep up with changing requirements and available technolo :del. which ides f i)
Open systems are frequently physically distributed, and €, which provides for a uniform message-passing para-
m for communication between active objects consistent

run on a heterogeneous collection of machines. Object-orie

ed programming is one of very few approaches that sholl h str'ong-typing, and' supports mechanisms for creating, in-
Iarlgaving and scheduling threads of control.

promise as a better way to develop open systems. There are) S _
important reasons for this: _In thls_paper we W|_II discuss the problem of_exten_dmg the
object-oriented paradigm to accommodate active objects. We
* Encapsulation of data and operations into software “olill provide an overview of Hybrid, paying particular attention
jects” improves the maintainability of complex systems its concurrency model. We conclude with an evaluation of
by decomposing them into manageable pieces with wehe language, a list of requirements for concurrent object-ori-

defined functionality. Object-oriented programming cagnted language design, and topics for further research.

thus be seen as a logical continuation of structured and .
modular programming. 2 Objects and Threads

» Instantiation, class inheritance and genericity enhan-EQe minimal requir:amgnts fqr a pr?gramming language to be
software reusability and encourage the careful design epted as being object—ongnted_ are that the language must
truly reusable object classes. Object-oriented prograﬁlf‘-‘:’pOrt ObJ.eCtS’ classgs and mhentance. [16] where.
ming in combination with good object design can there- 1. @nobjecthas a hidden representation (typically a set of
fore improve the adaptability of open systems by shifting instance variablesand a visible interface (typically a set

the emphasis from reprogramming to reuse and reconfig- of opferatlonbs_, Whosebl_mplementatlon r@thods- may
uration. vary from object to object),

2. anobject classdefines the shared behaviour (i.e., in-
We claim that object-oriented programming can help us not stance variables and methods) of a set of objects, and

only to cope with the complexity and evolution of open sys- 3. class inheritancean be used to define new classetb{
tems, but that it can also serve as a good paradigm for the pro- c|asse¥that inherit the behaviour of existing classes, and

gramming of distributed and concurrent open systems. The key may augment it with new instance variables and meth-
idea is that an object can be viewed as an entity that providesits ogs.

clients with a service; when that object is servicing a request, ity) yarn object-oriented languages often add to this basic
may do so in parallel with other activities taking place in the, by providing some combination of strong-typing, multiple

system. SUCh. an Ob.JeC_t s said to_ be “a(_:t|ve.” Ac_tlve Obje%eritance, genericity (i.e., parameterized classes), concurren-
may be physically distributed, their precise location perha&?control mechanisms, and persistent objects

nknown to clients.)
unkno O clients At first glance, incorporating concurrency into an object-

Hybrid is an experimental object-oriented programmingriented language seems straightforward, after all, objects
language that attempts to integrate three distinct notiasis-of communicate by “message-passing.” However, objects are tra-
jects ditionally viewed as being passive entities with an operational

A Tour of Hybrid — Oscar Nierstrasz 2

interface, whereas communicating processes are seen as actéreo be as large or as small as desired. Thread creation is by
entities with a stream or message-oriented interface. In factnifocation of a speciakflexoperation, which determines the
we look at existing concurrency mechanisms as they might egsulting chain o€all andreturn messages. A thread is always
ply to objects, we see that they can be classified into two woegither present in an executing object, or frozen in a message. An
views: object becomes active by accepting a message. Synchronisa-
1. Active entities (processes) share and manipulate pas$i9g and interleaving of threads is accomplished bydtday
objects. gueueanddelegatiormechanisms described in 4.
2. Active objects communicate and synchronize by mes-We shall now at Hybrid in some detail before returning at the
sage-passing. end of this paper to some of the requirements for incorporating
This distinction is analogous to that made by Andrews af@ncurrency mechanisms into an object-oriented language.
Schneider [2] who classify gpproaches as being gittoee- 3 An Overview of Hybrid
dure-orientedr message-oriented
We propose that these approaches be unified by thinkinglmapplication writtgn in Hybriq congist; of a collection of co-
stead in terms adbjects and thread©bjects are “real” in the OPerating active objects, possibly distributed amongst a num-
sense that they have state and behaviour, whereas thread384/@f Separate object environments. An object may be created
virtual, being simply execution traces. Any object is “active?ither as an independent “top-level” object, callddmain or
whenever a thread enters it. In the first scenario above, pasiitey be a dependent “part” (instance variable) of another ob-
objects become active when processes (threads) access tifghvithin adomain. Domains define the granularity of concur-
In the second scenario, objects create or pass on thread&€Bgy: @nd so are comparable to monitors [3]. (The concurrency
sending messages, and objects become active when they afe@fe! is further described in §4.)
messages. If an object becomes idle whenever it sends a me&very objectin Hybrid is an instance of an object type. Type
sage, then the threads correspond exactly to the message-g&é#itions have the following general form:
ing traces. type typeName parameters:
If we compare various concurrency control mechanisms ~ typeSpec;
with respect to this reference model of objects and threads, we Prvate

can gain some insight into the real differences between them, h realization , h lic interf . f
Criteria for comparison include: ThetypeSpec describes the public interface to instances o

. . the type. The interface is typically a set of operations that may

* the granularity of the abjects, be invoked (including the specification of argument and return

* the number of threads that may be simultaneously actiyBes), but may also include “visible instance variables.” In ad-
within an object (single thread objects are “atomic”), gition to named operations, one may define and overload a set

» how athread is defined, of infix and prefix operators recognized by the language.
» how threads are created and destroyed, Therealization part of a type definition describes the private
« how long threads may be, instance variables, the implementation of the operations (i.e.,

* howthreads are synchronized (how does an object deﬁtni%;n_et?ﬁd_s)t’ a][ld any pnk\)/ate ozeratlor;]s. Typ?hparame_ft_erst_de-
which thread may enter it). ined in the interface may be used anywhere in the specification

. . orrealization as though they were bound to actual types.
It should be emphasized that what exactly a thread is will be

open to interpretation for any given language model. Forexabnd Type specifications

ple, in actor systems [1], threads are arguably the length afyge specifications are described using a number of type con-
single message-passing event. In real actor applications, hgiiictors, the most general of whichlistract, which requires
ever, it is undoubtedly more useful to conceptually groyRe programmer to explicitly provide the list of public opera-
chains of events into longer threads. (After all, this is what thgns and visible instance variables associated with the type.

programmer does!) For example,

We further propose that the notion of a thread is extremely type buffer of itemType:
important as a programming concept for structuring concurrent abstract {
computations, and that concurrency control mechanisms put: itemType ->;
should be built upon that notion. (As a disclaimer, we acknowl- get: -> itemType;
edge that this may not hold for specialized applications where b

massive parallelism is required.) In the case of object-orientdfines the interface to a generic typp#er supporting the op-

programming, where the paradigm of an object as “server” atationsgput andget. (The realization is not shown.) The argu-

cessible by message passing prevails, a thread correspondsdat type oput and the return type gét are that of the param-

default to a “remote procedure call” trace (i.e., a balanced steritemType. Another object that requires an instance of a

guence otall andreturn messages). buffer must bind the parameter to an actual type (i.e., one with
With Hybrid, we chose to adopt message passing as the pagalization).

adigm for communication (whether or not “real” message pass-Abstract types may also define a sahéik andprefixoper-

ing takes place in the implementation). Single-thread “atomiators, and may overload thedexing operator denoted by

objects are calledomainsand may be defined by the programsquare bracket§]). Operators are constructed from a fixed al-

A Tour of Hybrid — Oscar Nierstrasz 3

phabet of operator symbols. The language distinguishes imake itself look likeb. In this exampleb is dynamically re-
tweenpriority operators (namely / and%), relational opera- bound, whereasis not.
tors terminating in a question maf @nd yielding a Boolean Expressions aréype-correctif operation invocations are
value,assignmenbperators terminating in an equal sig, (consistent with the effective types of the target and argument
and parsed right-to-left, and all other operators, parsed left$abexpressions. Variables may be dynamically bound to the
right. value of any expression that conforms to the declared type of
The other constructors anenerits, for defining subtypes the variable.
that inherit operations from multiple paremts,m for defining Type castings required to change the effective type of an
enumerated typesid for defining object identifiergyray for expression to a more general type. For example, consider:
defining homogeneous arrays, agcbrd andvariant for defin- scratchPad.insert(s:graphicalObject)
ing records and variant types. A type may also be defined agheres is a variable of typepline, and thensert operation of
range of integer values (ranges of values from enumeratieelscratchPad expects araphicalObject argument. Then type-
types are not presently supported). casting will tell the compiler to verify thapline is a subtype of
For all of the type constructors excepstract, the realiza- 9raphicalObject.
tion is typically omitted, since it can be inferred from the In the implementation, this step also guarantees that the ap-
typeSpecFor example, the realization of amay is automati- propriate method lookup table will exist so that the type-cast
cally supplied by the compiler. In the case ofitirerits con- object can efficiently respond to messages intended for objects
structor, the methods and instance variables inherited from gadrthe type it conforms to. Once type-casting has been per-
ents may be overridden by the subtypes. formed, there is only a small, fixed overhead in looking up the

One may also define abstract types with incomplete or erfpethod for, say, display operation.
ty realizations, but these types (caledual types) cannotbe 3 3 statements

instantiated. A subtype inheriting from a virtual type isalsovigtt ; lik . h i lue. A simol
tual, unless it supplies the missing methods in its realization: atements, uniike expressions, have no type orvaiue. A simple

The interf biect is ieffecti Th | statement consists of an expression followed by a semi-colon.
e Inter ace .to an o !ect IS & ectlv_etype. eactua Compound statements are a series of statements enclosed in
type of an object is determined by its realization. A fiypeon-

. .__braces{...}), and may include local (automatic) variable dec-
formsto another typ@2 if it supports at least the same 'merrarations

face, i.e., if it sy_ppo'rts at least the same set of operations Wlﬂhybrid has both aifistatement andsaitch statement for se-
the same specifications. We say thhis asubtypeof T2, even . : o i
lectively executing code. Repetition is provided nyoa state-

if it does not inherit anything froi2. Inheritance is therefore : ' :
urely a code reusability mechanism in Hybrid, and only acn?_ent, which may be repeated witbaatinue statement, or ex-
b ' fted with abreak statement. Alock is similar to doop, except

dentally gstabllshes a subtype relationship.) that it can only be exited, not repeated. In case of nested loops
Effective types and subtypes are used to determine whefieg|ocks, a label may be supplied to eittveak or continue.

expressions are type-correct. With dynamic binding, actual Hybrid also supports eneck statement for disambiguating

types may not be known till run-time. variant types at run-time, and for determining whether an ob-
3.2 Expressions ject actually belongs to a subtype of its effective type. For ex-
ample:

Expressions have the general forntarget> <operation> var x : graphicalObject :

<arguments>
The target and arguments may themselves be subexpres- check (g :? spline) {
sions. The actual form of the expression may vary, depending
on whether the operation is named by an identifier, or by one of
the infix or prefix operators. The former looks like:
b.put(value)

else {# complain ...}
will determine if the actual type of the current value boung to
conforms to the more specific tyggine. Upon success of the

whereas the latter may be as complicated as: check statement, will be re-declared to be of typpline for
n:i=ax++tb+c the body of the compound statement that follows.

which would be parsed as: Thereturn statement is used to terminate a method. The ex-
n:=((a« (++b)) +¢) pression supplied to it must conform to the method'’s declared

Note that variable binding is different from assignment. Ageturn value. Thend statement terminates a thread of control,
signment operators are defined by the methods of an objtd may only occur within the method atflex(see below).
type, whereas the binding operato) pinds variable namesto A more detailed description of Hybrid exists in [8].

values. For example, in the expression: . .
a=b<-c P P 4 Communication and Concurrency

the nameb will be bound to a copy of the object instance cur- in Hybrid

rently named by. Then the instance namedawill execute a Objects areactive while they are responding to a message.
method corresponding to the operatomwith the argument Since all objects are instances of object types, this means that
named byb. Presumably (but not necessarilg)will try to objects are active when responding to an operation invocation,

A Tour of Hybrid — Oscar Nierstrasz

or when they themselves receive a response to request t
have issued.

The basic model of communication is that of remote proc
dure calls. Messages between objects are generally edgther

type item : abstract{ ...}

private {

var n :integer ; # = no. of items in stock
order: (r:integer) -> integer ;

messages, requesting an object to execute one of its method uses avail ; # open iff >0
returnmessages sent after the successful completion of a me if (r<2n){
od. (Exceptions were envisaged as anecessary alternaéive tc n-=r : #1ill the order
turn messages, but were not included in the initial language ¢
sign.) We can therefore trace a thread of control, called-an else { _
tivity, as a sequence aill and return messages between r=n; #fill as much as we can
objects, whether they communicate within a domain or b n:=0; .
. avail.close() ; # delay future orders

tween domains.

New activities are created by invoking a special kind of of return(r) ;

eration called eeflex When a reflex is invoked startmessage
is sent to the object, and accepted as soon as the object’s dor
is idle. Since reflexes do not return anything, the effectis to ir
tiate a new activity. The method for a reflex is terminated by ¢
end statement.

Messages may be delivered either synchronously, wh
communication is between objects within the same domain,
asynchronously, when communicating objects are indepe
dent. A call to a remote object is made througblgact identi-
fier (i.e., of typeoid), which takes care of delivering the mes-
sage. When an object sendsadl message to a remote targelyice. Anitem object keeps track of the number of items of a cer-
the object’s domain ordinarilplocksuntil a response is re-tain kind that are in stock. It will service orders as long as there
ceived. (Recursive calls, related to the blocking activity, asge at least some items in stock, even though it may not be able
permitted.) An activity can always be viewed as being atgcompletely fill an order. (A “filled” order has at least one al-

unique location, either within an object executing a method,|ggated item.) Whenever an item is out of stock, requests will be
buffered in a message queue. Similarly, domains can alwayg|Byed.

viewed as being in one of three staigle, running orblocked

Two additional mechanisms are required in order to be alblei'gure,2 shows part Ofd”f]e deﬂ(rjuhondotlark OﬁJeCt that i
to program interesting active objeddelay queuesare used to 00Ks Up item names, and forwards orders to the appropriate

schedule activities when there are operations that cannot!§ ©Piect. Sincelerk objects may process several orders con-
ways be immediately performed. A simple example geta currently, and should not be blocked if an item happens to be

from an empty buffer. These operations are declaragiaga out of stock, the order request is forwarded by delegation. The

named delay queue, and the object manages the queue of Bgﬁgext of the current activity is saved at the poin.t W_here dele-
ered messages bpeningandclosingthe queue during the ex-gation occurs, and is reSl_Jmed vyhen t.he order is fllleq. Only
ecution of other methods. The delay queue is typically usedMgen the re_turn message is received will a value be assigned to
represent either the availability of a resource, or the status of ¥nvariabléilled.

awaited condition, much in the same way that condition vai
ables are used in monitors. The main difference is that openi
or closing a delay queue does not entail an immediate trans

of control, as is the case withaitsandsignals[3].

add: (s:integer) ->;

n+=s;

avail.open() ; # assumes s>0

}# end of item

Figure1l Resource management using a delay queue.

type clerk : abstract{ ...}

private {

var item_list : list [string] of item ; # lookup table
process_orders : (f: order_form) ->;

Delegationis a mechanism for interleaving activities. An {
expression of the form: # order, but don't block:
delegate(target op args) filled := delegate(item_list[item_name].order(r)) ;
will always be evaluated by asynchronous message-passi }}#lénd of clerk

and will leave the calling domaidle, that is, free to accept
messages related to other activities. The context of the dele¢
ed expression is saved, and later resumed wheettlra mes-
sage is eventually received. Delegation is typically needed 1..
objects that manage multiple activities, such as an “administra\ote that it is also possible to desigritam object that will
tor” object that forwards tasks to a set of “worker” objectgnly return completely filled orders by introducingeakorder
Aside from interleaving of activities, delegated expressions kghject that waits for the number of items required for the cur-
have just like non-delegated expressions. rent back order. When thitem object detects that it cannot
In Figure 1 we see how to schedule requests for a resowrampletely fill an order, it delays all future requests (by closing
by using a delay queue to represent the precondition for seravail queue), tells theackorder object how many items to

Figure 2 Administration by delegation.

A Tour of Hybrid — Oscar Nierstrasz 5

wait for, and delegates the current request tbdhiorder ob- implement a Hybrid activity (i.e., one per environment in-

ject, notifying it whenever new items arrive. volved in a computation).
The operational semantics of delegation and delay queued he run-time system mediates between active objects and
are discussed in [9] Other examples are given in [10] the client processes. Communication with clients is Supported
by providing special object types that know how to communi-
5 Implementation cate with the outside world. These types, as well as all basic Hy-

. . . L . brid types, exist in the run-time type library. The type manager
The Hybrid execution model is that of a distributed coIIecthg responsible for the method lookup tables needed to support

of object environments, each of which provides supportfor Pl amic binding, and for the information needed to create and
sistent active objects and for communication between obje& ete objects

in different environments. The prototype implementation Is A skeleton parser (i.e., recognizer and pretty-printer) and

currently restricted to a single object environment, but Wime routines for managing the persistent workspace were im-

support for multiple users. plemented by Oscar Nierstrasz. The Hybrid compiler and the
The Hybrid object manager effectively functions as an “obype manager were implemented by Dimitri Konstantas. The
ject server” for users’ client processes. In the sample appliggn-time system was implemented by Michael Papathomas.
tions implemented using the prototype, the user processesi€ total implementation effort comprised roughly two man-
responsible for connecting to object manager, and for manggars over the period from March 1987 to May 1988.

ing the user interaction objects (e.g., windows). Objects in theThe source code lines of the major components of the Hy-
client's environment have corresponding “shadow” objects g prototype are of the following sizes:

the Hybrid object environment, which forward messages to the

client. Compiler 18,102 lines
, . , , Type Manager 10,016 lines
The object manager is implemented as a single Unix processpread Manager 5497 lines
that manages the workspace of active objects. Persistence i§5sic User Interface 5 426 lines
provided by storing the workspace in a file. The workspace isg;n-time Type Manager Interface 1,882 lines
therefore limited by the size of virtual memory. Pseudo-con- pgrsistent Workspace Module 1.969 lines

currency is provided by light-weight processes implemented

using a coroutine extension to the C language. In addition, there were two smaller components dealing

with user interface and initialization that were needed for the

The system consists of three main components, the Hylds 4pjications. The total size of the source code is 44,927
compiler the type managerand therun-time systemAfter |ines of C code.

consideri_ng the alte_rnatives, it appearec_i that the fastest ang detailed report on the implementation can be found in [5].
most flexible way to implement the compiler was to use the C
programming language as a high-level “assembler.” Dynanic Observations
linking was not considered a high-priority item for the prot
type, so the present implementation does not integrate the
brid compiler into the object manager. We therefore distingui
between the compile-time and run-time views of the system

Although the Hybrid project has thus far demonstrated that an
ject-oriented approach to concurrency is both viable and im-
5 mentable, we also feel, however, that there are several prob-
fems to be solved before we can arrive at a realistic concurrent
Hybrid type definitions are translated to C, compiled inigbject-oriented language that will be appropriate for program-
run-time libraries, and linked in with the object manager. Thging open systems.
type manager keeps track of a database of all information conThe first problem we encountered was the lack of useful for-
cerning object types, other than the acexacutable code for malisms for defining the semantics of a concurrent object-ori-
the methods. The type database is stored directly in the peigited language. The semantics of Hybrid’s concurrency mech-
tent workspace. The type manager provides the mechanigigms were defined semi-formally, using an ad hoc model, in-
for the realization of multiple inheritance, code reusabilityependently of type model and other aspects of the language.
type parameterization, overloading and version managemeiie net effect was that interference between supposedly or-
The compiler communicates with the type manager in ordefif@gonal mechanisms was discovered rather late in the game.
verify type-correctness of new type definitions, and generaggsy example, delegation may interfere with dynamic binding,
information concerning new types to be stored in the type dadgce interleaving activities are free to execute methods that
base for later use. will re-bind instance variables participating in other activities.
The system implements Hybrid activities as light-weighthese problems are reported in [14] and [15]. Interference be-
processes, and domains as shared, passive monitor-liketeen concurrency mechanisms and inheritance has been inde-
jects. Since the target environment of the prototype was bgsindently reported by Kafura and Lee [4].
cally a shared memory with pseudo-concurrent processes, thiRelated to this problem was the lack of good tools for proto-
approach was more natural (and efficient) than trying to direyiping languages. The implementation effort required for pro-
ly simulate message-passing. The message-passing sematotigging Hybrid was far too great to allow the language to
of Hybrid’s concurrency constructs are nevertheless presenaalve together with its implementation. (This is analogous to
In order to extend this approach to work in a distributed entlie evolution problem posed by open systems mentioned in the
ronment, we would require several light-weight processesimtroduction.) In retrospect, a more promising approach would

A Tour of Hybrid — Oscar Nierstrasz 6

be to define Hybrid’s semantics by mapping its language coisms should be motivated by real examples. The design choic-
structs to a formal, executable notation for describing concas include such questions as:

rent behaviours, as outlined in [12]. « Should exceptions have optional values associated with
One difficult design decision in any object-oriented lan- them (i.e., to inform the client what went wrong)?

guage is what the first class values of the language shall be. The \what actions may be taken by a handler (e.g., retry, re-
principle of homogeneity present notably in Smalltalk is that sume, abort/re-raise, return, ...)?

“everything” should be an object, in particular, object classes Can exceptions be raised within a handler, and, if so
and, in certain cases, executable code (i.e., Smalltalk’s “block what happens? ' ' '
expressions”). The importance of classes being objects should . . o)

not be underestimated in the context of open systems: it is cru/* rélated problem is that sfgnaling though in this case it
cial that systems be able to evolve while they are running. In'§rI€SS clear how a satisfactory solution may be arrived at. In
der to be able to instantiate objects of new or modified class¥¥N€ concurrent applications it is convenient to split up work

it must be possible within the language to communicate witR&RONgst a number of cooperating objects. If, for example, a set
class object that was not known at compile time. of objects are working in parallel to solve a problem using sev-

In Hvbrid d v the princiole of h eral different approaches, the first to succeed may need to noti-
_nnybrid, we attempte _to apply the principie ot NOMOgy e giners that the job is finished. Signals could be viewed as
neity, but found that certain kinds of objects, notably del

- . o . kind of exception, but it seems more natural to view signals as
gueues and primitive objects like integers, could not be mstg

k) X Apecial kind of “express” message, as in ABCL/1[17]. Again,
tiated and manipulated in the same way as programmer-deﬂ%&eel that proposals for new mechanisms should be well-mo-
objects.

_ S _ tivated both by economy of function and by real examples.

By far the most serious omission in Hybrid was the lack of ye more difficult is the problem of how to encapsulate con-
an exception handling mechanism. The omission was inte{itrent hehaviour. Even though the abstraction of an RPC
tional, not because we feltitwas an unimportantissue, but raffysaq is extremely useful for structuring most concurrent com-
er because we believed it would be easier to evaluate excepligitions, its limitations are only too obvious when higher level
handling approaches once we had experience with a runniggractions are called for. Concurrent subactivities and recov-
prototype. In fact, exception handling is essential if concurr&tlpje atomic transactions are two examples of useful concur-
¢y and strong-typing are to be meaningfully integrated intq &y control abstractions that are unpleasant to program directly
useful object-oriented programming language. If we accept fi&ng Hybrid's delay queue and delegation primitives. Al-
view that any object is essentially an entity that provides a Sgfs gh the object paradigm serves well to encapsulate certain
vice to client objects, and that an object type is a description@fqs of concurrent behaviours (e.g., triggers, workers and ad-
the contract between the client and the server object with ferisirators, etc.), it fails to capture encapsulation of control
spect to these services, th_en without exceptlo_ns as an '_nte_%@kractions. A transaction cannot be viewed as an “object” in
part of that contract, there is no way for an object to nofify g ysual sense, since it does not support an interface of opera-
client when the contract cannot be honored. For realistic cagys A satisfactory solution would allow for the addition of
current appllcz_itlons, it must be possible for clients to catch 3y, control abstractions to the language, much in the same way
handle exceptions. that programmers may add new object classes. Well-designed,

It is not our goal to survey exception handling mechanismgusable control abstractions would eliminate the need for most
here. Nevertheless, we shall briefly list some of the requifgogrammers to have to deal with low-level synchronisation is-
ments that a reasonable scheme would have to meet to sagigés.

our needs: Finally, we note that Hybrid, like most programming lan-
» Any operation may falil, raising an exception. guages, does nstalewell. By this we mean that programming
» The exceptions that may be raised are part of the typéad}gqag?s are typically_ classified as being eithe_r _goo_d for "pro-
an operation. Exceptions are themselves typed. totyping” or for produc_:tlon, but not b(.)th' The d!VISI_On IS gener-
) i i) . ally made along the lines of dynamic vs. static binding, weak
* Clients may define their own handlers, or inherit those ¢ strong typing, and interpretation vs. compilation. The only
their own clients. There is always a default handler. concession to scaling that is commonly made is in languages
» Exception-handling should be no more expensive thhke Lisp and Pascal that may be either interpreted or compiled.
message-passing (or procedure calls). Languages like Simula and C++ offer a choice between static
« The responsibility of a handler is to repair damage, not3gd dynamic binding through the use of the "virtual” function
provide an alternative execution path. (See also [6].) declaration, but such decisions are frozen in the class defini-

-7 tion. No language that we know of offers a choice between
* Methods should not have to depend upon exceptions;f@ak and strong typing (or between run-time and static type

implement control flow. (It should always be possible tg,ecking). We believe that scaling will be increasingly impor-

write code that does not require an exception to implgny i the development of open systems, not only to ease the

ment, say, loop termination.) transition from prototyping to production development (which
Since exception handling indicates a break from the nornsah be accomplished by other means), but mainly to accommo-
flow of control, and should occur exceptionally (1), econongate varying needs and system evolution. Both static and dy-
rather than generality should be a design criterion. Mectmamic binding of the same object classes and operations can be

A Tour of Hybrid — Oscar Nierstrasz

simultaneously required by different applications, the first fRReferences

efficiency reasons and the second for genericity. Although sﬁf
ic type-checking is generally desirable, for evolving and open

systems it is not practical to require all applications to be stati-
cally type-checked, since there will be no way for existing ofq

jects to communicate with new ones without re-compilation.

7 Conclusions (3]

We have argued that a reference model of “objects and thregdpg”
should be used to guide the development of concurrent object-
oriented programming languages, and we have shown how this
model manifests itself iAlybrid an experimental language for
programming with active objects. Although we can claim p

tial success with Hybrid, we are still along way from raising the
level of concurrent programming to the same degree that ob-
jects raise the level of sequential programming. We can sum-
marize our conclusions in the following list of requirements f?é]
concurrent, object-oriented programming languages:

« A computational model for concurrently executing ol+]
jects is needed for properly defining the semantics of new
languages. Better tools for prototyping languages dfé
needed to support research in this direction. We have de-
veloped an executable notation for specifying concurrent
behaviour, which is based on process calculus [7], a@ﬁj
we are using this notation to explore various semantic
models for active objects [12].

Am i i EO]

. echanism for encapsulating concurrent control ab-
stractions should be supported. Object classes do not al-
ways provide the best mechanism for encapsulating ce]
current behaviour [13].

» Concurrency control mechanisms and object-oriented
features can interfere in unexpected ways [14], [15]. F12]
mal approaches appear promising as a means to better in-
tegrating concurrency and object-orientation.

» A realistic programming language must support excef3]
tion handling for active objects.

» Signals (express messages) should be supported.

14
» A choice between dynamic and static binding of var[l—]
ables and operations should be offered for all object

classes.
. : . _[15]
* A choice between run-time and static type-checking

should be offered to support the evolution of open appli-
cations.

Acknowledgements [16]

A shorter version of this paper has previously appeared as [11].
The author would like to thank the Centre de Recherche enlfr(
formatique de Nancy (CRIN) for their permission to re-use this
material.

G.A. Agha,ACTORS: A Model of Concurrent Computation in
Distributed System3he MIT Press, Cambridge, Massachu-
setts, 1986.

G.R.Andrews and F.B. Schneider, “Concepts and Notations for
Concurrent Programming,” ACM Computing Surveys, vol. 15,
no. 1, pp. 3-43, March 1983.

C.A.R. Hoare, “Monitors: An Operating System Structuring
Concept,” CACM, vol. 17, no. 10, pp. 549-557, Oct 1974.

D.G. Kafura and K.H. Lee, “Inheritance in Actor Based Con-
current Object-Oriented Languages,” Proceedings of the Third
European Conference on Object-oriented Programming, pp.
131-145, Cambridge University Press, Nottingham, July 10-
14, 1989.

D. Konstantas, O.M. Nierstrasz and M. Papathomas, “An Im-
plementation of Hybrid, a Concurrent Object-Oriented Lan-
guage,” inActive Object Environmentsd. D.C. Tsichritzis, pp.
61-105, Centre Universitaire d’Informatique, University of
Geneva, June 1988.

B. Meyer,Object-oriented Software Constructjd®rentice
Hall, 1988.

R. Milner, Communication and Concurrendrentice-Hall,
1989.

O.M. Nierstrasz, “Hybrid — A Language for Programming with
Active Objects,” inObjects and Thing®d. D.C. Tsichritzis,

pp. 15-42, Centre Universitaire d’Informatique, University of
Geneva, March 1987.

O.M. Nierstrasz, “Triggering Active Objects,” Dbjects and
Things ed. D.C. Tsichritzis, pp. 43-78, Centre Universitaire
d’Informatique, University of Geneva, March 1987.

O.M. Nierstrasz, “Active Objects in Hybrid,” ACM SIGPLAN
Notices, Proceedings OOPSLA '87, vol. 22, no. 12, pp. 243-
253, Dec 1987.

O.M. Nierstrasz, “A Tour of Hybrid,” ih.es Mardis Objets du
CRIN, CRIN 89-R-072d. G. Masini, A. Napoli, D. Colnet, D.
Léonard, K. Tombre, pp. 237-248, Centre de Recherche en In-
formatique de Nancy, Vandoeuvre-lés-Nancy, 1989.

O.M. Nierstrasz, “A Guide to Specifying Concurrent Behav-
iour with Abacus,” irObject Managemened. D.C. Tsichritzis,
pp. 267-293, Centre Universitaire d’Informatique, University
of Geneva, July 1990.

O.M. Nierstrasz and M. Papathomas, “Viewing Objects as Pat-
terns of Communicating Agents,” ACM SIGPLAN Notices,
Proceedings OOPSLA/ECOOP '90, vol. 25, no. 10, pp. 38-43,
Oct 1990.

M. Papathomas, “Concurrency Issues in Object-Oriented Pro-
gramming Languages,” iBbject Oriented Developmeetd.

D.C. Tsichritzis, pp. 207-245, Centre Universitaire d’'Informa-
tique, University of Geneva, July 1989.

M. Papathomas and D. Konstantas, “Integrating Concurrency
and Object-Oriented Programming — An Evaluation of Hy-
brid,” in Object Managemepéd. D.C. Tsichritzis, pp. 229-

244, Centre Universitaire d’Informatique, University of Gene-
va, July 1990.

P. Wegner, “Dimensions of Object-Based Language Design,”
ACM SIGPLAN Notices, Proceedings OOPSLA '87, vol. 22,
no. 12, pp. 168-182, Dec 1987.

A.Yonezawa, J-P Briot and E. Shibayama, “Object-Oriented
Concurrent Programming in ABCL/1,” ACM SIGPLAN Notic-
es, Proceedings OOPSLA 86, vol. 21, no. 11, pp. 258-268,

Nov 1986.

	A Tour of Hybrid
	1�� Introduction
	2�� Objects and Threads
	3�� An Overview of Hybrid
	3.1�� Type specifications
	3.2�� Expressions
	3.3�� Statements

	4�� Communication and Concurrency in Hybrid
	5�� Implementation
	6�� Observations
	7�� Conclusions

