
How Developers Copy
In Proceedings of International Conference on Program Comprehension (ICPC 2006), pp. 56–65

Mihai Balint1, Tudor Gı̂rba2 and Radu Marinescu1

1LOOSE Research Group, Politehnica University of Timişoara, Romania
2Software Composition Group, University of Berne, Switzerland

Abstract

Copy-paste programming is dangerous as it may lead to
hidden dependencies between different parts of the system.
Modifying clones is not always straight forward, because
we might not know all the places that need modification.
This is even more of a problem when several developers
need to know about how to change the clones. In this paper,
we correlate the code clones with the time of the modifica-
tion and with the developer that performed the modification
to detect patterns of how developers copy from one another.
We develop a visualization, named Clone Evolution View1,
to represent the evolution of the duplicated code. We show
the relevance of our approach on several large case studies
and we distill our experience in forms of interesting copy
patterns.

Keywords: code duplication, reverse engineering, soft-
ware evolution, visualization

1 Introduction

Code duplication appears because of several reasons:
time pressure, shortcomings of the programming languages,
inexperienced developers etc. No matter the reason, du-
plicating the code introduces implicit dependencies be-
tween the duplicated parts (named clones hereafter) because
changing one part requires changing the other parts as well.

Detecting code clones has long been in the center of the
reverse engineering community [1, 6, 10, 12]. Most of the
work in this area has been focused on the detection of prob-
lems in the code and in relating clones with their impact in
terms of quality assurance.

Kim et al. made an interesting observation by exper-
imentally showing that “refactorings may not always im-
prove the software with respect to clones” [13]. Indeed,
their empirical study showed that the short-lived clones are

1The visualization presented here makes heavy use of colors. Please
obtain a color copy of this article for better understanding.

sometimes not worthwhile extensive refactoring, while the
long living ones are often in the system due to shortcom-
ings of the programming language. In the same line, Cordy
observed that in special cases changing the clones is not
advisable from a risk management point of view [4]. How-
ever, typically, extensive code duplication is clearly related
to problems in maintenance [5, 11, 8].

One aspect that was neglected in the past when analyz-
ing clones and their impact on quality is the authorship of
clones; in other words, how developers create and maintain
clones. As stated by Conway the shape of an organization
influences the shape of the code structure [3]. Therefore, we
believe that identifying and understanding the patterns by
which a team of developers deals with duplicated code, will
provide us with a better understanding of both a project’s
structure and of its development team, and ultimately on
the cloning phenomenon [9].

In this paper we aim to provide a novel view on clone de-
tection, by focusing on how developers create and maintain
clones, and integrating this knowledge with further infor-
mation about the clones (e.g., time of cloning, location of
clones etc.). In order to detect who copies from whom we
need the information of who changed each line of code in-
volved in duplication. For that, instead of just analyzing the
actual code, we analyze the information provided by ver-
sioning systems and recover for each line of code, the date
and the developer that changed that line.

To get insight into what are the patterns of how the de-
velopers create and modify clones, we decompose the clone
analysis along several axes: the developers that created the
lines, the time of the modifications, the localization of the
clones in the system, and the size of the clones.

To analyze the above variables we develop a visualiza-
tion named Clone Evolution View. The visualization dis-
plays the details of how a code fragment is cloned into sev-
eral places. Based on it we detect several copy-patterns.
For example, we detect places where a developer forgets to
change all the clones, clones that are changed by several
developers, fresh clones etc.

1

Typically in a software system we can have several hun-
dreds such duplicated fragments. To help the reverse engi-
neer cope with the large amount of data, we also introduce
several measurements that can be used to detect interesting
clones.

We apply our approach on three large case studies and
we present the experience in the form of a list of copy pat-
terns.

Structure of the paper. In the next section we briefly talk
about the detection technique we use. Section 3 introduces
our visualization of the clones. In Section 4 we present ev-
idence of several copy patterns detected in two large case
studies. Section 5 presents a set of metrics that we use to
guide our search through the clone space. Section 6 dis-
cusses the different variation points of the approach. Sec-
tion 7 presents the related work and Section 8 concludes the
paper.

2 Detecting How Developers Copy

In this section we describe our approach of analyzing
how developers copy. First, we describe how we automat-
ically detect duplicated fragments in several places, and
afterwards we describe how the developer information is
added to the analysis.

2.1 Detecting Clones

The most popular approach to comprehend clones is us-
ing a scatterplot: it displays a matrix where the element
(i, j) is black if the line on the row i is the same as the
line on the column j [6, 10, 12]. Figure 1 shows the details
of such a scatter plot.

lines from source 2

lines
from
source 1

exact
chunk

exact
chunk

line
bias

Figure 1. Detecting clones on the scatterplot.

To find duplicated fragments of text using the scatterplot
we need to look through the scatterplot for patterns of di-

agonal rows of dots. If such a row of dots can be found it
means that the text represented by the rows is the same (or
very simillar) to the text represented by the columns.

For our analysis, we needed an automated approach. The
approach is based on the quantification of the visual detec-
tion using thresholds. Three thresholds are used based on
the work of Wettel [22, 23]:

• Minimum clone length defines the minimum amount of
lines present in a clone. In our experiments we used 7.

• Maximum line bias defines the maximum amount of
lines in between two exact chunks. In our experiments
we used 2.

• Minimum chunk size defines the minimum amount of
lines of an exact chunk. In our experiments we used 3.

The problem with the scatterplot approach is that once
we find a diagonal pattern we are only looking at two pieces
of text at once (i.e., a duplication). For some systems, the
number of such duplications between two fragments of text
can be up to several thousands. However, in such large sys-
tems it is common to find the same fragment of text copied
over and over a few times.

In our approach we have chosen to aggregate these dupli-
cated text fragments into sets which we call multiplications
or clone families [19]. Unlike duplications which describe
a cloning relationship only between two fragments, a mul-
tiplication describes the cloning relationship between mul-
tiple fragments of text.

Because we automatically detect duplications by analyz-
ing the scatterplot, we can also detect the multiplications. In
a nutshell, if A, B and C name three fragments of text and
A is duplicated by B, and B is duplicated by C then (A,B,C)
are part of the same multiplication. With this aggregation
technique we are able to lower (sometimes by more than
half) the number entities we have to analyze [19].

For example, using the above mentioned values for the
thresholds and this aggregation technique, the result of the
automated detection is a list of multiplications where the
detected clones will be at least 7 lines long, will have at
most two lines between exact chunks and the exact chunks
will be at least 3 lines long.

We also strive to reduce the number of detected dupli-
cations by eliminating some of the false positives generated
by source code: duplications in programming language syn-
tax (e.g., java import statements), comments, text format-
ting. This is done by a simple parser that eliminates certain
strings that match regular expressions [18].

2.2 Improving the Clone Detection with Devel-
oper Information

To identify how the developers create the clones, we
make use of cvs annotate. In Figure 2 we give an exam-

2

1.1 (red
1.3 (red
1.2 (cyan
1.3 (red
1.4 (blue

date1): original line written by red
date3): line written by red
date2): another line written by cyan
date3): yet another line written by red
date4): line written by blue

SourceLine
Date

Author
Source

cv
s

an
no

ta
te

m
et

a-
m

od
el

Figure 2. Example of a result of a cvs annotate
and the meta-model that describes it.

ple of a fictive result of running cvs annotate on a file. Each
line is annotated with the version information (e.g., 1.1),
the name of the user (e.g., red), the date of the modification
(e.g., date 1).

Prior to applying the clone detection, we first process the
annotations and create a model that conforms to the meta-
model in the lower part of the figure. With this information
at hand we can analyze how developers copy.

3 Visualizing How Developers Copy

There are myriads of questions that pop-up while trying
to identify patterns that occur during the process of cloning.
In our view most of these questions address one of the fol-
lowing four categories of problems:

• Quantity e.g., How large are the clones? And how
many clones are there in a multiplication?

• Time e.g., When were the changes made to the clones?
Where there inconsistent modifications?

• Developers e.g., Who created the original fragment?
Who copied from the original? How many developers
are involved in cloning?

• Localization e.g., Are clones in the same file, or in sep-
arate files?

3.1 Clone Evolution View

Because our aim is to explore an unexplored territory,
we want to be exposed to as many variables as possible to

answer the above questions. That is the reason why we de-
sign a novel visualization: the Clone Evolution View. On
the one hand we need to give indication for when changes
were made and by whom, and on the other hand we need to
give an indication of what is the text of the clones. Figure 3
shows an example of our visualization.

Each line represents a source line. We attach a unique
color to each developer present in the duplication, and we
color each line with the color of the developer that changed
it last. We can safely use a distinct color for each developer
because usually, the number of developers participating in
a multiplication is low (in our experiments we encountered
at most 5 developers).

The visualization has two parts: on the left, we show
a time representation of the modification of the line, and
on the right we show the text of the line as obtained from
the last version. The date of the modification of the line is
shown with a vertical line annotated with the actual date.

3.2 How to Read the Clone Evolution View

In Figure 3 we display 3 fictive clones. RED wrote the
original line of the multiplication at date 1 in the first two
clones. At a later date (i.e., date 2) BLUE added another line
in the two clones. At date 3 RED added two more lines, and
created another complete clone in source 2. At date 4, PINK
added another line, but only in 2 clones, and very soon after,
ORANGE intervened and added the missing line to the third
clone.

Based on the visualization we develop a vocabulary to
describe the activities that may occur while cloning. Each
activity can be further accompanied by several attributes
that characterize in more detail the general context (and im-
pact) of the activity.

Typical Developer Activities. We identified three main
activities that in our experience are the most encountered
ones, namely:

• Line Cloning denotes the act of introducing one new
line to the multiplication. In Clone Evolution View we
see that this activity happened if we see a line starting
in one of the clones, and by looking left in the visual-
ization (i.e., earlier in time) at all the other clones, there
is not another clone where the corresponding line has
already been started. For example, in Figure 3, at date
4, the action of the PINK author is a Line Cloning as in
none of the other clones that lines started by PINK has
not been started at an earlier date.

• Block Cloning denotes a simultaneous creation of a
significant number of lines from a clone, or even of an
entire clone. In our example, RED created the entire

3

date 2
date 3

date 5
last date

first date
date 1

line written by red in 2 clones and copied in the third

line written by red

line written by blue and copied by red

another line written by red

line written by pink only in 2 clones and fixed by orange

line written by red in 2 clones and copied in the third

line written by red

line written by blue and copied by red

another line written by red

line written by pink only in 2 clones and fixed by orange

line written by red in 2 clones and copied in the third

line written by red

line written by blue and copied by red

another line written by red

line written by pink only in 2 clones and fixed by orange

date 4

clo
ne

 1
in

 s
ou

rc
e

1
clo

ne
 2

in

 s
ou

rc
e

1
clo

ne
 3

in
 s

ou
rc

e
2

source 1

source 1

source 2

the line of text written by orange

date of the last change of two lines committed by pink

Figure 3. Example of the Clone Evolution View of a fictive multiplication.

third clone by copying the lines existent in the other
two.

• Line Fixing denotes the act of cloning at a later time
then the original line, and at a later time then the clone
birth. In our example, the action of ORANGE (date 5)
is a Line Fixing as it fixes the lines committed by PINK.

Consistency Attributes. For the above actions we can
take into account several attributes. From our empirical ob-
servations the attribute that is most relevant from the point
of view of the maintenance impact is the consistency. Thus,
each activity is characterized by one of the two attributes:

• Consistent – denotes a cloning (either of a line or of
a block) that propagates the involved lines into all the
clones that exist at the moment of cloning and addi-
tionally in all the clones that appear afterwards, at the
very moment of the clone birth. For example, in Fig-
ure 3 BLUE makes a Consistent Line Cloning because
at date 2 when he or she initiates a Line Cloning activ-
ity, the author propagates it in the other clone existing
at that time, and also because at date 3, in the context
of a Block Cloning activity that gives birth to the third
clone, that line is also cloned, by RED.

• Inconsistent – denotes a cloning that does not get

propagated to all the existing clones. Additionally, a
cloning is considered to be inconsistent if the involved
lines are not propagated in the clones that appear later
at the very moment of their birth. In our example,
PINK is responsible for an Inconsistent Line Cloning
activity (date 4) as the cloning was not propagated in
the third clone, and because of that at date 5 we notice
a Line Fixing activity done by ORANGE.

Speaking about the consistency attributes we should note
that the Line Fixing activity is always the result of an earlier
inconsistent cloning activity.

Having an explicit vocabulary has a twofold advantage:
on the one hand it offers the basic terms in which to express
the reasoning, and on the other hand it provides a commu-
nication means. The vocabulary presented here comes from
our experience, and it covers the interesting cases we dis-
covered.

4 Patterns of Cloning Activity

In this section we present the results of our experiments
on the file system of three case studies: Ant, ArgoUML
and Ptolemy2. The aim of our experimental study was to
empirically detect cloning activity patterns. Table 1 shows

4

Figure 4. Case I: Consistent Block Cloning with Unique Author (Ptolemy2)

the size of the case studies (cloner denotes a developer that
copied at least on line of code).

System Files Multiplications Developers Cloners
Ant 1115 156 30 11

ArgoUML 1446 326 30 12
Ptolemy2 2715 902 63 22

Table 1. Case studies

Next we are going to discuss the most interesting pat-
terns discovered so far. We considered a pattern to be inter-
esting, and selected it for presentation if it was either very
frequently encountered, or if we considered it to have a par-
ticular negative impact from the maintenance point of view.

4.1 Case I: Consistent Line/Block Cloning with
Unique Author

In this case one single developer is creating and consis-
tently maintaining a number of clones. Usually the number
of clones in the multiplication is not too high (usually be-
tween 3 and 6). This pattern may appear in several forms:
either the first clone (i.e., the original code) was developed
at some point in time, and then is later multiplied in several
clones (either simultaneously or one by one) by Consistent
Block Clonings; or, all the clones are created synchronously
(in this case we cannot say which one the original is), as
seen in Figure 4. In both cases, one common characteristic
is that after the clones are created, all the modifications are
permanently propagated in all the clones.

Due to the consistency of change propagation and to the
fact that all the clones are one-minded this is the least harm-
ful case encountered.

4.2 Case II: Creation of Clones by Multiple Au-
thors using Consistent Block Cloning

In this second pattern, we encounter at least two devel-
opers (but usually the number of involved developers is 3
or 4). The other main characteristic of this case is that the
Consistent Block Cloning activity leads to the birth of a new
clone that is created by a single developer, who is usually
different from the authors of the original piece of code, just
like in Figure 5. In this case the number of clones belonging
to the same multiplication is rather high (usually between 4
and 7) and the size of the cloned block is also significant
(higher that 7 lines). Another common characteristic is the
fact that there is almost no further change in the multiplica-
tion after the block cloning creation of the other clones.

The consistency of the cloning activity makes this case
to look harmless, yet the risk of a future inconsistent modi-
fication is strongly increased by the large number of distinct
developers involved, by the tendency to have larger clones
and by the number of clones created.

4.3 Case III: Consistent Line/Block Cloning with
Multiple Authors

In Figure 6 we see the illustration of this third case of
consistent line cloning. In this case there is again more
than one developer involved in creating and keeping con-
sistent the multiplication. But in this case, the clones tend
appear and to be modified at the same time, while each de-
veloper takes responsibility for the creation and consistent
propagation of a subset of lines. In other words, the multi-
plication involves several developers (usually either two or
three), but each of them propagates the cloning activity in
all the clones.

A further interesting example is depicted in Figure 7
where after several step-wise creation and modifications of
the first three clones, made by the BLUE, RED and PINK

5

Figure 5. Case II: Creation of Clones by Multiple Authors using Consistent Block Cloning (ArgoUML)

Figure 6. Consistent Line/Block Cloning with Multiple Authors (ArgoUML)

6

Figure 7. An example of a complex cloning activity pattern, involving Case III, followed by Case II
(Ptolemy2)

authors, using the currently described pattern, we see the
ORANGE author eventually acting in conformity with the
previous pattern (i.e., Creation of Clones by Multiple Au-
thors using Consistent Block Cloning) by adding suddenly
a completely new clone to the multiplication. This example
reveals that beyond each of the identified patterns, in ”real-
life” cloning activities tend to appear as complex combina-
tions of these (or other patterns).

Concluding, we may say that this pattern is less harm-
ful than the previous one, due to the fact that all the clones
tend to live their lives in a perfectly synchronized manner.
Furthermore, the fact that only a small number of develop-
ers are involved makes the process of keeping the clones
consistent manageable.

Remark: We believe that beyond its utility for the under-
standing of cloning activities, this pattern has also a remark-
able side effect: it might reveal within an organization small
cohesive teams of developers that work together in a one-
minded manner.

4.4 Case IV: Inconsistent Line Cloning Fixed by
the Same Author

The fact that a cloned line controlled by a single author
is not a guarantee that inconsistencies will not appear dur-
ing cloning activities. This pattern captures the case where
one or more lines cloned by a single author are not consis-
tently propagated in all the other existing clones, and it is
only after a while that the initial author remembers (or finds

out) about the inconsistency and reestablishes himself the
consistency of the clones at that later moment in time. For
example, in Figure 8 we see that the BLUE author keeps the
consistency of the clones during his/her first two cloning ac-
tivities, but fails to do so the third time (6/24/04) when he
fails to update the upper clone. We see that it is only almost
a year later (5/11/05) that the inconsistency is removed by a
Fix Line activity.

4.5 Case V: Inconsistent Line Cloning Fixed by
Different Authors

In Figure 9 we encounter several developers, where at
least one developer makes an inconsistent line cloning, and
another developer intervenes at a later time to fix the in-
consistency. In our example, PINK creates two clones but
without lines 2, 3 and 4 (or at least the lines were not iden-
tical), and at a later time BLUE intervenes and fixes the 3
lines in both clones.

We found very few cases of this pattern. This is an indi-
cation that authors are rarely able to fix the cloning incon-
sistencies of others.

5 Guiding the Detection of Copy Patterns

The Clone Evolution View is useful for providing in-
sights into one multiplication. However, as Table 1 shows,
in a software system we might find hundreds of such multi-
plications, and not all of them are interesting from a reverse
engineering point of view. As such, we need an automated

7

Figure 8. Case IV: Inconsistent Line Cloning Fixed by the Same Author (ArgoUML)

Figure 9. Case V: Inconsistent Line Cloning Fixed by Different Authors (ArgoUML)

tool support to guide the reverse engineer through the maze
of multiplications.

In this section we distill the experience we gained while
performing the experiments. In the process, (see Figure 2)
we defined several metrics, and found the following to re-
veal interesting insights:

• Number of developers involved. We use this measure-
ment to detect multiplications which are done by one
or more developers.

• Number of clones. We noticed that the most interesting
cases are in multiplications with more than 2 clones.

• Number of line fixes. We use this to identify the cases
of inconsistent cloning.

• Knowledge extent over developers. This measurement
returns the number of lines cloned by more than one
developer. We use this measurement to discriminate

the cases in which several authors participate in an in-
consistent cloning.

• Number of modifications. We use this measurement as
activity indicator. A variation is to count the consistent
modifications versus the inconsistent ones.

6 Discussion

On the usage of cvs annotate. Our current approach re-
lies on the usage of cvs annotate, instead of analyzing the
entire evolution. In this way, we are actually analyzing only
the clones present in the analyzed version, and not their his-
tory. However, the initial results reported here are promis-
ing. In the future we plan to investigate in more details how
developers copy by taking the clone genealogy approach of
Kim et al. [13].

8

On the visualization decisions. The time is represented
in the visualization on a linear scale. However, if two modi-
fication lines are too close from one another, it is difficult to
distinguish the different moments. That is the reason why
we imposed a minimum distance between two modification
lines. An example of the effectiveness of this approach can
be seen in Figure 5 (the last four modifications).

Another variable of the visualization was the choice of
colors. In our experiments, the multiplications were devel-
oped by at most 5 developers. The limited amount of re-
quired colors allowed us to explore several color schemes
trying to enhance the contrast both between the lines and
against the white background, while also avoiding to com-
bine red with green.

As we wanted to focus on how developers copy, we
chose to represent the duplicated text detached from its con-
text. In this way the attention is entirely dedicated to the
cloning actions. However, after understanding the cloning
phenomenon, we need to know if the clones are in the same
context or not. That is why we chose to put the name of
the context in a non disturbing color on the left side of the
visualization.

To ease the interpretation of the visualization, we also
arranged the clones in a meaningful way, trying to put the
older clones on top of the newer ones. This follows our cul-
ture of reading from top to bottom [17], while it also pro-
vides more information. The colors inside the clone are also
ordered by the the date of the first apparition in the multi-
plication. The order is: RED, BLUE, PINK and ORANGE.

On the interactive nature of the implementation. We
implemented the approach in our tool called SmallDude on
top of the Moose reengineering environment [16]. The im-
plementation consists in extending the meta-model with the
notion of multiplication, in building the visualization and
in defining the measurements. Due to the capabilities of
Moose we can easily query the multiplication space. This
allowed us to explore different detection variations.

7 Related Work

There have been several implementations of text based
approaches to detect clones. These approaches use either
individual lines [1, 23, 6] or tokens as units for comparison
[12]. Another way of finding duplications is by comparing
the abstract syntax trees of methods (or parts of trees), this
was implemented in a tool called CloneDR by Baxter et al.
[2]. Mayrand et al. developed a tool for detecting duplica-
tion based on source code measurements [15]. They define
a fingerprinting function which they then use to compare
different entities from the source (e.g., classes, methods).

Another related area is the use of visualization to display
duplicated code. The most common way to visualize code

clones is with a scatterplot [10, 12, 6]. The main drawback
of this approach is that we can only see the duplications and
not multiplications.

Rieger et al. aimed to visualize duplications at the level
of the system using polymetric views to show the duplica-
tions as a relations between the parts involved [18]. For
example, the showed classes as boxes and duplication as
edges between them. However, they did not provide evi-
dence of how multiplications are spread over the system.
The difference with our visualization is that we proposed
the visualization of a multiplication, and we related it to the
the location in the source and with the author and the date
that changed it.

The changes in clones have first been studied by Laguë
et al. [14]. They use a metric based detection to identify the
clones and then studied the number of clones added or re-
moved. A much improved approach to study the evolution
of clones was introduced by Kim et al. with their notion
of clone genealogy [13]. They analyzed in detail several
versions of the code, aiming to detect how clones get refac-
tored. As opposed to the above ones, we aimed to analyze
the clones in relation with the developers.

The analysis of developers actions has also attracted re-
search over time. Girba et al. proposed an approach to an-
alyze CVS repositories to detect how developers drive soft-
ware evolution [9]. They define the owner of a file as a the
developer that wrote the most lines of code and they develop
a visualization to analyze how the authors have changed the
different parts of the system.

C̆ubranić and Murphy bridged information from several
sources to form what they call a “group memory” [20]. The
sources used were: source code, versioning information,
mailing lists, documentation.

Eick et al. proposed multiple visualizations to show
changes using colors to denote the developer and width to
map the module size [7]. They also discuss different types
of views (matrix, 3D, bar and pie charts, etc.) about their
usability and use this views to show change metrics. These
change metrics include change count by developer, severity
and status of the change.

Voinea et al. implemented a tool called CVSscan to ana-
lyze files from CVS repositories by showing all versions of
the text lines [21]. They use colors to encode attributes like
“author”, “construct”, and “line status” on each of these line
versions.

The novelty of our approach as compared to the above
ones is that we focused on providing information on how
the developers copy.

8 Conclusions

The detection of clones have long been studied, and re-
cently, their evolution has also attracted attention. However,

9

to our knowledge, no attempt has been made to relate the
developer information into the study of clones.

In this paper, we propose the usage of cvs annotate as
a simple way of relating the developer and evolution infor-
mation with the duplication information. Based on the col-
lected data, we designed the Clone Evolution View to get
insights into how developers copy.

We analyzed the clones of three large case studies and we
identified several recurring patterns. We first browsed the
systems to assess if interesting cases appear. The detection
was made by looking just at the visualization to see striking
cases from a reverse engineering point of view. In a second
step we started to classify our findings and develop a vo-
cabulary to describe the detected cases and then we checked
(also assisted by automated filtering) the recurrence of the
cases. In a third step, we tried to automate the detection of
such interesting cases by developing measurements. As a
result we provided a number of recommendations.

In this way, we detected that inconsistent changes are de-
tected when more developers are involved in the multiplica-
tion. This enforces our original perception that the develop-
ers are relevant variables when analyzing code cloning. The
experiments presented in this paper were more explorative,
yet we believe the results are promising. In the future, we
plan to undertake a more rigorous empirical study to clas-
sify a larger base of case studies.

Acknowledgments. Gı̂rba gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation for the
project Recast: Evolution of Object-Oriented Applications (SNF
2000-061655.00/1).

References

[1] B. S. Baker. A program for identifying duplicated code.
Computing Science and Statistics, 24:49–57, 1992.

[2] I. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proceed-
ings of the International Conference on Software Mainte-
nance (ICSM 1998), pages 368–377. IEEE Computer Soci-
ety, Washington, DC, USA, 1998.

[3] M. E. Conway. How do committees invent ? Datamation,
14(4):28–31, Apr. 1968.

[4] J. R. Cordy. Comprehending reality—practical barriers
to industrial adoption of software maintenance automation.
In Proc. 11th Int. Workshop on Program Comprehension
(IWPC’03), pages 196–205, Portland, Oregon, USA, May
2003. IEEE.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[6] S. Ducasse, M. Rieger, and S. Demeyer. A language indepen-
dent approach for detecting duplicated code. In H. Yang and
L. White, editors, Proceedings of theInternational Confer-
ence on Software Maintenance (ICSM ’99), pages 109–118.
IEEE Computer Society, Sept. 1999.

[7] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster. Vi-
sualizing software changes. IEEE Transactions on Software
Engineering, 28(4):396–412, 2002.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[9] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. In Proceedings of Inter-
national Workshop on Principles of Software Evolution (IW-
PSE), pages 113–122. IEEE Computer Society Press, 2005.

[10] J. I. Helfman. Dotplot patterns: a literal look at pattern lan-
guages. TAPOS, 2(1):31–41, 1995.

[11] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Con-
ference on Software Maintence (ICSM 94), pages 120–126,
1994.

[12] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engineer-
ing, 28(6):654–670, 2002.

[13] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An
empirical study of code clone genealogies. In Proceedings
of European Software Engineering Conference (ESEC/FSE
2005), pages 187–196, New York NY, 2005. ACM Press.

[14] B. Laguë, D. Proulx, E. M. Merlo, J. Mayrand, and J. Hude-
pohl. Assessing the benefits of incorporating function clone
detection in a development process. In Proceedings of ICSM
(International Conference on Software Maintenance). IEEE,
1997.

[15] J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on
the automatic detection of function clones in a software sys-
tem using metrics. In International Conference on Software
Maintenance (ICSM), pages 244–253, 1996.

[16] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of Moose:
an agile reengineering environment. In Proceedings of
the European Software Engineering Conference (ESEC/FSE
2005), pages 1–10, New York NY, 2005. ACM Press. Invited
paper.

[17] D. A. Norman. The Design of Everyday Things. The MIT
Press, 1988.

[18] M. Rieger. Effective Clone Detection Without Language Bar-
riers. PhD thesis, University of Berne, June 2005.

[19] M. Rieger, S. Ducasse, and M. Lanza. Insights into system-
wide code duplication. In Proceedings of WCRE 2004 (11th
Working Conference on Reverse Engineering), pages 100–
109. IEEE Computer Society Press, Nov. 2004.

[20] D. C̆ubranić and G. Murphy. Hipikat: Recommending per-
tinent software development artifacts. In Proceedings 25th
International Conference on Software Engineering (ICSE
2003), pages 408–418, New York NY, 2003. ACM Press.

[21] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: visu-
alization of code evolution. In Proceedings of 2005 ACM
Symposium on Software Visualization (Softviz 2005), pages
47–56, St. Louis, Missouri, USA, May 2005.

[22] R. Wettel. Automated detection of code duplication clus-
ters. Master’s thesis, Faculty of Automatics and Computer
Science, ”Politehnica” University of Timişoara, June 2004.

[23] R. Wettel and R. Marinescu. Archeology of code duplication:
Recovering duplication chains from small duplication frag-
ments. In Proceedings of the 7th International Symposium
on Symbolic and Numeric Algorithms for Scientific Comput-
ing (SYNASC 2005), pages ??–??, 2005.

10

