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Abstract.  Piccola is a language for composing applications from software
components. It has a small syntax and a minimal set of features
needed for specifying different styles of software composition. The
core features of Piccola are communicatiggnts which perform
computations, anfbrms which are the communicated values. Forms
are a special notion of extensible, immutable records. Forms and
agents allow us to unify components, static and dynamic contexts and
arguments for invoking services. Through a series of examples, we
present a tour of Piccola, illustrating how forms and agents suffice to
express a variety of compositional abstractions and styles.

1. Introduction

Piccola is intended to begeneral-purpose language for software composition
Whereas existing programming languages appear to be suitable for implementing
software components, and many scripting languages and fourth-generation lan-
guages have been developed to address the needs of particular component models
there has been relatively little work that attempts to develop a generalized approach
that may span various architectural styles and component models.
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We have argued elsewhere [1][24] that most object-oriented methods typically do
not lead to pluggable component architectures (mainly because reuse is considered
too late in the lifecycle) and that the resulting software systems can be hard to
maintain and understand because they do not make the run-time architecture
explicit (the source code describes the classes, not the objects). To address this
problem, we have proposed a conceptual framework for software composition that
can be summed up as:

Applications = Components + Scripts

Components must conform géochitectural style$26] that determine thplugs

each component may have (i.e., exported and impeemdce$, theconnectors

that may be used to compose them, andules governing their composition.
Scriptsdefine specific connections of the components. Additiorgllg abstrac-

tions may be required to bridge architectural styles, and adapt components that have
not been designed to work together, adrdinationabstractions may be required

to manage dependencies between concurrent and distributed components.

Piccola’s runtime model consists of communicating agents. The behaviours of
these agents are specified by scripts. Agents invoke services and compose forms.
Agents live in acontextwhich contains the known services and forms for an agent.
In this text we will show how components can be scripted in a declarative way by
means of a&tylewhich defines a kind of “component algebra.” Consider, for exam-
ple, the well-known style dfipes and filters:

Components: | File, Stream, Filter Files and Filters are external components

Connectors: | <, |, > Three kinds of pipe operators

Rules: Filter < File - Stream | A File piped into a Filter yields a Stream
Stream | Filter» Stream | A Stream piped into a Filter is still a Stream
Stream > File- nil A Stream can be piped into a File

TABLE 1. Pipes and Filters

Pipes and filters are “algebraic” in the sense that the composition of two compo-
nents yields another component.

Unlike scripting languages that offer only a fixed set of compositional styles, Pic-
cola allows you talefine your own styldsr different application domains. Rather
than develop Piccola as an extension to an existing language, we felt it was impor-
tant and necessary to emphasiseparation of concernsetween component
implementation and component composition. Our goal is to identify a well-founded
set of features necessary and sufficient for specifying software compositions as
scripts, while supporting an open-ended set of architectural styles.




Piccola adopts a layered approach to achieve this §aétrnal componentsxport
services transparently to each layer. For example, the abstract machine layer sees
these services as ordinary channels and agents.

Applications components + scripts %
Architectural styles streams, events, GUI composition, ... §_
Core libraries basic coordination abstractions, basic object model E
Piccola language services, operator syntax, nested forms, built-in type§ %
Tl abstract machine | agents, channels, forms 5

The bottom level of the Piccola system provides an abstract machine in which
agentsasynchronously communicd@msthrough sharedhannels This abstract
machine implements thet-calculus [13], a variant of the polyadiecalculus [15]

in which forms are communicated instead of tuples. The innovation at this level is
the introduction oforms which are immutable, extensible records (sets of bindings
from labels to channels). Technically speaking, communicating forms rather than
tuples does not alter the expressive power oftthalculus, but it makes it much
simpler to express higher-level abstractions in Piccola [25]. This simple foundation
allows us to reason about complex and concurrent interactions using a well-devel-
oped formal model, and guarantees that the semantics of higher-level abstractions
can always be precisely explained in terms of simple interactions.

The next layer defines the Piccola language syntax and semantics. We introduce
primitive valueslike numbers and stringsigher-order abstractionsver agents,
forms and channels, amésted formsAbstractions and nested forms are defined
simply by translation to the lower level model using hidden intermediate channels
and agents. At this level we already begin to appreciate the expressive power of
forms. Forms represent:

* Interfaces to components. Forms encapsulate a set of named services exported
to clients.
* Arguments. Forms provide keyword-based arguments for services.

* Contexts. The static context represents all known services and components for
any statement. The dynamic context collects services and capabilities that are
passed from callers to callee.

¢ User-defined services.
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As forms are immutable, operations on forms yield new forms with an enriched or
reduced set of services. It is not possible to modify forms, thereby breaking by acci-
dent other agents using this form or component, but only to create new forms. We
can see a form as a kind of “primitive object” with public and private features, but
without any explicit notion of classes or inheritance. More elaborate object models
can be encoded directly in Piccola. Piccola permits form labels to be accessed as
overloaded infix operators, which is convenient for expressing compositional
styles.

The third layer defines libraries of basic composition abstractions, including control
abstractions (e.g., if-then-else, try-catch), coordination abstractions (e.g., black-
boards, futures), and other utilities, such as an interface to the Java world. The inter-
face wraps Java objects and represents them as forms so that they can be accessed
by Piccola agents.

At the fourth layer, libraries of architectural styles may be defined, such as push-
flow or pull-flow streams, GUI composition, and GUI event composition. This is
done by implementing connectors for such a style as infix operators on compo-
nents. A style may also define coordination abstractions to manage interactions
between components, and glue abstractions to adapt external components to a par-
ticular style, or possibly to bridge gaps between different styles [6][27].

Finally, application programmers can script applications using the connectors of a
particular style and the glue abstractions to use external components.

This paper is structured as follows. The next section presents an example that illus-
trates the top-level view of a Piccola script. Then, in sections 3, 4 and 5, we present
the Piccola language layer, and describe respectively, forms, agents and contexts. In
section 6 we show how Piccola can be used to define a simple architectural style,
and in section 7 we show how classes and mixins can be scripted. Finally, section 8
discusses related work and section 9 concludes this paper.

2. Scripting Components

In this section we present a small example of a Piccola script that uses styles for
GUI composition and GUI event composition. The specification of event style itself
is presented later in section 6. The reader should not worry too much about details
of the mechanics of the script on a first reading, but pay attention instead to how
Piccola is used to develop a high-level, declarative view of how this application is




composed. The same application written directly in an object-oriented language
would typically be more procedural, and emphasize low-level wiring of observers
and observables [5]. The Piccola script, on the other hand, expresses the wiring by
using compositional operators defined as library abstractions supporting an archi-
tectural style

The script uke.picl " in figure 2
uses an event style to wire the events
and illustrates how the graphical layout

waue ¢ :
is scripted. It also coordinates several
* auch agents. Running the script, a frame
& with Java’s Duke appears (see figure

This is duke - B o

1). When we click on thevave button,

1 duke waves at the speed controlled by
the scrollbar on the left. When we click
on Duke himself, he complains, issu-
ing the message “ouch.” After a short
delay, the message disappears.

Figure 1 Duke scripted in Piccola

We now look at the individual parts of the script and identify the forms and agents
when necessary:

1. We load a file hawt ” which defines several services we will use. The keyword
root denotes a special form that represents the static context in which duke.picl
is evaluated (see section Bad() reads a set of definitions in a Piccola library
script and returns a form containing those bindings. Wedhktmdthe static
context by simply redefiningot to beroot extended by the result of
load()

2. Now our extended root context contains the serasa€omponent defined in
the loaded script. This service instantiates new AWT components and wraps
them according to our style. We use it to create the duke component, a button,
and a scrollbar. The form returned dytComponent can be thought of as a
kind of “primitive object” providing the servicset (amongst others). This ser-
vice allows us to send a form containing some properties. For example, we set
the label of thevaveButton component by invokinget with the argument
form Label ="wave"” . Note thaket may be invoked either with a parame-
terized expression on the same line, or by passing an indented form on the sub-
sequent lines. Either syntax can be used at any time. The arguments passed to
set will cause these properties to be updated in the wrapped Java object. We do
not change any default propertyduike .




Applications = Components + Scripts

# File: duke.picl
# 1. load nawt services

root =( root ,load("nawt")) # use event and AWT wrappers style

# 2. create AWT Components

duke = awtComponent("demos.duke.Duke")
waveButton = awtComponent(“java.awt.Button").set(Label = "wave")
speedScrollbar = awtComponent(“java.awt.Scrollbar").set
Minimum =1
Maximum = 800
Value = duke.getSpeed()

# 3. do the event wiring

speedScrollbar ? Adjustment
do: (duke.set(Speed = speedScrollbar.getValue()))
waveButton ? Action(do: duke.wave(val = 1))

# 4. click on Duke

counter = load("counter").newCounter(0)

sleep() = javaClass("java.lang.Thread").sleep(val = 2000)

duke ? MouseClicked

do:
duke.set(Message = "ouch")
counter.inc()
sleep() # sleep 2 seconds
if (counter.dec() <= 0) # if this was the last click
then: duke.clearMessage()

# 5. arrange components in a panel

panel = newBorderPanel
center = newBorderPanel
north = Components + waveButton
center = duke
west = speedScrollbar

# 6. add panel into a frame and display it

exit() = javaClass("java.lang.System").exit(val = 0)

frame = awtComponent("java.awt.Frame").set(Title = "This is duke")
frame.add(val = panel.java, type = "java.awt.Component")

frame ? WindowClosing(do: exit())

frame.pack()

frame.show()

Figure 2 Duke script




3. Next, the events are wired using a compositional notation with infix operators,
(see table 2). The style defines a setvant typedike Adjustment and
Action . Each event type is modelled as an abstraction that takepa@nsda
form containing alo service) as a parameter and yields#&ener The resulting
listener may be bound to a component with the fhfdperator.

Components: | C GUI-Component
E Event type
R Response
L Listener
Connectors: | (), ?
Rules: E(R) - L compose an event type with a response to get a listener
C?L-() |connectacomponentto a listener

TABLE 2. GUI Event Composition style

For example, when the scrollbar is adjusted, the new speed value is set in the
duke component, whereas clicking on the button causes duke to wave.

4. When we click on duke, he displays a complaining message. The message dis-
appears after a short delay. Each time the user presses the mouse on duke
(MouseClicked ) an agent runs the code given in the response. We do not see
the agent directly, but we specify the scrifit: duke.set(Mes-
sage="ouch", ... ) he executes. The agent runs in a context which contains
bindings for the formsduke andcounter , as well as the servicekep and
if .

Note that the bindings returned logd("counter”) are not used to extend
root . We directly use the exported servieavCounter()  to construct a
thread-safe counter.

5. The graphical layout uses a different composition style from the event wiring.
We use the serviagewBorderPanel exported by fiawt .” We define a new
panel by invoking servicemewBorderPanel which creates a new Java panel
with a border layout manager. The argument is a form specifying sub-compo-
nents with constraints north, south, west, east, or center, according to the border
layout manager of Java [7]. A sub-component may itself be a an instance of
newBorderPanel or even a list of components. In this case these components
are arranged using a flow layout in an inner panel. This determines the stretch-

Components: | C GUI-Component
List List of Components

TABLE 3. GUI Composition style
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Connectors: |+, newBorderPanel

Rules: List + C — List builds a new list with additional element
List + List - List concatenate lists
newBorderPanel(Form) layout Components in the form

TABLE 3. GUI Composition style

ing properties of the sub-components. Component lists are built up by starting
with an empty list (i.eComponents ) and adding widgets using theoperator.

Glue code maps the interfaces of Java objects to fit the style. Note that GUI
composition in Piccola using an appropriate style is more declarative than what
one would typically write in a conventional object-oriented language. Contrast
it with the code fragment necessary to achieve the same layout in Java:

Panel panel = new Panel(new BorderLayout());

Panel innerPanel = new Panel(new BorderLayout());

Panel buttons = new Panel(); // using the default flow layout
buttons.add(waveButton);

innerPanel.add(buttons, BorderLayout. NORTH);
innerPanel.add(duke, BorderLayout. CENTER);
panel.add(innerPanel, BorderLayout. CENTER);
panel.add(speedScrollbar, BorderLayout. WEST);

6. Finally, the panel is put into a new frame, which is displayed. As the Piccola

AWT style uniformly wraps AWT components from Java, we can use methods
pack() ,show() etc. directly from the underlying peer Java objects.

This simple example illustrates several important points about Piccola:

Piccola syntax is extremely lightweight. There are only four keyweods (
dynamic , def andreturn ) and six reserved operators.

Forms are ubiquitous in Piccola. They are used to represent interfaces to compo-
nents, arguments for services, and contexts for agents.

Although Piccola is not designed as a Bean scripting language, one can use it to
compose Beans — or any other kinds of components, for that matter — by
defining a suitable architectural style.

When styles are defined as “component algebras,” the resulting scripts are
highly declarative and make the wiring of components explicit.

In the next three sections, we give an overview of all the features of Piccola, namely
that of forms, communicating agents, and contexts.




3. What is a Form?

We have identified forms as a central concept needed for composition. A form is a
mapping of labels to values. The empty form has no labels. Forms in Piccola are
themselves values and may therefore be nested. Many data-structures have a natura
embedding as forms. Forms are written as sequendeésdifigs separated by

commas or new-lines and structured using brackets or indentation:

baseForm =
Text = "foo"
Name = Text

Size = (x =10, y = 20)

The formbaseForm contains three label3ext , Name andSize . The nested form
baseForm.Size has labelx andy. Projectionis used to fetch elements of a form.
For example, the projectidform.Size.x  yields 10.

Forms are built as a sequence of bindings. Each individual binding is added to the
form it follows. At the same time, each binding also acts as a declaration for subse-
guent code. Thus, the identififegxt in the bindingNameis bound to the string

"foo " in the previous line. Forms and sequences of statements are unified in Pic-
cola. The whole assignment defines a nested form bound to thedadebrm in

the global fornroot .

3.1 Extending Forms

New forms can be built bgxtensionA form, or more precisely the list of its bind-
ings, may be concatenated with other bindings, which yields a new form. We can
extendbaseForm with a binding forColor :

coloredForm =
baseForm
Color = "green"

Now thecoloredForm has a labeColor in addition to the labels &faseForm .
We cannot detect in the extended form how and in what order the labels where
added. Note thataseForm remains unchanged.

Bindings may also be overridden by new bindings. Clients using an extended form
will only have access to the most recent binding for a label. The following example
makes a new form with a modifiSike :
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modForm =
baseForm
Size = (baseForm.Size, x = 15)

This extension makes only minimal assumptions on the labékssigForm . It only
assumes the presence of labiek in baseForm . We add a binding for a new

Size . The new size itself is an extensionsife in the original form with a over-
ridden labek. Note that this extension would also work if the original size would
contain different labels, say for example three parametgrsandz. Then, our
modified form would also contain these bindings with a modified x value. We
heavily use this feature of forms in building reusable abstractions.

Itis also possible to extend one form by another, rather than just specifying individ-
ual labels to bind. This is an easy and compact way to have default parameters:

withDefaults =
Font = aSystemFont
baseForm

Now, we can project oRont in the formwithDefaults . If baseForm already
contains a binding for the labebnt , this value is returned, otherwise the value
aSystemFont is returned.

Projecting on an unbound label is a type error and yields an undefined value. (Using
this value generates an exception.) Type systems fand Piccola have been
explored [13] but are not presented in this paper.

3.2 Services

In Piccola, we represent everything as a form. Literal values like strings or numbers
are forms in the same way strings and numbers are objects in pure object-oriented
systems like Smalltalk. Forms are used to encapsulate sets of services. Services
themselves are also represented as forms. A service can be invoked with a function-
call syntax, but is actually a form with a hidden label that gives access to an agent
that represents it. (We use the tesenvicerather than “function” to emphasize the

fact that the invoked behaviour is provided either directly or indirectly by an exter-
nal component.)

As everything is represented as a form, the arguments for invoking services are also
forms. Therefore, they have in general only one argument.

hello() =
printin("hello world")

10



This statement defines a service and assigns it to thenfdiom . The body of the
service consists of a call to another servicetin . Whenhello is invoked, it
returns whatevegrintin -~ will return.

An alternative can be used when no formal parameter is needed. We can omit the
brackets and write:

hello: printin("hello world")

The colon signals that the right hand side is an abstraction. The colon notation
sometimes makes code easier to read. Drawing from our earlier example in section
2, the following two forms are strictly equivalent in Piccola:

do: duke.wave(val = 1)

do() = duke.wave(val = 1)

To see that a service is just a form, consider the following, equivalent statement:
hello = \() = printin("hello world")

Here, the labehello is bound to the anonymous lambda abstractipr- ...
Anonymous abstractions are sometimes convenient for defining coordination
abstractions, but we will rarely use them directly. Most of the time, a form with a
do service is more convenient to use.

External components export primitives services to Piccola, but higher-level services
can be scripted in Piccola. We therefore speak of the body of a servicesasjits

For example, the script of thello  service above igrintin("hello

world")

When a service is invoked, its script (also a form) is evaluated by an agent. The
root context this agent runs in provides access to statically bound services (like
load ) and a dynamic argument which gets passed at invocation time.

We can extend services like any other form and, for example, add labels document-
ing their interface. Piccola makes no assumption about such additional labels.

myhello =
doc ="My hello world"
hello

There are several ways to invoke services. The argument form can be enclosed in
brackets or given by indentation. The following alternatives all invdkgtzer-

11
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orderserviceif . When itis invoked with a boolean value as an argument, it returns
a service taking as argument a form containing lahets orelse .

if (hname == "main")

then: hello()
if (name == "main") (then: hello()) # a one liner!
branch = if(name == "main") # curried: apply boolean
branch # branch is a service:
then: hello() # apply cases

As services are first class values, we could also directlyheiitd to the label
then :

if (hame == "main")
then = hello # bind then to (form) hello

Boolean values are encoded as forms that provsgéeet  service. This service
either selects a true or false binding of its argument:

true = (select(B) = B.true)
false = (select(B) = B.false)

Services in Piccola always take a single form as an argument. Since services are
values, however, it is possible to define curried services (i.e., taking a single argu-
ment and returning a service). Consider the implementatidn a$ it is used

above:

if(Boolean)(Cases) = # curried: same as: if(B) =\(C) = ...
withDefaults =
then: ()
else: ()
Cases
Case = Boolean.select # select a case
true = withDefaults.then
false = withDefaults.else
return Case() # evaluate branch

The service takes two forms as its argumeBislean andCases. In the body of
the service, we first provideases with defaultthen andelse . The defaults we

supply are dummy services that return the empty form, writteip adlext, we use
the boolean to select either then case (the boolean is true) or #ise branch.
Finally we evaluate the case selected and return it as the resulifofgbevice.

What would happen if we omitted theturn ~ keyword in the above definition?
Then the result of an applicati@B)(C)  would be a form containing not only
the bindings returned b§ase() , but also those ofithDefaults ~ andCase! The




use of the keyworeeturn  ensures that only the value of the expression that fol-
lows is returned. All prior bindings are strictly local. This same mechanism can be
used to build objects with private and public features.

3.3 Operators

Piccola supports user defined operators. Any sequence of operator characters like
4% ,=,!,... represents an infix or prefix operator. As is usual in object-oriented lan-
guages supporting infix operators, such operators are treated as projections on their
left-hand side component with the right-hand side component as the argument. The
label associated with the operator token has two underscores for infix and one for
prefix-use in front of it. For instanceame == "main" is interpreted as

name.__==( "main") . ldentifiers may also be infix operators when they are
enclosed in single backquotes astmod‘3  which is5.mod(3) . Similar:- 4

is interpreted ag._-() . Sequences of infix terms associate to the lefta.¢.b

|c is(alb)]|c or, equivalentlya.__|(b).__|(c)

Infix operators are used to syntactically present architectural styles in a more com-
positional or algebraical way, as illustrated by the example in section 2.

3.4 Scopes

So far we have only seen simple bindings of labels to expressions using labels
bound in previous statements. The right-hand side of a binding can never refer
recursively to the label being bound. In practical applications, however, we often
need recursive services and forms. The keywiefd defines such a binding. In def-
initions, the right-hand side can refer to the identifier being assigned to, provided it
is used within an abstraction:

def fact(N) =
if (N <2)
then: 1
else: N * fact(N-1)

While def is not surprising for services, we also use it to construct fixpoints for
plain forms. In this circumstance it allows us to define forms with a notion of self:
def cout=
_<<(X) =
print(X)
return cout

nl="\n"

13
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cout << "Hello World" << nl

Evaluating the termout << X printsX and returngout . Therefore, we can write
sequences of such terms as in C++.

Note that in each of these examples the recursion occurred within an abstraction.
The following examples, by contrast, are not sound in Piccola:

def silly = (a = silly)
def sillier = sillier

and result in run-time errors. The agent that builds the fixpoint reads it before it is
correctly set. The following service is uninteresting, but sound:

def sillyButOK() = sillyButOK
Thedef keyword can also be used to define mutually recursive services. When two

or more services should refer each other, they can be enclosed in a common, recur-
sive scope:

def myscope =

a() =

myscope.b() # call b in myscope

b() =
.nlwlyscope.a()

Note that we could equally omityscope in the body of service() to call toa() .

4. Communicating Agents

The semantics of Piccola is given in terms of communicating agents. There are two
predefined abstractions necessary to control these agents: one to asynchronously
evaluate alo service by a new agent and one to synchronize running agents.

Therun primitive evaluates thdo service of a form as a separate agent. The result

of run(...) is the empty form. This result is returned in parallel to starting the

new agent. The termewChannel() creates a new channel. Channels provide
atomic send and receive services to communicate forms. The sender cannot detect
when and whether the value sent is received by a communication partner. Receiving
a value from a channel blocks unless someone has sent a form to it. If one or more

14



forms are sent, then an arbitrary one of them is received. There is no ordering on the
values communicated along a channel. The following script creates a cttannel
and starts two agents that communicate a form along it:

ch = newChannel()
run (do: ch.send("a form"))

run
do:
v = ch.receive()
printin("l received " + v)

Running this script, the second agent will eventually print meived a
form .

The library script pil " provides a style that makes programming with channels
and agents more convenient, and mimics the operators of the lowertlevel

machine. The script redefineswChannel and equips new channels with infix
operators , ? and?* instead okend andreceive . The operato?* attaches a
“replicated agent” to the channel. A replicated agent behaves like an endless supply

Components: C Channels
A Agents
Connectors: 1,2, 2% output, input, replicated input
Rules: C!Form- A send form along channel C
C ? Abstraction» A receive form and run abstraction
C ?* Abstraction— A multiple receive from channel.

TABLE 4. pil-style

of agents, always ready to receive another message. These operators send and
receive forms in their own agents. Using the pil-style, the above script becomes:

root =( root ,load("pil")) # redefines newChannel

ch = newChannel()

ch ! "a form" # send the string

ch?\(v) = # receive a value, then run the service

printin("l received " + v)
The two predefined abstractions andnewChannel are enough to recover the
expressive power of_. For example, a stop service can be implemented as:

stop() =
newChannel().receive() # will never receive anything

Callingstop()  will never return and therefore stop the client agent.

15
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Another useful concurrency abstraction is one that evaluates two abstractions in
parallel. It returns the result of one of the two passed abstractions. When both
abstractions terminate, either result is returned. However, when we know that only
one branch terminates and the other stops, the resoldafi is uniquely deter-
mined:

OrJoin(X) =
ch = newChannel()
run (do: ch.send(X.left()))
run (do: ch.send(X.right()))
return  ch.receive() # blocks unless there is one result

Here, we run two agents in parallel. The two agents execute the left and the right
abstraction given. The servicB.receive() blocks, unless one value is sent on

it. Once a value is sent to the channel, this value is returned. In the next section, we
will use these services to implement an exception handling mechanism within Pic-
cola.

OrJoin andstop are examples of coordination abstractions. For exangplajn
is used to coordinate two agents such that only one agent returns a result.

5. Contexts

When an agent evaluates a script, it may make use of services defined in the current
context (or “environment”). Piccola models contexts explicitly as forms. Since con-
texts are therefore first-class values, one can implement various abstractions to sup-
port modules and packages. In contrast to Piccola, most languages provide a
predefined and fixed way to import modules and look up imported services.

The special formoot denotes the (static) context in which identifiers are looked
up. Instead of writing:

print(  "Hello ")
we could equally say:

root .print( "Hello ")

Similarly, bindings also extend theot form for subsequent statements. It is also
possible to assign any form as new root or to use root as an ordinary form. For
examplejoad() locates a script and evaluates it. It returns the form defined by the
script. Assume we have a scriptllo.picl" with the contents:

16



# File: hello.picl
hello: printin("This is the hello script")

We can now import the bindings into tlwet and usénello directly:

root =( root ,load("hello")) # extend our root with hello
hello() # call hello

or we can load the script and keep it in a separate form. This prevents cluttering up
ourroot namespace:

x = load("hello") # bind hello to x
x.hello() # and use it

When the Piccola run-time system is initializemht contains the services of the
basic Piccola composition abstractions.

5.1 Dynamic Contexts

Statically compiled languages typically use static (lexical) scoping whereas dynam-
ically compiled and interpreted languages often use dynamic scoping or a combina-
tion of static and dynamic scoping. Piccola is statically scoped, but dffeasnic
scoping on demand\lthough static scoping is good enough for most purposes, it
turns out that certain kinds of coordination and control abstractions are next to
impossible to define without dynamic scoping.

As an example, consider exception handling. Most languages that provide excep-
tion handling as a built-in construct allow an exception to be raised in the context of
some service provider, and thereby cause an associated exception handler of the cli-
ent to be invoked. In languages that do not provide exception handling, it can be
very difficult to simulate. Let us see now how such an abstraction can be defined in
Piccola by explicitly passing dynamic contexts between agents.

An example application is theport service, which is defined as:

import(F) =

x = findFile(F.name)
if (ISEmpty(x))

then: raise("Cannot locate Script: " + F.name)
# otherwise x points to a valid file. We return its contents:
return  try

do: builtinLoad(x)(F.context, scriptLocation = x)

catch(E):

raise("Error in Picclet " + x + "\n" + E)
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Import tries to find a given file. When this file cannot be located, it raises an error.
Otherwise, the locatioK is read and executed. The senhaétinLoad loads,
parses, and executes the script at locaXiohis possible that this process raises an
error. This error is caught and reported to the user. The seéniii@ oad(x)

returns a anonymous abstraction containing the scriptatits body andoot as

its argument. We invoke this context with the context pagsednfext )

extended with the location of the script itself. WheriltinLoad returns success-
fully, import  returns the contents of the file.

Observe thatty andraise are normal abstractions, whereasandcatch are
ordinary labels in the argumentttp . Here are the implementationstgf and
raise

try (block) =
exception = newChannel()
result = OrJoin
left:
e = exception.receive()
return  block.catch(e)
right:
raise(e) = # define a local raise abstraction
exception.send(e)

stop()
dynamic =( dynamic , raise = raise)
return  block.do()
return  result

raise(E) = # use dynamic raise
dynamic .raise(E)

Let us first look at the body afy . It creates two agents and waits for one of them

to terminate. We have already s&®noin andstop in section 4. Theght

agent runs thdo service of the argument ty . This service may terminate nor-
mally, causing the agent to return a result, or it may raise an exception, and transfer
control to thdeft agent. Théeft agent blocks and waits if an exception is

raised. If so, it evaluates thatch service of the argument ty . Otherwise it

does nothing.

The difficulty here is that the clienti® service knows nothing about the exception
channel we want to use to coordinate the two agents. The solution is to define a
localraise abstraction which will signal the exception and stopitiie  agent.
Thisraise abstraction is injected into the dynamic context made available to the
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do service. When thdo service calls thglobalraise abstraction, it in turn calls
the dynamic one, and the right thing happens.

Whenever a service is called in Piccola, the fagmamic is passed implicitly
together with the actual parameter. If the client has extended its dynamic context
with any additional services, these will then be available to the called abstraction.

5.2 Passing the dynamic context

For readers with some background in thealculus, it may be helpful to have a
closer look at how services are invoked. For that purpose, we show the protocol that
is used by service invocations. This protocol can be implemented nicely on top of
Piccola using agents and channels. A service becomes a channel together with a
replicated agent that implements its body and returns a result. An invocation con-
sists in communicating a dynamic context to this agent along the service-channel.
This context will contain the argumentds ) and a result channel. The replicated
agent will send its result along that result channel.

root =( root , load("pil") # redefines newChannel
fact = newChannel() # the service channel
fact ?* \(Dynamic) = # the service body...
N = Dynamic.args # Assign argument form
if (N> 1) # factorial:
then:
# invoke fact(N-1):
h = newChannel() # the result channel

fact ! (Dynamic, args = (N - 1), result = h)
h ? \(Result) =
Dynamic.result ! (N * Result)
else:
Dynamic.result! 1

Note that we use our previously mentioned pil-style. In the code, we use the identi-
fier Dynamic instead of the Piccola keywodginamic . Observe the invocation of
fact(N-1)

* We first create a reply channel

* We then send an invocation to the service charael (). The invocation con-
sists of the context for the agent responsible to evaluate the service. The context
at least contains the argument form and the result channel.

* We receive the result on the reply charmeDnce the service agent delivers a
result, we fetch it and continue.
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An invocation closely corresponds to the responsibilities the agent implementing
the service has. The service is modelled by a replicated agent receiving invocations.
An invocation consists of a form. The arguments are by convention bound by label
args , the result channel is bound by lakedult . The result is returned by send-

ing it along the result channel, from where the client will pick it up.

6. Implementing Styles

This section presents the implementation of the event composition style used in
section 2. Participants transmit or receive pieces of information in response to
events. Components that emit events are called informers, those that receive them
are called listeners [2].

We show code to glue the services provided by objects of the Java AWT Event
framework to the event composition style of table 2 which can be used as:

javaComponent ? EventType(Response)

The? with a given event type connect&esponse to an event within the Java
component. ARResponse is a form with alo service.

6.1 Interfacing to Java Components

The low-level bridge to Java objects from Piccola is done using the predefined
abstractiongavaClass andjavaObject . These generic glue abstractions create
Java objects and return forms giving access to the public methods of them. The
methods are invoked like any other service but the arguments are given as nested
forms with labels/al orval0 ,vall ,val2 , etc. since arguments for Java are

tuples instead of being keyword based. For overloaded methods, we must also give
the type of the arguments in order to select a unique method implementation in
Java.

The Piccola Java interface also provides some generic listener classes, like the class
pi.piccola.bridge.GenericActionListener. These classes allow us to call Pic-
cola services from Java. The generic action listener class, for example, implements
the Java interfac@va.awt.event.ActionListener. An action listener that prints

the events is created by:
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listener =
javaClass("pi.piccola.bridge.GenericActionListener").new
val= dynamic
vall = (actionPerformed = printin)

The constructor for the listener class requires two parameters, the first is the
dynamic context which will be passed to the listener service, in case the listener
service makes use of services in the dynamic context. We need to pass this context
explicitly, since Java does not offer a notion of context. The second parameter con-
tains an abstraction to which the event is delegated. The handler for action listeners
must be bound by the labattionPerformed . The Java constructor f@eneri-
cActionListener is given as:

public GenericActionListener(Form context, Form delegate);

A listener object may be plugged into components ugiid) addActionLis-
tener(java.awt. event.ActionListener). An event is then forwarded to the ser-
vice actionPerformed  within the dynamic context passed. For example, the
listener can be added to a button:

button = javaObject("java.awt.Button")
button.addActionListener(val = listener)

6.2 The GUI Event Composition Style

To support the GUI event composition style, we need to (1) model event types as
abstractions that talde services as arguments and return listeners, and (2) extend
GUI components with @ operator to attach listeners. For example, the following
code creates a listener faction  events and attaches it to a Java Button that has
been wrapped to conform to the style.

myButton = awtComponent(“java.awt.Button")

myButton ? Action(do = printin)
Since there are many different types of event in the AWT framework, we use a
generic glue abstractionewEventType , to instantiate event types for our style:

Action = newEventType
genericListenerClass =
javaClass("pi.piccola.bridge.GenericActionListener")
listenerMethod(service) = (actionPerformed = service.do)
addListener(Component) = Component.addActionListener

The argument taewEventType is a form with the following labels:
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* genericListenerClass is a factory service to instantiate Java listener
objects. These objects will be created usieg() with argumentsalo for the
dynamic context andall for the delegate form.

* listenerMethod is a service that returns the delegate form used to instantiate
the generic listener class.

* addListener(Component) is a (curried) service encapsulating the method to
add listener instances.

Here is the implementation oéwEventType . Note that it is a curried service —

the event type it returns (e.d\gtion ) is itself a service that will return a listener. A

listener provides eegister  functionality that will be used by GUI components:

newEventType(P)(Response) =
register(Component) =
ConstructorArgs =
val= dynamic
vall = P.listenerMethod
do(E):
Response.do(Informer = Component, Event = E)
listener = P.genericListenerClass.new(ConstructorArgs)
P.addListener(Component)(val = listener)

Thelistener  object is instantiated using thew service of the (passed) generic
listener class. As expected, the argument fornmdar() is the current dynamic
context and a form with the delegate services, e.g. a biadilgPerformed

for the action event type. Finally the listener registers itself on a Component by del-
egating registration requestsaiddListener()

The glue abstractioawtComponent instantiates AWT objects and extends them
with the? operator. This operation uses double dispatch to register the listener

awtComponent(ClassName) =
object = javaObject(ClassName)

def self =
object
java = object
set(P) = # set properties P
__?(L) = L.register(self) # pass the component
return  self

The Java class is instantiated, and the Piccola representing it is extended with ser-
vices needed to support the event style. In addition, the original base object is still
available by a projection on the lakmla .
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The implementation of this style may seem somewhat convoluted, but this is largely
a side-effect of the fact we are adapting an object-oriented interface to a more com-
positional style. Keep in mind that the code presented here needs to be written only
once. It can then be exploited by any number of scripts. Furthermore, advanced fea-
tures likedynamic contexts are typically used only to implement abstractions to
support a particular style, and do not normally appear in top-level scripts.

7. Scripting Classes

Although Piccola has no predefined object model, it is possible to implement differ-
ent object models on top of it, much in the same way that CLOS is defined on top of
Common Lisp [8]. In this section, we use one such model to script classes and mix-
ins [3]. This particular model is implemented bglass abstraction and a initial
classObject , from which all classes inherit. The following code loads the object
model and createsRwint class:

root =( root ,load("classes")) # get Class, Object

Point = Class
name = "Point"
super = Object
instanceVars: (x=newRefcell(), y=newRefcell())

delta(P):
asString() = "x =" + P.self.x.get() +
"y ="+ P.self.y.get()

rep() =
printin(P.self.class.name + ".new(" +
P.self.asString() +")")

initialize(Init) =
P.self.x.set(Init.x)
P.self.y.set(Init.y)

We use the abstracti@liass to create a new class. Individual classes are parame-
terized by the following bindings:

¢ Thename of the class.

* Thesuper or parent class from which this class is derived. The model
described here only supports single inheritance.
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* A serviceinstanceVars() that creates the additional instance variables for
instances of this class. Each instance variable is represented by a reference cell
with set andget accessor services. The seniitsanceVars  is optional.

The default binding for this parameter assumes that there are no new instance
variables to be added.

* Thedelta(P) abstraction defines the differences of the new class with respect
to its super class. The formal paramé&teontains the nested formslf and
super for self sends and super calls. Hwnt class defines three methods:
rep() ,asString() andinitialize() . The initialize method is special:
whenever we override this method, a call to the overridtdéadize() is
inserted before the overriding method. We can omit a callder.initial-
ize() . This behaviour is implemented in taass abstraction.

The abstractio€lass creates forms with a serviaew() to create and initialize

new objects. For instance, a point is created by:

aPoint = Point.new
x=1
y=2

Calling aPoint.rep() prints out the stringPoint.new(x =1,y = 2) , as
expected.

Whenever a new instance is creatiia()  andinstanceVars() of all sub-
classes in the inheritance chain starting frohject are called. The assembling is
done within a scope definition feelf . That way we pasself and the intermedi-
ate objects asuper to each call talelta() . Once the object is builtitial-

ize() gets called to establish the invariant of the object.

Having the instance variables createdrayancevars  is not a restriction of the
object model. In fact, we could also create the instance variables directly in
delta()

Point = Class
name = "Point"
super = Object
delta(P):

x = newRefcell()
y = newRefcell()
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but keeping them by in separate intention-revealing parameter for classes makes the
code more self-documenting. In addition, clients that stidkstanceVars()

for creating instance variables can implement generic operations for cloning objects
or inspecting facilities.

ColoredPoint  is a subclass dfoint with an additionatolor field and overrid-
den methodsString()

ColoredPoint = Class
name = "ColoredPoint"
super = Point
instanceVars: color=newRefcell()
delta(P):
asString() =
P.super.asString() +
initialize(Init) =
P.self.color.set((color = "Black", Init).color)

n "

, color =" + P.self.color.get()

The methodhsString() overridesasString  of thepoint class and appends a
representation for the color of a point. Note how form extension is used to initialize
thecolor slot with a default value.

Mixins are classes with a freaper . Mixin-composition composes two mixins to
a new one. Applying a mixin to a class yields a new classold&r mixin may look
as:

ColorMixin = Mixin
name = "Colored"
instanceVars: color=newRefcell()
delta(P) = ... # as above

This mixin adds a color part to any class it is applied to. Note that the parent class is
not specified here. Now, we can apply the mixin to our previous class:

myClass = ColorMixin * PointClass

point = myClass.new
x=1
y=1
color = "Yellow"
Note that we use the flexibility gained from the keyword-based argument to initial-
ize the reference cells. We just pass a form as initializer,isitiafze()
method needs only its specific arguments. Mixin abstraction builds a class
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name by prefixing the name of the mixin (¢.@olored ") to the name of the par-
ent class (e.d.Point "). Another mixin may add move() method to change
andy coordinates of a given point:

MoveMixin = Mixin
name = "Moveable"
delta(P) =
move(Diff) =
P.self.x.set(Diff.x + P.self.x.get())
P.self.y.set(Diff.y + P.self.y.get())

moveablePoint = ColorMixin * MoveMixin * PointClass

Observe thaColorMixin * MoveMixin is also a mixin. We summarize the
classes and mixin style :

Components: Class, Mixin

Connectors: * mixin operator

Rules: Mixin * Class - Class Mixin application
Mixin * Mixin - Mixin Mixin composition

TABLE 5. Classes and Mixins

TheClass andMixin abstractions shown in this section are implemented by
approximately 80 lines of Piccola code. This illustrates that it is possible to encode
a useful inheritance composition mechanism with feasible effort. Schneider [25]
has shown how to encode other forms of inheritance composition, like Beta-style
[10] composition.

8. Related Work

In the past years, there has been considerable work on the foundations of concur-
rency, and much of this on process algebras and process calcuiicalwalus

[15] has proven to be successful for modelling concurrent objects [22][23][29]. The
miL-calculus [13] replaces tuple communication of the polyaeialculus with

monadic form communication.

Pict [20] is a language that builds on the polyadic asynchrameatculus. Pict’s
language constructs are provided as syntactic sugar on top of the core calculus. We
have used Pict to run extensive experiments with different object models [11][23]
and synchronization policies [28] as examples for composition mechanisms. These
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experiments led us to conclude that form-based communication would be a better
basis for modelling composition than tuple-based communication, and led us to
develop thet -calculus [12][13]. Pict was developed to study the relation of types
and concurrent programming, whereas Piccola is used to experiment with composi-
tion abstractions.

We have been experimenting with different variants of Piccola. The version
described here is Piccola 2.0. It completely hidestthprimitives of the underly-

ing process calculus as services, whereas these operators are visible in other ver-
sions. Piccola 2.0 can be compared to functional languages, where concurrency
primitives where added, like this is done in CML [21]. In another variant, Pic-
cola(T), we experiment with a type system forthecalculus [13]. Piccola(T)

reflects tha_-operators as language primitives as in Pict. The type system is sound
and complete, but lacks parametric polymorphism, which would be needed to type
generic abstractions. We have also worked on extending tbalculus to the
Form-calculus, which supports additional operators to hide labels. Piccola(F) offers
these restriction operators as primitives [25].

In a much earlier paper with a similar title, we have explored visual composition of
objects using scripts [18]. The present work provides a concrete textual syntax and
a formal semantics for scripts.

The syntax of Piccola deliberately resembles that of Python [14][30]. Python is an
object-oriented scripting language that provides a simple integration of functions
and objects. Python models objects and classes in terms of dictionaries (which
resemble forms). Methods and functions can be called either with positional param-
eters (i.e., tuples) or with keyword arguments (i.e., a la forms). Python provides
operator overloading, and can also be used to implement architectural styles much
in the way described in this report. It provides limited support for reflection, and it
is possible to change the underlying object model to a certain degree (though
Python does not have a meta-reflective architecture like Smalltalk). Python is not
inherently concurrent, though there is a Posix-dependent threads library, and some
researchers have experimented with active object models for Python [19].

In Perl [30], procedures may specify the visibility of their local variables in its dec-
laration. To the best of our knowledge, Piccola is the first language that offers both
static scoping and the possibility of dynamic scoping on demand, within a formal
framework.

Aspect-oriented Programming [9] is an approach to separating certain aspects of
programs that cannot be easily specified as software abstractions. AspectJ is a lan-
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guage used to specify aspects which can be weaved into Java source code. Initial
experiments have shown that certain aspects can be nicely expressed in Piccola. For
example, Readers and Writers synchronization policies cannot be factored out as
software abstractions in Java whereas this is relatively straightforward in Piccola.
Whether aspects in general can be addressed by Piccola’s compositional paradigm
of agents and forms is an open question.

Coplien uses C++ as multi-paradigm language [4]. He uses C++ built-in paradigms
like OO-inheritance or templates to match different component models and styles
as they evolve from domain analysis.

9. Future Work and Conclusion

We have described how Piccola supports the paradigm that Applications = Compo-
nents + Scripts. We show how components conforming to a style are scripted and
how different styles can be implemented within Piccola. This leads to a layered
approach, where the abstractions provided by one layer connect components of the
next level in a more declarative way.

We use forms to represent components, scripts, services, arguments to services,
glue and coordination abstractions, and static and dynamic contexts. For an open
component approach, however, it is clear that we must be able to cope with compo-
nents obtained at run-time, possibly through network middleware. In this case Pic-
cola must provide some reflective capabilities. It is not yet clear what capabilities
precisely are needed to inspect forms. Should labels be first class values or is it
enough to check for the existence of a given binding in a form? We are currently
investigating lightweight approaches, like providing built-in abstractions to iterate
over all labels of a form. This allows us to define more generic wrappers for forms,
but forbids introducingnewlabels.

Another issue related to open systems is distribution. It is not yet clear whether the
notion of locality should go into the channels, (as for example in Klaim [17]) or
whether it should be handled by providing dynamic services.

A flexible type system is needed to cope both with statically known components as
well as dynamically introduced ones. Should the type system be defined at the level
of theml-calculus (as is the case in Piccola(T)) or at the Piccola language level?
Can we develop a type system that captures whether a service returns, may raise an
exception, or block? Instead of a type system, could we augment Piccola with an
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assertion languag¢hat would allow us to express and reason aboutdhgacts

that components require and ensure, and correspondingly about the properties guatr-
anteed by an architectural style? Other important non-functional properties include
safety and security, real-time properties and reachability. For example, what ser-
vices are needed by a composition environment such that we can safely install,
upgrade, and de-install components without breaking other parts of the system?

Piccola is available fromww.iam.unibe.ch/~scg/Research/Piccola/
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Piccola Syntax

Form::=

Abstraction::=
Pattern::=
Expression:=
Expressions:=

Statement:=

Binding::=

‘dynamic’ | ‘root’ | Label| Literal
‘' Abstraction

Form*. Label

Form‘(‘ Expressions)’

Form op Form

op Form

‘(" Expressions)’

Pattern{ ‘="| "} Expression
‘(‘ [ Label] *)' [ Pattern]

[ Expressions,’ ] ‘ return’ Form
Expressions

Statemenf‘,; Expression$
Binding[ ‘, Expression$

‘root’ ‘=" Form

‘dynamic’ ‘=" Form

[ ‘def’] Label Abstraction

[ ‘def ] Label'=" Form
Label‘’ Form

Form

anonymous Abstraction
Projection

Invocation

Infix Invocation

Prefix Invocation

local declarations

change root context

change dynamic context

define service

assign form

define service without arguments

evaluate Form / add Bindings
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