
tware
merges
ystems
 soft-

rovides
nts (i.e.,
re (i.e.,
anisms
me
We say

cts.

ity for
-world
 an ex-

 behav-
rred.
lay the
Events and Sensors
Enhancing the reusability of objects1

POSITION PAPER

Jan Vitek,
Betty Junod, Oscar Nierstrasz

 Serge Renfer and Claudia Werner

Abstract
Object-oriented programming methods promote the development of software from reusable com-
ponents. In practice, reuse of object-oriented software is limited by a closed-world constraint:
only components that are compatible – that conform to an agreed-upon protocol – may be com-
posed. We seek to facilitate software composition. To this end, we propose an approach based on
events and sensors that enhances the openness of objects, and thus increases the possibilities for
their reuse.

1. Motivation

Software reusability is of paramount importance to the efficient development of large sof
systems. Methods for software reuse promote a way of thinking about system design that
top-down decomposition and bottom-up composition. Using these methods, software s
are built by composing prepackaged reusable components [1]. Of the various approaches to
ware reuse, object-oriented programming (OOP) is perhaps the most promising, as it p
both mechanisms for organizing and decomposing systems into encapsulated compone
objects and classes), and mechanisms for incrementally modifying and composing softwa
inheritance, genericity and dynamic binding) [10]. The key to the success of these mech
is, in all cases, the message-passing paradigm of OOP: any two objects that accept the sa
messages can be addressed uniformly by their clients even if their implementations vary.
that an object that conforms to a client’s expectations is compatible with the client. The potential
for reuse in OOP is thus both defined and constrained by object-client compatibility. We seek
to further enhance reusability by providing more flexible mechanisms for composing obje

What makes composition difficult – and in some cases impossible – is the necess
components to fit together, that is, to be compatible. In effect, OOP suffers from a closed
assumption: only objects that conform to known interfaces can be composed. We propose
tension to the client/server paradigm supported by OOP based on events and sensors that en-
hances openness of objects and thus improves their potential for reuse. As part of their
iour, objects raise events to signal to the environment that something of interest has occu
Sensors are agents that monitor and respond to events by initiating actions. They can p
role of “adapters” between otherwise incompatible objects.

1. In Object Management, ed. D. Tsichritzis, Centre Universitaire d'Informatique, University of Geneva,
July 1990, pp. 345-356
345

346 Events and Sensors

on the
d by ex-
del are
ions are

rna-
cilitate
el that
finition

e a
l-
hese
id in-

 are in

 both a
 mes-
 can be

he class

 of ac-
her ob-

f they
ust be
for com-
nts and
First, we shall describe a minimal object model as the framework for our discussion
events and sensors model. Next, the basic concepts of this model are presented, followe
amples of its application. Some considerations about the implementation of such a mo
discussed, references to related works are given and, finally, some prospects and conclus
drawn.

2. A Minimal Object Model

The paradigm of object-oriented programming is itself truly polymorphic: each of its inca
tions has its own set of features and redefines what it means to be “object-oriented”. To fa
our discussion of events and sensors to follow, we shall first present a minimal object mod
sets out the few assumptions we make about the nature of objects. We shall adopt the de
of object-orientation formulated by Wegner [11], where:

OOP = Objects + Classes + Inheritance

Furthermore, we assume the following:

• Message Passing: Messages are the only form of inter-object communication. We defin
call/reply exchange as a protocol composed of a call message from a client to an object fo
lowed (eventually) by a reply message from the object back to the client. We represent t
messages as follows (All descriptions in this paper will be given in pseudocode, to avo
troducing a language-specific syntax. Variables begin with a capital letter and values
lower case.):

[call, Server, Selector, Args] — Client calls Server

[reply, Reply] — Server replies to Client

The Selector is the name of the service provided by the object (i.e., the method name).
Args and Reply are the contents of the call and reply messages.

• Class. A class is the abstraction of shared characteristics of a set of objects. A class is
static specification of behaviour and a run-time entity: it specifies responses to incoming
sages and has the responsibility to generate new instances of that class. Inheritance
viewed as the delegation to another class, the super-class, of all messages for which t
has no specified response [8].

• Object. An object is an instance of a class. It has a modifiable state consisting of a set
quaintances — references to other objects or classes — and it communicates with ot
jects by call/reply exchanges. Objects may or may not execute concurrently.

3. Events and Sensors

The limitation of the object model we have outlined is that objects can only communicate i
have agreed upon a particular call/reply protocol: for one object to influence another, it m
a client that knows what requests are supported by the target. We propose a mechanism
posing objects in which a “sensor” acts as the glue between an object that can raise eve
other objects that are manipulated when the events are raised.

J. Vitek, et al. 347

ct rais-

 Values
d, in a

e set of
r is creat-
 a sensor
 the cli-
ay the

r of an
 and con-
d.

-

 sensors
Briefly, the approach is as follows:

1. As part of its behaviour, any object may raise a number of named events each of which
may have a set of associated values.

2. Events are caught by the ether, an agent that manages the handling of events.

3. When an event is raised, the ether forwards it to a set of sensors monitoring that event.
A sensor may initiate actions or raise events involving other objects.

4. Events may be propagated to sensors monitoring other events.

Events

Objects can raise events at any point while responding to a client’s request. When an obje
es an event it sends a message to the ether of the form:

[raise, Source, Event, Values]

where Source is the name of the object (i.e. object id), Event is the name of the event and
is the list of event parameters. The object expects no reply to the raising of an event an
concurrent environment, can continue executing independently.

Sensors

A sensor consists of an execution context, parameters and an action. The context is th
objects the sensor is acquainted with. These acquaintances are defined when the senso
ed. The parameters of a sensor are matched against those of the event. Within an action,
may call its acquaintances and raise events. It is the sensor that is required to conform to
ent/server protocol of the targets of its action, not the object raising the event. In this w
sensor acts as the glue between otherwise incompatible objects.

As an example, we define a sensor whose action is to print events.

s is a sensor
with context Printer
and parameters Source, Event
and action (

[call, Source, name, []] [reply, Sname]
[call, Printer, print, [Sname, Event]] [reply, Isok])

Having defined a sensor, it can be created dynamically either as part of the behaviou
object or by a user of the system. To create a sensor, a message with the sensor’s name
text has to be sent to the ether, and a reply with a reference to the new sensor is returne

Taking the previous example, to create sensor s the following messages would be ex
changed (assuming that sys_printer is an object that already exists):

[sensor, s, sys_printer]
[reply, Sensor]

 Ether

The ether is a mediator between events and sensors. For every <Source,Event> pair, there is a spot
in the ether that manages the handling of occurrences of that event and remembers which

348 Events and Sensors

s

 spots.

 sensor

rameters
e raised.

ue,
t in this
g mes-

binding.
t the ob-
are interested in the event. We say that such sensors are tuned to that spot. When an object raise
an event, it sends a message to the corresponding spot in the ether.

The tasks of the ether include creating, maintaining and deleting both sensors and
Before an object can raise events, a spot in the ether must be claimed. The following message to
the ether claims a spot for <Object,EventName>:

[claim, Object, EventName]

To register a sensor’s interest for events it is necessary to tune it to spots in the ether. A
can be tuned to one or more spots with the following message, for Sensor and the spot <Object,

EventName>:

[tune, Sensor, Object, EventName]

A sensor can be tuned to any spot but if the event parameters do not correspond to the pa
declared in the sensor’s definition, the sensor does not execute and an error event can b

Another property of a spot is propagation, that is, to re-raise the event with the same val
but at a different spot. A propagated event may be further propagated to other spots, bu
case it is clear that loops must be avoided. To set the propagation of a spot, the followin
sage is sent to the spot <FromObject, FromEvent>:

[propagate, FromObject, FromEvent, ToObject, ToEvent]

Figure 1 shows the basic concepts of the proposed model.

Events and sensors enhance the openness of objects by delaying the client-server
Sensors are defined at the moment when two particular objects have to be composed bu

 sensor

e t h e r

Object

Figure 1 The ether is a collection of spots. There is a spot for each event an object can raise.
When an object raises an event, it sends a message to a spot. This spot triggers
sensors and propagates the event further.

J. Vitek, et al. 349

her two
st object
ehaviour
e

ds on
everthe-

r use as
cuss in-
erface
m when

rface
terface
ories of
 consist-
ct with
cked”.
nce, the

e mes-
e be-
 of the

g-
sensor
jects themselves can have been built independently. It is therefore possible to put toget
objects which could not otherwise be composed: a sensor catches events raised by the fir
and translates them to calls that the second can understand. Sensors permit one to add b
specific to a particular application and to do this a posteriori, that is after the components hav
been fully specified and without modifying their implementation.

 The closed-world constraint has not been entirely eliminated, since one still depen
objects to generate events to make composition possible, but a degree of freedom has n
less been gained.

4. Software Composition Using Sensors

We shall now demonstrate the benefits of events and sensors through examples of thei
composition mechanisms between objects. We give two complete examples and then dis
formally two other application areas. The first example shows how to connect a user-int
to an application. The second example uses propagation to solve a consistency proble
elements belonging to a collection are freed.

One application area that has always required a high degree of flexibility is user-inte
construction. With libraries of graphical components, one connects standard reusable in
objects to some newly developed application objects. We assume that these two categ
objects have been developed independently. As an example let us consider an interface
ing of two buttons that are to be connected to one application object. A button is an obje
a label — a string of characters — which reacts to user interaction by raising the event “cli
There is a button class that defines the behaviour of button instances. For each new insta
class claims a spot in the ether for <New_button, clicked> with the message:

[claim, New_button, clicked]

When the user presses the button, the button raises an event (with no arguments):

[raise, Self, clicked]

The application object to which we wish to add a user interface expects to be called with th
sages foo or bar. The user-interface to this object should therefore give the user the choic
tween foo or bar. Once the user has chosen one of these options, the appropriate method
application object is called. Additionally, the choice of foo is to be accompanied by an audio si
nal. For this we define two sensors which both call the application object. The second
also makes a sound.

s1 is a sensor
with context Appl
and parameters Source, Event
and action [call, Appl, bar]

s2 is a sensor
with context Appl, Speaker
and parameters Source, Event
and action (

[call, Appl, foo]
[call, Speaker, beep])

350 Events and Sensors

sensors is
sumed

e

e desires

nes, at
m all of

om the

so-
The sequence of messages needed to create the buttons, the application object and the
listed below. The sensors are tuned to “clicked” events coming from the buttons. It is as
that “beeper” is a previously created object that responds to the message beep.

[call, button, create, “foo”] [reply, Foo_button]
[call, button, create, “bar”] [reply, Bar_button]
[call, Appl_obj, create] [reply, Appl] — create an instance of App_obj
[sensor, s1, Appl] [reply, S1] — the context of s1 is bound to Appl
[sensor, s2, Appl, beeper] [reply, S2] — the context of s2 is bound to Appl and beeper
[tune, S1, Bar_button, clicked]
[tune, S2, Foo_button, clicked]

Figure 2 shows the resulting configuration.1 When a “clicked” event is raised by one of th
buttons the corresponding sensor, S1 or S2, is activated with parameters <Foo_button, clicked,

“foo”> or <Bar_button, clicked, “bar”> bound to Source, Event and Text respectively.

The second example demonstrates a use of propagation. There are cases where on
to monitor a dynamic population of objects, that is, to listen to events originating from a varying
number of spots. For this it is inconvenient to have to set new sensors, or tune all old o
each occasion a new spot is added. A simpler solution is to propagate events coming fro
these spots to a single anchor spot. Sensors can then be tuned to this anchor.

This scheme can be used in the implementation of a collection class. A collection is a con-
tainer holding other objects. A collection accepts a new object when it receives the add message.
But this new element is not encapsulated by the collection. It can still receive messages fr

1. The solution we present for connecting interface objects to application is, in fact, quite close to the
lution adopted in the NeXTStep software kit with Interface Builder [6].

<Bar_Button, clicked>

Foo_Button

Bar_Button
Appl_Obj

beeper

bar

foo

beep

tune

raise

call

 S2

 S1

<Foo_Button, clicked>

Figure 2 Two buttons are composed with an application object (App_Obj) and the
“beeper” object through two sensors (S1, S2). The sensors are tuned to spots
<Bar_Button, clicked> and <Foo_Button, clicked>, respectively, and react to
events by sending messages.

J. Vitek, et al. 351

erenc-
f the
is spot

ection

a spot
e cre-

he

of the

-

outside and can be freed without the collection being informed. This leads to dangling ref
es.1 To prevent this from happening, we propagate all “freed” events coming from one o
collection’s elements to a single spot known by the collection. Then, a sensor tuned to th
removes the freed objects from the collection.

We define a sensor s with a collection object in its context and a request to this coll
to remove one of its elements as the sensor’s action.

s is a sensor
with context Collection
and parameters Source, Event, Free_Object
and action [call, Collection, remove, Free_Object]

When the collection class creates a new instance, part of its behaviour is to claim
where the “freed” events from the collections’ elements will be propagated. A sensor will b
ated and tuned to that spot.

[claim, New_Collection, element_freed]
[sensor, s, New_Collection] [reply, S1]
[tune, S1, New_Collection, element_freed]

Then, whenever the new collection object receives an add message, it sets propagation from t
<New_element, freed> spot to its own <Self, element_freed> spot.

[propagate, New_element, freed, Self, element_freed]

The resulting configuration is shown in Figure 3. When a “freed” event is raised by one
elements of the collection with the following message:

[raise, Self, freed, Self]

1. Dangling references are only a problem in languages with explicit deletion (C++, Objective-C). Lan
guages with garbage collection (Smalltalk-80, Eiffel, Lisp) are exempt from this problem.

CollectionAn_element
 S1remove

free

<Collection, Element_freed><An_element, freed>

Figure 3 When an element of the collection is freed as a result of another object’s message,
an event is raised and propagated to the <Collection, Element_freed> spot. S1 is
triggered and its action is to remove the element from the collection.

352 Events and Sensors

ge:

 to

board
ts can,
pot, a
 interest-

atural
 sensor,
on of
ntrate on
us in-

 object
cts.

ntation
ly flex-
 some

nsors:
osition.
the im-
ate and
ents and
ther and
 tuning
ensor is
nect by
ould be
 based
 visual
tion

 sys-
taking
t, par-
ls with
this event is propagated to the collection’s spot. This is equivalent to sending the messa

[raise, Collection, element_freed, Element]

The sensor S1 is triggered, and it sends a remove message to the collection with a reference
the freed object as argument.

Another application of the event/sensor model is in the implementation of a black
mechanism for the communication between objects. A blackboard is a place that objec
freely, write to and read from [9]. The blackboard itself can be implemented by a unique s
system-wide anchor to which events can be propagated and sensors tuned. Thus objects
ed in reading from the board need only to tune sensors to the anchor spot.

Events can also play a role in debugging object-oriented application. Events are n
breakpoints and sensors can be used to monitor the execution of objects. Using a simple
like the one introduced in section 3 (i.e. the printer), it is possible to follow the computati
any object that raises events. Since sensors are by nature selective, it is easy to conce
significant aspects of the object system under investigation and filter out all the extraneo
formation. Sensors can also perform more complex actions, like printing the state of an
or even giving control to the user and allowing him or her to interact directly with the obje

Although we have presented our examples in an abstract way, there are impleme
considerations that are crucial to the usability of the mechanism. For example, to be real
ible, one should be allowed to define sensors on-the-fly. In the next section we will discuss
important implementation considerations.

5. Implementation Considerations

Two directions can be distinguished in the realization of software composition using se
the events and sensors mechanism itself and the environment supporting software comp
The first task is to design and implement the kernel for sensors. Such a kernel includes
plementation of the ether and the design of the programmatic interface used to define, cre
delete sensors and spots. The second task is to provide a higher level user-interface to ev
sensors. For instance, one such interface could provide a visual representation of the e
the animation of an execution. This interface should also ease the task of defining and
sensors by providing a visual shorthand for some standard sensors. If the same kind of s
used over again, a development environment could visually represent the objects to con
boxes and, by connecting these boxes with a particular colored line, a specific sensor w
created and tuned. We are currently developing an environment for software composition
on the paradigm of visual scripting; events and sensors are part of the features of the
scripting tool VISTA [7]. We will now concentrate our discussion on important implementa
issues of the event and sensor mechanism.

• Efficiency. Efficiency, or rather the lack of it, has been a major concern for many
tems that use some form of triggering concept. In our case, we see optimizations
place on two levels. First and foremost, the generation of events has to be efficien
ticularly, generating unnecessary events has to be avoided. The second level dea

J. Vitek, et al. 353

ing to
on can

ints:
tion of

of in-
e user
ts the
are
e.g. at
m a

 the
 object
s of ac-
oon

s two
he time

iffi-
t would
 to dis-
t gar-
y time,
 a re-

rence to
xt, this

ences,
er this

sors
cre-

ted?
 spots

tem

fore
finding and activating sensors. By tuning sensors to specific spots we avoid hav
search among all sensors for the ones interested in a particular event; optimizati
thus be focused on making their activation and execution efficient.

• Scheduling Policy.Our general policy towards scheduling can be stated in two po
(1) events are handled immediately after being raised, and (2) the order of execu
sensors tuned to the same spot is non-deterministic.
However, this policy does not fit all situations, such as for example, the activation
tegrity checks in databases or CAD applications. In this case, it is better to let th
decide the appropriate time for processing the integrity checks [3] [5]. This sugges
implementation of some sort of batch mode, where sensors are turned off and events
queued while the user is interacting with the system. At some user-defined point (
the end of a long transaction) sensors are reactivated and events are replayed frohis-
tory file.
The choice of the implementation language will play an important role regarding
handling of events. If the objects can execute concurrently it is possible to have an
raise an event and continue executing. Sensors can then define concurrent thread
tivity. For a sequential language1 there are two possibilities: process the events as s
as they are raised with the object blocking until the event is processed2, or buffer them
and poll for events at certain intervals [4]. For our purpose, the polling model ha
disadvantages: the event loop is not transparent to an application designer and t
between polling phases can be arbitrarily long.

• Referential integrity. Ensuring the integrity of a sensor’s context presents some d
culties. A context has been defined as the set of acquaintances of one sensor. Wha
happen if one of these acquaintances became, for any reason, invalid? We have
tinguish between systems with and without garbage-collection. In systems withou
bage-collection any object referenced in the context of a sensor can be freed at an
which automatically invalidates the sensor’s action. In garbage collected systems
verse problem occurs: no object can be destroyed as long as there is a single refe
it. This means that as long as there are sensors referencing an object in their conte
object cannot be freed. We propose that the context be composed of “soft” refer
that is, references to objects that do not prevent them from being freed but, whenev
occurs, dependent sensors should be deactivated.

• Extensibility . A major requirement for composition is to be able to define new sen
on-the-fly, while the system is executing. This implies the availability of either in
mental compilation or interpretation of the sensor’s action.

• Generation of events. What events, with what kind of arguments, should be genera
At what point in the object’s computation should they be generated? Where are

1. We only take into account events generated by objects inside the application; external events like sys
interrupts are treated separately.

2. Note that recursive events on the same spot will result in an event’s processing being terminated be
that of its predecessor.

354 Events and Sensors

ng the
ey are

e object
ndard

e sen-
 appear

d ex-
o these

such as

upport
ecking
ization
rbitrary
occur-

 When
 called a
th-
te other
rry out

 Ob-
madic,
erves to
ent.

quire-
te soft-
mpo-
claimed? Who codes this? These questions will play an important part in determini
reusability of objects. Most events should be placed by the class designer since th
a integral part of class design and care should be taken not to raise events when th
is in an inconsistent state. It is conceivable to generate automatically certain sta
events, for example at the beginning and the end of methods.

• Interface specification. The events generated by an object, and to a lesser extent th
sors this object creates, are part of the interface of the class and should therefore
in any description or documentation of the class.

This list outlines some outstanding problems. Further investigation of related work an
perimentation with prototypes are necessary before we can give satisfactory answers t
problems.

6. Related Work

Many of the concepts we have discussed are familiar to us from various other domains,
databases, operating systems, office systems and distributed systems.

Dittrich et al. have developed a generalized event/trigger concept as the basic s
mechanism for semantic rules in advanced database applications allowing for flexible ch
times and arbitrary actions in case of rule violation [5]. There, an extension and general
of existing trigger concepts is made so that actions are defined and associated with a
events not only to some limited situations (i.e., the begin or end of a DB operation, or the
rence of certain DB state or state transition).

A common space communication model, called Generative Communication, has been pro-
posed by Gelernter [2] as a fundamental communication model for distributed systems.
two processes communicate, the data-producing process generates a new data object,
tuple, and sets it adrift in a region called tuple space. The receiver process, having made a wi
drawal request, may now access the generated tuple. Similarly, processes which crea
concurrently executing processes generate ‘live tuples’ in the tuple space. Live tuples ca
some specified computation of their own and then turn into ordinary data tuples.

Implementations of KNO (KNowledge acquisition, dissemination and manipulation
jects)[9] environments enhance object-oriented systems with objects that are active, no
adaptive entities. Triggers have been introduced in these systems as a feature which s
initiate activities in objects enabling them to respond to events occurring in their environm

 All these approaches attempt, in a way, to provide a framework which satisfies the re
ments of heterogeneous and evolving systems. It is in this context that we seek to facilita
ware composition by providing more flexible mechanisms to enhance compatibility of co
nents.

J. Vitek, et al. 355

f
r exam-

correct
cular to
 class).
 and a
e of the
 to the
oviding
ynamic

kspace.
ripts

 exam-
 audio
atterns

rspec-

jects
ing to a
ng
d with
 events
ents as
del in

m, while

,

89.

 Ac-

 GI,

cha-
ice,
7. Prospects and Conclusions

Although we have proposed an approach to enhance the openness of objects for the purpose o
software composition, we can consider the use of these concepts in other domains, as fo
ple: exception handling mechanism and customization for a workspace.

Exception handling mechanisms are needed when situations like range errors, in
calls, protocol errors, etc., occur. We note, however, that these exceptions are not parti
any individual object of a class (i.e. the same range error can occur in any instance of a
Therefore, we could think about events being propagated from instances to their class
unique sensor being tuned to the class. In this way, all exceptions raised by any instanc
same class would be handled in the same manner. Apart from being a natural solution
problem, this approach has advantages over other exception handling techniques by pr
facilities such as: the parametrization of sensors, handling of recursive exceptions and d
redefinition of response.

The use of sensors can also be envisioned as a customization mechanism for a wor
Until now most of the customization in Unix environments is done at the level of shell sc
and environment variables. If applications are objects themselves it is possible to put, for
ple, a sensor on the mail application. This sensor could warn the user of new mail by any
or visual cue deemed appropriate. It could even check mail against certain user-defined p
and start a text editor when mail meets these criteria.

The event/sensor model contributes to software composition by providing another pe
tive for class design and application design. We are currently investigating teams as a paradigm
for high-level structuring of applications. Such a paradigm is an organizing principle for ob
of an application. A team consists of a set of objects dedicated to a special goal accord
set of local event/action rules. A team manager is the representative of a group of cooperati
objects. It distributes responsibilities and coordinates communication inside the team an
the outside community. While objects within a team may be accessed from outside, the
they raise are internal, i.e. visible only inside the team. The team manager may raise ev
part of an action for the benefit of other teams. This paradigm is an abstraction of our mo
the sense that the context of a set of sensors is embodied in the set of objects of the tea
the sensors’ actions correspond to the action part of the rules.

References

[1] T. Biggerstaff and C. Richter, “Reusability Framework, Assessments, and Directions”, IEEE Software
March 1987.

[2] N. Carriero and D. Gelernter, “Linda in Context”, Communications of the ACM, vol. 32, no. 4, April 19

[3] U. Dayal, A. P. Buchmann and D. R. McCarthy, “Rules Are Objects Too: A Knowledge Model For An
tive, Object-Oriented Database System”, in Advances in Object-Oriented Database Systems, Springer-Ver-
lag, 1988.

[4] R. D. Hill, “Event-Response Systems - A Technique for Specifying Multi-Threaded Dialogues”, CHI +
ACM, 1987.

[5] A. Kotz, K.R. Dittrich and J.A. Mülle, “Supporting Semantic Rules by a Generalized Event/Trigger Me
nism”, Proceedings International Conference Extending Database Technology, Springer-Verlag, Ven
1988.

356 Events and Sensors

rds

. 12,

d ma-
87.

OOP-
[6] NeXT 1.0 Preliminary Technical Documentation.

[7] O.M. Nierstrasz, L.Dami, V.deMey, M.Stadelmann, D.Tsichritzis and J.Vitek, “Visual Scripting - Towa
Interactive Construction of Object-Oriented Applications,” in Object Oriented Development, ed. D.C.
Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1990.

[8] L.A.Stein, “Delegation is Inheritance”, ACM SIGPLAN Notices, Proceedings OOPSLA 87, vol. 22, no
pp. 138-146, Dec 1987.

[9] D.C. Tsichritzis, E.Fiume, S.Gibbs and O.Nierstrasz, “KNOs: knowledge acquisition, dissemination an
nipulation objects,” ACM Transactions on Office Information Systems, vol. 5, no.1,pp. 96-112, Jan 19

[10] D.C. Tsichritzis and O.M. Nierstrasz, “Application Development Using Objects”, in Information Technology
for Organizational Systems, Proceedings EURINFO’88, Elsevier Science Publishers B.V. 1988.

[11] P. Wegner, “Dimensions of Object-Based Language Design,” ACM SIGPLAN Notices, Proceedings
SLA’87, vol. 22, no. 12, pp. 168-182, Dec 1987.

	Events and Sensors Enhancing the reusability of objects
	2. A Minimal Object Model
	3. Events and Sensors
	4. Software Composition Using Sensors
	5. Implementation Considerations
	6. Related Work
	7. Prospects and Conclusions

