NOREX: A Distributed Reengineering Environment

Mihai Balint!, Petru Florin Mihancea', Tudor Girba? and Radu Marinescu'!

'LOOSE Research Group, Politehnica University of Timisoara, Romania
2Software Composition Group, University of Bern, Switzerland

Abstract

Several reengineering environments have been created
to provide for a unified infrastructure in which various ap-
proaches can be employed together. While the collaboration
between tools is very strong within such environments, cur-
rently the inter-environmental collaboration is very weak
and happens mainly at the level of data-files exchange. Con-
sequently, the different groups of researchers are only col-
laborating shallowly via data, rather than at the level of
analysis. In this demo, we present NOREX, a distributed
reengineering environment that allows different groups of
researchers to transparently use and combine existing tech-
niques, and share their own, transcending any parochial
barriers (e.g., implementation language or environment).

1 Introduction

Reengineering is a complex task that requires several
techniques to be employed together. Over the years, many
reengineering analyses have been proposed and imple-
mented. Several environments have been created in the
past to provide a unified infrastructure in which various
approaches can be employed together [5]. Tthe authors
are involved in the development of two such environments:
iPlasma [4] and Moose [5].

Nevertheless, these environments are rather isolated
from one another, as the communication between environ-
ments is confined to data transfer via exchange formats [2].
The main cause of this isolation resides in the fact that envi-
ronments are oftentimes implemented in different program-
ming languages, and even when they are implemented in
the same language they have a dedicated infrastructure (e.g.,
different meta-models, different front-ends).

There have been some attempts at making analyses de-
fined on different metamodels work together. For exam-
ple, Dean et al. present an attempt at running an analy-
sis on an instance of another conceptually equivalent meta-
model using ontologies [3]. While their attempt is more

public Integer NoPM(

Object class,
CollectionCommand methods,
BooleanCommand isPublic) {

int publicCount = 0;

for (Object method: methods.invoke(class))
publicCount ++;

return publicCount;

}

Method
Class methods | - accesibility
+ getMethods() [O——————=>{ + isPrivate()
+ addMethod() + isPublic()
+ setAccess()

Figure 1. Number of Public Methods

about connecting tools by matching the underlying meta-
models, in this demo we present NOREX, a distributed en-
vironment that extends the idea of an integrated environ-
ment adding the benefits of distributed services and as such
enabling large-scale community-based reengineering and
reengineering research.

2 Reengineering with NOREX

NOREX provides several distinct services, ranging from
data transfer and remote execution in a programming lan-
guage independent manner to metamodel support and anal-
ysis registration services. It achieves this using a client-
server architecture and Web Services as a means of commu-
nication.

NOREX Services and Servers. The central element
of the environment are NOREX services. These reside on
NOREX servers and contain the implementation of reengi-
neering techniques designed for a certain type of model en-
tity (e.g., classes, methods). A key element of the approach
is the low coupling with the metamodel, which is achieved
by insuring that all data accesses are wrapped within com-
mand objects. These command objects are passed as param-
eters to the service. The NOREX server provides the meta-
model description in form of a Meta Object facility (MOF)
[1] instance and facilities for executing of a set of reengi-
neering techniques defined in terms of that metamodel. As
an example we present the implementation of a service that

<}> . Model Browser‘ ‘ : RemoteServiceManager‘ ‘ : CommandRepository H : ModelRepository : NOREX server
VAN I
: Reengineer i
select class |
"Example” I
compute METE | run service: NopM' |

o »—|on entity: "Example” 1 get description: "NoPM" a
S L

get command:
"methods of a class”
,,,,,,,,,,,,,,,,
get command:
“isPublic of a4 method”

,,,,,,,,,,,,,,, roeturn_ __ ,L]

invoke service: "NoPM"
on: ref of "Example"

with: "methods of class"
fand: "isPublic of a method —

ref of "Example

lSet object: ref of "Examplel”

invoke: "methods of class”
on: ref of "Fxample”

lexecute "methods of class| |
| on: mple

recurn --Example-'l—vJ

invoke: "isPublic of method"
on: ref of "metA”

J
rel of "me(A", rel of "meB"
return TRUE_ ___

invoke: "isPublic of method"|
on: ref of "metB"

return FALSE
, display: 1 | e
,,,,,,,,,,,,,,,,,

Figure 2. Invoking Number of Public Methods

implements the metric entitled Number of Public Methods
(NoPM) applied to class entities (Figure 1). The service is
implemented as any regular method. It receives three pa-
rameters: (1) the class to be measured, (2) a command that
returns a collection containing the methods of the class, and
(3) a command that returns the public status of a method.

NOREX Clients. Clients use the service provided infor-
mation to build, navigate and execute services on models
of the target software system. To use NOREX services, the
client side needs to fulfill a number of requirements, which
are de facto the implementation of the following tools: (1)
a metamodel generator, (2) a model builder, (3) a model
browser, and (4) a service runner.

Step 1: Generate the Metamodel. Let’s consider again
the metamodel represented in the diagram of Figure 1.
MOF provides the necessary facilities for specifying meta-
models and it can be used to generate metamodel implemen-
tations, in this case Java or Smalltalk classes representing
Class and Method entities.

Step2: Build the Model. Once generated, the metamodel
and the NOREX builder services enable the creation of mod-
els of software systems on which reengineering activities
are to be performed. Currently the NOREX environment
provides builder services working for C++, Java, Smalltalk,
or C#. These services are used to parse a set of source code
files and build at the clients side an objectual model of the
code, in conformance with the metamodel with which the
builder service is associated.

Step 3: Browse the Model. Model browsing or naviga-
tion in a NOREX client is important from both the control
and comprehension point of view. A model browser pro-
vides the means to inspect and navigate a system model,

given that the description of the metamodel for that model is
provided as a MOF instance. For example, given the meta-
model described in Figure 1, from Class we can navigate to
methods.

Step 4: Execute a Service. The actual execution of a
NOREX service is a matter of providing the entities and the
required command objects. To avoid large transfers we use
a referencing mechanism that ensures that no model entity
will leave the client. After service execution finishes the re-
sult is returned to the client and it is passed to the client’s
tools for further processing. To illustrate the execution of a
service we depicted in Figure 2 how the computation of the
Number of Public Methods (NoPM) metric. Other services
have been defined for a range of software metrics, visual-
izations and design flaw detection strategies.

References

[1] O. M. Group. Meta object facility (MOF) 2.0 core final
adopted specification. Technical report, Object Management
Group, 2004.

[2] R. C. Holt, A. Winter, and A. Schiirr. GXL: Towards a stan-
dard exchange format. In Proceedings WCRE 00, Nov. 2000.

[3] D. Jin and J. R. Cordy. Integrating reverse engineering
tools using a service-sharing methodology. In Proceedings
of ICPC’06. IEEE Computer Society, 2006.

[4] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and
R. Wettel. iplasma: An integrated platform for quality assess-
ment of object-oriented design. In ICSM (Industrial and Tool
Volume), pages 77-80, 2005.

[5] O. Nierstrasz, S. Ducasse, and T. Girba. The story of Moose:
an agile reengineering environment. In Proceedings of the Eu-
ropean Software Engineering Conference (ESEC/FSE 2005),
pages 1-10, New York NY, 2005. ACM Press. Invited paper.

