

Architectural Description of Object Oriented
Frameworks: an Approach

Gabriela Arevalo*,** — Isabelle Borne**

 *LIFIA, Facultad de Informatica, Universidad Nacional de La Plata, La Plata,
Argentina
** Ecole des Mines de Nantes, 4 rue Alfred Kastler, B.P. 20722, Nantes Cedex 3,
France
garevalo@eleve.emn.fr, borne@emn.fr

ABSTRACT. Integration of architectural descriptions in development tools and environments,
in order to take architectural descriptions into account, is a topical issue. Nowadays, the
existing formalisms to represent software architecture fail in providing a clear semantics and
only give an intuitive graphical representation of the system as a whole. More specifically,
the framework architectures should show the overall design and the specification of the points
of the variability of the framework, making easier the reuse of the architectures, integration
with others frameworks and a reference to measure the changes in subsequent versions of the
frameworks. In this paper we propose an approach to describe the architecture of
frameworks, combining formal and non-formal formalisms: Wright, an architectural
description language developed at Carnegie Mellon University, and architectural patterns.
Based on the study of several frameworks, our objective was to produce a complete
description of a framework, to show the expressive power of both approaches and to consider
complementarity and flexibility regarding to other approaches.

RÉSUMÉ. L’intégration de descriptions architecturales dans des outils et des environnements
de développement, prenant en compte l’intégration de ces architectures est un sujet
d’actualité. Les formalismes existants de représentation des architecture ne fournissent pas
une sémantique claire et donnent seulement une représentation graphique intuitive du
système. Plus spécifiquement, les architectures de framework doivent montrer la conception
dans son ensemble et la spécification des points de variations du framework, facilitant la
réutilisation des architectures, l’intégration avec d’autres frameworks et une référence pour
mesurer les changements de versions du framework. Dans cet article, nous proposons une
approche pour décrire l’architecture de frameworks, combinant des formalismes formels et
informels : le langage de description d’architecture Wright, développé à l’université de
Carnegie Mellon, et les patterns d’architecture. En s’appuyant sur l’étude de plusieurs
frameworks, notre objectif fut de produire une description complète d’un framework, de

2 Architectural Description of Object Oriented Framework : an Approach

montrer le pouvoir expressif des deux approches et de considérer leur complémentarité et
flexibilité par rapport à d’autres approches possibles.
KEY WORDS: software architectures, object-oriented frameworks, Architecture Description
Languages.
MOTS-CLÉS : architectures logicielles, framework objet, langages de description
d’architecture.

1. Introduction

Software Architecture is an area of study within the software engineering

community for already quite a long time, that has become a topic of interest within
the object-oriented community as well. Integration of architectural descriptions in
development tools and environments, in order to take architectural descriptions into
account, is a topical issue. One approach consists in starting by architectural styles'
descriptions, that allow to underline families of systems for which frameworks can
be easily deduced. An object-oriented framework is a kind of reusable software
architecture comprising both design and code. More specifically, [Mat96] defines an
object-oriented framework as “a generative architecture for maximum reuse
represented as a collective set of abstract and concrete classes, encapsulating
potential behaviour for subclassed specialisations”. The first objective of this work
was to study architectural descriptions that can be used for object-oriented
component frameworks (collections of software components), particularly the ones
based on architectural patterns and composition languages

Description and documentation are closely related. One critical issue for users
and implementors of a framework is the documentation that explains what the
framework provides and what is required to instantiate it correctly for some
application. Typically, a framework is specified using a combination of informal and
semi-formal documentation. On the informal side are guidelines and high-level
descriptions of usage scenarios, tips and examples. If an object-oriented
methodology, such as UML [UML97], is used to document the framework, there are
class and collaboration diagrams as a description artefacts. These approaches tend to
be informal and idiosyncratic, consisting of box-and-line diagrams that convey the
essential system structure, together with the prose that explains the meaning of the
symbols [MKMG96]. On the semi-formal side one usually finds a description of an
application programmer's interface (API) that explains what kinds of services are
provided by the framework. APIs are formal to the extent that they provide precise
descriptions of those services -usually as a set of signatures, possibly annotated with
informal pre and post-conditions [SG99].

This documentation is clearly necessary, but it leaves many important questions
unanswered for component developers, system integrators, and framework
implementors. For example, the framework API may specify the names and
parameters of services provided by the infrastructure. However, it may not be clear
what are the restrictions (if any) on the ordering of invocations of those services.
Usage scenarios may help, but they only provide examples of selected interactions,

3

requiring the reader to infer the general rule. Moreover, it may not be clear what
facilities must be provided by the parts added to the framework, and which are
optional. [SG99]. As with most forms of informal system documentation and
specification, the situation could be greatly improved if one had a precise
description as a formal specification of the framework.

There are several reasons to have an architectural description of a framework
based on high-level interfaces and interactions, and characterising their semantics in
terms of protocols:

• Reuse of architecture: Transmitting a language-independent view of the
architecture allows the high-level design of the framework to be reused in
implementing it in other languages, or in modifying it for use in other
domains. [Ric98]

• Integration of frameworks: In order to facilitate the construction of systems
from several existing frameworks, the architectural assumptions of each
framework should be made explicit. [GAO95] [MB00]

• Evolution and re-engineering: Having an architectural description of a
framework gives us a reference against which one can measure the changes
in subsequent versions of the framework. In the same way, the ability to
describe the architecture of an application allows us to form hypothesis
about the architecture which can be tested in the process of reverse
engineering [MN95].

In this paper we propose an approach to describe the architecture of frameworks,
combining formal and non-formal formalisms: Wright, an architectural description
language developed at the University of Carnegie Mellon, and architectural patterns.
The complete description of this work can be found in [Are00], here we will focus
on the mapping between source code (written in Smalltalk and Java) and CSP
process, since the formal basis of Wright is CSP [Hoa85], and on the methodology
proposed to get the architectural description of a framework.

2. Related Work

The particular combination in the use of formal languages to describe an object-

oriented framework is only shown in [SG99]. In this work, they develop a
specification of Sun's Enterprise Java-Beans. Firstly, they show formal architectural
models based on protocols clarifying the intent of an integration framework, as well
as exposing critical properties of it. Secondly, they describe techniques to create the
model, and structure it to support traceability, tractability, and automated analysis.
This work is a good approximation on ways to provide formal architectural models
of object oriented frameworks.

Recent volumes on application frameworks [FSJ 99] relates some studies on
framework documentation and description, but not from an architectural point of
view.

3. Architectural Description of a Framework

3.1. Software Architecture and object-oriented framework

4 Architectural Description of Object Oriented Framework : an Approach

There are many valid definitions of software architecture, we choose the one
considering software architecture as the structure of the components of a system,
their interrelationships, and principles and guidelines governing their design and
evolution over time. In our study we address more specifically the description of
object-oriented frameworks, that are reusable architectures of systems that describe
how the system is decomposed into a set of interacting objects. We have also
restricted our work to how classes are related structurally in a framework and what
the consequences of this structure are on the software system.

3.2. Software Components = Architectural Components ?

At the programming language level, components may be represented as classes
of objects or a set of classes, since the common requirements to be a software
component are fulfilled by an object: encapsulated information, specified interface,
context dependencies and used as a building block. Thus, we can provide a direct
mapping between a software component (e.g. a class) and an architectural
component. This process is transparent in the developed mapping. The interface of
the architectural components will be the services provided by the classes.

3.3. Connectors

Components do not represent anything by themselves, and the most relevant part
is the possibility of connecting them with different types of relationships (defined as
connectors in [SG99]). Defining the architectural structure of a framework, another
key question is what are the connectors. It is essential to have a clear distinction
between the classes, and the mechanisms that co-ordinate their interaction. In this
way, we isolate two models in the architecture: one for the communication and one
for the computation. Firstly, Let us see two ways of identifying possible connectors
presented in [SG99].

Y X

C

A B C

A B

Figure 1: Component or Connector ? [SG99]

Consider a system consisting of three components : A, B, and C (figure 1). In
some cases the purpose of C is to enable the communication between A and B, using
A-C specific protocol over connector X, and C-B protocol over connector Y. On the
one hand, i f those two protocols are completely independent, it makes sense to
represent C as a distinct component, and keep X and Y as separate connectors. On
the other hand, if events on X are tightly coupled with those on Y (or vice versa),
then, it makes more sense to represent the protocol between X and Y directly using a
single connector. In this case, the connector itself encapsulates the mediating
behaviour of C.

5

 We considered both cases, because our main goal is the abstraction of the
relationships between the classes in the connectors. But in some cases, it is possible
to find a class that can be mapped as a connector (second case).

4. Architectural Description Language as an alternative formal approach

Informal description of architecture can be efficient enough to communicate
design decisions, but they have limitations to represent the real semantics of
different parts of a framework. [AAG93] explains that the imprecision produced by
box-line drawings makes it difficult to attach unambiguous meanings to the
descriptions. It may be difficult to know when an implementation agrees with the
more abstract description. It is virtually impossible to reason formally about the
descriptions. It is difficult to compare two different descriptions even for the same
interpretation.

Thinking in terms of giving meaning to the descriptions of software systems,
Architectural Description Languages (ADLs) have been proposed to support
architecture-based development, formal modelling notations and analysis and
development tools that operate on architectural specifications [MT97]. An ADL
must be able to communicate the architectural structures involved within a system to
all stakeholders. The level of granularity, or abstraction, must be flexible enough to
allow descriptions in sufficient detail or abstraction dependent on the users of the
architectural description [All97]. The benefits of an architectural analysis are
enhanced by precise semantics. Elimination of ambiguity is paramount in any
architectural description to accurately describe a system. This requirement must be
balanced with the competing goals of allowing informal descriptions [Bro00].

Wright is a formal language for describing software architecture. As most ADLs,
Wright describes the architecture of a system as a graph of components and
connectors. Components represent the main centres of computation, while
connectors represent the interactions between components. Moreover, unlike many
other ADLs, Wright also supports the explicit specification of new architectural
connector types [All97]. Each part of a Wright description –port, role, computation
and glue- is defined using a variant of CSP. Each such specification defines a pattern
of events (called a process) using operators for sequencing (“→” and “;”), choice
(“Π” and “[]”), and parallel composition (“||”).

To guarantee that an architectural description is both consistent and complete,
Wright provides a set of tests. We just mention them: Port/Computation Consistency
(component), Connector Deadlock-Free (connector), Roles Deadlock-Free (role),
Single Initiator (connector), Initiator Commits (any process), Parameter Substitution
(instance), Range Check (instance), Port-Role Compatibility (attachment), Style
Constraints (configuration), Style Consistency (style), Attachment Completeness
(configuration). More detailed information can be obtained in [All97]. In our
approach we use this set of tests to check the validity of the description we get from
our algorithm, exploiting the formal side of Wright.

5. Mapping and assumptions

6 Architectural Description of Object Oriented Framework : an Approach

One of our goals is the definition of rules to define a mapping from informal
documentation of frameworks to an architectural description. Thus, firstly, the path
from documentation and/or code to an architectural description of a framework is
reduced to a recipe. Secondly, the mapping allows us to identify micro-architectures,
architectural components and connectors related to the framework.

We present, here, a defined mapping between code, written in Java or in
Smalltalk, in terms of CSP process. This lets us define easily the protocol for the
ports and computation of the components and the role and glue of the connectors

5.1. Mappings : Definition and Assumptions

In Wright, a component is defined by an interface and a computation. The
interface consists of a number of ports. Each port represents an interaction in which
the component may participate. A connector consists of a set of connector roles and
the connector glue. Each role specifies the behaviour of participant in the interaction
and the glue describes how the participants work together to create an interaction.
Thus, the general structure of a component and a connector in Wright is the
following one:

Component ComponentName
Port NamePort1 = ...

 ...
Port NamePortn = ...
Computation = ...

Connector ConnectorName
Role NameRole1 = ...
...
Role NameRolen = ...
Glue = ...

As our first objective of working in different levels of description is to be closer
to the code going from one coarse-grained level to fine-grained level of description,
firstly we show the mapping from the code to the architectural elements. Our
mapping must be in terms of CSP process to be able to used in Wright. It must be
clear enough to the reader that in most of the cases, we are constrained by the
possibilities to represent architectural elements with Wright ADL.

5.2 Mappings for Classes

A direct mapping between classes and components is made. This means that

each class in the class model is considered as a component in the description. But
we decouple all the information about class communication between the component
and the connector. All the information about the communication to other objects is
put in the connector. For example, supposing that we have a class model to represent
a book that is composed pages (See Figure 2).

7

Figure 2: Class Model for a Book and the Mapping with Connectors and
Components

These classes are mapped as two components: Book and Page, and we get a
connector Has which represents the relationship between the two components. The
behaviour of the component regarding to the other objects is left to the connector. In
this case, for example, when the Book has to perform a spelling checking, it only
sends the event to the connector which forwards the events to the pages. This is also
illustrated graphically in Figure 2.

5.3 Mapping for Relationships between Classes

Besides the relationships that can be mapped by the message sendings (explained
in the next subsection), we also consider three kinds of relationships between two
classes A and B.

• instances of B can be instances/class variables of A
• instances of B used as parameters in one method of A
• instances of B are connected to an instance of A by a dependency

mechanism.
In all the cases, we represent A, the instances/class variables of A and the

parameters as components in the Wright description, whenever the objects are not
instances of primitive classes (in Smalltalk) or primitive types (in Java). We only
want to keep objects with a composite structure. For example, in the figure 3 we can
see the class model of a Truck and its representation in terms of components and
connectors. It must be clear for the user that this is a complete representation for this
model, this means that we can simply represent the Truck and avoid any
information of the Manufacturer. But it is clear that we do not have, for example, a
component for the name of the Manufacturer. All the information (called as simple)
can be used as parameters. This assumption is taken because the management of
parameters in Wright is limited to simple parameters such as letters and integers.

8 Architectural Description of Object Oriented Framework : an Approach

Figure 3: Class Model for a Truck and Representation with Components and
Connectors

5.4 Format for Components and Connectors

As our approach focuses on having components only as units of computation and
connectors as units of communication, we model the classes as components without
any knowledge of what objects are connected with and we leave all this information
to the connectors. In this way, the names of the ports in the component are left to the
user, but we adopt the names of the roles in the connector with the names of classes
that must be connected. If an instance of class A must be connected to instances of
class B, the connector have the following format:

Connector AB
 Role A =....
 Role B1..n = ...
 Glue = ...

5.5 Mapping for the Messages

The method calls in a method mk in a class A have the following formats:
• in Smalltalk:

o objecti messagej
o objecti messagej: p1 with: p2 ... with: pn

• in Java:
o objecti . messagej
o objecti . messagej (p1, p2, … pn)

where objecti ,p1, p2, … pn can be instances/class variables of A, parameters in the

method or the class itself and messagej can be seen as a service that the class
initializes or simply the notification of a change (dependency mechanism). We are
assuming that objects pi have only one level of objects' composition in their

9

structure. Following with the example of the Truck (Figure 3), p1 can be an instance
of the Wheel class, but it cannot be an instance of the Truck Class, because this
latter has two levels of composition. We are making this assumption because we are
interested in being able to decompose the parameter pi in terms of its components
px(ox1,..,oxm). In the case of Manufacturer, we will get manufacturer(name, address,
city, offices). Thus, we get a good level of expressiveness in the description. Based
on the structure of methods, let us see the different focus that we have about the
methods themselves and their bodies. Firstly, all the methods (mk) are mapped as
events in CSP. Thus, we must know if the methods are called by the another object
or if the method is a 'shooter' of actions. In the first case, the method will be mapped
as an observing event mk, and in the second case, the method will be mapped as an
initiating event

k
m . So the component A (class A mapped as component in the

description) has the following structure:
Component A

Port Out = (mk | k
m) |

(mk| k
m → objectName

j
message ! →),..,

1
(!;..1

xm
o

x
o

x
prasParametenx!"

Computation = (Out.mk | k
mOut.) |

(Out.mk| k
mOut. → objectName

j
messageOut !.

→),..,
1

(!.;..1
xm
o

x
o

x
prasParameteOutnx!"

Connector AB
Role A = (mk | k

m) |

 (mk| k
m → objectName

j
message !

 →),..,
1

(!;..1
xm
o

x
o

x
prasParametenx!"

Role objectName=messagej →),..,
1

(?;..1
xm
o

x
o

x
prasParametenx!"

Glue = (
k
mA. | A.mk) → A.messagej?objectName

 →),..,
1

(?.;..1
xm
o

x
o

x
prasParameteAnx!" →

j
messageobjectName.

 →),..,
1

(!.;..1
xm
o

x
o

x
prasParameteAnx!"

The connector uses a name matching with the parameter objectName and thus
identify to which component (identified with the portname) it sends the events.

5.6 Mapping for Classes Creation

Class A must create instances of classes B in one of its methods, so we find the
following:

• in Smalltalk:
o B new
o B new: p1 with: p2 ... with: pn

• in Java:
o B ()

10 Architectural Description of Object Oriented Framework : an Approach

o B (p1, p2,.., pn)
In the first case, it maps as a special event name Bcreate! in the protocol of the
component. The class A is creating an element B so it is an initiating event. In the
second case, it maps as a sequence of events
 Bcreate! →),..,

1
(!;..1

xm
o

x
o

x
prasParametenx!"

5.7 Mapping for Conditional Statements

In the method calls we can also have conditional statements.
• in Smalltalk:

o (condition) ifTrue: [actionTrue]
o (condition) ifFalse: [actionFalse]
o (condition) ifTrue: [actionTrue] ifFalse: [actionFalse]
o (condition) ifFalse: [actionFalse] ifTrue: [actionTrue]
o (condition) whileTrue: [action]
o (condition) whileFalse: [action]
o 1 to: n do: [action]

• in Java:
o if (condition) actionTrue
o if (condition) actionTrue else actionFalse
o while (condition) action
o for (i:=0; i++; i<=n) action

where the condition can only be one boolean expression (e1) or a set of boolean
expressions (e1,..,en) joined by logical operators (and, or, xor), and the action,
actionTrue and actionFalse can be a method call (m1) or a sequence of method calls
(m1,..mk). In the case of expressions, they are method calls which reply True or
False. Thus in both cases, we consider them as events inside the description.

We start with the condition. The expressions e1,..,en are a sequence of method
calls (except in the case they evaluate an internal state of the object, e.g. comparing
two values of instances variables), so we map the condition such as:
Process Condition =

x
enx ;..1!" → (answer?True → ... [] answer?False → …)

We leave the responsibility of evaluating the logical expression to the
connector. Let us see how the process in the connector would be modelled.

Connector Logic (nb: 1..n)

Port A = Condition
Port B1..nb = ej → (Trueanswer! → B [] Falseanswer! → B)
Computation =

x
eAnx .(;..1!" → e

x
B .)

if the logical operator is 'and' :
 Trueanswer

x
Bnx ?.;..1!" → TrueanswerA !.

[] Falseanswer
x
Bnx ?.;..1!" → FalseanswerA !.

if the logical operator is 'or' :
 Trueanswer

x
Bnx ?.;..1!" → TrueanswerA !.

11

[] Falseanswer
x
Bnx ?.;..1!" → FalseanswerA !.

We consider the possibility of expressing the condition explicitly. But if the user
decides to avoid it, the events to execute when the condition is true or false are
expressed as non deterministic choices, because we do not have any information
about the condition, and we can think that the component takes the decision of the
actions to follow. In the other case, we must use the deterministic choice, because it
has an observing event (answer) which communicates the result of the condition.

The if-statement maps as a non deterministic choice with the following format:
Process if = actionTrue (or

x
actionTruenx ;..1!")

 Π eactionFals (or
x
eactionFalsnx ;..1!"

But in the case of using the condition explicitly:
Process if = all the conditions are sent →

(answer?True → actionTrue (or
x

actionTruenx ;..1!")

� answer?False → eactionFals (or
x
eactionFalsnx ;..1!")

In the case of a WHILE statement, using non-deterministic choice:
Process While = action (or

x
actionnx ;..1!") → While Π §

The For statement maps as a non deterministic choice with the following format:
Process For = action (or

x
actionnx ;..1!") → For Π §

The deterministic approach for While and For are similar to the one presented
with the statement IF.

6. Methodological implementation

Once the mappings defined, we propose, here, some methodological steps to

infer an architectural description of the framework in terms of components and
connectors explicitly, based on the mappings and the documentation we can have on
of the framework (class hierarchies provided in UML, source code). One objective
is to work at different levels going from domain-specific to implementation-specific
issues.

Step 1: Identify the main classes of framework in terms of the domain. This step
is concerned with identifying classes which were mapped to concepts of the studied
domain. In most cases these classes are clearly identified in the design. If we have
class hierarchies, we suggest to take the root class of the hierarchy.

Step 2: Each class is mapped to a component and each possible relationship
between two classes is mapped to a connector in terms of Wright, avoiding to have a
relationship with classes of simple types (integer, char, boolean). This step is
concerned with getting relationship between classes which are composed of other
objects.

Step 3: The protocols of each class are classified as initiating or observing
events, and all the messages called in the body of the messages are classified as

12 Architectural Description of Object Oriented Framework : an Approach

initiating events. We avoid to take into account methods classified in protocols
categories such as initializing or accessing, and also the assignments in the
implementation.

Step 4: The protocols for the ports and the computation of the components are
built.

Step 5: The connectors are built using the messages sent from one class to
another one.

Step 6: Identify the variations of the one component (each subclass of a root
class) and what other components related to the component must be changed. In the
first step we identify abstract classes, in the case of class hierarchies, in order to
have the components in the first description. But this component is just one
prototype of other components that can be mapped from the subclasses. Thus, if we
have a class hierarchy, the idea is just to take each subclass, to see what other
classes are related and then map them as components. Then, repeat the process from
the step 3 until to get different versions of the description.

Step 7: Identify the components that represent hotspots and frozen spots. This
step is focused to identify which components and connectors are fixed (this situation
can be detected in the different descriptions obtained from Step 6) and which ones
are candidates to be changed in terms of a framework instantiation

Step 8: At this step, we have a first level of description. We can identify
predefined architectural styles in terms of set of classes, or just components and
connectors with a specific behaviour.

Step 9: We run the tool to check the different properties in Wright (Port
Computation Consistency (component), Connector Deadlock-Free (connector),
Roles Deadlock-Free (role), Single Initiator (connector), Initiator Commits (any
process), Parameter Substitution (instance), Range Check (instance), Port-Role
Compatibility (attachment), Style Constraints (configuration), Style Consistency
(style), Attachment Completeness (configuration)).

This step only ensures us that our description is valid using Wright. If there is an
error reported by the tool, we should check it following the format defined in the
Steps described previously.

Step 10: Refine each component considering two cases:
• if we have a hierarchical composition of objects that work together

(definition of micro-architectures), then the goal of this step is to discover if
there is a component that is composed of other objects, and the different
services that it offers are made using these objects. All the objects must be
inside the ‘boundaries’ of the main object to consider it as a hierarchical
composition.

• If there is a set of events joined by a non-deterministic choice which
indicates a decision of the component regarding an internal state (internal
state of the component), then this step is concerned with expressing all the
information related to the component avoiding to have non-deterministic
choices.

Step 11: New components (not necessarily mapped from domain concepts) can
be discovered. This step is concerned with having a new level of description. If this
situation happens, it is suggested to start to study the component as a micro-
architecture and to follow again the steps only with the new components.

13

If we are interested in refining the behaviour of the component, this step is also
concerned with having detailed information about the defined behaviour protocol in
the components.

Step 12: Definition of the interaction protocols in interface types and association
of frozen spots and hot spots in styles. This step is concerned with identifying the
set of events that belong to an interaction protocol and defining styles for the fixed
part and variable points of the framework. This will allow us to have a clear view of
how the framework is composed and measures the impacts of possible changes in
its structure and object behaviour.

[Are00] shows two examples of the applicability of the algorithm, the mappings
and the results obtained.

7. Some Results

The use of an ADL to describe an object-oriented architecture has more

advantages than drawbacks.
However, one major problem encountered is to not being able to have the

internal state of a component. In fact, Wright focuses on the interaction behaviour
and there is no possibility to use the operations given by the components. Most of
the executions are hidden behind the non-deterministic choices in the specification.
Thus, it is not possible to have any specification about the functional aspects of the
components. [San97] proposes the use of Abstract Machines B to solve this
problem. Another difficulty concerned the addition of a management of errors. Due
to the static nature of Wright, to do this we must change the interaction protocol of
the components and connectors and we lose the expressiveness of the protocols
because the behaviour and the error messages are mixed. We can also mention that
the hierarchical relationship between two classes is not explicit in the description. If
we change a component from one level of description to another one, and the latter
component represented a subclass of the class mapped as the first component, this
relationship is lost.

We applied our work on an object-oriented framework [Bos00] for which we had
the code and the design, the information about semantic structure was almost
hidden. We got an architectural description with the following characteristics:

- The classes mapped as combinations of components and connectors. We obtain
two models: units of computation (components) and units of communication
(connectors).

- The model of communication (set of connectors) providing all the framework
behaviour, and making explicit the method call ordering and the interaction protocol
between the different classes.

- A classification of the messages inside a class: by using the concept of
initiating and observing events of Wright, we were able to differentiate class
dependent messages from messages called by other classes.

In [Are00] we show how we use architectural styles to express the fixed parts of

a framework (hotspots), and we get a formal model that characterises all the
applications resulting from the framework instantiation.

14 Architectural Description of Object Oriented Framework : an Approach

8. Conclusions

The lack of established rules to define how we can infer an architecture from an

application in general and the treatment of software architectures in a ‘high level of
abstraction’ made us to define the constraints of our study context. We restricted
our work at a low-level notion of software architecture that reflects the semantic
structure of a software system: the code level combined with information on the
design level of the frameworks.

In this paper we have presented the definition of the mapping from
Java/Smalltalk code to CSP notation and a set of steps showing one way to get an
architectural description for an object-oriented framework. Real examples are
treated in [Are00]. We think that our description technique can be used in
conjunction with other techniques as a complement, since this is a way to provide a
‘bridge’ between informal and formal approaches.

It could be valuable to extend this work with an ADL which allows dynamic
architecture representation. For example, to represent the evolution of an
architecture and configuration changes during execution. New languages go in this
direction: Piccola [ALSN98], π-space [CGOW00], dynamic Wright.

At last the development of semi-automatic tools to support the mapping and the
methodology would be useful to add more validations.

9. References

[AAG93] G. D. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions of
software architectures. ACM SIGSOFT Software Engineering Notes, 18(5):9-20,
December 1993

[ALSN98] F.Achermann, M.Lumpe, J-G. Schneider, O.Nierstrasz, PICCOLA - a Small
Composition Language, Software Composition Group, University of Berne, 1998.

[All97] R. Allen. A Formal Approach to Software Architecture. Ph. D. Thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, May 1997

[Are00] G. Arevalo. Object Oriented Architectural Description of Frameworks. EMOOSE
Thesis, Ecole des Mines de Nantes, Nantes, France and Vrije Universiteit Brussel,
Brussels, Belgium. 2000

[Bos00] J. Bosch, Measurement Systems Framework, in Domain specific Application
Frameworks: Frameworks Experience by Industry. M.E. Fayad, R.E.Johnson editors,
Wiley 2000.

[Bro00] L. Bross. Box Structures as an ADL. Master Thesis to appear. University of South
Florida, 2000. http://home.tampabay.rr.com/adls/archben.html

[CGOW00] C.Chaudet, M. Greenwood, F.Oquendo, B.Warboys, A Formal Language for
Describing Evolving Software Systems: Architectural Compositionality and Evolvability,
Second Workshop on Object-Oriented Architectural Evolution, ECOOP’2000.

15

[FSJ 99] M.E. Fayad, D.C.Schmidt, and R.E.Johnson, Building Application Framework,
Wiley 1999.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6): 17-26, November 1995

[Hoa85] C. A. R. Hoare. Communicating Sequential Programming. Prentice Hall, 1991

[Mat96] M. Mattson. Object Oriented Frameworks: a survey of methodological issues.
Licentiate Thesis, Department of Computer Science, Lund University,1996

[MB00] M. Mattsson and J. Bosch. Object oriented frameworks: Composition problems,
causes and, solutions. In Building Application Frameworks: Object-Oriented
Foundations of Framework Design, pp. 467-487, M. Fayad, D. Schmidt, R. Johnson
editors, Wiley Press, 2000

[MKMG96] R. T. Monroe, D. Kompanek, R. Melton, and D. Garlan. Stylized Architecture,
Design Patterns, and Objects. IEEE Software, Jan 1997, pp. 43-52

[MN95] T. D. Meijler and O. Nierstrasz, Beyond Objects: Components, Cooperative
Information Systems: Current Trends and Directions, M.P. Papazoglou and G. Schlageter
(Eds.), pp. 49-78, Academic Press, November 1995

[MT97] N. Medvidovic and R. Taylor. A framework for classifying and comparing
architecture description languages. In Proceedings of the Sixth European Software
Engineering Conference (ESEC/FSE 97), pp. 60-76, Lecture Notes in Computer Science
Nr. 1013, Springer-Verlag, September 1997

 [Ric98] T. Richner. Describing framework architectures: more than Design Patterns. In
Proceedings of the ECOOP ’98 Workshop on Object-Oriented Software Architectures,
Lecture Notes in Computer Science Nr. 1543, J. Bosch and S. Demeyer editors. Springer-
Verlag, 1998

[San97] R. Sanlaville. Description d’architecture logicielles: Utilisation du formalisme
Wright pour l’interconnexion de machines abstraites B. Report for DEA d’Informatique:
Systems et Communications. Laboratoire LSR (Logiciels, Systèmes, Réseaux). Université
Joseph Fourier. Grenoble. France. 1997

[SG99] J. P. Sousa and D. Garlan. Formal modeling of the enterprise JavaBeans component
integration framework. In Proceedings of FM ’99, Lecture Notes in Computer Science
1079, Toulose, France, September 1999. Springer-Verlag

[UML97] Rational Rose. UML Notation Guide Version 1.1. September 1997.
http://www.rational.com/UML

