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1 Introduction

It is well-established that object-oriented programming languages gain a great
deal of their power and expressiveness from their support for the open/closed
principle [1]: classes are closed in the sense that they can be instantiated, but
they are also open to incremental modification by inheritance.

Nevertheless, classes and inheritance alone are not adequate for expressing
many useful forms of incremental change. For example, most modern object-
oriented languages introduce modules as a complementary mechanism to struc-
ture classes and control visibility of names. Reflection is another example of
an increasingly mainstream technique used to modify and adapt behaviour at
run-time. Aspect-oriented programming, on the other hand, is a technique to
adapt sets of related classes by introducing code that addresses cross-cutting
aspects.

In this paper we focus on a particular technique, known as class extensions,
which addresses the need to extend existing classes with new behaviour. Small-
talk [2], CLOS [3], Objective-C [4], and more recently MultiJava [5] and As-
pectJ [6] are examples of languages that support class extensions. Class ex-
tensions offer a good solution to the dilemma that arises when one would like
to modify or extend the behaviour of an existing class, and subclassing is in-
appropriate because that specific class is referred to, but, one cannot modify
the source code of the class in question. A class extension can then be applied
to that specific class.

Despite the demonstrated utility of class extensions, a number of open prob-
lems have limited their widespread acceptance. Briefly, these problems are:

(1) Globality. In existing approaches, the effects of a class extension are either
global (i.e., visible to all clients), or purely local (i.e., only to specific
clients named in the application of the class extension). In the first case,
clients that do not require the class extension may be adversely affected.
In the second case, collaborating clients that are not explicitly named will
not see the class extension, even though they should.

(2) Conflicts. If two or more class extensions attempt to extend the same
class, this may lead to a conflict. In existing approaches, conflicts are
either forbidden, or extensions are linearized, possibly leading to unex-
pected behaviour. In either case, the utility of class extensions is severely
impacted.

We propose a modular approach to class extensions that largely solves these
two problems by defining an implicit context in which class extensions are
visible. A classbox is a kind of module with three main characteristics:
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• It is a unit of scoping in which classes, global variables and methods are de-
fined. Each entity belongs to precisely one classbox, namely the one it which
it is first defined, but an entity can be made visible to other classboxes by
importing it. Methods can be defined for any class visible within a classbox,
independently of whether that class is defined or imported. Methods defined
(or redefined) for imported classes are called class extensions.

• A class extension is locally visible to the classbox in which it is defined. This
means that the extension is only visible to (i) the extending classbox, and
(ii) other classboxes that directly or indirectly import the extended class.

• A class extension supports local rebinding. This means that, although ex-
tensions are locally visible, their effect extends to all collaborating classes.
A classbox thereby determines a namespace within which local class exten-
sions behave as though they were global. From the perspective of a classbox,
the world is flattened.

We have previously introduced classboxes by means of a specialized method
lookup algorithm [7] reproduced in Section 5. The main contributions of this
paper are: (i) A set-theoretic account of the semantics of classboxes that does
not require a special method lookup algorithm and (ii) a detailed description
of the prototype implementation in the Squeak Smalltalk system, including
performance benchmarks.

The rest of the paper is structured as follows. Section 2 presents the problems
in supporting unanticipated changes by giving a motivating example and Sec-
tion 3 outlines the classbox model. Then a set-theoretic account of classboxes
is given in Section 4. We discuss implementation issues arising in our proto-
type implementation in Section 5. Section 6 contrasts classboxes with related
work. Finally, in Section 7 we conclude with some remarks concerning future
work.

2 Motivation: Supporting Unanticipated Change

Class extensions provide a mechanism to support unanticipated changes in a
static setting. Let us first consider a typical scenario, which will enable us to
establish some key requirements for class extensions, while highlighting the
main problems to be overcome.

A Link-Checker is an application whose purpose is to report a list of the dead
links on a web-page at a given URL. One natural way to implement a Link-
Checker, depicted in Figure 1, is to download the HTML page from the remote
website, and parse it to get an abstract syntax tree of the page composed of
various elements representing the HTML tags. Then using a recursive call over
the hierarchy, get the list of the links referenced in the page. The liveness of
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Fig. 1. The conceptual decomposition of the deadlink checker: an HTML parser, an
abstract syntax tree for HTML documents, facility to get links from a page, and a
network library.

each these links elements is checked by pinging the associated host and trying
to obtain the status of the linked page. When a timeout is issued or if the
HTTP reply corresponds to an error the link is declared dead.

Based on this example we can identify four properties that a packaging system
for an object-oriented programming language should support: class extensions
allowing redefinition, locality of changes, propagation of changes to collabora-
ting clients, and resolution of conflicts.

Class Extensions with Redefinition. First, the different elements com-
posing the solution should be packaged so that they can be used in further
applications. We can identify the following modules: an HTML scanner and
parser, an abstract syntax tree for the HTML elements, a recursive call over
these elements to get links contained in a page and some network facilities.
One key point is that we have to be able to group together the definitions of
the getLinks methods in a module that is different from that of the AST. This
means that the GetLinks module has to be able to extend the class definitions
of the tree node elements.

Although languages such as CLOS, Smalltalk, MultiJava, and AspectJ offer
some solutions, most otherlanguages (including Java), do not allow a class
to be extended by a different module or package than the one defining the
class. Note that subclassing the tree node elements is not a general solution,
since clients that explicitly name the original class will not see the subclass
extension.

In our development environment, the default Squeak distribution, the ping
method used by the environment does not raise an exception but opens a
dialog box when a target host cannot be reached. We therefore not only need
the ability to add methods (for packaging the GetLinks module), but also
to redefine them (to patch existing methods). We therefore require a module
system that supports class extensions with redefinition.

Locality of Changes. The second key aspect concerns the visibility of changes,
i.e., which modules see the extensions made by other modules. In most ap-
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proaches that support them, class extensions have a global visibility. All clients
have a common view of any given class, and any extensions are also seen by
all clients. This may lead to unexpected behaviour for some clients.

In the case of the ping method, we only want our redefined version to be visible
within the scope of our application. Other applications may actually rely on
the ad-hoc behavior provided by ping. Therefore the extensions and changes
to the system made by one module should not impact the system as a whole,
but only the module introducing the changes and its client modules. Class
extensions should be confined to the module that introduces them.

Local Rebindings. Even though class extensions should be visible only to
the module that introduces them, the actual effect from the perspective of that
module should be as if the extension were global.

The pingOnPort: method first adjusts the port (value kept in a variable) and
then call the ping method. We want that any call to ping made by pingOnPort:
triggers the definition brought by our LinkChecker application, even if pingOn-
Port: is defined in a scope that also contains a previous definition of ping. Class
extensions visible within a module should propagate to collaborating clients.

Conflicts. Class extensions are useful when, for instance, a library needs to
add a particular method to a class provided by the system. Conflicts arise
when an application relies on two modules that extend the same method of
the same class in different ways.

The ping method provided by Squeak is useful for pinging a remote host.
Its default behavior is to display the result in a popup window. The Link-
Checker application redefines this method to make it yield a value and to
raise an exception if the host is not reachable. Conflicts can arise with other
modules that make changes to this method. As a concrete example, Squeak has
a SocketICMP module that implements the ICMP network protocol. Amongst
other things, this implementation redefines the ping method with an ICMP-
based implementation. Using both the Link-Checker and the SocketICMP
module therefore leads to a conflict because both redefine the method ping.

There are several ways to handle this conflict: (1) the definition in Link-
Checker overrides the definition in SocketICMP’s, (2) SocketICMP’s definition
overrides Link-Checker’s, (3) a conflict is detected at composition time and
needs to be resolved, or (4) each extension is defined in a different namespace
than that of the class.

With Smalltalk, CLOS and Objective-C the result depends on which module
is loaded/initialized last which effectively impacts the system. On the other
hand, Multijava and Hyper/J detect conflicting situations at compile time.
Selector namespaces, Smallscript [8] and ModularSmalltalk [9] define the ex-
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tension in a particular namespace: conflicts are avoided and both extensions
are applied to the system within different scopes. Resolution of conflicting
class extensions should take the context of affected clients into account.

3 Classboxes in a Nutshell

A classbox is a module containing scoped definitions and import statements.
Classboxes define classes, methods and variables. Imported declarations may
be extended, possibly redefining imported methods. When a classbox is in-
stantiated, it yields a namespace in which the directly defined, imported and
extended entities co-exist with the implicitly imported entities.

Scoped Definitions. A classbox defines classes, methods, or variables. Each
class, method or variable belongs to precisely one classbox, namely the one in
which it is originally defined. Classes and variables defined in a classbox are
globally accessible to all methods in the scope of that classbox.

Imports. A classbox may import classes and variables from other classboxes.
Imported entities thus become available within the scope of the importing
classbox. An imported class may be extended with new methods, or meth-
ods that redefine existing methods. The extended class is then visible within
the scope of the extending classbox, but not in the defining classbox of the
extended class.

3.1 Scope of Methods

A method defined on a class in a classbox CB is visible within that classbox,
and within other classboxes that import this class from CB. In a given class-
box all the methods defined along the chain of import are visible within this
classbox.

If several classboxes extend a class with a method with the same name but with
different implementations, the implementation chosen during an invocation is
the one that is reachable according to the import chain.

A classbox CB that defines a method that already exists in the import chain
hides its former definition from this classbox CB and other classboxes that
may import the extended class from CB.
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Fig. 2. The dead-link checker modularized with classboxes.

3.2 The Link-Checker with Classboxes

This section shows how to use classboxes to modularize the Link-Checker
example. Because classboxes have been fully implemented in the Squeak [10]
environment, code fragments are presented in Smalltalk.

The architecture of the Link-Checker application is depicted in Figure 2. The
classbox SqueakCB contains the network facility for checking the existence of
a remote host (class Socket with class method ping: host) and for fetching
the content associated to a given URL (class HTTPSocket with class method
getHttp: url).

The classbox HtmlCB defines the HTML framework facilities. The class HTML-
Parser is used to parse a text, yielding an abstract syntax tree (AST) composed
of nodes such as HTMLEntity (the root of the structure), HTMLBody, HTML-
Anchor (representing a link), . . .

The classbox GetLinksCB implements the recursive algorithm intended to pro-
duce a collection of all the links contained over the AST elements. It imports
the relevant nodes from the classbox HtmlCB and extends each of the classes
representing HTML tag elements by defining the corresponding getLinks meth-
ods.

The classbox LinkCheckerCB contains the actual link checker application. It
defines the class LinkChecker, containing one method (check: url) which is the
entry point of the application. This method first gets the raw content of a
page designated by url using the class HTTPSocket). It then parses the page
using the class HTMLParser, obtaining an AST of the page. Then it invokes the
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Fig. 3. The method ping is extended by two different classboxes. Conflict is avoided
because extensions are confined to their respective classboxes.

method getLinks on the root of that AST, obtaining a collection of all the links
on the page. Finally it checks the liveness of these links by pinging the hosts
mentioned in each link. LinkCheckerCB imports the complete classbox Get-
LinksCB, so all the extended classes (HTML nodes) are visible within it. As a
consequence, within the classbox LinkCheckerCB the AST generated by HTML-
Parser (class imported from HtmlCB) understands the extensions brought by
GetLinksCB. To solve the problem that the method ping: host in the classbox
SqueakCB displays its results in a dialog box, the classbox LinkCheckerCB
redefines it to raise an exception instead.

3.3 Discussion

Locality of Changes. Although the method ping of class Socket is redefined,
its visibility is confined to the LinkCheckerCB classbox. Unrelated code in the
system relying on the original definition of this method is not affected. This
illustrates both class extensions with redefinition and locality of changes.

Local Rebinding. The classbox SqueakCB defines the class Socket with two
methods: ping: host onPort: number and ping: host. The first one calls the sec-
ond one, and the latter posts a popup menu to display the result of pinging
a host. This implementation is not suitable for our application. The class-
box LinkCheckerCB imports the class Socket from SqueakCB and extends it by
redefining the method ping: host with an implementation that throws an ex-
ception when a host is not reachable. Calling ping: host onPort: number within
LinkCheckerCB triggers the new implementation of ping: host. This illustrates
the local rebinding property.

Conflict. The classbox LinkCheckerCB extends the class Socket by redefining
the method ping. This extension is local to the classbox. Figure 3 shows an-
other classbox SocketIcmpCB that also imports the class Socket and redefines
the same method ping. This class extension is local to SocketIcmpCB. Conflict
is avoided because each extension is confined to the classbox that defines it.
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4 The Classbox Model

This section presents a set-theoretic model that precisely defines the semantics
of classboxes. We abstract away from the operational details of statements and
expressions of a given object-oriented language, and instead focus on the key
features that interact with classboxes. We start by introducing a basic model
of classes, objects and namespaces, where we capture instantiation, message
sending, and self- and super-calls.

On top of this basic model, we then show how classboxes are defined as a
mechanism for introducing class extensions, and for controlling the visibility
of class extensions in different namespaces. We show how locality of changes
and local rebinding arise as a consequence of the way that classboxes are
composed.

4.1 Environments

We use the basic concept of an extensible environment as a mechanism for
modeling classes, objects and classboxes.

Definition 1 An environment ε : D → R?, is a mapping from some domain
D to an extended range R? = R ∪ {⊥}, such that the inverse image ε−1(R) is
finite.

We represent environments as finite sets of bindings, for example: ε1 = {a 7→
x, b 7→ y} is an environment that maps a to x and b to y. All other values in
the domain of this environment (for example, c) are mapped to ⊥.

We normally leave out unessential parentheses. Since an environment is a
function, we simply invoke it to look up a binding. In this case, ε1a = x,
ε1b = y and ε1c = ⊥.

Definition 2 An environment ε : D → R? may override another environment
ε′. We define ε � ε′ : D → R? as follows:

(ε � ε′)x
def
=

 ε′x if εx = ⊥

εx otherwise

For example, if ε2 = {b 7→ z, c 7→ w}, then (ε1 � ε2)a = x, (ε1 � ε2)b = y, and
(ε1 � ε2)c = w. We employ overriding both for method dictionaries and class
namespaces.
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4.2 Classes, Namespaces and Objects

The primitive elements of our model are the following disjoint sets: C, a count-
able set of class names, M, a countable set of messages, and B, a countable
set of method bodies.

Definition 3 A method dictionary, δ ∈ D is an environment, δ : M → B?

that maps a finite set of messages to bodies.

For example, δ = {m1 7→ b1, m2 7→ b2} defines a dictionary d that maps
message m1 to body b1 and m2 to b2, and all other messages to ⊥.

Note that, for the purpose of this paper, we are not concerned with the im-
plementation details of the method bodies. We only consider which kinds of
messages are sent in the bodies.

Definition 4 A class, c〈δ, B, ε〉 consists of a method dictionary δ, a superclass
name B ∈ C∪{nil}, and an environment ε, called a class namespace, that binds
class names to classes.

nil represents an empty class, from which the root of a class hierarchy inherits.
By convention, every class namespace is assumed to contain the binding nil 7→
c〈∅, nil, ∅〉, which we therefore do not list explicitly.

Definition 5 An object o〈c, φ〉 consists of a class c and an environment φ,
which is a class namespace (obtained from c) extended with a binding for self.

Note that, for the present purposes, we do not model attributes (instance
variables) of objects, aside from the pseudo-variables self and super.

We can send messages to classes and to objects. We use the notation x[m] to
send the message m to the class or object x.

Definition 6 We can instantiate an object by sending the message new to a
class c = c〈δ, B, ε〉:

c[new]
def
= µσ.o〈c, {self 7→ σ}� ε〉

At this point we recursively bind self to the value of the object itself.

As usual, µx.E binds free occurrences of x in E to the value of the recursive

expression itself, i.e., µx.E
def
= E{µx.E/x}, where E{y/x} is the usual sub-

stitution operation, replacing free occurrences of x in E by y while avoiding
name clashes.
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Although we do not model the internal details of method bodies here, we
must take care to be precise about the environment within which methods are
evaluated. As we shall see when we define classboxes, it is precisely the way
in which these environments are composed that determines the scope within
which class extensions are visible.

Definition 7 A method closure m〈b, φ〉 consists of a method body b and a
class namespace φ that additionally binds both self and super.

Note that super is bound by methods, not objects, since super-calls are relative
to the class in which a method is defined, not the class from which the object
is instantiated.

Definition 8 We can send a message m to an object o〈c, φ〉, where c =
c〈δ, B, ε〉 obtaining a method closure:

o〈c, φ〉[m]
def
=


m〈δm, {super 7→ o〈εB, φ〉}� φ〉 if δm 6= ⊥

o〈εB, φ〉[m] else if B 6= nil

⊥ otherwise

This definition captures the basic method lookup algorithm of object-oriented
programming languages. If the message sent does not correspond to a method
defined in the class of the object, the lookup continues in the parent class,
and so on. If the method is not found, the message is reported as not being
understood (⊥). If a suitable method is found, it is evaluated in a context
where super is bound to the current object, but from the perspective of the
method’s superclass. As we can clearly see, super is an object, not a class.
Note that according to Definition 4 the superclass B can be nil.

Definition 9 A closure may be evaluated, in which case it may send various
messages. Here we are interested in self- and super-sends, and static class
references.

m〈b, φ〉Jself mK def
= (φ self)[m]

m〈b, φ〉Jsuper mK def
= (φ super)[m]

m〈b, φ〉JC newK def
= (φ Cφ)[new]

4.3 Classboxes

A classbox is an open entity that provides a number of classes, and which can
be extended. When a classbox is closed, it yields an ordinary class namespace
(Definition 4).
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The key point in modeling classboxes is that multiple versions of the same
class may be implicitly present within the same classbox. Suppose that we
import the class LinkChecker from the classbox LinkCheckerCB, and we locally
define a class Socket. Even though LinkChecker collaborates with Socket, ours
is a different socket class that has nothing to do with the Socket class known
to LinkChecker. To capture this aspect we must refine the notion of class names
to express the originating classbox to which a class belongs:

• C is the countable set of raw class names,
• X is the set of classbox names,
• C+ = {Cn|C ∈ C, n ∈ X} is the set of decorated class names.

The decorated class name simply encodes the classbox to which the class
belongs, i.e., where it was first defined. We call the superscript n of a decorated
class name Cn its origin.

Definition 10 A raw class name C matches a decorated class name Bn if
C = B:

C ∼ Bn iff C = B

For example, when we use the raw class name Socket, it may not be clear
which Socket class we are referring to. However the decorated class name
SocketSqueakCB unambiguously identifies the Socket class first introduced in the
SqueakCB classbox.

Note that it is this same class that is extended in LinkCheckerCB, since there
is no Socket class defined there. There is no SocketLinkCheckerCB.

Definition 11 A classbox b〈n, α〉 consists of an identifier n ∈ X (i.e. classbox
names) and a function α from class namespaces to class namespaces.

The intuition here is that a classbox is open because it can always be extended
with new class definitions, imports and extensions. As a consequence, we do
not yet know the class namespace of the classes it provides. However we can
close a classbox, thereby fixing the class namespace of all the provided classes.

Definition 12 A classbox b〈n, α〉 can be closed by sending it the close mes-

sage, generating a fixpoint: b〈n, α〉[close]
def
= µε.αε

The resulting class namespace must be closed, i.e., all used class names must
be defined. Since α is a function from class namespaces to class namespaces,
µε.αε represents a fixpoint in which all the classes provided by the classbox
are made visible to each other.
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Definition 13 We may lookup the decorated class name Cn corresponding
to a raw class name C in a classbox b〈n, α〉:

Cα
def
=

 Cn if ∃!n ∈ X , (b〈n, α〉[close])Cn 6= ⊥

⊥ otherwise

Suppose the LinkCheckerCB classbox is represented by b〈LinkCheckerCB, α〉.
Then Socketα yields SocketSqueakCB, since SqueakCB is the origin of Socket in
the LinkCheckerCB classbox.

Definition 14 An empty classbox with identifier n is: empty(n)
def
= b〈n, λε → ∅〉.

Note that empty(n)[close] = ∅, i.e., closing an empty classbox yields an empty
class namespace.

Definition 15 We can introduce to a classbox b〈n, α〉 a new class C that
subclasses B (defined in a classbox b〈m, β〉) with δ as method dictionary by
sending it the message def subclasses with.

b〈n, α〉[def C subclasses Bm with δ]

def
=

 b〈n, λε.{Cn 7→ c〈δ, Bm, ε〉}� αε〉, if Cα = ⊥

⊥ otherwise

Note that the formal parameter ε represents the fixpoint we obtain when the
classbox is finally closed. We must therefore extend αε with the new subclass
definition, obtaining {Cn 7→ · · · }� αε. We retain ε as a formal parameter so
that the classbox remains open (i.e., λε. · · · ). The side condition states that it
is an error to introduce a class that is already defined in the classbox. Within
a classbox, only decorated class names occur. The newly introduced class has
the origin n. We also explicitly identify the origin m of the superclass.

4.4 Importing Classes

Definition 16 A classbox b〈n, α〉 may import a raw named class from an-
other, classbox b〈m,β〉, by sending it the message import.

b〈n, α〉[import C from b〈m,β〉]

def
=

 b〈n, λε.{Cβ 7→ (µφ.β(ε � φ))Cβ}� αε〉, if Cα = ⊥

⊥ otherwise

13



Let us call the new classbox we obtain b〈n, α′〉. α′ extends α with the imported
definition, but we must also take care that the environment of the imported
class is properly extended with any pertinent definitions that occur in α′. As
before, ε represents the class namespace that we obtain when we take the
fixpoint of α′. We therefore pass ε to α so it is available to all the existing
class definitions in α. We must also look up the correct decorated class name
Cβ. Finally, we must bind this to the correct definition from β, extended with
any new definitions from α′.

Suppose we would simply use Cβ 7→ (µφ.βφ)Cβ, this would clearly be wrong,
because the class we obtain would only see other class definitions from β, and
not any definitions that may have already been extended in α. Instead, we
create an intermediate namespace µφ.β(ε�φ). ε�φ represents the environment
of β extended with any new definitions from α′. We then pass this into β to
make it available to all class definitions in β. Finally we extract this definition,
bind it to Cβ and use it to extend αε.

Consider, for example, the import relationships in Figure 2. The classbox Link-
CheckerCB imports HTMLParser from HtmlCB and HTMLEntity and its sub-
classes from GetLinksCB. If HTMLParser were naively imported from HtmlCB,
it would not see the extensions imported from GetLinksCB. Instead, the import
operation is defined so that when HTMLParser is imported, its environment
(i.e., φ) is extended by all definitions in LinkCheckerCB (i.e., ε � φ). So when
HTMLParser is imported, it sees the extended versions of HTMLEntity and its
subclasses. This is the local rebinding mechanism of classboxes.

Note that it is critical that HTMLEntity imported from GetLinksCB has the
same origin as that expected by HTMLParser. If LinkCheckerCB or GetLinks-
CB were to define a new class HTMLEntity, then this would have a different
decorated class name from the HTMLEntity originally defined in HtmlCB, and
would therefore be invisible to HTMLParser.

4.5 Extending Imported Classes

Definition 17 A classbox b〈n, α〉 may extend a raw class named class from
another classbox b〈m, β〉, by sending it the message extend with.

b〈n, α〉[extend C with δ′ from b〈m,β〉]

def
=

 b〈n, λε.{Cβ 7→ δ′ � (µφ.β(ε � φ))Cβ}� αε〉 if Cα = ⊥

⊥ otherwise
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where
δ′ � c〈δ, B, ε〉 def

= c〈δ � δ, B, ε〉

Extend works just like import, except that the imported class definition is
extended with δ′.

As a consequence, importing a class is the same as extending it with a nil
extension:

b〈n, α〉[import C from b〈m, β〉] ≡ b〈n, α〉[extend C with ∅ from b〈m, β〉]

As should be clear from the definition, class extensions are purely local to the
classbox making the extension. This guarantees locality of changes. Extensions
become visible to other classboxes only when they are explicitly imported, or
implicitly made visible by the mechanism of local rebinding (as seen in the
HTMLParser example discussed above).

Method redefinition is supported since the δ′ introduced by a class exten-
sion can redefine methods existing in the class being extended. For example,
not only can the GetLinksCB classbox extend the HTMLEntity and related
classes with a new getLinks method, but the LinkCheckerCB classbox can im-
port Socket from the SqueakCB classbox and redefine the ping method.

4.6 Proving Classbox Properties

Proposition 1 A method defined in a classbox is visible within this classbox.

Proof. Because a method is defined either when a class is (i) defined or (ii)
imported, this Proof is divided in two parts.

(i) Methods defined at the same time than the class they refer to are visible
within the classbox where they are effectively defined. This first part of the
proof consists in showing that defining a class C with a method m bound to
a compiled method CM makes this method visible within the classbox (i.e.
invoking m on an instance of C triggers the expected method CM).

Without loss of generality, assume that C has no superclass (i.e. it inherits
from nil).

b〈n, α〉[def C subclasses nil with {m 7→ CM}]

= b〈n, λε.{Cn 7→ c〈{m 7→ CM}, nil, ε〉}� αε〉 = b〈n, α′〉
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Closing this classbox yields:

b〈n, α′〉[close] = µε.α′ε = ϕ = {Cn 7→ c〈{m 7→ CM}, nil, ϕ〉}� αϕ

Now the instance of this class Cn is obj = o〈ϕCn, {self 7→ obj}� ϕ〉. Sending
a message m to it yields:

obj[m] = m〈{m 7→ CM}m, {super 7→ c〈∅, nil, ∅〉}� ϕ〉

The implementation identified for the method m is the result of
{m 7→ CM}m = CM.

(ii) Methods defined when importing a class are visible within the importing
classbox.

b〈n, α〉[extend C with {m 7→ CM} from b〈m, β〉]

= b〈n, λε.{Cn 7→ c〈{m 7→ CM}, nil, ε〉}� (µφ.β(ε � φ))Cβ}� αε〉

Assuming that Cβ = Cp closing this classbox yields:

b〈n, . . .〉[close] = ϕ = {Cp 7→ c〈{m 7→ CM}, nil, ϕ〉}

The rest of the proof follows what is already shown in (i).

Proposition 2 Importing a class makes its methods previously defined visi-
ble in the importing classbox.

Proof. If b〈m,β〉Cβ = c〈{m 7→ CM, }, B〉ε then

b〈n, α〉[import C from b〈m, β〉]

= b〈n, λε.{Cβ 7→ (µφ.β(ε � φ))Cβ}� αε〉

Assuming that Cβ = Cp closing the resulting classbox yields:

b〈n, . . .〉[close] = ϕ = {Cp 7→ βCp} = {Cp 7→ c〈{m 7→ CM}, B, ϕ〉}� αϕ

Then as already shown in the first proof, sending a message m to an instance
of ϕCp triggers the execution of CM.
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Proposition 3 Within a classbox, a method redefinition takes precedence
over its former implementation.

Proof. Within a classbox b〈m,β〉 a class C has in its method dictionary an
entry m bound to a first implementation CM1. This proof consists in showing
that importing C in another classbox and redefining m bound to CM2 hides
the former implementation.

If b〈m,β〉Cβ = c〈{m 7→ CM1}, B, ε〉 then

b〈n, α〉[extend C with {m 7→ CM2} from b〈m,β〉]

= b〈n, λε.{Cβ 7→ {m 7→ CM2}� (µφ.β(ε � φ))Cβ}� αε〉

Assuming that Cβ = Cp closing the resulting classbox yields:

b〈n, . . .〉[close] = ϕ = {Cp 7→ {m 7→ CM2}� βCp} =

{Cp 7→ {m 7→ CM2}� b〈m 7→ CM1, B〉ϕ} =

{Cp 7→ c〈{m 7→ CM2}, B, ϕ〉}

The conclusion of this proof follows the end of the very first proof. Instantia-
ting Cp and sending the message m executes the new implementation CM2.

4.7 Resolving Diamond Conflicts

Conflicts are largely avoided. Classes that coincidentally have the same name
but are introduced in different classboxes do not conflict because they have
separate origins. Contradictions arising from attempts to import the same class
from different classboxes of course cannot be resolved automatically. However,
an important class of indirect conflicts is automatically resolved by the nature
of the local rebinding mechanism.

Figure 4 illustrates a diamond pattern arising from two import chains with
a common ancestor class. Classbox CB1 defines a class A which provides a
method foo returning the value 1. This class is imported by CB2 where the
method foo is redefined to return 2. CB2 also defines a subclass of A named B.
In a similar way, classbox CB3 imports A from CB1 and redefines foo to return
3. A subclass of A named C is also defined. A fourth classbox CB4 imports B
from CB2 and C from CB3. CB4 does not explicitly import class A.
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CB4
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Fig. 4. Resolving Diamond conflicts

In the context of CB4 invoking foo on an instance of B yields the value 2,
whereas invoking foo on an instance of C yields 3. However, if CB4 would
explicitly import A from any one of CB1, CB2 or CB3, then that version of A
would be visible to both B and C. For example, if CB4 would import A from
CB1 and redefine foo to return 4, then both instances of B and C would return
4 when foo is invoked.

5 Implementation Issues

Classboxes can be implemented by changing the method lookup algorithm
in the virtual machine. This requires a virtual machine that is available for
changing, which is why we performed our experiments in Squeak, a Smalltalk
environment of which the virtual machine is open source [10,11]. We adapted
the method lookup and compiled a new virtual machine that is classbox-
aware. In this section we evaluate the impact of this extended method lookup
algorithm on performance.

5.1 Method Lookup Description

Encoding the classbox with the method signature makes it possible for dif-
ferent implementations a method to coexist. However, to take advantage of
this, the method lookup mechanism has to be changed as well. Figure 5 de-
scribes the lookup algorithm we implemented that ensures the local rebinding
property.

The proposed method lookup implementation requires three extra arguments
(added to the method name and the receiver’s class) to search over the graph
of classboxes. The selector argument refers to the method name as a symbol;
cls refers to the receiver’s class; startbox refers to the first classbox where the
initial expression is evaluated; currentbox is initialized with startbox when the
algorithm is triggered and is used to keep a reference over recursive call of the
algorithm; and finally path contains the chain of import for a given method call
and its value is computed prior starting the algorithm. In Figure 4 evaluating
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1 lookup: selector class: cls

2 startBox: startbox currentBox: currentbox classboxPath: path

3
4 | parentBox theSuper togoBox newPath |

5 self

6 lookup: selector

7 ofClass: cls

8 inClassbox: currentbox

9 ifPresentDo: [:method | ^ method].

10 parentBox := currentbox providerOf: cls name.

11 ^ parentBox

12 ifNotNil: [path addLast: parentBox.

13 self

14 lookup: selector

15 class: cls

16 startBox: startbox

17 currentBox: parentBox

18 classboxPath: path]

19 ifNil: [theSuper := cls superclass.

20 theSuper ifNil: [^ cls method: selector notFoundIn: cls].

21 togoBox := path detect: [:box | box scopeContains: theSuper].

22 newPath := togoBox = startbox

23 ifTrue: [OrderedCollection with: startbox]

24 ifFalse: [path].

25 self

26 lookup: selector

27 class: theSuper

28 startBox: startbox

29 currentBox: togoBox

30 classboxPath: newPath]

Fig. 5. The lookup algorithm that provides the local rebinding.

the expression B new foo in the classbox CB4 generates a path (CB4, CB2),
and evaluating C new foo generates (CB4, CB3). This path is computed using
some reflective feature of Squeak: it is computed from the method call stack.

The algorithm first checks whether the class in the current classbox imple-
ments the selector we are looking for (lines 5 to 9). If it is found, the lookup
is successful and we return the found method (line 9). If it is not found, we
recurse. The algorithm favours imports over inheritance, meaning that first
the import chain is traversed (in lines 12 to 18) before considering the in-
heritance chain (in lines 19 to 30). This last part is the difficult part of the
algorithm, since we need to find the classbox where the superclass is defined
that is closest to the classbox we started the lookup from. Therefore the al-
gorithm remembers the path while traversing the import chain (line 12), and
uses this when determining the classbox for the superclass (line 21).

5.2 Import Takes Precedence Over Inheritance

Figure 5, lines 11-12 shows that if a class is imported (parentBox is not nil)
then the lookup pursues in the provider classbox. If this class is not imported
(parentBox is nil), as shown at the line 19, then the lookup continues in the
superclass.
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Fig. 6. Import takes precedence over inheritance

The lookup in a superclass is done only if it is stated that a class does not
provide any implementation for a given message. Within the classbox model
this implies that we have to run over the chain of imports to make sure that
a classbox does not extend this class with the corresponding method.

Figure 6 illustrates this property of the algorithm by depicting an example.
It shows four classboxes: GraphicCB, RoundedWindowCB, DoubleBufferCB and
DoubleBufferAndRoundedCB. Each of theses defines extensions or simply im-
ports classes to combine some of the extensions.

GraphicCB defines a hierarchy composed of three classes: Component provides
the methods update and paint, and Window and Frame both override the
method paint. Window and Frame are imported in RoundedWindowCB. This
first class is extended with a new implementation of paint to make corners
of windows smooth by rounding them. DoubleBufferCB extends Component,
which is imported from GraphicCB, and simply imports Frame from this same
classbox. Component is extended with a redefinition of paint to take double
buffering facility into account. Finally, DoubleBufferAndRoundedCB combines
the two characteristics by importing Component from DoubleBufferAndRound-
edCB and by importing Frame from RoundedWindowCB.

In RoundedWindowCB the new implementation of paint does a super paint
which executes the paint method in GraphicCB. Evaluating Frame new update
in RoundedWindowCB triggers the update method contained in Component
and the local definition of paint is executed, the one provided by RoundedWin-
dowCB.

DoubleBufferAndRoundedCB combines the double buffer and the rounded facil-
ities by importing Component from DoubleBufferCB and Frame from Rounded-
WindowCB. Evaluating Frame new update in DoubleBufferAndRoundedCB trig-
gers update defined in GraphicCB which send the message paint. The imple-
mentation taken is the one provided by RoundedWindowCB because Frame is
imported from it. This implementation does a super paint, which execute the
paint method defined in DoubleBufferCB.
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5.3 Method Lookup Performance

Making the overhead related to our new method lookup as low as possible
was one of our major concerns. Compared to the description given in [7], our
implementation of the model is greatly enhanced: there is no need to modify
the VM (due to the message passing control mechanism [12] offered by Squeak)
and the cost of the new method lookup greatly reduced (thanks to a cache
mechanism).

Classboxes allow you to have several versions of a method to coexist simul-
taneously. Depending on where this method is called from (i.e. from which
classbox) the right method implementation is selected according to the method
lookup algorithm described previously. When a classbox extends a class it can
either be a method addition or a method redefinition. With our current imple-
mentation, calling a method that has been simply added by a classbox does
not impose any overhead. However calling a method that has been redefined
has an extra cost: the lookup algorithm previously presented is performed.
However, this result is cached. Our cache mechanism is based on the following
basic assumption: a redefined method is often called by the same object within
the same classbox. The byte-code of an extended method is transformed to
include 5 byte-codes that check if the caller for this method is the one that
has been previously cached. For method addition there is no need to use a
cache because there is only one version of the method present in the system.

The following table illustrates the cost of the lookup of a redefined method
compared with traditional lookup.

6,000,000 calls Classbox lookup (ms)

Over 1 Classbox 5176

Over 2 Classboxes 5126

Over 3 Classboxes 5145

Normal method 1477

The experiment consists in calling 6 millions times a method that is redefined.
It shows that there is a constant overhead that does not depend on the graph
of import. This overhead is due to the extra few byte-codes added at the
beginning of the method. The method used for the benchmarks is composed
of one byte-code (simply return a numerical value). The same method that
checks if the cache is valid is about 2.5 times ((5176 - 1477) / 1477) slower.
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6 Related Work

Selector Namespaces. Languages like ModularSmalltalk [9], Subsystems
[13] and Smallscript [8] provide a scoping mechanism called Selector Names-
paces, in which methods are inserted. As a result, class extension conflicts
are avoided, and several applications can bring the same class extension re-
ferring to the same class and method without interfering with each other. As
a result, class extensions are not globally visible, but confined to a bounded
scope. However selector namespaces do not support the local rebinding prop-
erty, since a new definition does not take precedence when original code is
called.

Multijava. Multijava [5] is an extension of Java that supports open classes
and multiple method dispatch. An open class is a class whose methods are ex-
tensible. New methods can be added to an open class. These new methods are
visible within the package that provides them and in the packages importing
that package. Method redefinitions are not allowed: an open class cannot have
one of its existing methods redefined. On the other hand, two class extensions
can define a method on the same class with the same signature. In that case
the extensions are scoped separately.

Unit. MZScheme [14] offers an advanced module system where a unit is the
basic building block. A unit is a packaging entity composed of requirements,
definitions and exports. Units have to be instantiated and composed with each
other to form a program. The key point of this model is that connections be-
tween modules or classes are specified separately from their definitions. This
principle allows a module to be instantiated at link time. Reusability and ex-
tensibility are expressed by recombining units. An application, made of units,
can be recomposed and by aliasing new units can be inserted. Units differ
from classboxes since a unit acts as a black box: a class within a unit can-
not be extended. Instead a new unit has to be provided and included in a
recomposition.

Hyper/J. Hyper/J [15] is based on the notion of hyperspaces, and promotes
compositions of independent concerns at different times. Hyperslices are build-
ing blocks containing fragments of class definitions. They are intended to be
composed to form larger building blocks (or complete systems) called hy-
permodules. A hyperslice defines methods on classes that are not necessarily
defined in that hyperslice. Such methods define a class extension, and classes
intended to be extended are known at integration time. However this kind
of extension does not allow redefinition and consequently does not help in
supporting unanticipated evolution.

Virtual Classes. The specification of a virtual class [16] [17] is completely
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analogous to the specification of a virtual procedure. By introducing a dynamic
lookup of a class name in a hierarchy of encapsulating entities (module for
Keris [18], collaboration interfaces for Caesar [19] [20], classes for gbeta [21],
or teams for Objectteams [22]) it is possible to refine a class within a sub-
entity. One limitation with virtual classes is that the “virtuality” is scoped to
a hierarchy: outside this hierarchy a class is not virtual anymore. For instance
let us assume C to be a virtual class attribute in a hierarchy H1. In an unrelated
hierarchy H2, class C is not virtual anymore and cannot be redefined.

Object-Based Inheritance. By providing true delegation, Lava [23] sup-
ports dynamic unanticipated changes using class wrappers. By introducing
a new language construct, an object a (instance of A) can delegate all non-
understood messages it receives to a delegatee object b (instance of B). Lava
provides a true-delegation mechanism whereas the self reference used in the
class B refers to the delegating object a. Methods defined in b that are un-
known to a are the extensions brought on a. So redefined or new methods
are attached to a particular object rather than a class. True delegation pro-
vides a way for adding or redefining methods for a particular object whereas
classboxes extend classes.

7 Conclusion and Future Work

Classboxes address the problem that classical module systems do not offer
the ability to add or replace a method in a class that is not defined in that
module. Classboxes offer a minimal module system for object-oriented lan-
guages in which extensions (method addition and replacement) to imported
classes are locally visible. Essentially, a classbox defines a scope within which
certain entities, i.e., classes, methods and variables, are defined. A classbox
may import entities from other classboxes, and optionally extend them with-
out impacting the originating classbox. Concretely, classes may be imported,
and methods may be added or redefined, without affecting clients of that class
in other classboxes. Local rebinding strictly limits the impact of changes to
clients of the extending classbox, leading to better control over changes, while
giving the illusion from a local perspective that changes are global.

To see the impact of classboxes on a real-world example we remodularized
an existing application (the seaside web server application [24] built upon a
web server [25]) with classboxes. The goal is to show the usefulness of class
extensions by measuring the proportion of class extension among the defined
methods (for more details see the technical report [26]).

We have implemented a proof-of-concept prototype of classboxes in Squeak.
In our implementation, the method lookup mechanism in the Squeak virtual
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machine has been modified to take classboxes into account. This prototype
exhibits an overall 10% slowdown in performance for real-world applications.

In the future we will analyze some very large applications developed without
any local rebinding facilities in order to identify places where programmers
simulated local rebinding.

Currently classboxes function purely as a packaging and scoping mechanism.
We intend to investigate various extensions of classboxes. We expect that an
integration with traits will be fruitful, as this will enable packaging of collab-
orating traits [27] (and their associated tests). Presently classboxes lack any
notion of a component model. We expect that explicit interfaces and compo-
sition mechanisms for classboxes will increase their usefulness. In particular,
we intend to investigate the application of encapsulation policies [28] to class-
boxes.

Acknowledgment. We also like to thank Curtis Clifton, Erik Ernst, Günter
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