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CHAPTER 1 Applications = Components + Scrip
A tour of Piccola

Franz Achermann, Oscar Nierstrasz
Software Composition Group, University of Berne
ting
-
odels,
ach
Abstract. Piccola is a language for composing applications from software
components. It has a small syntax and a minimal set of features
needed for specifying different styles of software composition. The
core features of Piccola are communicatingagents, which perform
computations, andforms, which are the communicated values. Forms
are a special notion of extensible, immutable records. Forms and
agents allow us to unify components, static and dynamic contexts and
arguments for invoking services. Through a series of examples, we
present a tour of Piccola, illustrating how forms and agents suffice to
express a variety of compositional abstractions and styles.

1. Introduction

Piccola is intended to be ageneral-purpose language for software composition.
Whereas existing programming languages appear to be suitable for implemen
software components, and many scripting languages and fourth-generation lan
guages have been developed to address the needs of particular component m
there has been relatively little work that attempts to develop a generalized appro
that may span various architectural styles and component models.
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We have argued elsewhere [1][24] that most object-oriented methods typically
not lead to pluggable component architectures (mainly because reuse is consid
too late in the lifecycle) and that the resulting software systems can be hard to
maintain and understand because they do not make the run-time architecture
explicit (the source code describes the classes, not the objects). To address th
problem, we have proposed a conceptual framework for software composition
can be summed up as:

Applications = Components + Scripts

Components must conform toarchitectural styles [26] that determine theplugs
each component may have (i.e., exported and importedservices), theconnectors
that may be used to compose them, and therules governing their composition.
Scripts define specific connections of the components. Additionally,glue abstrac-
tions may be required to bridge architectural styles, and adapt components that
not been designed to work together, andcoordinationabstractions may be required
to manage dependencies between concurrent and distributed components.

Piccola’s runtime model consists of communicating agents. The behaviours of
these agents are specified by scripts. Agents invoke services and compose fo
Agents live in acontextwhich contains the known services and forms for an agen
In this text we will show how components can be scripted in a declarative way
means of astyle which defines a kind of “component algebra.” Consider, for exa
ple, the well-known style ofpipes and filters:

Pipes and filters are “algebraic” in the sense that the composition of two comp
nents yields another component.

Unlike scripting languages that offer only a fixed set of compositional styles, P
cola allows you todefine your own styles for different application domains. Rather
than develop Piccola as an extension to an existing language, we felt it was im
tant and necessary to emphasize aseparation of concerns between component
implementation and component composition. Our goal is to identify a well-found
set of features necessary and sufficient for specifying software compositions a
scripts, while supporting an open-ended set of architectural styles.

Components: File, Stream, Filter Files and Filters are external components

Connectors: <, |, > Three kinds of pipe operators

Rules: Filter < File→ Stream
Stream | Filter→ Stream
Stream > File→ nil

A File piped into a Filter yields a Stream
A Stream piped into a Filter is still a Stream
A Stream can be piped into a File

TABLE 1. Pipes and Filters
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Piccola adopts a layered approach to achieve this goal.External componentsexport
services transparently to each layer. For example, the abstract machine layer 
these services as ordinary channels and agents.

The bottom level of the Piccola system provides an abstract machine in which
agents asynchronously communicateforms through sharedchannels. This abstract
machine implements theπL-calculus [13], a variant of the polyadicπ-calculus [15]
in which forms are communicated instead of tuples. The innovation at this leve
the introduction offorms, which are immutable, extensible records (sets of binding
from labels to channels). Technically speaking, communicating forms rather th
tuples does not alter the expressive power of theπ-calculus, but it makes it much
simpler to express higher-level abstractions in Piccola [25]. This simple foundat
allows us to reason about complex and concurrent interactions using a well-de
oped formal model, and guarantees that the semantics of higher-level abstrac
can always be precisely explained in terms of simple interactions.

The next layer defines the Piccola language syntax and semantics. We introdu
primitive values, like numbers and strings,higher-order abstractions over agents,
forms and channels, andnested forms. Abstractions and nested forms are defined
simply by translation to the lower level model using hidden intermediate chann
and agents. At this level we already begin to appreciate the expressive power 
forms. Forms represent:

• Interfaces to components. Forms encapsulate a set of named services exp
to clients.

• Arguments. Forms provide keyword-based arguments for services.

• Contexts. The static context represents all known services and components
any statement. The dynamic context collects services and capabilities that 
passed from callers to callee.

• User-defined services.

Applications components + scripts
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Architectural styles streams, events, GUI composition, ...

Core libraries basic coordination abstractions, basic object model

Piccola language services, operator syntax, nested forms, built-in types

πL abstract machine agents, channels, forms
3



Applications = Components + Scripts

4

 or
cci-

 We
ut
els
 as

trol
k-
nter-
essed

h-

-
s
a par-

of a

 illus-
sent
ts. In
yle,
on 8

for
elf
tails
w
 is
As forms are immutable, operations on forms yield new forms with an enriched
reduced set of services. It is not possible to modify forms, thereby breaking by a
dent other agents using this form or component, but only to create new forms.
can see a form as a kind of “primitive object” with public and private features, b
without any explicit notion of classes or inheritance. More elaborate object mod
can be encoded directly in Piccola. Piccola permits form labels to be accessed
overloaded infix operators, which is convenient for expressing compositional
styles.

The third layer defines libraries of basic composition abstractions, including con
abstractions (e.g., if-then-else, try-catch), coordination abstractions (e.g., blac
boards, futures), and other utilities, such as an interface to the Java world. The i
face wraps Java objects and represents them as forms so that they can be acc
by Piccola agents.

At the fourth layer, libraries of architectural styles may be defined, such as pus
flow or pull-flow streams, GUI composition, and GUI event composition. This is
done by implementing connectors for such a style as infix operators on compo
nents. A style may also define coordination abstractions to manage interaction
between components, and glue abstractions to adapt external components to 
ticular style, or possibly to bridge gaps between different styles [6][27].

Finally, application programmers can script applications using the connectors 
particular style and the glue abstractions to use external components.

This paper is structured as follows. The next section presents an example that
trates the top-level view of a Piccola script. Then, in sections 3, 4 and 5, we pre
the Piccola language layer, and describe respectively, forms, agents and contex
section 6 we show how Piccola can be used to define a simple architectural st
and in section 7 we show how classes and mixins can be scripted. Finally, secti
discusses related work and section 9 concludes this paper.

2. Scripting Components

In this section we present a small example of a Piccola script that uses styles 
GUI composition and GUI event composition. The specification of event style its
is presented later in section 6. The reader should not worry too much about de
of the mechanics of the script on a first reading, but pay attention instead to ho
Piccola is used to develop a high-level, declarative view of how this application
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composed. The same application written directly in an object-oriented languag
would typically be more procedural, and emphasize low-level wiring of observe
and observables [5]. The Piccola script, on the other hand, expresses the wirin
using compositional operators defined as library abstractions supporting an ar
tectural style

The script “duke.picl ” in figure 2
uses an event style to wire the events
and illustrates how the graphical layout
is scripted. It also coordinates several
agents. Running the script, a frame
with Java’s Duke appears (see figure
1). When we click on thewave button,
duke waves at the speed controlled by
the scrollbar on the left. When we click
on Duke himself, he complains, issu-
ing the message “ouch.” After a short
delay, the message disappears.

We now look at the individual parts of the script and identify the forms and age
when necessary:

1. We load a file “nawt ” which defines several services we will use. The keywo
root denotes a special form that represents the static context in which duke.
is evaluated (see section 5).load() reads a set of definitions in a Piccola library
script and returns a form containing those bindings. We thenextend the static
context by simply redefiningroot  to beroot  extended by the result of
load() .

2. Now our extended root context contains the serviceawtComponent  defined in
the loaded script. This service instantiates new AWT components and wrap
them according to our style. We use it to create the duke component, a but
and a scrollbar. The form returned byawtComponent  can be thought of as a
kind of “primitive object” providing the serviceset  (amongst others). This ser-
vice allows us to send a form containing some properties. For example, we
the label of thewaveButton  component by invokingset  with the argument
form Label = "wave" . Note thatset may be invoked either with a parame-
terized expression on the same line, or by passing an indented form on the
sequent lines. Either syntax can be used at any time. The arguments passe
set will cause these properties to be updated in the wrapped Java object. W
not change any default property ofduke .

Figure 1 Duke scripted in Piccola
5
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# File: duke.picl
# 1. load nawt services

root  = ( root , load("nawt")) # use event and AWT wrappers style

# 2. create AWT Components

duke = awtComponent("demos.duke.Duke")
waveButton = awtComponent("java.awt.Button").set(Label = "wave")

 speedScrollbar = awtComponent("java.awt.Scrollbar").set
    Minimum = 1
    Maximum = 800
    Value = duke.getSpeed()

# 3. do the event wiring

speedScrollbar ? Adjustment
    do: (duke.set(Speed = speedScrollbar.getValue()))
 waveButton ? Action(do: duke.wave(val = 1))

# 4. click on Duke

counter = load("counter").newCounter(0)
sleep() = javaClass("java.lang.Thread").sleep(val = 2000)
duke ? MouseClicked
    do:
        duke.set(Message = "ouch")
        counter.inc()
        sleep() # sleep 2 seconds
        if (counter.dec() <= 0) # if this was the last click

then: duke.clearMessage()

# 5. arrange components in a panel

panel = newBorderPanel
    center = newBorderPanel

north = Components + waveButton
center = duke

    west = speedScrollbar

# 6. add panel into a frame and display it

exit() = javaClass("java.lang.System").exit(val = 0)
frame = awtComponent("java.awt.Frame").set(Title = "This is duke")
frame.add(val = panel.java, type = "java.awt.Component")
frame ? WindowClosing(do: exit())
frame.pack()
frame.show()

Figure 2 Duke script
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3. Next, the events are wired using a compositional notation with infix operato
(see table 2). The style defines a set ofevent types, like Adjustment  and
Action . Each event type is modelled as an abstraction that takes aresponse (a
form containing ado service) as a parameter and yields alistener. The resulting
listener may be bound to a component with the infix? operator.

For example, when the scrollbar is adjusted, the new speed value is set in 
duke  component, whereas clicking on the button causes duke to wave.

4. When we click on duke, he displays a complaining message. The message
appears after a short delay. Each time the user presses the mouse on duke
(MouseClicked ) an agent runs the code given in the response. We do not s
the agent directly, but we specify the script (do: duke.set(Mes-

sage="ouch", ... ) he executes. The agent runs in a context which contai
bindings for the formsduke andcounter , as well as the servicessleep and
if .

Note that the bindings returned byload("counter")  are not used to extend
root . We directly use the exported servicenewCounter()  to construct a
thread-safe counter.

5. The graphical layout uses a different composition style from the event wirin
We use the servicenewBorderPanel  exported by “nawt .” We define a new
panel  by invoking servicenewBorderPanel  which creates a new Java panel
with a border layout manager. The argument is a form specifying sub-comp
nents with constraints north, south, west, east, or center, according to the bo
layout manager of Java [7]. A sub-component may itself be a an instance o
newBorderPanel  or even a list of components. In this case these compone
are arranged using a flow layout in an inner panel. This determines the stre

Components: C
E
R
L

GUI-Component
Event type
Response
Listener

Connectors: ( ), ?

Rules: E(R)→ L
C ? L→ ()

compose an event type with a response to get a listen
connect a component to a listener

TABLE 2. GUI Event Composition style

Components: C
List

GUI-Component
List of Components

TABLE 3. GUI Composition style
7
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ing properties of the sub-components. Component lists are built up by start
with an empty list (i.e.Components ) and adding widgets using the+ operator.
Glue code maps the interfaces of Java objects to fit the style. Note that GU
composition in Piccola using an appropriate style is more declarative than w
one would typically write in a conventional object-oriented language. Contra
it with the code fragment necessary to achieve the same layout in Java:

Panel panel = new  Panel(new  BorderLayout());
Panel innerPanel = new  Panel(new  BorderLayout());
Panel buttons = new  Panel(); // using the default flow layout
buttons.add(waveButton);
innerPanel.add(buttons, BorderLayout.NORTH);
innerPanel.add(duke, BorderLayout.CENTER);
panel.add(innerPanel, BorderLayout.CENTER);
panel.add(speedScrollbar, BorderLayout.WEST);

6. Finally, the panel is put into a new frame, which is displayed. As the Piccola
AWT style uniformly wraps AWT components from Java, we can use metho
pack() , show()  etc. directly from the underlying peer Java objects.

This simple example illustrates several important points about Piccola:

• Piccola syntax is extremely lightweight. There are only four keywords (root ,
dynamic , def  andreturn ) and six reserved operators.

• Forms are ubiquitous in Piccola. They are used to represent interfaces to co
nents, arguments for services, and contexts for agents.

• Although Piccola is not designed as a Bean scripting language, one can use
compose Beans — or any other kinds of components, for that matter — by
defining a suitable architectural style.

• When styles are defined as “component algebras,” the resulting scripts are
highly declarative and make the wiring of components explicit.

In the next three sections, we give an overview of all the features of Piccola, nam
that of forms, communicating agents, and contexts.

Connectors: +, newBorderPanel

Rules: List + C→ List
List + List → List
newBorderPanel(Form)

builds a new list with additional element
concatenate lists
layout Components in the form

TABLE 3. GUI Composition style
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3. What is a Form?

We have identified forms as a central concept needed for composition. A form
mapping of labels to values. The empty form has no labels. Forms in Piccola a
themselves values and may therefore be nested. Many data-structures have a n
embedding as forms. Forms are written as sequences ofbindings, separated by
commas or new-lines and structured using brackets or indentation:

baseForm =
Text = "foo"
Name = Text
Size = (x = 10, y = 20)

The formbaseForm contains three labels:Text , Name, andSize . The nested form
baseForm.Size has labelsx andy. Projectionis used to fetch elements of a form.
For example, the projectionForm.Size.x  yields 10.

Forms are built as a sequence of bindings. Each individual binding is added to
form it follows. At the same time, each binding also acts as a declaration for su
quent code. Thus, the identifierText  in the bindingName is bound to the string
" foo "  in the previous line. Forms and sequences of statements are unified in 
cola. The whole assignment defines a nested form bound to the labelbaseForm  in
the global formroot .

3.1 Extending Forms

New forms can be built byextension. A form, or more precisely the list of its bind-
ings, may be concatenated with other bindings, which yields a new form. We c
extendbaseForm  with a binding forColor :

coloredForm =
baseForm
Color = "green"

Now thecoloredForm  has a labelColor  in addition to the labels ofbaseForm .
We cannot detect in the extended form how and in what order the labels where
added. Note thatbaseForm  remains unchanged.

Bindings may also be overridden by new bindings. Clients using an extended f
will only have access to the most recent binding for a label. The following exam
makes a new form with a modifiedSize :
9
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modForm =
baseForm
Size = (baseForm.Size, x = 15)

This extension makes only minimal assumptions on the labels inbaseForm . It only
assumes the presence of labelSize  in baseForm . We add a binding for a new
Size . The new size itself is an extension ofSize  in the original form with a over-
ridden labelx . Note that this extension would also work if the original size would
contain different labels, say for example three parametersx , y, andz . Then, our
modified form would also contain these bindings with a modified x value. We
heavily use this feature of forms in building reusable abstractions.

It is also possible to extend one form by another, rather than just specifying indi
ual labels to bind. This is an easy and compact way to have default parameter

withDefaults =
Font = aSystemFont
baseForm

Now, we can project onFont  in the formwithDefaults . If baseForm  already
contains a binding for the labelFont , this value is returned, otherwise the value
aSystemFont  is returned.

Projecting on an unbound label is a type error and yields an undefined value. (U
this value generates an exception.) Type systems forπL and Piccola have been
explored [13] but are not presented in this paper.

3.2 Services

In Piccola, we represent everything as a form. Literal values like strings or numb
are forms in the same way strings and numbers are objects in pure object-orie
systems like Smalltalk. Forms are used to encapsulate sets of services. Servic
themselves are also represented as forms. A service can be invoked with a fun
call syntax, but is actually a form with a hidden label that gives access to an ag
that represents it. (We use the termservice rather than “function” to emphasize the
fact that the invoked behaviour is provided either directly or indirectly by an ex
nal component.)

As everything is represented as a form, the arguments for invoking services are
forms. Therefore, they have in general only one argument.

hello() =
println("hello world")
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This statement defines a service and assigns it to the formhello . The body of the
service consists of a call to another service:println . Whenhello  is invoked, it
returns whateverprintln  will return.

An alternative can be used when no formal parameter is needed. We can omit
brackets and write:

hello: println("hello world")

The colon signals that the right hand side is an abstraction. The colon notation
sometimes makes code easier to read. Drawing from our earlier example in sec
2, the following two forms are strictly equivalent in Piccola:

do: duke.wave(val = 1)

do() = duke.wave(val = 1)

To see that a service is just a form, consider the following, equivalent statemen

hello = \() = println("hello world")

Here, the labelhello is bound to the anonymous lambda abstraction\() = ...

Anonymous abstractions are sometimes convenient for defining coordination
abstractions, but we will rarely use them directly. Most of the time, a form with 
do service is more convenient to use.

External components export primitives services to Piccola, but higher-level serv
can be scripted in Piccola. We therefore speak of the body of a service as itsscript.
For example, the script of thehello  service above isprintln("hello

world") .

When a service is invoked, its script (also a form) is evaluated by an agent. Th
root  context this agent runs in provides access to statically bound services (li
load ) and a dynamic argument which gets passed at invocation time.

We can extend services like any other form and, for example, add labels docu
ing their interface. Piccola makes no assumption about such additional labels.

myhello =
doc = "My hello world"
hello

There are several ways to invoke services. The argument form can be enclose
brackets or given by indentation. The following alternatives all invoke ahigher-
11
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a service taking as argument a form containing labelsthen  or else .

if (name == "main")
then: hello()

if (name == "main") (then: hello()) # a one liner!

branch = if(name == "main") # curried: apply boolean
branch # branch is a service:

then: hello() # apply cases

As services are first class values, we could also directly bindhello  to the label
then :

if (name == "main")
then = hello # bind then to (form) hello

Boolean values are encoded as forms that provide aselect service. This service
either selects a true or false binding of its argument:

true = (select(B) = B.true)
false = (select(B) = B.false)

Services in Piccola always take a single form as an argument. Since services 
values, however, it is possible to define curried services (i.e., taking a single ar
ment and returning a service). Consider the implementation ofif  as it is used
above:

if(Boolean)(Cases) = # curried: same as: if(B) = \(C) = ...
withDefaults =

then: ()
else: ()
Cases

Case = Boolean.select # select a case
true = withDefaults.then
false = withDefaults.else

return  Case() # evaluate branch

The service takes two forms as its arguments:Boolean  andCases . In the body of
the service, we first provideCases  with defaultthen  andelse . The defaults we
supply are dummy services that return the empty form, written as() . Next, we use
the boolean to select either thethen  case (the boolean is true) or theelse  branch.
Finally we evaluate the case selected and return it as the result of theif  service.

What would happen if we omitted thereturn  keyword in the above definition?
Then the result of an applicationif(B)(C)  would be a form containing not only
the bindings returned byCase() , but also those ofwithDefaults andCase! The
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use of the keywordreturn  ensures that only the value of the expression that fol
lows is returned. All prior bindings are strictly local. This same mechanism can
used to build objects with private and public features.

3.3 Operators

Piccola supports user defined operators. Any sequence of operator characters-

,+,* ,=,! ,... represents an infix or prefix operator. As is usual in object-oriented l
guages supporting infix operators, such operators are treated as projections on
left-hand side component with the right-hand side component as the argument.
label associated with the operator token has two underscores for infix and one
prefix-use in front of it. For instance:name == " main "  is interpreted as
name.__==( " main ") . Identifiers may also be infix operators when they are
enclosed in single backquotes as in5 ‘mod‘ 3  which is5.mod(3) . Similar:- 4
is interpreted as4._-() . Sequences of infix terms associate to the left, i.e.a | b

| c  is (a | b) | c or, equivalently,a.__|(b).__|(c) .

Infix operators are used to syntactically present architectural styles in a more c
positional or algebraical way, as illustrated by the example in section 2.

3.4 Scopes

So far we have only seen simple bindings of labels to expressions using labels
bound in previous statements. The right-hand side of a binding can never refe
recursively to the label being bound. In practical applications, however, we ofte
need recursive services and forms. The keyworddef defines such a binding. In def-
initions, the right-hand side can refer to the identifier being assigned to, provide
is used within an abstraction:

def  fact(N) =
if (N < 2)

then: 1
else: N * fact(N-1)

While def  is not surprising for services, we also use it to construct fixpoints for
plain forms. In this circumstance it allows us to define forms with a notion of se

def  cout =
__<<(X) =

print(X)
return  cout

nl = "\n"
13
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cout << "Hello World" << nl

Evaluating the termcout << X printsX and returnscout . Therefore, we can write
sequences of such terms as in C++.

Note that in each of these examples the recursion occurred within an abstracti
The following examples, by contrast, are not sound in Piccola:

def  silly = (a = silly)

def  sillier = sillier

and result in run-time errors. The agent that builds the fixpoint reads it before i
correctly set. The following service is uninteresting, but sound:

def  sillyButOK() = sillyButOK

Thedef keyword can also be used to define mutually recursive services. When
or more services should refer each other, they can be enclosed in a common, 
sive scope:

def  myscope =
a() =

...
myscope.b() # call b in myscope

b() =
...
myscope.a()

Note that we could equally omitmyscope in the body of serviceb() to call toa() .

4. Communicating Agents

The semantics of Piccola is given in terms of communicating agents. There are
predefined abstractions necessary to control these agents: one to asynchrono
evaluate ado service by a new agent and one to synchronize running agents.

Therun primitive evaluates thedo service of a form as a separate agent. The resu
of run(...)  is the empty form. This result is returned in parallel to starting the
new agent. The termnewChannel()  creates a new channel. Channels provide
atomic send and receive services to communicate forms. The sender cannot d
when and whether the value sent is received by a communication partner. Rece
a value from a channel blocks unless someone has sent a form to it. If one or 
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forms are sent, then an arbitrary one of them is received. There is no ordering on
values communicated along a channel. The following script creates a channelch

and starts two agents that communicate a form along it:

ch = newChannel()

run (do: ch.send("a form"))

run
do:

v = ch.receive()
println("I received " + v)

Running this script, the second agent will eventually print outI received a

form .

The library script “pil ” provides a style that makes programming with channels
and agents more convenient, and mimics the operators of the lower-levelπL
machine. The script redefinesnewChannel  and equips new channels with infix
operators! , ? and?*  instead ofsend  andreceive . The operator?*  attaches a
“replicated agent” to the channel. A replicated agent behaves like an endless su

of agents, always ready to receive another message. These operators send an
receive forms in their own agents. Using the pil-style, the above script become

root  = ( root , load("pil")) # redefines newChannel
ch = newChannel()
ch ! "a form" # send the string
ch ? \(v) = # receive a value, then run the service

println("I received " + v)

The two predefined abstractionsrun  andnewChannel  are enough to recover the
expressive power ofπL. For example, a stop service can be implemented as:

stop() =
newChannel().receive() # will never receive anything

Calling stop()  will never return and therefore stop the client agent.

Components: C
A

Channels
Agents

Connectors: !, ?, ?* output, input, replicated input

Rules: C ! Form→ A
C ? Abstraction→ A
C ?* Abstraction→ A

send form along channel C
receive form and run abstraction
multiple receive from channel.

TABLE 4. pil-style
15
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Another useful concurrency abstraction is one that evaluates two abstractions 
parallel. It returns the result of one of the two passed abstractions. When both
abstractions terminate, either result is returned. However, when we know that 
one branch terminates and the other stops, the result ofOrJoin  is uniquely deter-
mined:

OrJoin(X) =
ch = newChannel()
run (do: ch.send(X.left()))
run (do: ch.send(X.right()))
return  ch.receive() # blocks unless there is one result

Here, we run two agents in parallel. The two agents execute the left and the ri
abstraction given. The servicech.receive()  blocks, unless one value is sent on
it. Once a value is sent to the channel, this value is returned. In the next section
will use these services to implement an exception handling mechanism within 
cola.

OrJoin andstop are examples of coordination abstractions. For example,OrJoin

is used to coordinate two agents such that only one agent returns a result.

5. Contexts

When an agent evaluates a script, it may make use of services defined in the cu
context (or “environment”). Piccola models contexts explicitly as forms. Since c
texts are therefore first-class values, one can implement various abstractions to
port modules and packages. In contrast to Piccola, most languages provide a
predefined and fixed way to import modules and look up imported services.

The special formroot  denotes the (static) context in which identifiers are looke
up. Instead of writing:

print( " Hello " )

we could equally say:

root .print( " Hello " )

Similarly, bindings also extend theroot  form for subsequent statements. It is als
possible to assign any form as new root or to use root as an ordinary form. Fo
example,load() locates a script and evaluates it. It returns the form defined by t
script. Assume we have a script"hello.picl"  with the contents:
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# File: hello.picl
hello: println("This is the hello script")

We can now import the bindings into theroot  and usehello  directly:

root  = ( root , load("hello")) # extend our root with hello
hello() # call hello

or we can load the script and keep it in a separate form. This prevents cluttering
our root  namespace:

x = load("hello") # bind hello to x
x.hello() # and use it

When the Piccola run-time system is initialized,root  contains the services of the
basic Piccola composition abstractions.

5.1 Dynamic Contexts

Statically compiled languages typically use static (lexical) scoping whereas dyn
ically compiled and interpreted languages often use dynamic scoping or a comb
tion of static and dynamic scoping. Piccola is statically scoped, but offersdynamic
scoping on demand. Although static scoping is good enough for most purposes,
turns out that certain kinds of coordination and control abstractions are next to
impossible to define without dynamic scoping.

As an example, consider exception handling. Most languages that provide exc
tion handling as a built-in construct allow an exception to be raised in the contex
some service provider, and thereby cause an associated exception handler of t
ent to be invoked. In languages that do not provide exception handling, it can b
very difficult to simulate. Let us see now how such an abstraction can be define
Piccola by explicitly passing dynamic contexts between agents.

An example application is theimport  service, which is defined as:

import(F) =
x = findFile(F.name)
if (isEmpty(x))

then: raise("Cannot locate Script: " + F.name)
# otherwise x points to a valid file. We return its contents:
return  try

do: builtinLoad(x)(F.context, scriptLocation = x)
catch(E):

raise("Error in Picclet " + x + "\n" + E)
17
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Import tries to find a given file. When this file cannot be located, it raises an er
Otherwise, the locationX is read and executed. The servicebuiltinLoad  loads,
parses, and executes the script at locationX. It is possible that this process raises a
error. This error is caught and reported to the user. The servicebuiltinLoad(x)

returns a anonymous abstraction containing the script atx as its body androot as
its argument. We invoke this context with the context passed (F.context )
extended with the location of the script itself. WhenbuiltinLoad returns success-
fully, import  returns the contents of the file.

Observe thattry  andraise  are normal abstractions, whereasdo andcatch  are
ordinary labels in the argument totry . Here are the implementations oftry  and
raise :

try (block) =
exception = newChannel()
result = OrJoin

left:
e = exception.receive()
return  block.catch(e)

right:
raise(e) = # define a local raise abstraction

exception.send(e)
stop()

dynamic  = ( dynamic , raise = raise)
return  block.do()

return  result

raise(E) = # use dynamic raise
dynamic .raise(E)

Let us first look at the body oftry . It creates two agents and waits for one of them
to terminate. We have already seenOrJoin  andstop  in section 4. Theright

agent runs thedo service of the argument totry . This service may terminate nor-
mally, causing the agent to return a result, or it may raise an exception, and tran
control to theleft  agent. Theleft  agent blocks and waits if an exception is
raised. If so, it evaluates thecatch  service of the argument totry . Otherwise it
does nothing.

The difficulty here is that the client’sdo service knows nothing about the exception
channel we want to use to coordinate the two agents. The solution is to define
local raise  abstraction which will signal the exception and stop theright  agent.
This raise  abstraction is injected into the dynamic context made available to t
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do service. When thedo service calls theglobal raise  abstraction, it in turn calls
the dynamic one, and the right thing happens.

Whenever a service is called in Piccola, the formdynamic  is passed implicitly
together with the actual parameter. If the client has extended its dynamic conte
with any additional services, these will then be available to the called abstracti

5.2 Passing the dynamic context

For readers with some background in theπ calculus, it may be helpful to have a
closer look at how services are invoked. For that purpose, we show the protocol
is used by service invocations. This protocol can be implemented nicely on top
Piccola using agents and channels. A service becomes a channel together wit
replicated agent that implements its body and returns a result. An invocation c
sists in communicating a dynamic context to this agent along the service-chan
This context will contain the argument (args ) and a result channel. The replicated
agent will send its result along that result channel.

root  = ( root , load("pil")) # redefines newChannel
fact = newChannel() # the service channel

fact ?* \(Dynamic) = # the service body...
N = Dynamic.args # Assign argument form
if (N > 1) # factorial:

then:
# invoke fact(N-1):
h = newChannel() # the result channel
fact ! (Dynamic, args = (N - 1), result = h)
h ? \(Result) =

Dynamic.result ! (N * Result)
else:

Dynamic.result ! 1

Note that we use our previously mentioned pil-style. In the code, we use the id
fier Dynamic  instead of the Piccola keyworddynamic . Observe the invocation of
fact(N-1) :

• We first create a reply channelh.

• We then send an invocation to the service channel (fact ). The invocation con-
sists of the context for the agent responsible to evaluate the service. The con
at least contains the argument form and the result channel.

• We receive the result on the reply channelh. Once the service agent delivers a
result, we fetch it and continue.
19



Applications = Components + Scripts

20

ng
ions.
abel

in

hem

t

e
e
ted

give
n

class
-
ents
An invocation closely corresponds to the responsibilities the agent implementi
the service has. The service is modelled by a replicated agent receiving invocat
An invocation consists of a form. The arguments are by convention bound by l
args , the result channel is bound by labelresult . The result is returned by send-
ing it along the result channel, from where the client will pick it up.

6. Implementing Styles

This section presents the implementation of the event composition style used 
section 2. Participants transmit or receive pieces of information in response to
events. Components that emit events are called informers, those that receive t
are called listeners [2].

We show code to glue the services provided by objects of the Java AWT Even
framework to the event composition style of table 2 which can be used as:

javaComponent ? EventType(Response)

The? with a given event type connects aResponse  to an event within the Java
component. AResponse  is a form with ado service.

6.1 Interfacing to Java Components

The low-level bridge to Java objects from Piccola is done using the predefined
abstractionsjavaClass  andjavaObject . These generic glue abstractions creat
Java objects and return forms giving access to the public methods of them. Th
methods are invoked like any other service but the arguments are given as nes
forms with labelsval  or val0 , val1 , val2 , etc. since arguments for Java are
tuples instead of being keyword based. For overloaded methods, we must also
the type of the arguments in order to select a unique method implementation i
Java.

The Piccola Java interface also provides some generic listener classes, like the
pi.piccola.bridge.GenericActionListener. These classes allow us to call Pic
cola services from Java. The generic action listener class, for example, implem
the Java interfacejava.awt.event.ActionListener. An action listener that prints
the events is created by:
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listener =
javaClass("pi.piccola.bridge.GenericActionListener").new

val = dynamic
val1 = (actionPerformed = println)

The constructor for the listener class requires two parameters, the first is the
dynamic context which will be passed to the listener service, in case the listen
service makes use of services in the dynamic context. We need to pass this co
explicitly, since Java does not offer a notion of context. The second parameter
tains an abstraction to which the event is delegated. The handler for action liste
must be bound by the labelactionPerformed . The Java constructor forGeneri-

cActionListener  is given as:

public  GenericActionListener(Form context, Form delegate);

A listener object may be plugged into components usingvoid  addActionLis-
tener(java.awt. event.ActionListener). An event is then forwarded to the ser
vice actionPerformed  within the dynamic context passed. For example, the
listener can be added to a button:

button = javaObject("java.awt.Button")
button.addActionListener(val = listener)

6.2 The GUI Event Composition Style

To support the GUI event composition style, we need to (1) model event types
abstractions that takedo services as arguments and return listeners, and (2) exte
GUI components with a? operator to attach listeners. For example, the following
code creates a listener forAction  events and attaches it to a Java Button that ha
been wrapped to conform to the style.

myButton = awtComponent("java.awt.Button")

myButton ? Action(do = println)

Since there are many different types of event in the AWT framework, we use a
generic glue abstraction,newEventType , to instantiate event types for our style:

Action = newEventType
genericListenerClass =

javaClass("pi.piccola.bridge.GenericActionListener")
listenerMethod(service) = (actionPerformed = service.do)
addListener(Component) = Component.addActionListener

The argument tonewEventType  is a form with the following labels:
21
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• genericListenerClass  is a factory service to instantiate Java listener
objects. These objects will be created usingnew() with argumentsval0 for the
dynamic context andval1  for the delegate form.

• listenerMethod is a service that returns the delegate form used to instanti
the generic listener class.

• addListener(Component) is a (curried) service encapsulating the method t
add listener instances.

Here is the implementation ofnewEventType . Note that it is a curried service —
the event type it returns (e.g.,Action ) is itself a service that will return a listener. A
listener provides aregister  functionality that will be used by GUI components:

newEventType(P)(Response) =
register(Component) =

ConstructorArgs =
val = dynamic
val1 = P.listenerMethod

do(E):
Response.do(Informer = Component, Event = E)

listener = P.genericListenerClass.new(ConstructorArgs)
P.addListener(Component)(val = listener)

The listener  object is instantiated using thenew service of the (passed) generic
listener class. As expected, the argument form fornew()  is the current dynamic
context and a form with the delegate services, e.g. a bindingactionPerformed

for the action event type. Finally the listener registers itself on a Component by
egating registration requests toaddListener() .

The glue abstractionawtComponent  instantiates AWT objects and extends them
with the? operator. This operation uses double dispatch to register the listenerL:

awtComponent(ClassName) =
object = javaObject(ClassName)
def  self =

object
java = object
set(P) = ... # set properties P
__?(L) = L.register(self) # pass the component

return  self

The Java class is instantiated, and the Piccola representing it is extended with
vices needed to support the event style. In addition, the original base object is
available by a projection on the labeljava .
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The implementation of this style may seem somewhat convoluted, but this is larg
a side-effect of the fact we are adapting an object-oriented interface to a more c
positional style. Keep in mind that the code presented here needs to be written
once. It can then be exploited by any number of scripts. Furthermore, advanced
tures likedynamic  contexts are typically used only to implement abstractions to
support a particular style, and do not normally appear in top-level scripts.

7. Scripting Classes

Although Piccola has no predefined object model, it is possible to implement dif
ent object models on top of it, much in the same way that CLOS is defined on to
Common Lisp [8]. In this section, we use one such model to script classes and
ins [3]. This particular model is implemented by aClass  abstraction and a initial
classObject , from which all classes inherit. The following code loads the objec
model and creates aPoint  class:

root  = ( root , load("classes")) # get Class, Object

Point = Class
name = "Point"
super = Object
instanceVars: (x=newRefcell(), y=newRefcell())

delta(P):
asString() = "x = " + P.self.x.get() +

", y = " + P.self.y.get()

rep() =
println(P.self.class.name + ".new(" +

P.self.asString() + ")")

initialize(Init) =
P.self.x.set(Init.x)
P.self.y.set(Init.y)

We use the abstractionClass  to create a new class. Individual classes are param
terized by the following bindings:

• Thename of the class.

• Thesuper  or parent class from which this class is derived. The model
described here only supports single inheritance.
23
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• A serviceinstanceVars()  that creates the additional instance variables for
instances of this class. Each instance variable is represented by a referenc
with set  andget  accessor services. The serviceinstanceVars  is optional.
The default binding for this parameter assumes that there are no new insta
variables to be added.

• Thedelta(P) abstraction defines the differences of the new class with resp
to its super class. The formal parameterP contains the nested formsself  and
super  for self sends and super calls. ThePoint  class defines three methods:
rep() , asString()  andinitialize() . The initialize method is special:
whenever we override this method, a call to the overriddeninitialize()  is
inserted before the overriding method. We can omit a call tosuper.initial-

ize() . This behaviour is implemented in theClass  abstraction.
The abstractionClass  creates forms with a servicenew()  to create and initialize
new objects. For instance, a point is created by:

aPoint = Point.new
x = 1
y = 2

Calling aPoint.rep()  prints out the string:Point.new(x = 1, y = 2) , as
expected.

Whenever a new instance is created,delta()  andinstanceVars()  of all sub-
classes in the inheritance chain starting fromObject are called. The assembling is
done within a scope definition forself . That way we passself and the intermedi-
ate objects assuper  to each call todelta() . Once the object is builtinitial-

ize()  gets called to establish the invariant of the object.

Having the instance variables created byinstanceVars  is not a restriction of the
object model. In fact, we could also create the instance variables directly in
delta() :

Point = Class
name = "Point"
super = Object
delta(P):

x = newRefcell()
y = newRefcell()
...
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but keeping them by in separate intention-revealing parameter for classes make
code more self-documenting. In addition, clients that stick toinstanceVars()

for creating instance variables can implement generic operations for cloning obj
or inspecting facilities.

ColoredPoint  is a subclass ofPoint  with an additionalcolor  field and overrid-
den methodasString() :

ColoredPoint = Class
name = "ColoredPoint"
super = Point
instanceVars: color=newRefcell()
delta(P):

asString() =
P.super.asString() + ", color = " + P.self.color.get()

initialize(Init) =
P.self.color.set((color = "Black", Init).color)

The methodasString()  overridesasString  of thepoint  class and appends a
representation for the color of a point. Note how form extension is used to initial
thecolor  slot with a default value.

Mixins are classes with a freesuper . Mixin-composition composes two mixins to
a new one. Applying a mixin to a class yields a new class. Acolor mixin may look
as:

ColorMixin = Mixin
name = "Colored"
instanceVars: color=newRefcell()
delta(P) = ... # as above

This mixin adds a color part to any class it is applied to. Note that the parent clas
not specified here. Now, we can apply the mixin to our previous class:

myClass = ColorMixin * PointClass

point = myClass.new
x = 1
y = 1
color = "Yellow"

Note that we use the flexibility gained from the keyword-based argument to ini
ize the reference cells. We just pass a form as initializer, eachinitialize()

method needs only its specific arguments. TheMixin  abstraction builds a class
25
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name by prefixing the name of the mixin (e.g." Colored " ) to the name of the par-
ent class (e.g." Point " ). Another mixin may add amove()  method to changex
andy  coordinates of a given point:

MoveMixin = Mixin
name = "Moveable"
delta(P) =

move(Diff) =
P.self.x.set(Diff.x + P.self.x.get())
P.self.y.set(Diff.y + P.self.y.get())

moveablePoint = ColorMixin * MoveMixin * PointClass

Observe thatColorMixin * MoveMixin  is also a mixin. We summarize the
classes and mixin style :

TheClass  andMixin  abstractions shown in this section are implemented by
approximately 80 lines of Piccola code. This illustrates that it is possible to enco
a useful inheritance composition mechanism with feasible effort. Schneider [25
has shown how to encode other forms of inheritance composition, like Beta-st
[10] composition.

8. Related Work

In the past years, there has been considerable work on the foundations of con
rency, and much of this on process algebras and process calculi. Theπ-calculus
[15] has proven to be successful for modelling concurrent objects [22][23][29]. T
πL-calculus [13] replaces tuple communication of the polyadicπ-calculus with
monadic form communication.

Pict [20] is a language that builds on the polyadic asynchronousπ-calculus. Pict’s
language constructs are provided as syntactic sugar on top of the core calculus
have used Pict to run extensive experiments with different object models [11][2
and synchronization policies [28] as examples for composition mechanisms. Th

Components: Class, Mixin

Connectors: * mixin operator

Rules: Mixin * Class→ Class
Mixin * Mixin → Mixin

Mixin application
Mixin composition

TABLE 5. Classes and Mixins
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experiments led us to conclude that form-based communication would be a be
basis for modelling composition than tuple-based communication, and led us t
develop theπL-calculus [12][13]. Pict was developed to study the relation of typ
and concurrent programming, whereas Piccola is used to experiment with com
tion abstractions.

We have been experimenting with different variants of Piccola. The version
described here is Piccola 2.0. It completely hides theπL-primitives of the underly-
ing process calculus as services, whereas these operators are visible in other
sions. Piccola 2.0 can be compared to functional languages, where concurren
primitives where added, like this is done in CML [21]. In another variant, Pic-
cola(T), we experiment with a type system for theπL-calculus [13]. Piccola(T)
reflects theπL-operators as language primitives as in Pict. The type system is so
and complete, but lacks parametric polymorphism, which would be needed to 
generic abstractions. We have also worked on extending theπL-calculus to the
Form-calculus, which supports additional operators to hide labels. Piccola(F) of
these restriction operators as primitives [25].

In a much earlier paper with a similar title, we have explored visual composition
objects using scripts [18]. The present work provides a concrete textual syntax
a formal semantics for scripts.

The syntax of Piccola deliberately resembles that of Python [14][30]. Python is
object-oriented scripting language that provides a simple integration of functio
and objects. Python models objects and classes in terms of dictionaries (which
resemble forms). Methods and functions can be called either with positional pa
eters (i.e., tuples) or with keyword arguments (i.e., à la forms). Python provide
operator overloading, and can also be used to implement architectural styles m
in the way described in this report. It provides limited support for reflection, an
is possible to change the underlying object model to a certain degree (though
Python does not have a meta-reflective architecture like Smalltalk). Python is n
inherently concurrent, though there is a Posix-dependent threads library, and s
researchers have experimented with active object models for Python [19].

In Perl [30], procedures may specify the visibility of their local variables in its d
laration. To the best of our knowledge, Piccola is the first language that offers 
static scoping and the possibility of dynamic scoping on demand, within a form
framework.

Aspect-oriented Programming [9] is an approach to separating certain aspects
programs that cannot be easily specified as software abstractions. AspectJ is 
27
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guage used to specify aspects which can be weaved into Java source code. In
experiments have shown that certain aspects can be nicely expressed in Piccol
example, Readers and Writers synchronization policies cannot be factored ou
software abstractions in Java whereas this is relatively straightforward in Picco
Whether aspects in general can be addressed by Piccola’s compositional para
of agents and forms is an open question.

Coplien uses C++ as multi-paradigm language [4]. He uses C++ built-in paradig
like OO-inheritance or templates to match different component models and sty
as they evolve from domain analysis.

9. Future Work and Conclusion

We have described how Piccola supports the paradigm that Applications = Co
nents + Scripts. We show how components conforming to a style are scripted 
how different styles can be implemented within Piccola. This leads to a layered
approach, where the abstractions provided by one layer connect components o
next level in a more declarative way.

We use forms to represent components, scripts, services, arguments to servic
glue and coordination abstractions, and static and dynamic contexts. For an o
component approach, however, it is clear that we must be able to cope with com
nents obtained at run-time, possibly through network middleware. In this case 
cola must provide some reflective capabilities. It is not yet clear what capabiliti
precisely are needed to inspect forms. Should labels be first class values or is
enough to check for the existence of a given binding in a form? We are curren
investigating lightweight approaches, like providing built-in abstractions to itera
over all labels of a form. This allows us to define more generic wrappers for form
but forbids introducingnew labels.

Another issue related to open systems is distribution. It is not yet clear whether
notion of locality should go into the channels, (as for example in Klaim [17]) or
whether it should be handled by providing dynamic services.

A flexible type system is needed to cope both with statically known components
well as dynamically introduced ones. Should the type system be defined at the l
of theπL-calculus (as is the case in Piccola(T)) or at the Piccola language leve
Can we develop a type system that captures whether a service returns, may rai
exception, or block? Instead of a type system, could we augment Piccola with 
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assertion language that would allow us to express and reason about thecontracts
that components require and ensure, and correspondingly about the properties
anteed by an architectural style? Other important non-functional properties incl
safety and security, real-time properties and reachability. For example, what se
vices are needed by a composition environment such that we can safely instal
upgrade, and de-install components without breaking other parts of the system

Piccola is available fromwww.iam.unibe.ch/~scg/Research/Piccola/
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Piccola Syntax

Form ::= ‘dynamic’ | ‘ root’ | Label | Literal

‘\’ Abstraction anonymous Abstraction

Form ‘.’ Label Projection

Form ‘(‘ Expressions ‘)’ Invocation

Form opForm Infix Invocation

opForm Prefix Invocation

‘(‘ Expressions ‘)’

Abstraction ::= Pattern { ‘=’ | ‘:’ } Expression

Pattern ::= ‘(‘ [ Label ] ‘)’ [ Pattern ]

Expression ::= [ Expressions ‘,’ ] ‘ return ’ Form local declarations

Expressions

Expressions ::= Statement [ ‘,’ Expressions ]

Binding [ ‘,’ Expressions ]

Statement ::= ‘root’ ‘=’ Form change root context

‘dynamic’ ‘=’ Form change dynamic context

Binding ::= [ ‘def’ ] Label Abstraction define service

[ ‘def’ ] Label ‘=’ Form assign form

Label ‘:’ Form define service without arguments

Form evaluate Form / add Bindings
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