

tence,
, bind-
sponsi-

(e.g.,
tural to
s. An in-

 reasons.
 addi-
pport.
s and

ally in
ase in-
 that very
object-

la-

 provide

Fitting Round Objects Into Square Databases1

Dennis Tsichritzis
Oscar Nierstrasz

Centre Universitaire d’Informatique
12 rue du Lac, CH-1207 Geneva, Switzerland

E-mail: {oscar,dt}@cui.unige.ch, oscar@cgeuge51.bitnet
Tel: +41 (22) 787.65.80, Fax: +41 (22) 735.39.05

Abstract
Object-oriented systems could use much of the functionality of database systems to manage their
objects. Persistence, object identity, storage management, distribution and concurrency control
are some of the things that database systems traditionally handle well. Unfortunately there is a
fundamental difference in philosophy between the object-oriented and database approaches,
namely that of object independence versus data independence. We discuss the ways in which this
difference in outlook manifests itself, and we consider the possibilities for resolving the two
views, including the current work on object-oriented databases. We conclude by proposing an ap-
proach to co-existence that blurs the boundary between the object-oriented execution environ-
ment and the database.

1. Introduction

Consider an environment for running object-oriented applications. There are a number ofobject
management issues that should ideally be directly supported by the environment: persis
creation and destruction of objects, concurrency control, management of object identifiers
ing between object instances and classes, etc. We will call the part of the environment re
ble for these issues the object manager. Some of these issues are operating system issues
scheduling of activities), but many are inherently database issues. It is therefore quite na
propose that the object manager use a database system for dealing with database issue
tegration of object-oriented and database systems can also be attractive for several other
First, it may provide a way for interfacing to existing databases. Next, we may get some
tional database functionality available to our objects, namely querying and transaction su
Finally, it may be that certain object-oriented ideas will be useful for organizing database
making databases easier to use.

In fact, these two worlds are not so easily merged. We present the problem graphic
figure 1. Objects as they exist in object-oriented systems are depicted as round. Datab
stances, on the other hand, are square. We use two different shapes to represent the fact
different properties of “objects” are emphasized by the two approaches. Furthermore, the
oriented approach emphasizes what we call object independence, represented as an encapsu
tion barrier between objects, whereas the database approach emphasizes data independence,
namely a barrier between the database and the applications. The object manager needs to

1. In Proceedings of the European Conference on Object-oriented Programming, ed. S. Gjessing and K.
Nygaard, Lecture Notes in Computer Science 322, pp. 283-299, Springer Verlag, 1988.

2 Fitting Round Objects Into Square Databases

 system
hat ex-

ok be-
rsus data
ests it-
bject-
he two
e their

n detail,

s) are
strat-
 viewed

nce
gure 1.

e inde-
n serves
stem is
persistence, and possibly other database functionality, for its round objects. The database
provides persistence, among other facilities, for square objects. The issue is simple. To w
tent can the object manager use square database facilities to manage its round objects?

The paper consists of two parts. First, we shall discuss the main difference in outlo
tween object-oriented systems and database systems in terms of object independence ve
independence, and we shall see a number of specific ways in which this difference manif
self. Second, we will illustrate the different approaches that can be taken for enabling o
oriented and database systems to co-exist. We will conclude with a proposal for merging t
by factoring out the common functionality, and permitting the two systems to each manag
own objects according to the appropriate paradigm.

2. Object Independence vs. Data Independence

Before we examine the differences between object-oriented and database approaches i
it is instructive to contrast their basic principles.

Object-oriented systems emphasize object independence by encapsulation of individual
objects. Objects’ contents and the implementation of their operations (i.e., their method
hidden from other objects. Interaction with objects is through a well-defined interface, illu
ed by the paradigm of communication via message-passing. Object independence can be
as fundamental to all object-oriented concepts, including, for example, all forms of inherita
[Nierstrasz 1988]. We depict object independence as a boundary around objects, as in fi

Database systems, on the other hand, emphasize data independence by separating the world
into two independent parts, namely the data and the applications operating on them. Th
pendence boundary is between the database and the rest of the world. This separatio
many purposes, but the most important effect is that the responsibility of the database sy
well-defined, and consequently the database interface can be relatively simple.

Object barrier
(between objects)

Database barrier
(between database
and applications)

Figure 1 Object Independence vs. Data Independence

D.C. Tsichritzis and O.M. Nierstrasz 3

r cul-
epen-
tal to da-
must ask

dence
manip-
mposed
 their

that the

d object
e world
ectively
ne way
Maybe
ons per-

te pre-
:

stances
ctionary.
es. The

nition
These two principles constitute a major commitment in each field, and lead to a majo
tural difference. (This has also been pointed out in [Bloom and Zdonik 1987].) Object ind
dence is fundamental to object-oriented systems, just as data independence is fundamen
tabase systems. If database techniques are to be relevant to object management, we
whether these two principles can co-exist, and, if so, how?

Consider, for example, the design of a large application. If we believe in data indepen
then we must split our application into persistent, uninterpreted data, and programs that
ulate and share them. An object-oriented approach, however, would lead to a design co
entirely of objects, some of which are persistent. Manipulation of persistent objects is via
interfaces, and shareability is implicit in the message-passing paradigm. It seems clear
two approaches lead to very different designs.

Can the two paradigms be reconciled? Can we support both data independence an
independence for the same set of objects, or must we always put our objects into the on
or the other? Maybe some objects, and therefore applications, can be handled more eff
in one way or the other. Maybe objects at some level (round objects) must be handled in o
and other objects (square objects) at a different level must be handled in a different way.
the same objects can be either round or square depending on the context or the operati
formed on them.

In order to develop some intuition to answer these questions, we shall try to evalua
cisely how deep this cultural difference runs. Briefly, we shall look at the following issues

1. Are classes objects?

2. What relationships may exist between classes?

3. Should navigation be supported?

4. What operations exist on objects?

5. How are objects identified?

6. How are objects selected?

7. What is the role of classification?

8. Can object classes evolve?

9. Should the network be visible in a distributed system?

10. How are active/passive objects handled?

11. Is the object world closed (complete) or open?

2.1 Instance/class separation

Traditionally databases make a very strong distinction between instances and classes. In
are in the database, whereas class information, i.e., the schema, is stored in the data di
Many database systems have two different languages to deal with instances and class
Data Manipulation Language (DML) deals with operations on instances. The Data Defi
Language (DDL) deals with operations, mainly creation, on classes.

4 Fitting Round Objects Into Square Databases

sses. In
ses are
elational
onary
ations.
ase.

stance/
ealt with
chman

ipulated,
ercial
cilities
 made

ems will
ased on

rd types,
ionship
e com-

e de-
h oth-
y cases

ips of
ntents.

y rela-
ffer the
ot an
 data-

tion be-
bly, net-
d-fash-
ld be a
It is obvious that object-oriented systems need to manage both instances and cla
some object-oriented languages, notably Smalltalk-80 [Goldberg and Robson 1983], clas
themselves genuine objects, and can be manipulated as such. With the emergence of r
systems the DML-DDL separation was blurred, at least conceptually. After all, data dicti
tables could be viewed as relations and they could be manipulated with relational oper
However, most database systems retain a strong separation between schema and datab

The evolution from databases to knowledge bases forced a reconsideration of the in
class separation. In conceptual models for knowledge bases, classes and instances are d
together and operations on classes are allowed [Mylopoulos and Levesque 1983; Bra
1988].

The database research community has already accepted that classes can be man
and that they can be structured with PART-OF and IS-A relationships, etc. Existing comm
database systems do not provide such facilities. They do provide, however, extensive fa
for class definitions in the database dictionary. It is conceivable that these facilities can be
available, and integrated as database operations. However, in doing so database syst
lose some of the simple user interfaces. The great advantage of relational systems is b
the relative few, very basic and very clear operations.

2.2 Relationships between classes

The relationships supported between database classes, whether they be relations or reco
etc., are quite restricted. They may be statically defined between classes, as in entity-relat
schemas. Relational systems, on the other hand, allow many relationships, but they ar
pletely syntactic, based on contents and operations like joins.

In object-oriented systems we need the ability to deal with many relationships, som
fined only at the instance level. Objects which know each other, or communicate with eac
er, are somehow related. It is not easy to model such relationships in databases. In man
the relationships are explicit and not implied by the object’s contents. Explicit relationsh
this sort were forbidden in relational systems to emphasize relationships in terms of co
Contents, however, are generally hidden in objects due to encapsulation.

Research in object-oriented databases tries to deal with that problem. Unfortunatel
tional systems, on the other hand, which are by now well-established, do not seem to o
appropriate capabilities. Mapping object relationships into relational tuples or joins is n
easy task. On the other hand, going back to “information-bearing” relationships between
base instances is considered a step backward.

2.3 Navigation

After many years of debate, database systems have de-emphasized point-to-point naviga
tween instances in the database. Such a facility was present in some older systems (nota
work and hierarchical databases) but it is now considered at worst harmful and at best ol
ioned. Many database specialists believe that reintroducing navigation in databases wou
step backward.

D.C. Tsichritzis and O.M. Nierstrasz 5

nce-to-
owerful
nce to

d they
onal
 ma-

lations,
nd up-

 of the ob-
erations.
n trans-

, with
ods can
 data-
ns take
ithin
 can be
riables)

 iden-
stems.
 place
nd they
e rela-

ts, via

 iden-
e way
ond, if
eans for

uld be
cation
ly lim-
h there
It is not easy, however, to see how else one should access objects with many insta
instance relationships when they are stored in a database. Relational systems give very p
set-oriented operations but they are not appropriate for navigating from one object insta
another.

Fortunately people working in object-oriented databases are aware of the problem an
will probably come up with a solution. They will probably either have to utilize the relati
interface in some innovative way (!) or they will have to adopt a different functional data
nipulation language (e.g., Daplex).

2.4 Operations on objects

Database systems traditionally provide very few generalized types (i.e., record types, re
etc.). As a result they can provide a small number of very general operations for queries a
dates on the database objects. The operations are the same regardless of the semantics
ject involved. Queries and updates on employees, cars, accounts etc. utilize the same op
In addition, the operations are simple. More sophisticated operations are encapsulated i
actions, which are treated separately from the database objects.

Object-oriented systems require that all objects provide their own set of operations
some sharing through object classes and inheritance mechanisms. In addition, the meth
be logically complex. Most of the work in object-oriented databases deals with extending
base operations to accommodate particular object types [Bancilhon 1988]. The extensio
two forms. First, complex objects can be defined, thus dealing with structural complexity w
objects. Second, operations specific to object classes can be defined. Multiple inheritance
used to define new classes that share operations and attributes (i.e., visible instance va
with existing classes.

2.5 Object identifiers

Database systems utilize object identifiers internally for implementation purposes. These
tifiers used to be visible and available for manipulation by the user in older database sy
The identifiers had a connotation of physical location, and they were used to physically
the database object in the system files. For this reason, they were considered harmful, a
were therefore removed from the database interface. In the relational model, and in som
tional systems, tuples do not have a visible identifier. They are identified by their conten
primary or secondary keys.

In object-oriented systems object identifiers are very important for two reasons. First,
tifiers provide a permanent handle for objects that may evolve or move, in much the sam
that file names hide the fact that a file’s contents and physical location may change. Sec
an object’s contents are properly encapsulated, they cannot be expected to provide a m
identification.

We need, therefore, to reintroduce identifiers into databases. These identifiers sho
purely for identification purposes and should not, of course, be related to the physical lo
of objects in the database. In addition, allowable operations on identifiers should be strict
ited, since they cannot be treated in the same way as other attributes of objects. Althoug

6 Fitting Round Objects Into Square Databases

fficult,
uld be-

lly true
nts, and

e are
 visible
ed by
 advan-
 for ob-

ect-ori-

stics of
r. Such
 be rep-
apture

uments

 on con-
heir be-
ry few
” In ob-
t opera-
 others.
y also
 on tra-

t par-
 mul-
 object-
nships

s. Clas-
nt large
tribute
d sys-
is some reluctance in the database area for introducing identifiers, it should not be very di
at least conceptually. For particular systems, identifiers which were always present sho
come available and visible in some form through the database interface.

2.6 Content addressability

Databases traditionally provide operations based on selection by contents. This is especia
in relational systems, where all relationships between entities are represented by conte
all operations are based on contents.

In object-oriented systems object contents are typically encapsulated, i.e., hidden. W
not supposed to know the values of an object’s variables. Even when objects advertise
attributes, we may not know whether they are “real” attributes, or virtual attributes comput
the object upon request. This situation presents a double dilemma. First, how can we take
tage of existing indexing mechanisms and content-oriented selection in database systems
ject selection? Second, what mechanisms are appropriate for object selection in an obj
ented system?

In the first case we should try to represent some of the behaviour and the characteri
objects in terms of attribute values visible to the other objects and to the object manage
external attributes play the same role as keywords for text retrieval. They are supposed to
resentative for retrieval purposes. The problem is that these attributes may not ideally c
the information we need to select the objects. The work on databases for multimedia doc
points out some of the problems and solutions.

In the second case we need other mechanisms to select objects which are not based
tents. Since objects encapsulate behaviour, they should also be selectable in terms of t
havioural aspects. Unfortunately databases offer very poor facilities for such selection. Ve
database systems offer even simple facilities such as, “Get me the last updated record.
ject-oriented systems we need to select objects in terms of where they have been, wha
tions they have launched on other objects, and what operations they have performed for
What other objects a particular object knows, or has previously communicated with, ma
be relevant. There is a need for behavioural selection methods and their implementation
ditional database content selection.

We should also mention that, since the selectivity for an object oriented system is no
ticularly high, we have to accept that browsing facilities become very important. Ideas from
timedia document browsing can be used and extended to browse through objects in an
oriented system. This implies that we need to represent both the objects and their relatio
in ways that reflect the user’s model of what these objects do.

2.7 Classification

Databases traditionally have very few classes, with large numbers of instances per clas
sification in databases serves mainly to provide a means to efficiently manage and prese
amounts of highly regular data. The differentiation between entities is represented by at
contents and not by subdividing or creating extra classes. Classification in object-oriente

D.C. Tsichritzis and O.M. Nierstrasz 7

d class

an be
se they

ain ob-
com-
eir ob-

erous
a need
 will need

ution
s permit
m per-

te soft-
ses the
t object
rprise to
ce with
instances,
nd the
 in repre-
tion has

a log-
ldom

al con-

ea (i.e.,
oes not
e data.

bjects
viour.

d a con-
viour
tems serves a very different function, namely to support instantiation, encapsulation an
inheritance.

It is debatable whether object-oriented systems, or, for that matter, the real world, c
classified to such an extent. Databases were able to exploit rampant classification becau
left the interpretation of classes to the manipulation programs and transactions. For cert
ject-oriented systems it may be difficult to force such extensive classification. It is not un
mon to find object-oriented applications with many objects that are the sole instance of th
ject class.

On the other hand, if instances are only one or two orders of magnitude more num
than classes then databases have a difficulty dealing with them. There will probably be
to treat object classes as instances as far as the database is concerned. In any case we
a mapping between object classes and instances to database classes and instances.

2.8 Schema evolution

Traditional databases allow very little flexibility for evolution of their classes. Schema evol
is very restricted. Relational systems are better than other systems in that they sometime
adding attributes. However, dropping attributes or moving them to other relations is seldo
mitted.

In object-oriented systems object classes should be able to change to accommoda
ware evolution [Skarra and Zdonik 1987]. If object classes correspond to database clas
different approaches will certainly create problems. We are again tempted to propose tha
classes should be treated as database instances. This differentiation should not be a su
database people. After all, logical database instances are not always in corresponden
physical database instances. If object instances and classes are mapped to database
this will facilitate object instances changing their class. Since both the object instance a
two object classes are all treated as database instances, there should be fewer problems
sentation. The problem of maintaining database consistency in the face of schema evolu
already been addressed in the object-oriented database field [Banerjee et al. 1987b].

2.9 Distribution

Traditional databases deal with distribution, if at all, by hiding it. A distributed database is
ically integrated, physically distributed database. The network is not visible, and we se
have a notion of context, either as a geographic location, i.e., a workstation, or as a logic
text.

The physical notion of context was present before in databases as the notion of an ar
physical volume area where data was stored) but it was taken out. The logical context d
exist except as a logical view, which implies a partition, and perhaps transformation, of th

Object-oriented systems need a strong definition of context. First, we believe that o
should be aware of where they are. Physical location in the network may affect their beha
Second, objects, or collection of objects, may encapsulate beliefs, and we therefore nee
text to define a boundary. (See, for example, [Tsichritzis et al. 1987].) Third, objects’ beha

8 Fitting Round Objects Into Square Databases

 from

its
obal-
but in a

bases
d sys-
ends a

ns per-
from one
g poten-
.

 ad hoc
pera-
st data

 agents
t they

egree of

s. Other
tivities
ses, as

e da-
archers
ing log-

s may
rence.

present
 infor-
or parti-
may be affected by their context. Sometimes they should even directly inherit methods
their context. A simple example is a text object that inherits formatting characteristics from
surrounding scope. Finally, it seems extremely difficult to implement an environment of gl
ly coordinated object managers where objects are managed by local object managers
completely integrated and transparent manner.

We are therefore faced with an interesting dilemma. On one hand distributed data
strive to provide a uniform globally integrated database. On the other hand object-oriente
tems seem to require a strong notion of context. To what extent the two can co-exist dep
lot on how objects are mapped into databases.

2.10 Passive/active objects

Databases have always fundamentally viewed data objects as being passive. Operatio
formed on the database are issued from outside, and cause the database to be modified
consistent state to the next. There is no real notion of the contents of the database bein
tially active in the same way that processes managed by an operating system are active

In certain cases databases have been extended with automatic triggers, but in an
manner. Triggers are low level alarm facilities for handling exceptions or for chaining o
tions together. Transactions encapsulate activities, but they are treated separately. Mo
models and many systems completely separate the data and the transactions on them.

One of the most interesting aspects of objects is that they can be viewed as active
[Agha 1986; Nierstrasz 1987]. They not only respond to requests from other objects, bu
can trigger themselves. We do not separate objects into active and passive except in d
activity.

Extensions of databases into object-oriented databases do not handle active object
extensions in terms of automatic procedures and office tasks offer better support for ac
[Zloof 1981]. We need, however, a general model of active and passive objects. Databa
they are today, can only treat objects as passive entities.

2.11 Closed world assumption

Traditional database systems implicitly make the assumption that all information not in th
tabase is not true. This assumption has been attacked for quite some time now by rese
who have extended databases with an inference engine. There is a solid basis for combin
ic and databases, and for introducing support for recursive queries and inference.

This issue may seem irrelevant for object-oriented systems but it is important. Object
incorporate rules. They should be able to augment the knowledge they have using infe
Since objects provide a clear context for inference, the knowledge they manipulate can re
a belief local to the object. We therefore have two effects. First, inference augments the
mation present in the database or in the objects. Second, objects can give us a context f
tioning knowledge into independent and potentially inconsistent beliefs.

D.C. Tsichritzis and O.M. Nierstrasz 9

tabases
ve never

with ab-
 passing
abases.
propriate
s a large
sing”).

xtreme
r notions

ct-ori-
o view-

sibly to
er are

.

tional

parts:
em. Data
base. The
ction be-

ple, a
tc., is
s to the

oriented
to co-
2.12 Overloading, message passing, etc.

There are a host of other issues that seem, at first glance, to be treated differently by da
and object-oriented systems. After some reflection, however, we see that these issues ha
been handled by databases and probably do not need to be.

As an example, operator overloading was not needed since databases did not deal
stract data types, and their operations were very simple. As another example, message
is a very appropriate paradigm for communication between objects, yet it is absent in dat
Since databases assume a passive view of data, a shared memory model is far more ap
than a message-passing model. On the other hand, the database itself can be viewed a
object with which one communicates through an abstract interface (i.e., via “message pas

Finally, object-oriented systems emphasize reusability. So do databases, in an e
manner. Passive objects are shared, and transaction definitions can be reused. Whateve
the databases capture can be reused. Unfortunately they do not capture very many.

3. Co-existence Approaches

Now that we have examined in detail many of the apparent incompatibilities between obje
ented systems and database systems, we shall consider some of the ways in which the tw
points can be reconciled in order to provide some database support for objects, and pos
provide some object-oriented functionality for databases. The possibilities we shall consid
summarized as follows:

1. Provide an interface between independent object-oriented and database systems

2. Transparently store dormant objects in a database.

3. Add object-oriented functionality to a database.

4. Add attributes and database functionality to an object-oriented system.

5. Integrate the common functionality required by both systems, and provide addi
support for querying, transactions etc., for “database objects.”

3.1 Separate co-existence

The simplest approach is depicted in figure 2. The application is divided into two clear
programs and data. Programs are encapsulated as objects using the object-oriented syst
are managed by the database. Objects can issue direct database commands to the data
object manager can also use the database for its own needs. There is a very clear distin
tween objects and database instances.

Persistence for objects is provided directly by the object manager through, for exam
large, persistent virtual memory. Support for object creation, destruction, concurrency, e
dealt with by the object manager independently of the database system. This is analogou
traditional distinction between operating systems and database systems.

This approach does not require major changes to either database systems or object-
systems. In addition, it allows existing applications implemented in a traditional manner

10 Fitting Round Objects Into Square Databases

d data
muni-

base. If
ndepen-

Some
 will be

 those

ts exist
ant” ei-
s poli-
naging
erhaps
ed, there

essage
ey were
r. Re-
ct died.

e does
the il-
ed. On
es it pro-
exist with object-oriented systems. Furthermore, the principles of object independence an
independence are generally reconciled. There are, however, two ways for objects to com
cate with one another, either directly by message-passing, or indirectly through the data
there is a need for objects to encode part of their contents in the database, then object i
dence can be compromised through sharing of database instances.

There are two other drawbacks to this approach. First, there is a lack of uniformity.
application entities become objects, others become database instances. Second, there
some duplication of effort. The object manager will require some mechanisms similar to
used by the database system.

3.2 Active and dormant objects

A second approach is depicted in figure 3. Objects can be active or dormant. Active objec
in a large, persistent workspace managed by the object manager. Objects become “dorm
ther by putting themselves asleep, or by being retired by other privileged objects. Variou
cies can be used for deciding when to retire objects. The problem is similar to that of ma
a virtual memory. When objects are dormant they are labeled using their identifier, and p
some other attributes, and they are stored in the database. As far as objects are concern
is no such thing as a database.

Dormant objects can be re-awakened by the object manager, for example, when a m
is sent to them. Re-activated objects have precisely the same state as they did when th
put to sleep. Creation of a new object implies initialization of variables and a new identifie
activation implies the old identifier and the same variable contents as at the time the obje

This approach has the advantage that it is completely object-oriented. The databas
not exist except as a facility for storing dormant objects. This allows objects to maintain
lusion of a purely object-oriented environment where object independence is emphasiz
the other hand, it does not address the problem of access to existing databases, nor do

Object-oriented system

Database system

Interface

Figure 2 Separate Object-Oriented and Database Systems

D.C. Tsichritzis and O.M. Nierstrasz 11

. The
e except

r
nded by
, multi-
man et
vide a means to exploit other database functionality from within the object-oriented system
database is used like a file system. Querying and transaction management are unavailabl
to the object manager.

3.3 Object-oriented databases

Object-oriented databases are depicted in figure 4. This term is not used to mean “databases fo
supporting object-oriented systems.” It refers, rather, to databases that have been exte
incorporating various object-oriented concepts, i.e., abstract data types, complex objects
ple inheritance, etc. [Bancilhon 1988; Maier and Stein 1987; Banerjee et al. 1987a; Fish
al. 1987].

Object database

Object-oriented system

Figure 3 Active and Dormant Objects

Object-oriented database

Object-oriented system

Figure 4 Object-Oriented Databases

12 Fitting Round Objects Into Square Databases

clearly
cts em-

bases
o com-
aging
 better
ystems
bases

 current

 the oth-
ct-ori-
esigned
rt data-
port

numbers
d da-
t is not
f an ob-
ted to

 severe
stem.)

perties
ptions,
cted by
t by the
an view

re and
 of the
 in a da-

xisting
he disad-
ributes.
ibutes.
s can-

 what
Reconciling the independence principles poses no problem. Database “objects” are
separated from the rest of the objects, thus providing data independence. The other obje
phasize object independence between themselves.

Due to the inclusion of object-oriented features, the interface to object-oriented data
resembles that of object-oriented systems. Interaction with database objects is similar t
munication with other objects. The object manager is relieved of the responsibility of man
the vast collection of relatively docile and well-structured objects. It should be able to do a
job of catering to the needs of the other objects. Furthermore, by extending database s
with object-oriented concepts, we greatly enhance the functionality and usability of data
(though object-oriented databases will not have the simple set of generic operations that
databases have).

There is, nevertheless, a clear distinction between database instances as objects and
er objects. First of all, it is not clear that the particular object model adopted by the obje
ented system will match that of the object-oriented database, unless they have been d
with that purpose in mind. Next, object-oriented databases have been developed to suppo
intensive applications, like CAD/CAM, that have to deal with abstract “objects,” not to sup
object-oriented applications in general. As a consequence, there is an emphasis on large
of similar, well-structured objects with external attributes. It is not clear that object-oriente
tabases have much to offer for objects that do not satisfy these assumptions. Finally, i
clear how to use object-oriented databases to store active objects. The execution state o
ject involved in a long-term activity is not something that databases are normally expec
deal with.

3.4 Objects with external attributes

This approach is depicted in figure 5. In a large, object-oriented system, there can be a
selection problem. (This is analogous to the problem of posing an ad hoc query on a file sy
One approach for dealing with this problem is to abstract an object’s behaviour and pro
in terms of a number of external attributes. These attributes, possibly including text descri
represent the salient properties of the object to the outside world. An object can be sele
posing a query in terms of the values of these attributes. The attribute values may be se
object itself, or, in some cases, by the object manager (e.g., the last update time). We c
this approach as providing another (square) database-oriented interface to objects.

If we follow this approach, it would be reasonable to use the same attributes to sto
retrieve the objects. All communication is addressed via the object identifier or the values
external attributes. The object manager can therefore use these attributes to store objects
tabase, and to re-activate them when required.

This approach deals well with both the addressing and the persistence problems. E
database instances can be treated as special objects that have only external attributes. T
vantage is that objects cannot be purely encapsulated. We introduce a notion of visible att
Objects are accessed not only through their identifiers but through the values of the attr
Furthermore, it does not really solve the problem of object selection, since static attribute
not fully capture all of the interesting dynamic properties of objects. How do you decide

D.C. Tsichritzis and O.M. Nierstrasz 13

een the

lastic”
pen-

nd and

o not
base sup-
visible attributes your objects should have? Nevertheless, this is a nice compromise betw
object-oriented and database paradigms.

3.5 “Plastic” objects

What we would really like is to merge the object-oriented and database approaches. “P
objects would have it all (figure 6). They would behave like objects, obeying object inde
dence, but they could also look like database objects, if necessary. They would be rou
square at the same time!

The problem with all of the approaches we have described up till now is that they d
successfully break through the database barrier. The object manager can use some data

Objects with attributes

Figure 5 External attributes

Figure 6 “Plastic” objects

14 Fitting Round Objects Into Square Databases

Other
ay be

sses.
l their

anage-
 can be
 objects
ith ad-
le for
re like
provide
t of the

ases in
ndent ob-

ll the
anager
n de-
such a
esigned
 it may

d data-
hes be-
ize oper-

alistic

 of the

ch try-
port for nearly all objects, namely for persistence and for maintaining object identifiers.
issues, dealing with querying, indexing, efficient storage and transaction management, m
relevant only for a large number of well-structured objects belonging to few object cla
Highly active objects can be handled in more efficient ways than by keeping track of al
changes in a database.

What we propose as a solution is to factor out the common database and object m
ment support into a shared subsystem that is not seen by objects. Highly active objects
stored and managed using the low-level object management subsystem. More passive
with visible attributes exploit the same object management subsystem, but are provided w
ditional support for querying, etc. Given support for schema evolution, it is even possib
objects to migrate between the two parts of the object environment, either becoming mo
database objects, or becoming more active. For example, redefining an object class to
visible attributes for its instances will cause those objects to migrate to the database par
object environment.

This approach would also accommodate existing databases or object-oriented datab
the same way as we have described above. Since external databases constitute indepe
ject worlds, all that is required is an interface for communicating with such objects.

The advantage of this approach is that it is completely object-oriented, retaining a
claimed advantages of object-orientation. The obvious disadvantage is that the object m
is asked to solve many difficult problems. However, the real difficulty is that the applicatio
signer will be offered a choice within the same system. Applications can be designed in
way as to emphasize a separation of activities and data, or, alternatively, they can be d
in a completely integrated manner. Sometimes the choice will be obvious. In some cases
be very difficult.

4. Conclusions

We have discussed the difficult issues arising from a co-existence of object-oriented an
base systems. Some of these issues are a natural follow-up to differentiation of approac
tween programming languages and database systems. Programming languages emphas
ations while databases emphasize information representation.

There are many possible attitudes we can take.

1. The object-oriented and database fields can ignore each other. This will not be re
and fortunately is not happening.

2. The object-oriented and database fields can develop, but each using the facilities
other in a decoupled way.

3. The object-oriented and database fields can borrow concepts from each other, ea
ing to duplicate the other’s efforts.

D.C. Tsichritzis and O.M. Nierstrasz 15

 at sys-
er a
oblem.

n to
rea, and
straints
ht. They

, or an-
me dif-
f data-

ld knowl-
t been

riented
Rather,

MOD/

Model

chema
, Dec

gram-
, Dec

hnical

tt, C.G.
nted

BMS,”

IT

ation,”

Lan-

SLA
4. The object-oriented and database fields can try to merge their capabilities to arrive
tems which can smoothly integrate the facilities for both, without prohibiting eith
purely database-oriented approach or a purely object-oriented approach to the pr

We obviously prefer the fourth solution, and we believe that it is a promising directio
pursue. This presupposes, however, an open approach, accepting ideas from a different a
respecting the limitations and constraints that each area poses. The limitations and con
of object-oriented systems and database systems did not arise through chance or oversig
arose because other principles and other ideas were heavily emphasized.

Finally, we should note that a discussion on whether databases should be extended
other field should redevelop its capabilities is not new to databases. For instance, the sa
ficulties arose with knowledge bases. Should knowledge bases be implemented on top o
bases? Should databases be extended to incorporate knowledge base ideas? Or shou
edge bases provide their own storage and retrieval facilities? This controversy has no
settled completely and we are now embarking on similar discussions concerning object-o
systems. In the end, it is not important whether object-oriented or database ideas prevail.
it is important what facilities the final system offers.

References

[Agha 1986] G.A. Agha, ACTORS: A Model of Concurrent Computation in Distributed Systems, The MIT Press,
Cambridge, Massachusetts, 1986.

[Bancilhon 1988] F. Bancilhon, “Object-Oriented Database Systems,” Proceedings 7th ACM SIGART/SIG
SIGACT Symposium on Principles of Database Systems, Austin, Texas, March 1988.

[Banerjee, et al. 1987a] J. Banerjee, H. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou and H. Kim, “Data
Issues for Object-Oriented Applications,” ACM TOOIS, vol. 5, no. 1, pp. 3-26, Jan 1987.

[Banerjee, et al. 1987b] J. Banerjee, W. Kim, H-J Kim and H.F. Korth, “Semantics and Implementation of S
Evolution in Object-Oriented Databases,” Proceedings ACM SIGMOD ’87, vol. 16, no. 3, pp. 311-322
1987.

[Bloom and Zdonik 1987] T. Bloom and S.B. Zdonik, “Issues in the Design of Object-Oriented Database Pro
ming Languages,” ACM SIGPLAN Notices, Proceedings OOPSLA ’87, vol. 22, no. 12, pp. 441-451
1987.

[Brachman 1988] R.J. Brachman, “The Basics of Knowledge Representation and Reasoning,” AT\&T Tec
Journal, vol. 67, no. 1, pp. 7-24, Jan/Feb 1988.

[Fishman, et al. 1987] D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W. Davis, N. Derre
Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M.A. Neimat, T.A. Ryan and M.C. Shan, “Iris: An Object-Orie
Database Management System,” ACM TOOIS, vol. 5, no. 1, pp. 48-69, Jan 1987.

[Goldberg and Robson 1983] A. Goldberg and D. Robson, Smalltalk 80: the Language and its Implementation, Ad-
dison-Wesley, May 1983.

[Maier and Stein 1987] D. Maier and J. Stein, “Development and Implementation of an Object-Oriented D
in Research Directions in Object-Oriented Programming, ed. B. Shriver, P. Wegner, pp. 355-392, The M
Press, Cambridge, Massachusetts, 1987.

[Mylopoulos and Levesque 1983] J. Mylopoulos and H. Levesque, “An Overview of Knowledge Represent
in On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases and Programming
guages}, ed. M. Brodie, J. Mylopoulos, pp. 3-17, Springer-Verlag, New York, 1983.

[Nierstrasz 1987] O.M. Nierstrasz, “Active Objects in Hybrid,” ACM SIGPLAN Notices Proceedings OOP
’87, vol. 22, no. 12, pp. 243-253, Dec 1987.

16 Fitting Round Objects Into Square Databases

ct-Ori-

.

uisi-

, pp.
[Nierstrasz 1988] O.M. Nierstrasz, “A Survey of Object-Oriented Concepts,” in Object-Oriented Concepts, Appli-
cations and Databases, ed. W. Kim and F. Lochovsky, Addison-Wesley, 1988, (to appear).

[Skarra and Zdonik 1987] A.H. Skarra and S.B. Zdonik, “The Management of Changing Types in an Obje
ented Database,” in Research Directions in Object-Oriented Programming, ed. B. Shriver, P. Wegner, pp
393-415, The MIT Press, Cambridge, Massachusetts, 1987.

[Tsichritzis, et al. 1987] D.C. Tsichritzis, E. Fiume, S. Gibbs and O.M. Nierstrasz, “KNOs: KNowledge Acq
tion, Dissemination and Manipulation Objects,” ACM TOOIS, vol. 5, no. 1, pp. 96-112, Jan 1987.

[Zloof 1981] M.M. Zloof, “QBE/OBE: A Language for Office and Business Automation,” IEEE Computer 14
13-22, May 1981.

	Fitting Round Objects Into Square Databases
	1. Introduction
	2. Object Independence vs. Data Independence
	2.1 Instance/class separation
	2.2 Relationships between classes
	2.3 Navigation
	2.4 Operations on objects
	2.5 Object identifiers
	2.6 Content addressability
	2.7 Classification
	2.8 Schema evolution
	2.9 Distribution
	2.10 Passive/active objects
	2.11 Closed world assumption
	2.12 Overloading, message passing, etc.

	3. Co-existence Approaches
	3.1 Separate co-existence
	3.2 Active and dormant objects
	3.3 Object-oriented databases
	3.4 Objects with external attributes
	3.5 “Plastic” objects

	4. Conclusions

