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A B S T R A C T 

Many researchers believe that object-oriented languages are well suited for some of the programming 
tasks associated with the building of an office information system (OIS). To lend support to this thesis, 
we shall concentrate our attention on an object-oriented programming environment, named Oz, which has 
been effectively employed to capture certain aspects of OISs more simply and naturally than with 
conventional languages. After pointing out some of the limitations of Oz, we introduce additional facilities 
into it which further enhance its capabilities, especially with respect to the management of office data. 

1 . I N T R O D U C T I O N 

One of the means of evaluating the utility of a programming language is to measure the effort 
associated with the programming of particular applications. It has been argued that by this standard, 
object-oriented languages are appropriate for the implementation of OISs (NIER85). A straightforward 
way to defend such a proposition is to demonstrate that essential characteristics of OISs can be captured 
more readily by the object protocol of a given object-oriented language than by the constructs associated 
with conventional programming languages. 

This was the impetus for developing Oz, a prototype object-oriented programming environment 
implemented at the University of Toronto (NIER83, MOON84, TWAI84]. While Oz bears comparison to 
general purpose systems such as Smalltalk, it is distinguished by features which reflect its intended use as 
a tool for building OISs. These features in turn reflect the designers view of what an OIS is. This requires 
some elaboration. 

In the office place of today, an OIS has come to refer to an aggregation of software often including 
word processing, graphics, electronic mail, database management and spreadsheets. In the more 
sophisticated of these systems, such as Lotus 1-2-3 and Symphony, a certain level of integration is 
achieved by allowing data flow among the constituent programs. 

Research in OIS is directed towards more than just the development of integrated software tools with 
increased functionality and ease of use. These tools assist the office worker in performing his tasks. 
However, they are passive in that they do not initiate or control the processing of office tasks [LOCH83, 
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W0085] . To increase office productivity, an OIS should be able to capture, manage, and perform office 
activities (LOCH84]. 

Office activities have been described in the literature [HAMM80, MORG80, SIRB81] as being event-
driven and semi-structured. They exhibit a high level of parallelism requiring synchronization and 
coordination. They alternate between active and suspended states which are distributed in time and 
space. They frequently involve the manipulation of highly structured documents which possess certain 
constraints and functional capabilities not generally associated with databases [NIER85]. The focus of 
attention in Oz is the automation of these office activities. 

It has been shown elsewhere [NIER85] that Oz accomplishes what it set out to do. In this paper, we 
try to indicate some of what Oz doesn't do, or at least, doesn't do well. Our attention is focussed on the 
representation and handling of office data, which is achieved in a cursory manner in Oz. We present an 
enhanced implementation of Oz and illustrate its effectiveness. 

2. OZ 

For those not familiar with Oz, we offer a brief overview. Oz objects are entities composed of 
content* (data) and behaviour (program). The contents of an object are composed of an aggregate of 
instance variables. These variables have values of type string, integer or pointer (these are unique object 
instance id values). The behaviour of an object consists of a set of rules. 

Oz object instances are organized into classes. The members of a class have the same behaviour but 
are distinguished by the values of their contents. Classes are organized as nodes in an m-ary tree 
structure, and inherit instance variable definitions and rules from parent nodes. 

A class definition for employee objects could take the form: 

employee : person{ / * class - employee, superclass - person */ 

/* instance variables */ 
emp-no : integer; /* employee number */ 
s-visor : supervisor; / * pointer to an employee's supervisor object */ 
status : string; /* current status */ 

/* rules */ 

} 
An employee object might inherit such instance variables as name, birth-date, address, phone-no,... from 
the person superclass as well as the rules governing the manipulation of these variables. 

Oz objects communicate by passing messages which attempt to invoke rules. An Oz message specifies 
the id (all Oz objects have unique system generated ids) and class of the sender as well as the class, rule 
name, rule parameters, and (optionally) the id of the receiver. If this id is not specified, the message finds 
its way to an instance of the receiver's class that allows for the formation of an event (events are discussed 
shortly). An invoked rule may return a value to the sender. 

Rules may be invoked by rules within the same object or within other objects. Rules consist of 
conditions and actions. The conditions must all be true before the actions of a given rule can be 
performed. Conditions can specify the acceptable classes of objects invoking the rule (these classes are 
referred to as the rule's acquaintances), the state of the object (the value set of its variables) containing 
the rule, and the state of other objects. Actions correspond to "program'' components. Associated with 
each object class are two rules which have all the characteristics of other rules in addition to the following 
special functions. The alpha rule when invoked will cause an object instance to be created. The omega rule 
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will cause an object instance to be destroyed. These rules are necessarily the first and last rules invoked in 
the lifetime of an Oz object. 

The Oz code fragments below illustrate how the state of other objects is ascertained. The get-super 
rule finds an unspecified available member of the supervisor class. The get-super-name finds the name of 
the specified supervisor. 

employee : person { 
emp-no : integer; 
s-visor : supervisor; 

/* get a supervisor rule */ 
get-super(){ 

/* only administrator can invoke rule */ 
: administrator; 

/* supervisor object temporary variable */ 
s : supervisor; 
/* supervisor must be available */ 
s.available = "yes"; 

/* assign supervisor */ 
s-visor : = s; 

supervisor : person{ 

}() 

/* instance variable - availability */ 
availability : string; 

/ * availability rule */ 
available(){ 

/* only an employee can invoke rule */ 
: employee; 

/* return availability */ 
}(availability) 

/* name rule */ 
give-name(){ 
}(name) 

/* get a supervisor's name rule */ 
get-super-name(emp-num) { 

: administrator; 
/* employee no. */ 
emp-num : integer; 
/* temporary variable */ 
name : string; 
/* looking for employee with */ 
/* employee number emp-num */ 
emp-no = emp-num; 

/* get name from supervisor */ 
name : = s-visor.give-name(); 

/* return name */ 
}(name) 

If no acquaintances are specified in the conditions of a rule, the rule will be invoked when its 
conditions become true. This gives Oz objects a kind of autonomy not found in other object-based 
systems [NIER85]. Another feature of Oz that is somewhat unique is the way in which it forms events. 
Even when the conditions of a rule are true, its state changing actions will not be performed unless all the 
conditions of its invoking acquaintance (if it has one) are true. This requirement is applied recursively to 
each acquaintance. As each rule may have many conditions, each of which may invoke rules in other 
objects, an m-ary tree of associated objects is formed (potentially). Only when the conditions in all these 
rules are true will all the state changing actions be performed simultaneously. This is the fundamental 
unit of change of state in the object universe (rather than the firing of individual rules). Thus Oz offers a 
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powerful event-driven model of computation [NIER85]. 

3 . E N H A N C E M E N T S T O O Z 

The ability to model real world structures naturally is a hallmark of object-oriented systems [GIBB84). 
Naturally in this context implies a simple mapping from user conception to object representation. Oz 
however, offers only a primitive method of representing office structures. 

The contents of an Oz object resemble database relations. The correspondence of object class to 
relation, object contents to tuple, and attributes to instance variables is immediately apparent. Both the 
relational model and the Oz object model require that attributes and instance variables, respectively, have 
simple data values. It should be clear that the encoding problems associated with relational models are all 
present in Oz. These problems can be illustrated with an example. 

Consider a university which must keep information on its students which includes the courses they 
have taken and the marks received. A student record can be represented as: 

student(sfu-no, stu-name, (course, grade),...,(course, grade)) 

A consistent first normal form (lNF) relational schema is: 

student(«t«-no, stu-name) 
grades(at«-no, course, grade) 

We note the following: 

1. The loss of the "object" nature of the student record (its information content has been distributed 
into two relations). 

2. The "flattening" of a set-valued field into multiple tuples. 

3. The introduction of an attribute that is artificial in the sense that it doesn't reflect an attribute of the 
entity under consideration but only establishes tuple relationships (the stu-no in the grades relation). 

Not only does this encoding require a translation effort by the programmer, but it also increases the 
operational complexity associated with record manipulation. Record creation and deletion are no longer 
associated with a single record but rather with two relations and multiple tuples. Queries and updates are 
similarly affected. There is an existence dependency relationship of grades on student (a set of grades 
must be associated with an existing student, though the converse is not true). The relational 
representation does not reflect this dependency, whereas it is intrinsic to the structure of a student record. 
In general, increased encoding requires an increase in integrity constraints [MAJE84]. 

With Oz, the analogous problems are more critical. Not only would the data associated with a student 
record be distributed in two object classes, but the operations associated with this data would be as well. 
It has been shown that this kind of distribution of operations leads to enormous increases in Oz 
programming effort [WEIS85], 

In response to these considerations Oz has been modified in the following manner. Objects are 
allowed to aggregate not only any number of simple types (string, integer, pointer) but other objects as 
well, each of which in turn may do the same. Simple types and objects may have set occurrences. An Oz 
student object might now have the syntax: 
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student { 
stu-no : int 
stu-name: string 
grades { 

course : string 
grade : int 

}* 
parent-names: string* 

The * indicates a set occurrence. Repeating groups (such as grades), which occur commonly in office data, 
are directly representable as contained objects. In general, Oz now allows for the hierarchical 
representation of data within objects. This is significant in that a very common office structure—the 
electronic document—is hierarchical in nature. 

For purposes of clarity, we shall refer to those objects contained within an object class contents 
definition as contained objects (i.e., grades is a contained object). The hierarchical structure of an object's 
contents may be thought of as a tree; the root corresponding to the object itself, the intermediate nodes 
to contained objects and set occurrences of simple type, and the leaf nodes to simple type variables. A set 
of operations must be provided that allow the manipulation of the data contained in this tree. The current 
version of Oz provides a primitive set of operations that allows for traversal of this tree along with node 
creation, deletion, and updates. Future versions of Oz will provide more sophisticated operations 
[WEIS85]. (These operations are not detailed here as they are the familiar ones associated with 
hierarchical databases.) 

Contained objects may be defined in terms of existing object class definitions. The contained object 
thus defined inherits the contents structure and rules of the named object class. (The "existence 
restriction" on object classes removes the possibility of either direct or indirect recursions in object 
definitions.) Contained objects which inherit class definitions may not have set occurrences and may not 
be themselves contained within other contained objects. Without these restrictions, the interpretation of 
inherited rules becomes extremely complex [WEIS85]. Note that by this mechanism, we are providing Oz 
with multiple inheritance capabilities. Ambiguous rule names are resolved by choosing the first rule 
encountered in a breath-first search of the class inheritance network. 

Text is introduced as a simple data type. This is a step in the direction of representing all common 
office data types (textual, graphical, audio, etc.) in a uniform manner within Oz objects and providing a 
set of operations to manipulate them. 

While object containment offers a method of "building* object structures out of other objects, it is 
not suitable for modelling object relationships. Relationship here has the specialized meaning of one 
object being able to communicate directly with some other particular object. In Oz, this can only be 
accomplished by possession of that object's unique id. Pointer types hold such ids in Oz. In our enhanced 
version of Oz, pointer types can be sets. However, the restriction that all the ids of a set of pointers 
belong to objects of the same class is enforced. In this way we can partition classes of objects on various 
criteria. For example, suppose that we have a class of employee objects and a class of department objects. 
Pointer sets in the department objects would relate all the employees in each department to the 
appropriate department object. Thus a department object has direct communication privileges with its 
employee objects. In the original version of Oz, such relationship were not possible. Operations involving 
the employees of a given department would involve a search of all employee class objects to find the 
desired ones. This would represent a substantial processing time overhead when the number of objects in 
the class was great. In addition, if the relationship between departments and employees was other than 
1:N (i.e., if employees could be in more than one department), a new class would be needed whose 
purpose would only be to establish the N:M department to employee relationship. The enhanced version 
of Oz eliminates the need for such artificial constructs. 

Methods are being investigated for enforcing 1:1 and 1:N relationships between object classes in Oz, 
though these have not yet been implemented. 
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A more sophisticated notion of object state has been introduced into Oz. Objects exist in either a 
passive or active state. A passive object is one that has been stripped of its rules and whose data contents 
have been stored as a contained object in a special database object associated with each class. Passive 
objects are not considered in events (as they have no rules to invoke). Active objects have both contents 
and rules. An old office memo kept in a file and a currently circulating memo correspond to passive and 
active objects respectively. 

In a very large object universe, it is likely that only a small percentage of objects need be active at 
any give time, the rest residing as passive objects in their database object containers. Thus database 
objects may hold vast numbers of objects associated with a class. A set of passive objects may correspond 
to different versions of the same conceptual object, such as a form at various times in its history. Such a 
set of passive objects are distinguished from all other objects by possession of the same object id. The 
objects of this set are distinguished from one another by a time-stamp (ids and time-stamps are provided 
for all passive and active objects by the system). Database objects in Oz have been implemented in such 
a way as to provide a rich set of querying capabilities on their contents. The contents structure of an Oz 
object is represented by a set of relational tuples generated by an algorithm similar to the one found in 
[GEBB84]. A standard relational DBMS can then be used to manage these tuples. Database object rules 
can be "built" rather easily in terms of the relational operators associated with the DBMS. 

By replacing each of the simple type values {integer, string, text and pointer) in an object's contents 
by a vector, a set of time-stamped versions of a particular conceptual object can be represented with a 
great saving of space. Each element of the vector is an ordered pair consisting of a data value and the 
time of its last update. The elements of the vector are ordered by increasing time. This is the method in 
which version sets are implemented in Oz, although this fact is transparent at the object level; database 
objects "see themselves" as containing only distinct passive objects. Note that the underlying relational 
DBMS makes it particularly easy to implement these vectors (they correspond to sets of 2-tuples). 

A passive object can be created from an active object by invoking the omega-db rule (which replaces 
the omega rule in the original version of Oz) associated with an object class. Invocation of this 
parameterized rule may result in one of the following: 

1. The storage of the contents of the active object as a time-stamped passive object followed by the 
destruction of the active object. In addition to their own object ids, all active objects carry the irf of 
the passive object from which they were created (unless, as explained later, they were not created 
from a passive object). Thus active objects are returned to their version sets. 

2. The storage of the contents of the active object as a time-stamped passive object without the 
destruction of the active object (version retirement). 

3. The destruction of the active object without storage as a passive object (object contents will not be 
needed at a future time). 

The alpha-db rule creates an active object from a passive one by providing the converse capabilities of the 
omega-db rule. These are: 

1. The creation af an active object using the contents of a specified passive object which is then 
destroyed. Specification is provided by passing a passive object id to the alpha-db rule. By default, 
the newest member of a version set is used. A selection query on the database object would be the 
likely method of obtaining a particular id. For example, an administrator might select a contained 
object in the student database object with a particular student number and then invoke the student 
class alpha-db rule with the selected id. 

2. The creation of an active object from a member of a set of time-stamped passive object versions. The 
id as well as the time-stamp which specify the passive object would likely be obtained by selection of 
a passive object based on a time-sensitive query. Possible time related selection criteria include oldest 
and newest members of a version set as well as closest to a given time. 

3. The creation of an active object whose contents are not obtained from a passive object. The objects 
contents would be initialized by the alpha-db rule itself (i.e., the actions of the rule would include 
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instance variable initialization). 

Objects created by (3) are newly "born" as opposed to objects in (1) and (2) which are "reincarnations" 
(TSIC85). Objects may also "pop" into existence in a passive state. These objects would be created by 
subverting normal object protocol. One might wish to initialize an object universe by loading database 
objects with passive objects, as opposed to starting a system up with an empty object universe. Many 
examples can be found where this is the appropriate method of doing things, though care must be taken 
to assure that the active counterparts of these objects will not produce inconsistent or fatal system states 
[WEIS85]. 

Active object management involves the storage and retrieval of active objects, as events must be 
found and executed. Since objects of the same class share the same behaviour, it is only necessary to store 
that behaviour once [NIER85]. As objects in a class are distinguished by their contents, the contents of 
each object instance must be stored. 

The behaviour of a class will usually include inherited rules. As these rules already exist, they can be 
referenced rather than copied in the class that inherits them. This elimination of "code" redundancy can 
result in substantial space savings because of the multiple inheritance capabilities of Oz. 

At any point in time, the set of all active objects can be partitioned on the basis of current 
participation in the formation of an event. While those objects participating in event formation must be 
in primary memory, those not participating may conveniently reside in secondary memory. This is of 
interest, as there will always be some bound on the number of active objects that can exist in primary 
memory (we are assuming that primary memory is large enough to hold the objects involved in the 
formation of a given event and that secondary memory is sufficiently large to hold the entire object 
universe). In the original implementation of Oz, this issue is masked by the reliance on the virtual 
memory support of an underlying operating system (UNIX1). There are many reasons why Oz should 
provide its own virtual memory support [TWAI84, NIER85, WEIS85J. Towards this end, the current 
version of Oz implements the following active object memory management policy. 

A copy of the contents of each active object resides in secondary memory. The location of a particular 
object's contents can be generated by a table lookup based on the object's unique id. When it is 
determined that an object is needed for event formation, its contents are copied into primary memory, 
unless a copy of its contents already exist there. If an event occurrence induces changes in the state of this 
primary memory copy, the copy in secondary memory is updated to reflect these changes. The primary 
memory copy is not deleted until space is needed to bring in other objects for other events (this saves 
recopying the object in from secondary memory if it participates in an event in the near future). In this 
manner secondary memory remains coherent and as up-to-date as possible [NIER85]. (Even if primary 
memory is wiped out by a system crash, a consistent object universe state remains in secondary memory.) 
Furthermore, primary memory is well utilized, and the amount of object content copying between 
primary and secondary memory is reduced. 

4 . C O N C L U S I O N S 

We have demonstrated how complex data structures can be represented and manipulated within 
objects. This is a significant step in the direction of making Oz an effective programming tool. 

By allowing objects to be moved back and forth between passive and active states, we allow the user 
to assist the object manager in partitioning the object universe on the basis of object activity. This is an 
important consideration since any practical system will have bounds on primary storage space and event 
processing time. The object manager can now consider objects on the basis of their "activity level" in 
forming events, whereas previously it could not differentiate objects on this basis and was required to 
consider them all equivalently. 

In addition to this, querying on the passive object contents of the object world equivalent of databases 

1. UNIX is a trademark of Bell Labs. 
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can be performed quite effectively using analogs of the relational calculus [WEIS85]. 

Other areas of current research on Oz include improvements in the efficiency of the tasks performed 
by the object manager: event management, and object storage and retrieval. Design criteria for a 
sophisticated user interface for Oz are also being developed. 
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