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Abstract

A class extensiois a method that is defined in a module, but whose class is defined elsewhere. Class extensions
offer a convenient way to incrementally modify existing classes when subclassing is inappropriate. Unfortunately
existing approaches suffer from various limitations. Either class extensions have a global impact, with possibly
negative effects for unexpected clients, or they have a purely local impact, with negative results for collaborating
clients. Furthermore, conflicting class extensions are either disallowed, or resolved by linearization, with consequent
negative effects. To solve these problems we predassboxesa module system for object-oriented languages that
provides for method addition and replacement. Moreover, the changes made by a classbox are only visible to that
classbox (or classboxes that import it), a feature weaadll rebinding To validate the model we have implemented
it in the Squeak Smalltalk environment, and performed benchmarks.
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1. Introduction

It is well-established that object-oriented programming languages gain a great deal of their power and
expressiveness from their support for thigericlosed principlg1]: classes arelosedin the sense that
they can be instantiated, but they are apento incremental modification by inheritance.

Nevertheless, classes and inheritance alone are not adequate for expressing many useful forms of
incremental change. For example, most modern object-oriented languages intraztildesas a com-
plementary mechanism to structure classes and control visibility of names. Reflection is another example
of anincreasingly mainstream technigue used to modify and adapt behaviour at run-time. Aspect-oriented
programming, on the other hand, is a technique to adapt sets of related classes by introducing code that
addresses cross-cutting aspects.

In this paper we focus on a particular technique, knowrlass extensionsvhich addresses the need to
extend existing classes with new behaviour. Small2lkCLOS|3], Objective-CJ4], and more recently
MultidJava[5] and AspectJ6] are examples of languages that support class extensions. Class extensions
offer a good solution to the dilemma that arises when one would like to modify or extend the behaviour
of an existing class, and subclassing is inappropriate becaussptnzficclass is referred to, but, one
cannot modify the source code of the class in question. A class extension can then be applied to that
specific class.

Despite the demonstrated utility of class extensions, a number of open problems have limited their
widespread acceptance. Briefly, these problems are:

(1) Globality. In existing approaches, the effects of a class extension are either global (i.e., visible to all
clients), or purely local (i.e., only to specific clients named in the application of the class extension).
Inthe first case, clients that do not require the class extension may be adversely affected. In the second
casecollaborating clientghat are not explicitly named will not see the class extension, even though
they should.

(2) Conflicts If two or more class extensions attempt to extend the same class, this may lead to a conflict.
In existing approaches, conflicts are either forbidden, or extensions are linearized, possibly leading
to unexpected behaviour. In either case, the utility of class extensions is severely impacted.

We propose a modular approach to class extensions that largely solves these two problems by defining
an implicit context in which class extensions are visiblel&ssboxs a kind of module with three main
characteristics:

e Itis aunit of scopingn which classes, global variables and methods are defined. Each entity belongs
to precisely one classbox, namely the one in which it is fiefined but an entity can be made visible
to other classboxes bynportingit. Methods can be defined for any class visible within a classbox,
independently of whether that class is defined or imported. Methods defined (or redefined) for imported
classes are calledass extensions

e Aclass extension ilcally visibleto the classbox in which it is defined. This means that the extension
is only visible to (i) the extending classbox, and (ii) other classboxes that directly or indirectly import
the extended class.

e A class extension supporiiscal rebinding This means that, although extensions are locally visible,
their effect extends to all collaborating classes. A classbox thereby determines a namdtpace
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which local class extensions behagthough they were glohdfrom the perspective of a classbox,
the world is flattened.

We have previously introduced classboxes by means of a specialized method lookup alfgntpro-
duced in Section 5. The main contributions of this paper are: (i) A set-theoretic account of the semantics
of classboxes that does not require a special method lookup algorithm and (ii) a detailed description of
the prototype implementation in the Squeak Smalltalk system, including performance benchmarks.
Therestofthe paperis structured as follows. Section 2 presents the problems in supporting unanticipated
changes by giving a motivating example and Section 3 outlines the classbox model. Then a set-theoretic
account of classboxes is given in Section 4. We discuss implementation issues arising in our prototype
implementation in Section 5. Section 6 contrasts classboxes with related work. Finally, in Section 7 we
conclude with some remarks concerning future work.

2. Motivation: supporting unanticipated change

Class extensions provide a mechanism to suppuahticipated changes a static setting. Let us first
consider a typical scenario, which will enable us to establish some key requirements for class extensions,
while highlighting the main problems to be overcome.

A Link-Checker is an application whose purpose is to report a list of the dead links on a web-page
at a given URL. One natural way to implement a Link-Checker, depictédgnl, is to download the
HTML page from the remote website, and parse it to get an abstract syntax tree of the page composed of
various elements representing the HTML tags. Then using a recursive call over the hierarchy, get the list
of the links referenced in the page. The liveness of each of these links elements is checked by pinging
the associated host and trying to obtain the status of the linked page. When a timeout is issued or if the
HTTP reply corresponds to an error the link is declared dead.

Based on this example we can identify four properties that a packaging system for an object-oriented
programming language should suppaottiss extensionallowing redefinition locality of changesprop-
agationof changes to collaborating clients, and resolution of conflicts.

Class extensions with redefinitioRirst, the different elements composing the solution should be
packaged so that they can be used in further applications. We can identify the following modules: an

*************************************************************************

[ Page | Parser | : ‘[ Page | E Socket

o [ | |parse ' E getLinks E ' [ ping
<heading> |! 1 P Body ' E pingOnPort:
whesang> |} | [Fieading | | i [getlinks ]! |
Dt [ M D[ Ot

- [ List | [ Link | :Lgetkinks

l
T Parser T AST T T Getlinks ] Network

7777777777777777777777777777777777777777777777777777777777777777777777777777

Fig. 1. The conceptual decomposition of the deadlink checker: an HTML parser, an abstract syntax tree for HTML documents,
facility to get links from a page, and a network library.
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HTML scanner and parser, an abstract syntax tree for the HTML elements, a recursive call over these
elements to get links contained in a page and some network facilities. One key point is that we have to
be able to group together the definitions of gag_ inks methods in a module that is different from that of

the AST. This means that the GetLinks module has to be able to extend the class definitions of the tree
node elements.

Although languages such as CLOS, Smalltalk, MultiJava, and AspectJ offer some solutions, most
otherlanguages (including Java), do not allow a class to be extended by a different module or package
than the one defining the class. Note that subclassing the tree node elements is not a general solution
since clients that explicitly name the original class will not see the subclass extension.

In our development environment, the default Squeak distributionpitigemethod used by the en-
vironment does not raise an exception but opens a dialog box when a target host cannot be reached.
We therefore not only need the ability to add methods (for packaging the GetLinks module), but also
to redefinethem (to patch existing method$)e therefore require a module system that supports class
extensions with redefinition

Locality of changesThe second key aspect concerns the visibility of changes, i.e., which modules see
the extensions made by other modules. In most approaches that support them, class extensions have
global visibility. All clients have a common view of any given class, and any extensions are also seen by
all clients. This may lead to unexpected behaviour for some clients.

In the case of theing method, we only want our redefined version to be visible within the scope of
our application. Other applications may actually rely on the ad-hoc behavior provigeebyherefore
the extensions and changes to the system made by one module should not impact the system as a whole
but only the module introducing the changes and its client modQless extensions should be confined
to the module that introduces them

Local rebindings Even though class extensions should be visible only to the module that
introduces them, the actual effdcdm the perspective of that moddbeould be as if the extension were
global.

The pingOnPort: method first adjusts the port (value kept in a variable) and then caiipenethod.

We want that any call tping made bypingOnPort: triggers the definition brought by our LinkChecker
application, even ifingOnPort: is defined in a scope that also contains a previous definitipmgClass
extensions visible within a module should propagate to collaborating clients

Conflicts Class extensions are useful when, for instance, a library needs to add a particular method to
a class provided by the system. Conflicts arise when an application relies on two modules that extend the
same method of the same class in different ways.

Theping method provided by Squeak is useful for pinging a remote host. Its default behavior is to display
the resultin a popup window. The Link-Checker application redefines this method to make it yield a value
and to raise an exception if the host is not reachable. Conflicts can arise with other modules that make
changes to this method. As a concrete example, Squeak has a SocketlCMP module that implements the
ICMP network protocol. Amongst other things, this implementation redefinegiigenethod with an
ICMP-based implementation. Using both the Link-Checker and the SocketlCMP module therefore leads
to a conflict because both redefine the metpiag.

There are several ways to handle this conflict: (1) the definition in Link-Checker overrides the definition
in SocketICMP’s, (2) SocketlICMP’s definition overrides Link-Checker’s, (3) a conflict is detected at
composition time and needs to be resolved, or (4) each extension is defined in a different namespace thar
that of the class.
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With Smalltalk, CLOS and Objective-C the result depends on which module is loaded/initialized last
which effectively impacts the system. On the other hand, Multijava and Hyper/J detect conflicting situa-
tions at compile timeSelector namespaceSmallscripti8] and ModularSmalltalk9] define the exten-
sion in a particular namespace: conflicts are avoided and both extensions are applied to the system within
different scopesResolution of conflicting class extensions should take the context of affected clients
into account

3. Classhoxes in a nutshell

A classboss a module containingcoped definitionandimport statementlassboxes define classes,
methods and variables. Imported declarations magxbendedpossibly redefining imported methods.
When a classbox is instantiated, it yieldssanespaci which the directly defined, imported and extended
entities co-exist with the implicitly imported entities.

Scoped definition#\ classbox defineslassesmethodsor variables Each class, method or variable
belonggo precisely one classbox, namely the one in which itis originally defined. Classes and variables
defined in a classbox are globally accessible to all methods in the scope of that classbox.

Imports A classbox may import classes and variables from other classboxes. Imported entities thus
become available within the scope of the importing classbox. An imported class nexyeneledvith
new methods, or methods that redefine existing methods. The extended class is then visible within the
scope of the extending classbox, but not in the defining classbox of the extended class.

3.1. Scope of methods

A method defined on a class in a classkiis visible within that classbox, and within other classboxes
that import this class fror@B. In a given classbox all the methods defined along the chain of import are
visible within this classbox.

If several classboxes extend a class with a method with the same name but with different implementa-
tions, the implementation chosen during an invocation is the one that is reachable according to the import
chain.

A classboxCB that defines a method that already exists in the import dideesits former definition
from this classboxXCB and other classboxes that may import the extended classGEBm

3.2. The link-checker with classboxes

This section shows how to use classboxes to modularize the Link-Checker example. Because classboxe:
have been fully implemented in the Squé¢ag] environment, code fragments are presented in Smalltalk.

The architecture of the Link-Checker application is depictdeign 2 The classbo$queakCB contains
the network facility for checking the existence of a remote host (dask:t with class methoging:
hos) and for fetching the content associated to a given URL (cHiBEPSocket with class method
getHttp: url).

The classboXtmICB defines the HTML framework facilities. The clad3 ML-Parser is used to parse
a text, yielding an abstract syntax tree (AST) composed of nodes su¢fiMEEntity (the root of the
structure) HTMLBody, HTML-Anchor (representing a link),. .
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""" ®  |mport of a class
[P '
',___(.:. I Import of C and extend it with a method m
m \
CcB HtmICB
Classbox definition

SqueakCB HTMLEntity
A\
i Socket HTTPSocket HTMLParser N
ping: host \

getHttp: url

ping: host onPort: number e N
2 HTMLBody { HTMLAnchor
» - \
’ Lot -- @ GetLinks
 LinkCheckerCB o K4 L7 CB N Y \

| HTTPSocket L-~" | HTMLParser ;

............. HTMLEntity

{__Socket . Ll

Tping:host T pmmemememmeeny

H ! HTMLBody
LinkChecker :.'.'.'.'.'.'.'.'.'.'.'.'.'.'
check; url i HTMLAnchor |

(HTMLParser parse: ( HTTPSocket getHttp:
getLinks select:
[:link | Socket ping: link hostname onPort: aPort. ...]

Fig. 2. The dead-link checker modularized with classboxes.

The classboxGetLinksCB implements the recursive algorithm intended to produce a collection of all
the links contained over the AST elements. It imports the relevant nodes from the cléksb6B and
extendseach of the classes representing HTML tag elements by defining the correspgeadiings
methods.

The classbokinkCheckerCB contains the actual link checker application. It defines the tiakShecker,
containing one methodtKeck: url) which is the entry point of the application. This method first gets
the raw content of a page designatedudayusing the clas$iTTPSocket. It then parses the page us-
ing the clasHTMLParser, obtaining an AST of the page. Then it invokes the metgadinks on the
root of that AST, obtaining a collection of all the links on the page. Finally it checks the liveness of
these links by pinging the hosts mentioned in each linkkCheckerCB imports the complete classbox
GetLinksCB, so all the extended classes (HTML nodes) are visible within it. As a consequence, within the
classboxinkCheckerCB the AST generated by TMLParser (class imported frontitmICB) understands
the extensions brought §etLinksCB. To solve the problem that the methpidg: host in the classbox
SqueakCB displays its results in a dialog box, the classhikCheckerCB redefines it to raise an exception
instead.

3.3. Discussion
Locality of changesAlthough the methoging of classSocket is redefined, its visibility is confined

to the LinkCheckerCB classbox. Unrelated code in the system relying on the original definition of this
method is not affected. This illustrates bathss extensions with redefinitiamdlocality of changes
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LinkCheckerCB SqueakCB SocketlcmpCB
Linkchecker |+ Socket " ["]® Socket Ao
check: URL | iping:host i | | [ping:host b Socket

e : ping: host onPort: host 1 ping: host

Fig. 3. The methoging is extended by two different classhoxes. Conflict is avoided because extension are confined to their
respective classboxes.

Local rebinding The classbo$queakCB defines the clasSocket with two methodsping: host onPort
number angbing: host. The first one calls the second one, and the latter posts a popup menu to display the
result of pinging a host. This implementation is not suitable for our application. The clalsskGkeck-
erCB imports the clasSocket from SqueakCB and extends it by redefining the methgidg: host with an
implementation that throws an exception when a host is not reachable. Gadlingost onPort: number
within LinkCheckerCB triggers the new implementation pihg: host. This illustrates théocal rebinding
property.

Conflict The classboxinkCheckerCB extends the clasSocket by redefining the methogling. This
extension is local to the classbdxg. 3shows another classb6xcketlcmpCB that also imports the class
Socket and redefines the same methgidlg. This class extension is local BocketlcmpCB. Conflict is
avoided because each extension is confined to the classbox that defines it.

4. The classbox model

This section presents a set-theoretic model that precisely defines the semantics of classboxes. We
abstract away from the operational details of statements and expressions of a given object-oriented
language, and instead focus on the key features that interact with classboxes. We start by introducing a
basic model otlassesobjectsandnamespacesvhere we captur@gstantiation message sendingnd
self andsuper-calls

On top of this basic model, we then show how classboxes are defined as a mechanism for introducing
class extensions, and for controlling the visibility of class extensions in different namespaces. We show
how locality of changesand local rebindingarise as a consequence of the way that classboxes are
composed.

4.1. Environments

We use the basic concept of an extensdsigironmentis a mechanism for modeling classes, objects
and classboxes.

Definition 1. An environment : D — R*, is a mapping from some domaih to an extended range
R* = R U {_L}, such that the inverse imagel(R) is finite.

We represent environments as finite sets of bindings, for example:{a — x,b — y} is an
environment that mapa to x and b to y. All other values in the domain of this environment (for
exampleg) are mapped td_.
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We normally leave out unessential parentheses. Since an environment is a function, we simply invoke
it to look up a binding. In this caseja = x, ¢1b = y andejc= 1.

Definition 2. An environment : D — R* mayoverrideanother environment. We define:>¢ : D —
R* as follows:

;o def [ €x, if ex= L,
(ee)x = :
ex, otherwise

For example, it2 = {b +— z, c > w}, then(e1>e2)a = x, (e1>e2)b = y, and(e1>e2)c = w. We employ
overriding both for method dictionaries and class namespaces.

4.2. Classes, namespaces and objects

The primitive elements of our model are the following disjoint sétsa countable set aflass names
i, a countable set ghessagesaand#, a countable set ahethod bodies

Definition 3. A method dictionarys € Z is an environmenty : .# — #* that maps a finite set of
messages to bodies.

For exampley = {m1 — b1, m2 — b2} defines a dictionard that maps message; to bodyb1 and
m2 to by, and all other messages to

Note that, for the purpose of this paper, we are not concerned with the implementation details of the
method bodies. We only consider which kinds of messages are sent in the bodies.

Definition 4. A class c(d, B, ¢) consists of a method dictionady a superclass nam € ¢ U {nil}, and
an environment, called aclass namespacthat binds class names to classes.

nil represents an empty class, from which the root of a class hierarchy inherits. By convention, every
class namespace is assumed to contain the binding> (@, nil, @), which we therefore do not list
explicitly.

Definition 5. An objecto(c, ¢) consists of a classand an environmeng, which is a class namespace
(obtained fronct) extended with a binding faself.

Note that, for the present purposes, we do not model attributes (instance variables) of objects, aside
from the pseudo-variableslf andsuper.

We can send messages to classes and to objects. We use the ndtaifiom send the messageto
the class or object
Definition 6. We caninstantiatean object by sending the message to a class = c(J, B, ¢)

c[new] def ua.o(c, {self — a}r>e).

At this point we recursively bingelf to the value of the object itself.
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As usual,ux.E binds free occurrences afin E to the value of the recursive expression itself, i.e.,

ux.E def E{ux.E/x}, whereE{y/x} is the usual substitution operation, replacing free occurrences of
in E by y while avoiding name clashes.

Although we do not model the internal details of method bodies here, we must take care to be precise
about the environment within which methods are evaluated. As we shall see when we define classboxes,
it is precisely the way in which these environments are composed that determines the scope within which
class extensions are visible.

Definition 7. A method closuren(b, ¢) consists of a method body and a class namespagethat
additionally binds botRelf andsuper.

Note thatsuper is bound by methods, not objects, siraper-calls are relative to the class in which a
method is defined, not the class from which the object is instantiated.

Definition 8. We cansend a message ta an objecb(c, ¢), wherec = c{J, B, ¢) obtaining a method
closure

dof m(dm, {super — o(eB, ¢)}>¢), if om #£L,
ofc, p)lm) = | o(eB, d)ml, else if B # nil,
1, otherwise

This definition captures the basic method lookup algorithm of object-oriented programming languages. If
the message sent does not correspond to a method defined in the class of the object, the lookup continue
in the parent class, and so on. If the method is not found, the message is reported as not being understoot
(). If a suitable method is found, it is evaluated in a context wheger is bound to the current object,

but from the perspective of the method’s superclass. As we can clearbugeds an object, not a class.

Note that according to Definition 4 the supercl&ssan be nil.

Definition 9. A closure may be evaluated, in which case it may send various messages. Here we are
interested inself- andsuper-sends, and static class references:

m(b, §)[self m] %' (¢ self)lm],
m{b, ¢)[super m] = (¢ supen)(m],

m(b, $)[C new] L' (¢ Cy)lnewl.
4.3. Classboxes

A classbox is ampenentity that provides a number of classes, and which can be extended. When a
classbox iglosed it yields an ordinary class namespace (Definition 4).

The key point in modeling classboxes is that multiple versions of the same class may be implic-
itly present within the same classbox. Suppose that we import the ldtd€hecker from the classbox
LinkCheckerCB, and we locally define a clasecket. Even though.inkChecker collaborates wittsocket,
ours is adifferentsocket class that has nothing to do with 8weket class known td.inkChecker. To



116 A. Bergel et al. /Computer Languages, Systems & Structudds(2005) 107-126

capture this aspect we must refine the notion of class hames to expresigthating classboxo which
a class belongs:

e % is the countable set ohw class names
e % is the set of classbox names,
o T ={C"|C € %,n € 2} is the set oflecorated class names

Thedecorated class nanmgmply encodes the classbox to which the class belongs, i.e., where it was first
defined. We call the superscripof a decorated class nand# its origin.

Definition 10. A raw class nam€ matches decorated class nan® if C = B:
C ~ B" iff C =B.

For example, when we use the raw class n&owket, it may not be cleawhich Socket class we are
referring to. However the decorated class n&ket>3'2kCB ynambiguously identifies tHcket class
first introduced in th&queakCB classbox.

Note that it is thissameclass that is extended lrinkCheckerCB, since there is nSocket class defined
there. There is NBocket!nkCheckerCB

Definition 11. A classboxv(n, «) consists of an identifiex € 2 (i.e., classbox names) and a function
from class namespaces to class namespaces.

The intuition here is that a classboxojgenbecause it can always be extended with new class definitions,
imports and extensions. As a consequence, we do not yet know the class namespace of the classes |
provides. However we cadlosea classbox, thereby fixing the class namespace of all the provided
classes.

Definition 12. A classboxb(n, «) can beclosedby sending it thetlose message, generating a fixpoint:
b(n, o)[close] def LE.OE.
The resulting class namespace must be closed, i.e., all used class names must be define. &ince

function from class namespaces to class namespacesrepresents a fixpoint in which all the classes
provided by the classbox are made visible to each other.

Definition 13. We maylookupthe decorated class namg® corresponding to a raw class nagen a
classbox(n, «):
def | C", if Aln € Z, (b(n, a)[close])C" #.L,
C, = :
1, otherwise

Suppose the.inkCheckerCB classbox is represented IyLinkCheckerCB, ). Then Socket, Yyields
Socket®due2kCB sinceSqueakCB is the origin ofSocket in the LinkCheckerCB classbox.

Definition 14. An empty classboxwith identifier n is: emptyn)dzefb(n, /e ). Note that
emptyn)[close] = @, i.e., closing an empty classbox yields an empty class namespace.
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Definition 15. We canintroduceto a classbox(n, «) a new clas<C that subclasseB (defined in a
classboxb(m, B)) with 6 as method dictionary by sending it the mességeubclasses with.

b(n, «)[def C subclasses B"* with §]

def | b(n, 2e{C" — c(0, B", &)}>ae), if C,= L,
I otherwise

Note that the formal parameterepresents the fixpoint we obtain when the classbox is finally closed.
We must therefore extend with the new subclass definition, obtainif@” — - - -}>ae. We retaine as

a formal parameter so that the classbox remains open/@.e:,). The side condition states that it is an

error to introduce a class that is already defined in the classbox. Within a classbox, only decorated class
names occur. The newly introduced class has the origikle also explicitly identify the origim of the
superclass.

4.4. Importing classes

Definition 16. A classboxb(n, «) mayimport a raw named class from another, classbx, f), by
sending it the messageport.

b(n, o)[import C from b(m, )]

def | b(n, 26{Cp = (ud.p(e>¢))Cpl>ae), if Cy= L,
I otherwise

Let us call the new classbox we obtaitr, o).’ extendsx with the imported definition, but we must
also take care that the environment of the imported class is properly extended with any pertinent definitions
that occur in’. As beforeg represents the class namespace that we obtain when we take the fixpoint of
. We therefore passto « so it is available to all the existing class definitions:iWe must also look up
the correct decorated class na@e Finally, we must bind this to the correct definition frgiyextended
with any new definitions from’.

Suppose we would simply usgs — (u¢.f¢)Cy, this would clearly be wrong, because the class we
obtain would only see other class definitions frgnand not any definitions that may have already been
extended in.. Instead, we create amtermediate namespage. f(s>¢).cr> ¢ represents the environment
of g extended with any new definitions fraefn\We then pass this intp to make it available tall class
definitions ing. Finally we extract this definition, bind it t6 and use it to extengk.

Consider, for example, the import relationship&ig. 2 The classbokinkCheckerCB importsHTML-
Parser from HtmICB andHTMLEntity and its subclasses froGetLinksCB. If HTMLParser were naively
imported fromHtmICB, it would not see the extensions imported fr@eatLinksCB. Instead, the import
operation is defined so that wheélmTMLParser is imported, its environment (i.eg) is extended by all
definitions inLinkCheckerCB (i.e., si>¢). SO wherHTMLParser is imported, it sees the extended versions
of HTMLEntity and its subclasses. This is tleeal rebindingmechanism of classboxes.

Note that it is critical thaHTMLEntity imported fromGetLinksCB has the same origin as that expected
by HTMLParser. If LinkCheckerCB or GetLinksCBwere to define aewclassHTMLEntity, then this would
have a different decorated class name fromHRA&/LEntity originally defined inHtmICB, and would
therefore be invisible teiTMLParser.
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4.5. Extending imported classes

Definition 17. A classboxb(n, «) may extenda raw class named class from another classiiox ),
by sending it the message extexith.

b(n, a)[extend C with & from b(m, f)]

def | b(n, 2e{Cp > 8'>(ug.ple>$))Cplroe), if Co= L,
I otherwise

where

§'>c(5, B, &) & (56, B, 2.

Extend works just like import, except that the imported class definition is extended'with
As a consequence, importing a class is the same as extending it with a nil extension

b{n, o)[import C from b{m, )] = b(n, a)[extend C with J from b(m, f)].

As should be clear from the definition, class extensions are purely local to the classbox making the
extension. This guarantelegality of changesExtensions become visible to other classboxes only when
they are explicitly imported, or implicitly made visible by the mechanism of local rebinding (as seen in
theHTMLParser example discussed above).

Method redefinitioris supported since th& introduced by a class extension can redefine methods
existing in the class being extended. For example, not only cardtienksCB classbox extend the
HTMLEntity and related classes with a negetLinks method, but thé&inkCheckerCB classbox can import
Socket from theSqueakCB classbox andedefinethe ping method.

4.6. Proving classbox properties

Proposition 1. A method defined in a classbox is visible within this classbox

Proof. Because a method is defined either when a class is (i) defined or (i) imported, this proof is divided
in two parts.

(i) Methods defined at the same time than the class they refer to are visible within the classbox where
they are effectively defined. This first part of the proof consists in showing that defining &olésa
methodm bound to a compiled methd@M makes this method visible within the classbox (i.e., invoking
mon an instance dt triggers the expected meth@d).

Without loss of generality, assume ti@has no superclass (i.e., it inherits froii).

b(n, o)[def C subclasses nil with {m +— CM}]
=b(n, 1e.{C" > c({m > CM}, nil, &) }>0e) = b(n, ).

Closing this classbox yields

b(n, o« )[close] = pe.d/e = @ = {C" > c{{m — CM]}, nil, ¢)}>up.
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Now the instance of this clags’ is obj = o(@C", {self — obj}>¢). Sending a messageto it yields
obj[m] = m{{m — CM}m, {super — c(@, nil, @)}>p).

The implementation identified for the metheds the result ofm — CM}m = CM.
(i) Methods defined when importing a class are visible within the importing classbox.

b(n, «)[extend C with {m +— CM} from b(m, f)]
=b(n, 1e{C" — c({m = CM}, nil, &)}>(up.p(e> ) Cpy Awe).

Assuming thatCg = C? closing this classbox yields
b(n, .. .)[close] = ¢ = {C? > c{{m — CM]},nil, ¢)}.
The rest of the proof follows what is already shown in (i)J

Proposition 2. Importing a class makes its methods previously defined visible in the importing classbox

Proof. If b(m, §)Cp = c({m — CM, }, B)e then

b(n, o) [import C from b(m, f)] = b(n, ie.{Cp > (up.p(er>¢))Cpli>ue).
Assuming thatCg = C? closing the resulting classbox yields

b(n, ...)close] = ¢ = {CP > BCP} = {C? > c({m — CMY}, B, ¢)}>00.

Then as already shown in the first proof, sending a messagan instance apC? triggers the execution
ofCM. O

Proposition 3. Within a classbox, a method redefinition takes precedence over its former implementation

Proof. Within a classbox(m, ) a classC has in its method dictionary an entrny bound to a first
implementatiorCM1. This proof consists in showing that importi@yn another classbox and redefining
m bound toCM2 hides the former implementation.

If b(m, f)Cp =c({m — CM1}, B, ¢) then

b(n, «)[extend C with {m +— CM2} from b(m, p)]
= b(n, 2e{Cp = {m — CM2}>(ud.p(er>¢))Cplr>ae).

Assuming thatCg = C? closing the resulting classbox yields

b(n,...)[close] = ¢ = {C? > {m — CM2}>BC?")}
—{C? > {m > CM2}>b(m — CM1, B)o)
={C? — c{{m —~ CM2}, B, ¢)}.

The conclusion of this proof follows the end of the very first proof. Instantiaifigand sending the
messagen executes the new implementatiom2. 0O
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CB2

Fig. 4. Resolving diamond conflicts.
4.7. Resolving diamond conflicts

Conflictsare largely avoided. Classes that coincidentally have the same name but are introduced in
different classboxes do not conflict because they have separate origins. Contradictions arising from
attempts to import the same class from different classboxes of course cannot be resolved automatically.
However, an important class ofdirect conflicts is automatically resolved by the nature of the local
rebinding mechanism.

Fig. 4 illustrates a diamond pattern arising from two import chains with a common ancestor class.
ClassboxCB1 defines a clasa which provides a methofdo returning the value 1. This class is imported
by CB2 where the methoébo is redefined to return ZB2 also defines a subclass AfnamedB. In a
similar way, classbox B3 importsA from CB1 and redefineso to return 3. A subclass @& namedC is
also defined. A fourth classb@84 importsB from CB2 andC from CB3. CB4 does not explicitly import
classA.

In the context ofCB4 invoking foo on an instance d8 yields the value 2, whereas invokirfigp on an
instance ofC yields 3. However, ifCB4 would explicitly importA from any one ofCB1, CB2 or CB3,
then that version oA would be visible to bottB andC. For example, iiCB4 would importA from CB1
and redefine foo to return 4, then both instance ahdC would return 4 when foo is invoked.

5. Implementation issues

Classboxes can be implemented by changing the method lookup algorithm in the virtual machine. This
requires a virtual machine that is available for changing, which is why we performed our experiments in
Squeak, a Smalltalk environment of which the virtual machine is open s@lO¢EL] We adapted the
method lookup and compiled a new virtual machine that is classbox-aware. In this section we evaluate
the impact of this extended method lookup algorithm on performance.

5.1. Method lookup description

Encoding the classbox with the method signature makes it possible for different implementations a
method to coexist. However, to take advantage of this, the method lookup mechanism has to be changed
as well.Fig. 5describes the lookup algorithm we implemented that ensures the local rebinding property.

The proposed method lookup implementation requires three extra arguments (added to the method
name and the receiver’s class) to search over the graph of classboxededdoeargument refers to the
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1 lookup: selector class: cls

% startBox: startbox currentBox: currentbox classboxPath: path
4 | parentBox theSuper togoBox newPath |

5 self

6 lookup: selector

7 ofClass: cls

8 inClassbox: currentbox

9 ifPresentDo: [:method | ° method].

10 parentBox := currentbox providerOf: cls name.

11 ~ parentBox

12 ifNotNil: [path addLast: parentBox.

13 self

14 lookup: selector

15 class: cls

16 startBox: startbox

17 currentBox: parentBox

18 classboxPath: path]

19 ifNil: [theSuper := cls superclass.
20 theSuper ifNil: [* cls method: selector notFoundIn: cls].
21 togoBox := path detect: [:box | box scopeContains: theSuper].
22 newPath := togoBox = startbox
23 ifTrue: [OrderedCollection with: startbox]
24 ifFalse: [path].
25 self
26 lookup: selector
27 class: theSuper

28 startBox: startbox
29 currentBox: togoBox
30 classboxPath: newPath]

Fig. 5. The lookup algorithm that provides the local rebinding.

method name as a symbels refers to the receiver’s classartbox refers to the first classbox where the
initial expression is evaluatedjrrentbox is initialized withstartbox when the algorithm is triggered and

is used to keep a reference over recursive call of the algorithm; and fialycontains the chain of
import for a given method call and its value is computed prior starting the algorithifigld evaluating

the expressio®B new foo in the classboXCB4 generates a pati€B4, CB2), and evaluatingC new foo
generates@B4, CB3). This path is computed using some reflective feature of Squeak: itis computed from
the method call stack.

The algorithm first checks whether the class in the current classbox implements the selector we are
looking for (lines 5-9). If it is found, the lookup is successful and we return the found method (line 9).
Ifitis not found, we recurse. The algorithm favours imports over inheritance, meaning that first the import
chain is traversed (in lines 12—18) before considering the inheritance chain (in lines 19-30). This last part
is the difficult part of the algorithm, since we need to find the classbox where the superclass is defined
that is closest to the classbox we started the lookup from. Therefore the algorithm remembers the path
while traversing the import chain (line 12), and uses this when determining the classbox for the superclass
(line 21).

5.2. Import takes precedence over inheritance

Fig. 5, lines 11-12 shows that if a class is importearéntBox is not nil) then the lookup pursues in
the provider classhox. If this class is not importedréntBox is nil), as shown at the line 19, then the
lookup continues in the superclass.
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Fig. 6. Import takes precedence over inheritance.

The lookup in a superclass is done only if it is stated that a class does not provide any implementation
for a given message. Within the classbox model this implies that we have to run over the chain of imports
to make sure that a classbox does not extend this class with the corresponding method.

Fig. 6 illustrates this property of the algorithm by depicting an example. It shows four classboxes:
GraphicCB RoundedWindowCB, DoubleBufferCB andDoubleBufferAndRoundedCB. Each of theses defines
extensions or simply imports classes to combine some of the extensions.

GraphicCB defines a hierarchy composed of three clas§esiponent provides the methodspdate
and paint, andWindow and Frame both override the methophint. Window andFrame are imported in
RoundedWindowCB. This first class is extended with a new implementatiorpaifit to make corners
of windows smooth by rounding therDoubleBufferCB extendsComponent, which is imported from
GraphicCB, and simply import&rame from this same classbo&omponent is extended with a redefinition
of paint to take double buffering facility into account. FinalljoubleBufferAndRoundedCB combines the
two characteristics by importinGomponent from DoubleBufferAndRoundedCB and by importingrrame
from RoundedWindowCB.

In RoundedWindowCB the new implementation gfaint does asuper paint which executes theaint
method inGraphicCB. EvaluatingFrame new update in RoundedWindowCB triggers theupdate method
contained inComponent and the local definition ofaint is executed, the one provided BgundedWin-
dowCB.

DoubleBufferAndRoundedCB combines the double buffer and the rounded facilities by impodibig-
ponent from DoubleBufferCB andFrame from RoundedWindowCB. EvaluatingFrame new update in Dou-
bleBufferAndRoundedCB triggersupdate defined inGraphicCB which send the messagaint. The im-
plementation taken is the one provided RyundedWindowCB becausérame is imported from it. This
implementation doessaper paint, which execute thgaint method defined iDoubleBufferCB.

5.3. Method lookup performance

Making the overhead related to our new method lookup as low as possible was one of our major
concerns. Compared to the description givefrinour implementation of the model is greatly enhanced:
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there is no need to modify the VM (due to the message passing control mechijsffered by Squeak)
and the cost of the new method lookup greatly reduced (thanks to a cache mechanism).

Classboxes allow you to have several versions of a method to coexist simultaneously. Depending on
where this method is called from (i.e., from which classbox) the right method implementation is selected
according to the method lookup algorithm described previously. When a classbox extends a class it can
either be a method addition or a method redefinition. With our current implementation, calling a method
that has been simply added by a classbox does not impose any overhead. However calling a method tha
has been redefined has an extra cost: the lookup algorithm previously presented is performed. However,
this result is cached. Our cache mechanism is based on the following basic assumpétdafined
method is often called by the same object within the same clasBhekyte-code of an extended method
is transformed to include 5 byte-codes that check if the caller for this method is the one that has been
previously cached. For method addition there is no need to use a cache because there is only one versiol
of the method present in the system.

The following table illustrates the cost of the lookup of a redefined method compared with traditional
lookup.

6.000,000 calls Classbox lookup (ms)
Over 1 Classbox 5176

Over 2 Classboxes 5126

Over 3 Classboxes 5145

Normal method 1477

The experiment consists in calling 6 million times a method that is redefined. It shows that there is
a constant overhead that does not depend on the graph of import. This overhead is due to the extra few
byte-codes added at the beginning of the method. The method used for the benchmarks is composed of
one byte-code (simply return a numerical value). The same method that checks if the cache is valid is
about 2.5 time$(5176— 1477 /1477 slower.

6. Related work

Selector Namespacekanguages like ModularSmalltal@], Subsystem$13] and Smallscrip{8]
provide a scoping mechanism call8dlector Namespaces which methods are inserted. As a result,
class extension conflicts are avoided, and several applications can bring the same class extension referring
to the same class and method without interfering with each other. As a result, class extensions are not
globally visible, but confined to a bounded scope. However selector namespaces do not supguat the
rebindingproperty, since a new definition does not take precedence when original code is called.
Multijava. Multijava[5] is an extension of Java that suppanp&n classeandmultiple method dispatch
An open classs a class whose methods are extensible. New methods can be added to an open class. Thest
new methods are visible within the package that provides them and in the packages importing that package.
Method redefinitions are not allowed: an open class cannot have one of its existing methods redefined.
On the other hand, two class extensions can define a method on the same class with the same signature
In that case the extensions are scoped separately.
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Unit. MZScheme[14] offers an advanced module system whenené is the basic building block.

A unit is a packaging entity composed of requirements, definitions and exports. Units have to be instan-
tiated and composed with each other to form a program. The key point of this model is that connections
between modules or classes are specified separately from their definitions. This principle allows a mod-
ule to be instantiated at link time. Reusability and extensibility are expressed by recombining units. An
application, made of units, can be recomposed and by aliasing new units can be inserted. Units differ
from classboxes since a unit acts as a black box: a class within a unit cannot be extended. Instead a new
unit has to be provided and included in a recomposition.

Hyper/d Hyper/J15] is based on the notion bfyperspacesand promotes compositions of independent
concernatdifferent times. Hyperslices are building blocks containing fragments of class definitions. They
are intended to be composed to form larger building blocks (or complete systems)sgiérchodules
A hyperslice defines methods on classes that are not necessarily defined in that hyperslice. Such method:
define a class extension, and classes intended to be extended are known at integration time. However this
kind of extension does not allow redefinition and consequently does not help in supporting unanticipated
evolution.

Virtual ClassesThe specification of girtual class[16,17]is completely analogous to the specification
of a virtual procedure. By introducing a dynamic lookup of a class name in a hierarchy of encapsulating
entities (module for Kerigl8], collaboration interfaces for Cae$48,20], classes for gbe{@1], orteams
for Objectteam$22]) it is possible to refine a class within a subentity. One limitation with virtual classes
is that the “virtuality” is scoped to a hierarchy: outside this hierarchy a class is not virtual anymore. For
instance let us assunteto be a virtual class attribute in a hierarcHy. In an unrelated hierarchy?,
classC is not virtual anymore and cannot be redefined.

Object-Based InheritancaBy providingtrue delegationLava[23] supports dynamic unanticipated
changes using class wrappers. By introducing a new language construct, araglrjst@nce ofd) can
delegate all nonunderstood messages it receivesiébegateabjectb (instance oB). Lava provides a
true-delegationrmechanism whereas the self reference used in the Bleefers to the delegating object
a. Methods defined iib that are unknown t@ are the extensions brought enSo redefined or new
methods are attached to a particular object rather than a class. True delegation provides a way for adding
or redefining methods for a particular object whereas classboxes extend classes.

7. Conclusion and future work

Classboxeaddress the problem that classical module systems do not offer the ability to add or replace
a method in a class that is not defined in that module. Classboxes offer a minimal module system for
object-oriented languages in which extensions (method addition and replacement) to imported classes are
locally visible Essentially, a classbox defines a scope within which certain entities, i.e., classes, methods
and variables, are defined. A classbox nraport entities from other classboxes, and optionally extend
themwithout impacting the originatinglassbox. Concretely, classes may be imported, and methods may
be added or redefined, without affecting clients of that class in other classboxes. Local rebinding strictly
limits the impact of changes to clients of the extending classbox, leading to better control over changes,
while giving the illusion from a local perspective that changes are global.

To see the impact of classboxes on a real-world example we remodularized an existing application (the
seaside web server applicatif@4] built upon a web servd25]) with classboxes. The goal is to show the
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usefulness of class extensions by measuring the proportion of class extension among the defined method:
(for more details see the technical rep@4]).

We have implemented a proof-of-concept prototype of classboxes in Squeak. In our implemen-
tation, the method lookup mechanism in the Squeak virtual machine has been modified to take
classboxes into account. This prototype exhibits an overall 10% slowdown in performance for real-world
applications.

In the future we will analyze some very large applications developed without any local rebinding
facilities in order to identify places where programmers simulated local rebinding.

Currently classboxes function purely as a packaging and scoping mechanism. We intend to investigate
various extensions of classboxes. We expect that an integration with traits will be fruitful, as this will enable
packaging of collaborating traif27] (and their associated tests). Presently classboxes lack any notion of
acomponent modelVe expect that explicit interfaces and composition mechanisms for classboxes will
increase their usefulness. In particular, we intend to investigate the application of encapsulation policies
[28] to classboxes.
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