1

Explicit Namespaces

Franz Achermann, Oscar Nierstrasz

Software Composition Group, University of Befne

Abstract. A namespace is a mapping from labels to values. Most programming
languages support different forms of namespaces, such as records, dictionaries,
objects, environments, packages and even keyword-based parameters. Typically
only a few of these notions are first-class, leading to arbitrary restrictions and lim-
ited abstraction power in the host language. Piccola is a small language that uni-
fies various notions of namespaces as first-dtagss or extensible, immutable
records. By making namespaces explicit, Piccola is easily able to express various
abstractions that would normally require more heavyweight techniques, such as
language extensions or meta-programming.

Introduction

Virtually all programming languages support various notions of namespaces, or sets of
bindings of labels to values. These include:

L]

Interface. Objects have a set of named methods.

Scopesldentifiers are bound in the enclosing static or dynamic scope.
Package A package provides a set of named services or components.
Keyword-based parameters Arguments to services are bound by keywords in-
stead of position.

Typically, however, these notions are supported in different ways by a language, and
each carries its own restrictions. This leads to a number of problemsfldable
namespacedgrozen scoping rulesandlimited abstraction

Inflexible Namespaces. An inflexible namespace can lead to name clashes. In
open systems where components may be added or replaced at runtime, name clashes be-
tween components from different applications, domains, or vendors can cause system
failures. The following lists symptoms that are due to inflexible namespaces:

L]

Flat namespacs. In older versions of Smalltalk, all classes must have unique
names. To avoid name clashes, developers must follow naming conventions.
Smalltalk Agent was one of the first Smalltalk implementations that provided
namespaces. Now, most Smalltalk systems support namespaces. Similarly, clas-

1. InProceedings Modular Programming Languaged. Jurg Gutknecht and Wolfgang
Weck (Eds.), LNCS, vol. 1897, Springer-Verlag, Zirich, Switzerland, September 2000, pp.
77-89.

2. Authors’ addresstnstitut fur Informatik (IAM), Universitat Bern, Neubrickstrasse 10,
CH-3012 Berne, Switzerlandel: +41 (31) 631.4618ax: +41 (31) 631.3965.

E-mail: {acherman, oscar}@iam.unibe.ch. WWW:http://www.iam.unibe.ch/~scg.

This work has been funded by the Swiss National Science Foundation under Project No. 20-
53711.98, “A framework approach to composing heterogeneous applications”.

http://www.iam.unibe.ch/~scg
mailto:acherman@iam.unibe.ch,oscar@iam.unibe.ch

sic C++ has one static namespace. Standard C++ [6] introduces namespaces as an
additional language feature.

« Fixed namespacs. In Java, each package has its own namespace for classes.
Packages are nested, but inflexible. Two frameworks which — by chance — use
the same package names, cannot be merged. The “solution” is to propose (internet
wide) unigue package naming conventions.

¢ Restricted Scoping Python [14] has only three kinds of namespaces: one for glo-
bal objects, one for class scope, and one for local block invocations. Although
functions are first class values in Python, nested functions do not have closures.
However, closures can be simulated by specifying values as default arguments.

e Static Services Normally the run time environment (or the operating system)
provides some static services. These services include printing to the console or
accessing the local disk. These services normally operate within an implicit con-
text. For example, the context defines where standard output should go (to the
console or to a file), or the GUI context contains the look and feel of the user in-
terface. It is in general not possible to adjust this context only for certain parts of
an application. For instance, a developer might wish to redirect output of some
threads to the console, while other threads may output to the null device.

Frozen Scoping Rules. Most modern languages use static scoping. Identifiers
are visible within the block where they are declared and may also be visible in blocks
that are statically (i.e. textually) nested within that block. Identifiers in the scope of a
module or package can be exported to be used in other modules.

In contrast to these statically scoped languages there exist languages with dynamic
scoping, like Postscript. Identifiers are looked up following the call stack. Dynamic
scoped language are often considered less safe to use and require more care to program
in. However, there are also abstractions implemented in dynamically scoped languages
that are hard or clumsy to implement in statically scoped languages. Such abstractions
include properties that do not align with the functional structure and cannot be localized
in modular units. Examples include failure handling, synchronization and coordination.

Limited abstraction. The fact that namespaces are not available at runtime lim-
its arbitrarily the expressive power of abstractions. A typical symptom of limited ab-
straction is programmers having to write a lot of boilerplate code. Examples of desirable
abstractions include:
* A generic synchronization wrapper that wraps all the methods of an object to run
in mutually exclusive mode. The inability to abstract over all methods of an object
(in Java, for example) forces us to define a subclass that overrides each method
to include the same synchronization code.
< An abstraction to generate proxies. A common use of proxies is to make distribu-
tion transparent. The proxy has the same interface as the original server object,
but delegates all calls to the server object over the network. The proxy has similar
code for all methods: it transfers arguments over the network, invokes the remote
service, and waits for the result. For instance in Java RMI, thertookutomat-
ically creates RMI proxies for remote objects out of their object code. But it is not
possible to program the functionality of this tool directly in Java, without reading

and writing Java bytecode. The reflection suppojtaivea. | ang. ref | ect only

allows one to inspect code, but not to change it.
We address these problems by unifying namespadesnas In section 2 we briefly
present Piccola, a small language that introduces explicit namespaces as forms. We il-
lustrate how forms overcome the problems we have listed. In section 3 we present two
applications of dynamic namespaces that demonstrate how the uniform treatment of ex-
plicit namespaces allows simple abstractions to be implemented in Piccola that would
require more heavyweight approaches such as metaprogramming or compiler exten-
sions in other languages. Finally, the last two sections present related and future work.

2 Piccola

Piccola is designed to be a general purpose “composition language” [1][2]. That is, it is
designed as a language for composing software components which may be written in a
separate implementation language. Piccola’s job is to express how components are con-
figured, and to provide the connectors, coordination abstractions and glue abstractions
needed to configure components. As such, the problems listed in the introduction are
especially important for Piccola. We tackle these problems by unifying all related no-
tions of namespaces fisms(immutable, extensible records):

Everything is a form: Namespaces, contexts, interfaces, parameters, abstrac-
tions, scripts and objects are all modelled as forms. This unification leads to an extreme-
ly simple language, and allows us to abstract uniformly over all these related concepts.

Static and dynamic nhamespaces: Both client and server contexts are ex-
plicitly named, giving abstractions a fine degree of control over both static and dynamic
scoping.

Explicit namespaces: Namespaces can be explicity manipulated and com-
posed, making it quite a simple matter to combine, rename and compose packages or
modules.

Keyword-based parameters: Abstractions are monadic, always taking a sin-
gle form as a parameter, and returning a form (which possibly encapsulates an abstrac-
tion). First class arguments extend the expressiveness of abstractions.

2.1 Separation of Concerns

Structurein Piccola is modelled bjorms Stateis modelled bychannels which are
used to store form&ehaviouris modelled byagents which communicate by sending
and receiving forms through shared channAlsstractionis provided byservices
which are implemented by agents and channels.

Forms. Forms are finite mappings from labels (identifiers) to values. Forms are im-
mutable. The primitive operators on forms exéensionprojection anditeration over

the labels of a form. Form extension concatenates a form with either a single binding or
another form, yielding a new form as a result. Projection looks up a value bound by a
label in a form. Iteration over a form returns the set of defined labels in a form. (Sets are
objects, which are encoded as forms.)

A form in Piccola is defined byscript, which is a sequence of bindings and form-
expressions. Form-expressions are structured using parentheses or indentation, and sep-
arated using commas or newlines, in the style of Python. The comma or newline stands
for the extension operator. Bindings declare either nested forms or service definitions.
The empty form is written g9 . For example:

aForm =
aSubForm = () # a nested form
aService(X): X # service definition
r(count = 3) # form expressi on

The formaFor mcontains the labeksSubFor m aSer vi ce, and all the labels that are re-
turned by invoking the servige If r () returns a form with labelSubFor mor aSer v-

i ce, these bindings will hide the bindings that precede the invocation. The seiwice
invoked with the argument forgount = 3.

Channels. State is represented lohpannels Channels have the semantics of loca-
tions in the asynchronouscalculus [16]. Using channels, we can model blackboards,
locks, reference cells etc. The semantics of Piccola is given in termsrf-tiaéculus
[13], a variant of thetrcalculus in which agents communicate forms instead of tuples.

Agents. Agentdmplement the behaviour of a Piccola program. Agents communicate
along channels and exchange forms. Unlike forms, agents and channels do not appear
in the syntax of Piccola, but they can be directly instantiated, if necessary, by means of
the predefined servicesin andnewChannel .

Services. A service represents a function or procedure. It is represented by a repli-
cated agent that reads from a channel (the service location) and evaluates a form as its
result. The service-protocol specifies how the result channel gets passed from the caller
to the callee [15][21]. Piccola has only four keywords, two of which are needed to de-
fine services. The value returned by a service may be denoteduy. A recursively-

defined service must be declared wdtt , which constructs a fixpoint.

2.2 Static and Dynamic Namespaces

Piccola is statically scoped, and the static context of an agent is always explicitly acces-
sible as a form calledbot . The dynamic namespace of a calling agent, however, is also
available to the service invoked as a form cadlgehm c. (root anddynani c are the
other two keywords of Piccola.)

Labels used in a script are normally looked up inrthee form, and bindings will
extend the oot form. For example, this binding defines a servieeDocunent :

newDocunent (X): w ap(newBasi cDocunent (X))

Agents evaluating form expressions textually below this binding have the identifier
newDocunent in theirr oot form. More explicitly, we could also extend theot form
to include the definition of the servieewDocunent :

(1) root =
(2) r oot
3) newDocunent (X): w ap(newBasi cDocunent (X))

This statement is read as follows: Replace twe form with a new form (Line 1). The
new form is indented. It is the currerdot form (Line 2) extended with the service
newDocunent (Line 3).

Lookup of identifiers is done in theot form. Therefore, the body of thewDocu-

ment service is equivalent to:
root . wap(root. newBasi cDocurent (root. X))

This more clumsy notation stresses the fact that these identifiers are looked up in the

root namespace of the agent implementing the body of the service. Note that the argu-

ment labelX is only defined in theoot form of the service body.

The static scoping offered by these conventions is fine for most purposes, but some
kinds of abstractions can only be conveniently implemented with the help of dynamic
scoping. Thelynam ¢ hamespace of an agent contains whatever is explicitly put there,
and is passed automatically whenever the agent invokes a service. The following
nyPrint| n service includes the current user in its output:

nyPrintln(Text): println(dynam c.user + ":" + Text)

A caller of this service may change its dynamic namespace to include the current user:
dynam c = (user = "John") # change dynam c
nyPrintin("Hello") # invoke service

Note that the dynamic namespace does not break encapsulation. Values that are not
put into this form remain local. The dynamic namespace is useful for passing implicit
information between agents, but it should not be misused as an alternative to explicit
passing of parameters.

2.3 Explicit, First-Class Namespaces
The possibility to explicitly read and assign tlwet hamespace enables us to directly
support the various importing facilities found in other languages, likienghert pack-
age statement of Java or tHeom package importacility of Python. The service
| oad() locates a file containing a script, evaluates it, and returns the form defined by
the script. Assume we have a sctipél | o. pi cl ” with the contents:
File: hello.picl
info: printIn("This is the hello script")
The script defines a form with a service bound biyo. We can now:
« import all the bindings of the hello script and extendraat with them:
root = (root, |oad("hello"))
i nfo() # invoke it
This is equivalent to importing all names from a given module. If the sémfice
is already defined, it will be overridden.
< import all the bindings but keep them in a separate nestechfoimFi | e. This
prevents our oot hamespace from getting cluttered up:

hel |l oFil e = | oad("hel | 0")
hel l oFil e.info() # and use it
< import only the nf o service under a different name:
hellolnfo = load("hello0").info
hel | ol nfo() # and use the service

The reader should note that these mechanisms can be combined. For example we can
import a module, store it under a new name and rename selected services within. By
using first-class forms to represent packages, language-specific import statements or

namespace qualifiers become superfluous. We thereby overcome the problems related
to rigid namespaces mentioned in the introduction.

2.4 First-Class arguments

Services in Piccola are monadic, taking a single form as a parameter. Keyword based
arguments are transferred as nested forms. Since arguments are forms, form extension
allows us to easily modekefault argumentd-or instance, the following generic wrap-
per adds pre- and post- services to a given service:
nyDefaults = #aformwith two (enpty) services
pre: ()
post: ()
wap(X) (Args):
(nyDefaults, X).pre() # invoke pre() in X or nyDefaults
res = X service(Args) # invoke mai n service
(nyDefaul ts, X).post()
return res
The servicew ap is curried. It first expects a form X with three labelse, ser vi ce,
andpost . Invoking the service = wap(..) with a formArgs callspre(), then in-
vokes the service with the pasgeds form and finally callgost () . Observe how the
pr e andpost service have a default. We prefix the argument formith default bind-
ings encapsulated in the formDef aul t s. The projectiorfnyDef aul ts, X). pre will
extract the service bound poe in X, if it exists. Otherwise the default service defined
in nyDef aul t s will be used.

3 Dynamic abstractions

This section will outline two applications using dynamic namespaces that typically
could not be implemented without either language extensions or meta-programming.
The first example implements an exception handling mechanism as a library abstraction
in Piccola, using dynamic hamespaces to pass the exception handler to the context in
which exceptions are raised.

The second example implements an ownership abstraction, realised as a wrapper
for arbitrary forms and an evaluation context that may own certain objects. Only the
owner can execute services of the wrapped objects. This is an example which is not
commonly found as language construct. We conclude the section with some recommen-
dations for disciplined use of the dynamic namespace.

3.1 Exceptions
An exception is raised during program execution as a reaction to some erroneous situ-
ation. The part of the program that detects the erroneous situation cannot handle it. In-
stead, it signals this situation and terminates execution. We say the pragrasnan
exceptionAn exception handler, which was installed at an earlier point during program
execution, catches the error and handles the exception, i.e. brings the system back to a
consistent state.

The problem is how to transmit the flow of control from the place where the excep-
tion is detected to the appropriate handler. A simple approach would be to define some
global exception-holding variables. After invocation of a service, the client is obliged

to check this error state and handle it if appropriated. This solution is clumsy since each
function call must be followed by an error check. It also does not work in a concurrent
system, since all processes would share the same error slot. Another possibility is to ex-
tend the returned value to contain a flag that indicates whether the returned value is val-
id or an error occurred during its computation. This approach requires that we adapt all
return values to reflect the change. Furthermore it assumes that all services have a reply,
which, for example, may not be necessary for distributed notifications.
Our solution is to use the dynamic namespace to transmit the exception from the
raising point to the appropriate handler. The exception handler is set as follows:
try
do: ... # use exception handl er
catch(B): ... # handl e an exception
The servica ry takes a form containing two services. The first isdineservice. Its
body represents the scope of the exception handler. The handler itself is specified as a
servicecat ch(E) whereEis the formal exception value. Whenever an exception occurs
during the execution of thdp: service, this handler is invoked instead of the normal
continuation. Here is the implementation of thg andr ai se services:
(1) raise(E): dynamic.raise(E) # delegate to dynamc raise
(2) try(bl ock):

3) exception = newChannel ()

(4) return Join # start agents left and right
(5) left:

(6) bl ock. cat ch(excepti on. receive())

@) right:

(8) raise(e): # local raise abstraction

(9) exception. send(e)

(10) stop()

(11) dynamic = (dynamc, raise = raise)

(12) return bl ock. do()

The O Joi n service (Line 4) takes two servicé®f(t andri ght) and executes them
concurrently. It returns the result of whatever service first terminates. Consider first the
scenario in which a block is executed that does not lead to an exception:

1. Two agents passed @Joi n are started. The left agent has no impact as it is
blocked on the local exception channel. This agent finally gets garbage collected,
since no one ever will write to the exception channel.

2. The right agent rund ock. do() (Line 12).

3. O Joi n receives the result of the right agent and returns this as the result of the
try statement.

Next, consider the case where the block raises an exception:

1. The two agents are started. The left agent waits on the exception channel.

2. The right agent runs thock. do() (Line 12).

3. To raise the exception in thde() block, the globat ai se(..) (defined on Line
1) is invoked.

4. The globat ai se() delegates the exceptiondynani c. r ai se() which is the lo-
calrai se abstraction (Line 8).

5. The locak ai se sends the exception value along the exception channel (Line 9)
and silently halts using thet op() service. This means that OrJoin will not see
this service terminating.

6. The left agent is the only one to continue, fetching the exceptionsahweking
cat ch(E) and returning (Line 6).

Ther ai se service can be considered as an implicit additional argument passed dur-
ing invocation. This resembles the idiom used when programming with exceptions. The
signature of a service that may raise an exception lookadieri ce(..., Excep-
ti onHandl er e).Compared to this approach, the explicit dynamic namespace has sev-
eral advantages. First, it supports the separation of functional aspect from the error han-
dling aspect. It seems more appropriate to directly relate the formal argument of a meth-
od to its functional aspect, instead of blurring it up with contextual arguments. It makes
code more readable (thus maintainable) when unnecessary parameters are not visible.
Imagine a function which does not raise an exception itself, but is required to pass the
handler down to all services it uses. Finally, dynamic namespaces allow the program-
mer to introduce an exception handler later in the project development without rewrit-
ing code that neither handles exceptions nor detects erroneous situations.

Observe that the exception abstraction cannot be implemented as a simple wrapper
that adds some pre- and post execution code. The reasorris #wtust be accessi-
ble from anywherevithin the executed block.

3.2 Ownership

In our second example we consider ownership of objectawkrableobject belongs
to at most one owner. Only the owner can invoke services of the owned object. An
ownable object can detchedby an owner, which then has privileged access to it. The
owner may release or transfer ownership. A notion of ownership can be used in various
areas: for example synchronization for owned objects can be managed by the owner, or
the owner can take over garbage collection issues on the owned object. Ownership can
guarantee alias free references [17].

To translate an ordinary object into an ownable object, we do the following:

¢ Add an instance variable to store an owner.

« Add methods to fetch, remove, and transmit ownership. Of course, fetch will only
work when the object is not owned for the moment. Remove and transmit are only
possible, if the caller owns the object in question.

« Modify each method such that it expects an owner as additional argument. The
precondition of the method is strengthened, as it is necessary that the passed own-
er be the owner of the object. Only when the passed owner owns the object can
the method be performed, otherwise an exception is raised.

« All calls to the object methods must reflect the change and also include the owner.

Using explicit namespaces, it is possible to (1) build a generic abstractipn
Onnabl e(Form) that wraps all services of the form to check for ownership, and (2) to
build an evaluatorunAsOnner (Bl ock) that runs a block of code with an owner. As-
sume we have object factories to create an owner, and an ownable:

newOnner :

owns(Onnabl e): ... # do we own the ownabl e?

add(Onnabl e): ... # add the ownabl e

renove(Onnable): ... # renove the ownabl e

loseA l: ... # renove all ownabl es we have
newOnnabl e:

addTo(Onner) :

rel ease:

Given an instance of ownabl e, theno. addTo(Qaner) stores the owner, provideds
not already owned, and notifies the owner usinger . add(o) .
Evaluating a block within the context of an owner is now written as:
r unAsOnner (bl ock) :
create new Oaner
dynam ¢ = (dynam c, currentOaer = newOaner())
bl ock. do() # eval uate Bl ock
dynami c. current Onner. | oseA | () # drop all owned
This runs the block within a dynamic hamespace with an associated (initially empty)
owner. Finally, the generic wrapper that makes a form into an ownable form is:
(1) get Current Oaner: dynam c. current Oaner
(2) wrapOanabl e(Form:

3) ownabl e = newOnnabl e() # del egate

(4) newFor m = wr apAl | Lanbda # adapt all services
(5) form=

(6) Form

@) rel easeThi sForm ownabl e. rel ease()

(8) map(service) (Args):

(9) i f (getQurrent Onner().owns(ownabl e))

(10) then: service(Args) # invoke service
(11) el se: rai se(Not Onner Excepti on)

(12) return

(13) newFor m

(14) ownThi sForm ownabl e. addTo(get Cur r ent Oaner ())

The wrapper needs some explanation. Line 3 creates the ownable object as a delegate.
Then all services of the wrapped foRor m extended witlh el easeThi sFor mare mod-
ified by a map function. The new function (Line 9 - 11) checks if the current (dynamic)
owner owns this ownable object. If so it invokes the original service with the given ar-
guments. Otherwise an exception is raised, signalling that the caller does not own the
object. The library serviosr apAl | Lanbda uses form-iteration to get the set of defined
labels (i.e. the exported services) of m

Note that we include the additional servie¢ easeThi sFor m(Line 7) into the map
to ensure that only the current owner may release it. (Transfer of ownership is omitted
in the code). We return the wrapped form (Line 13) extended with the service to acquire
ownership (Line 14).

3.3 Observations
We can draw the following lessons from the two examples:

« Each feature requires a label in the dynamic namespace. Exceptiorns sse
and ownership usesir r ent Oaner to store the context sensitive information. We
assume that these bindings do not conflict with other usages of the dynamic
namespace.

« The users of the contextual abstractions do not need to alycess c them-
selves. Instead it is better to provide static abstractions that access the context sen-
sitive information, e.gget Qur r ent Qaner () in the second example.

< Contextual abstractions are used in pairs: Outside is an abstractiam ygthat
executes a piece of code (e block) within a extended context. Within this
block are clients of the contextual abstraction that invoke the servicedesg)
provided by the surrounding context. Using the contextual service not within the
established context is a type error: it results in looking up a lakusinism c
which is not bound.

4 Related and Future Work

Objects and many different variants of inheritance (e.g. Smalltalk-style vs. Beta-style

inheritance [3]) can also be modelled as applications of forms as explicit namespaces
[23]. In effect self is represented as a form containing the object’s methods. Subclassing
corresponds to extending the form representing self. A form is conceptually simpler

than an object, since it lacks a notion of inheritance. For instance, in Self [25] objects

have a parent link providing inheritance by means of delegation. Therefore, in Self del-

egation is built into the language, whereas we implement it using the forms.

Many scripting languages provide access to the environment by representing it as a
dictionary. Python [14] has built-in functions to return its namespaces as dictionaries to
enable introspection. Modification of these dictionaries, however, is undefined. A dic-
tionary gives the programmer much more freedom than is presently possible with
forms. In particular, labels of forms in Piccola are not first class values, whereas dic-
tionaries for environments often use strings as keys.

Forms can also be compared to Odersky’s variable functions [18]. Variable func-
tions are mappings between sets of arbitrary values (not just from labels to forms), and
can be updated to model state changes.

Namespaces play an emerging role in middleware: For instance the Corba naming
service [19] uses nested namespaces to identify distributed objects.

Future work is required to clarify the relation between namespaces, and security
and authentication issues. In an open system, mobile code runs in two modes: one mode
gives unrestricted access to local resources, while restricted access employs a security
manager to guard access and use of local resources. In the ambient calculus [4] an am-
bient corresponds to an administrative domain. An ambient can only access services
within its domain. An interesting question to explore is whether we can unify ambients
and namespaces.

Pict [20] is a language that takes tlrealculus as a core language and adds func-
tions, assignment etc. as syntactic sugar. We used Pict for experiments in modelling
software composition [22]. Thal_-calculus is a result of these studies. It replaces tuple
communication by form communication. Piccola is formally defined omithealcu-

lus. It adopts the primitives of tiré_-calculus (channels, and parallel composition op-
erator) but makes them available as predefined services which can be overridden if nec-
essary. The form-calculus [23] extends the set of core form operators. The additional
operators are simple label restriction and form restriction to remove labels, and a match-
ing operator to check for the existence of a label. Lumpe has developed a type system
for theri_-calculus [13], but this system cannot be incorporated directly into Piccola,
because it lacks parametric polymorphism and recursive types.

Common Lisp [24] allows the programmer to declare “special” variables to be dy-
namically scoped. Many languages now have features incorporated into their libraries
that allow the programmer to create and use dynamic variables. For instance in Javaz2,
the clas$ ava. | ang. ThreadLocal contains a different value for each thread. Program-
mers use this class to store transaction identifiers or similar constructs.

Applications using dynamic hamespaces have many similarities to programming
with monads in functional languages. Monads are used to model state in a purely func-
tional world [10][26]. The dynamic namespace builds on the notion of clients and pro-
viders of services. It therefore naturally extends to open, distributed systems, whereas
monads are closely related to the lambda calculus.

In the area of object oriented languages, there exist several proposals to better sup-
port separation of concerns within a program. The proposal that seems the most attract-
ing is aspect-oriented programming (AOP) [8]. In AOP, aspects are explicitly separated
from normal classes. Tlaspect weavemerges the aspect into the source code. Using
AOP can greatly reduce the complexity of code [11].

Many of the applications possible using dynamic namespaces can also be imple-
mented using metaobjects and message passing control [5][7]. We consider the ap-
proach with explicit namespaces to be much more lightweight.

5 Conclusion

Piccola is a small language for composing software components. It is intended to be a
general language suitable for expressing many different styles of components and com-
position abstractions. One way it achieves this is by unifying various notions of name-
spaces present in other languages, such as environments, interfaces, objects and pack-
ages, and making them explicitly manipulable as “forms.”

Explicit namespaces make it possible in Piccola to have flexible static and dynamic
scoping, to support various module concepts, and to implement generic wrappers that
go beyond adding pre- and post methods to services. All this flexibility can be achieved
with a minimal set of operators over forms and does not require the use of meta pro-
gramming facilities.

A stable implementation of Piccola is available from the authors’ web site. Work is
ongoing in many areas, including experimental development of compositional styles for
various application domains, reasoning about compositional properties, visualization,
distribution, and flexible type systems.

Acknowledgements

We thank the members of the SCG for stimulating discussions and in particular
Stéphane Ducasse and Matthias Rieger for helpful comments on a draft of this paper,
and the anonymous referees for providing constructive and valuable suggestions.

References

[1] Franz Achermann and Oscar Nierstrd#gqplications = Components + Scripts -- A
tour of Piccola,” Software Architectures and Component Technglbtghmet Aksit
(Ed.), Kluwer, 2000, to appear.

[2] Franz Achermann, Markus Lumpe, Jean-Guy Schneider and Oscar Nierfiesald -

a Small Composition Languagé Formal Methods for Distributed Processing, an Object
Oriented ApproachHoward Bowman and John Derrick. (Ed.), Cambridge University
Press., 2000, to appear.

[3] Gilad Bracha and William CookMixin-based Inheritance,” Proceedings OOPSLA/
ECOOP’9Q ACM SIGPLAN Notices, vol. 25, no. 10, Oct. 1990, pp. 303-311.

[4] Luca Cardelliand Andrew D. GordofMobile Ambients,” Foundations of Software Sci-
ence and Computational Structuréaurice Nivat (Ed.), LNCS, vol. 1378, Springer Ver-
lag, 1998, pp. 140-155.

[5] Stéphane DucassekValuating Message Passing Control Techniques in Smalltatk
Journal of Object-Oriented Programming (JOQR)I. 12, no. 6, SIGS Press, June 1999,
pp. 39-44.

[6] D. Kalev,Ansi/lso C++ Professional Programmer’'s Handbo@kue Professional Series,
1999

[71 Gregor Kiczales, Jim des Riviéres and Daniel G. Bobiidwve, Art of the Metaobject Pro-
tocol, MIT Press, 1991.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier and John Irwin Aspect-Oriented Programming” Proceedings
ECOOP’97 Mehmet Aksit and Satoshi Matsuoka (Ed.), LNCS 1241, Springer-Verlag, Jy-
vaskyla, Finland, June 1997, pp. 220-242.

[91 Doug Lea, Design for Open Systems in JavaProceedings COORDINATION'9Dav-

id Garlan & Daniel Le Métayer (Ed.), LNCS 1282, Springer-Verlag, Berlin, Germany,
September 1997, pp. 32-45.

[10] Sheng Liang, Paul Hudak and Mark P. Joflggnad Transformers and Modular In-
terpreters”, Conference Record of POPL'9San Francisco, California, 1995, pp. 333-
343.

[11] Martin Lippert and Cristina V. Lope$A Study on Exception Detection and Handling
Using Aspect-Oriented Programming,”Technical Report P9910229 CSL-99-1, Xerox
Parc Palo Alto, Dec. 1999.

[12] Markus Lumpe, Franz Achermann and Oscar NierstrasEpfmal Language for Com-
position,” Foundations of Component Based Systébasy Leavens and Murali Sitara-
man (Ed.), Cambridge University Press., 2000, pp. 69-90.

[13] Markus Lumpe, A Pi-Calculus Based Approach to Software Compositiah Ph.D. the-
sis, University of Bern, Institute of Computer Science and Applied Mathematics, January
1999.

[14] Mark Lutz,Programming PythonO’Reilly, 1996.

[15] Robin Milner, ‘Functions as ProcessésProceedings ICALP'90, M.S. Paterson (Ed.),
LNCS 443, Springer-Verlag, Warwick U., July 1990, pp. 167-180.

(16]
(17]
(18]
(19]
(20]
(21]

(22]
(23]
(24]

(25]

(26]

Robin Milner, “The Polyadic pi Calculus: a tutorial” ECS-LFCS-91-180, Computer
Science Dept., University of Edinburgh, Oct. 1991.

James Noble, John Potter and Jan VitékeXible alias protection” Proceedings
ECOOP’98§ Eric Jul (Ed.), LCNS 1445, Springer-Verlag, Brussels, Belgium, July 1998.
Martion Odersky, Programming with Variable Functions,” Proc. International Con-
ference on Functional ProgramminBaltimore, 1998.

Robert Orfali, Dan Harkey and Jeri Edwarkistant Corba Wiley, 1997.

Benjamin C. Pierce and David N. TurnePjct: A Programming Language based on

the Pi-Calculus,” Technical Report, no. CSCI 476, Computer Science Department, Indi-
ana University, March 1997.

D. Sangiorgi, fnterpreting functions as Pi-calculus processes: a tutoridl RR 3470,
INRIA Sophia-Antipolis, France, February 1999.

Jean-Guy Schneider and Markus Lum&yrfchronizing Concurrent Objects in the Pi-
Calculus,” Proceedings of Langages et Modeles a Object$@land Ducournau and
Serge Garlatti (Ed.), Hermes, Roscoff, October 1997, pp. 61-76.

Jean-Guy SchneiderComponents, Scripts, and Glue: A conceptual framework for
software composition” Ph.D. thesis, University of Bern, Institute of Computer Science
and Applied Mathematics, October 1999.

Guy L. SteeleCommon Lisp The Language, Second Editigital Press, 1990.

David Ungar and Randall B. Smitt5élf: The Power of Simplicity; Proceedings
OOPSLA’87, ACM SIGPLAN Noticd3ecember 1987, pp. 227-242.

Philip Wadler, Monads for functional programming,” Advanced Functional Program-
ming, J. Jeuring and E. Meijer (Ed.), LNCS 925.

	Explicit Namespaces
	1 Introduction
	2 Piccola
	2.1 Separation of Concerns
	2.2 Static and Dynamic Namespaces
	2.3 Explicit, First-Class Namespaces
	2.4 First-Class arguments

	3 Dynamic abstractions
	3.1 Exceptions
	3.2 Ownership
	3.3 Observations

	4 Related and Future Work
	5 Conclusion

