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Abstract

A class extensionis a method that is defined in a module, but whose class is defined elsewhere. Class extensions
offer a convenient way to incrementally modify existing classes when subclassing is inappropriate. Unfortunately
existing approaches suffer from various limitations. Either class extensions have a global impact, with possibly
negative effects for unexpected clients, or they have a purely local impact, with negative results for collaborating
clients. Furthermore, conflicting class extensions are either disallowed, or resolved by linearization, with consequent
negative effects. To solve these problems we presentclassboxes, a module system for object-oriented languages that
provides for method addition and replacement. Moreover, the changes made by a classbox are only visible to that
classbox (or classboxes that import it), a feature we calllocal rebinding. To validate themodel we have implemented
it in the Squeak Smalltalk environment, and performed benchmarks.
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1. Introduction

It is well-established that object-oriented programming languages gain a great deal of their power and
expressiveness from their support for theopen/closed principle[1]: classes areclosedin the sense that
they can be instantiated, but they are alsoopento incremental modification by inheritance.
Nevertheless, classes and inheritance alone are not adequate for expressing many useful forms of

incremental change. For example, most modern object-oriented languages introducemodulesas a com-
plementary mechanism to structure classes and control visibility of names. Reflection is another example
of an increasinglymainstream technique used tomodify and adapt behaviour at run-time.Aspect-oriented
programming, on the other hand, is a technique to adapt sets of related classes by introducing code that
addresses cross-cutting aspects.
In this paper we focus on a particular technique, known asclass extensions, which addresses the need to

extend existing classes with new behaviour. Smalltalk[2], CLOS[3], Objective-C[4], and more recently
MultiJava[5] and AspectJ[6] are examples of languages that support class extensions. Class extensions
offer a good solution to the dilemma that arises when one would like to modify or extend the behaviour
of an existing class, and subclassing is inappropriate because thatspecificclass is referred to, but, one
cannot modify the source code of the class in question. A class extension can then be applied to that
specific class.
Despite the demonstrated utility of class extensions, a number of open problems have limited their

widespread acceptance. Briefly, these problems are:

(1) Globality. In existing approaches, the effects of a class extension are either global (i.e., visible to all
clients), or purely local (i.e., only to specific clients named in the application of the class extension).
In the first case, clients that do not require the class extensionmay be adversely affected. In the second
case,collaborating clientsthat are not explicitly named will not see the class extension, even though
they should.

(2) Conflicts. If two or more class extensions attempt to extend the same class, this may lead to a conflict.
In existing approaches, conflicts are either forbidden, or extensions are linearized, possibly leading
to unexpected behaviour. In either case, the utility of class extensions is severely impacted.

We propose a modular approach to class extensions that largely solves these two problems by defining
an implicit context in which class extensions are visible. Aclassboxis a kind of module with three main
characteristics:

• It is aunit of scopingin which classes, global variables and methods are defined. Each entity belongs
to precisely one classbox, namely the one in which it is firstdefined, but an entity can be made visible
to other classboxes byimporting it. Methods can be defined for any class visible within a classbox,
independently ofwhether that class is definedor imported.Methods defined (or redefined) for imported
classes are calledclass extensions.

• A class extension islocally visibleto the classbox in which it is defined. This means that the extension
is only visible to (i) the extending classbox, and (ii) other classboxes that directly or indirectly import
the extended class.

• A class extension supportslocal rebinding. This means that, although extensions are locally visible,
their effect extends to all collaborating classes. A classbox thereby determines a namespacewithin
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which local class extensions behaveas though they were global. From the perspective of a classbox,
the world is flattened.

We have previously introduced classboxes by means of a specialized method lookup algorithm[7] repro-
duced in Section 5. The main contributions of this paper are: (i) A set-theoretic account of the semantics
of classboxes that does not require a special method lookup algorithm and (ii) a detailed description of
the prototype implementation in the Squeak Smalltalk system, including performance benchmarks.
The rest of thepaper is structuredas follows.Section2presents theproblems insupportingunanticipated

changes by giving a motivating example and Section 3 outlines the classbox model. Then a set-theoretic
account of classboxes is given in Section 4. We discuss implementation issues arising in our prototype
implementation in Section 5. Section 6 contrasts classboxes with related work. Finally, in Section 7 we
conclude with some remarks concerning future work.

2. Motivation: supporting unanticipated change

Class extensions provide a mechanism to supportunanticipated changesin a static setting. Let us first
consider a typical scenario, which will enable us to establish some key requirements for class extensions,
while highlighting the main problems to be overcome.
A Link-Checker is an application whose purpose is to report a list of the dead links on a web-page

at a given URL. One natural way to implement a Link-Checker, depicted inFig. 1, is to download the
HTML page from the remote website, and parse it to get an abstract syntax tree of the page composed of
various elements representing the HTML tags. Then using a recursive call over the hierarchy, get the list
of the links referenced in the page. The liveness of each of these links elements is checked by pinging
the associated host and trying to obtain the status of the linked page. When a timeout is issued or if the
HTTP reply corresponds to an error the link is declared dead.
Based on this example we can identify four properties that a packaging system for an object-oriented

programming language should support:class extensionsallowing redefinition, locality of changes, prop-
agationof changes to collaborating clients, and resolution of conflicts.
Class extensions with redefinition. First, the different elements composing the solution should be

packaged so that they can be used in further applications. We can identify the following modules: an

Page
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getLinks
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...
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...
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Fig. 1. The conceptual decomposition of the deadlink checker: an HTML parser, an abstract syntax tree for HTML documents,
facility to get links from a page, and a network library.
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HTML scanner and parser, an abstract syntax tree for the HTML elements, a recursive call over these
elements to get links contained in a page and some network facilities. One key point is that we have to
be able to group together the definitions of thegetLinksmethods in a module that is different from that of
the AST. This means that the GetLinks module has to be able to extend the class definitions of the tree
node elements.
Although languages such as CLOS, Smalltalk, MultiJava, and AspectJ offer some solutions, most

otherlanguages (including Java), do not allow a class to be extended by a different module or package
than the one defining the class. Note that subclassing the tree node elements is not a general solution,
since clients that explicitly name the original class will not see the subclass extension.
In our development environment, the default Squeak distribution, theping method used by the en-

vironment does not raise an exception but opens a dialog box when a target host cannot be reached.
We therefore not only need the ability to add methods (for packaging the GetLinks module), but also
to redefinethem (to patch existing methods).We therefore require a module system that supports class
extensions with redefinition.
Locality of changes. The second key aspect concerns the visibility of changes, i.e., which modules see

the extensions made by other modules. In most approaches that support them, class extensions have a
global visibility. All clients have a common view of any given class, and any extensions are also seen by
all clients. This may lead to unexpected behaviour for some clients.
In the case of theping method, we only want our redefined version to be visible within the scope of

our application. Other applications may actually rely on the ad-hoc behavior provided byping. Therefore
the extensions and changes to the system made by one module should not impact the system as a whole,
but only the module introducing the changes and its client modules.Class extensions should be confined
to the module that introduces them.
Local rebindings. Even though class extensions should be visible only to the module that

introduces them, the actual effectfrom the perspective of that moduleshould be as if the extension were
global.
ThepingOnPort: method first adjusts the port (value kept in a variable) and then call theping method.

We want that any call toping made bypingOnPort: triggers the definition brought by our LinkChecker
application, even ifpingOnPort: is defined in a scope that also contains a previous definition ofping.Class
extensions visible within a module should propagate to collaborating clients.
Conflicts. Class extensions are useful when, for instance, a library needs to add a particular method to

a class provided by the system. Conflicts arise when an application relies on two modules that extend the
same method of the same class in different ways.
ThepingmethodprovidedbySqueak is useful for pinginga remotehost. Its default behavior is to display

the result in a popupwindow. The Link-Checker application redefines this method tomake it yield a value
and to raise an exception if the host is not reachable. Conflicts can arise with other modules that make
changes to this method. As a concrete example, Squeak has a SocketICMP module that implements the
ICMP network protocol. Amongst other things, this implementation redefines theping method with an
ICMP-based implementation. Using both the Link-Checker and the SocketICMPmodule therefore leads
to a conflict because both redefine the methodping.
There are several ways to handle this conflict: (1) the definition in Link-Checker overrides the definition

in SocketICMP’s, (2) SocketICMP’s definition overrides Link-Checker’s, (3) a conflict is detected at
composition time and needs to be resolved, or (4) each extension is defined in a different namespace than
that of the class.
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With Smalltalk, CLOS and Objective-C the result depends on which module is loaded/initialized last
which effectively impacts the system. On the other hand, Multijava and Hyper/J detect conflicting situa-
tions at compile time.Selector namespaces, Smallscript[8] and ModularSmalltalk[9] define the exten-
sion in a particular namespace: conflicts are avoided and both extensions are applied to the system within
different scopes.Resolution of conflicting class extensions should take the context of affected clients
into account.

3. Classboxes in a nutshell

A classboxis a module containingscoped definitionsandimport statements. Classboxes define classes,
methods and variables. Imported declarations may beextended, possibly redefining imported methods.
Whenaclassbox is instantiated, it yields anamespaceinwhich thedirectly defined, importedandextended
entities co-exist with the implicitly imported entities.
Scoped definitions. A classbox definesclasses,methods, or variables. Each class, method or variable

belongsto precisely one classbox, namely the one in which it is originally defined. Classes and variables
defined in a classbox are globally accessible to all methods in the scope of that classbox.
Imports. A classbox may import classes and variables from other classboxes. Imported entities thus

become available within the scope of the importing classbox. An imported class may beextendedwith
new methods, or methods that redefine existing methods. The extended class is then visible within the
scope of the extending classbox, but not in the defining classbox of the extended class.

3.1. Scope of methods

Amethod defined on a class in a classboxCBis visiblewithin that classbox, andwithin other classboxes
that import this class fromCB. In a given classbox all the methods defined along the chain of import are
visible within this classbox.
If several classboxes extend a class with a method with the same name but with different implementa-

tions, the implementation chosen during an invocation is the one that is reachable according to the import
chain.
A classboxCB that defines a method that already exists in the import chainhidesits former definition

from this classboxCBand other classboxes that may import the extended class fromCB.

3.2. The link-checker with classboxes

This section showshow touse classboxes tomodularize theLink-Checker example. Because classboxes
have been fully implemented in the Squeak[10] environment, code fragments are presented in Smalltalk.
The architecture of the Link-Checker application is depicted inFig. 2. The classboxSqueakCB contains

the network facility for checking the existence of a remote host (classSocket with class methodping:
host) and for fetching the content associated to a given URL (classHTTPSocket with class method
getHttp: url).
The classboxHtmlCB defines the HTML framework facilities. The classHTML-Parser is used to parse

a text, yielding an abstract syntax tree (AST) composed of nodes such asHTMLEntity (the root of the
structure),HTMLBody, HTML-Anchor (representing a link),. . .
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Import of C and extend it with a method m

Import of a class

Fig. 2. The dead-link checker modularized with classboxes.

The classboxGetLinksCB implements the recursive algorithm intended to produce a collection of all
the links contained over the AST elements. It imports the relevant nodes from the classboxHtmlCB and
extendseach of the classes representing HTML tag elements by defining the correspondinggetLinks
methods.
TheclassboxLinkCheckerCBcontains theactual linkcheckerapplication. It defines theclassLinkChecker,

containing one method (check: url) which is the entry point of the application. This method first gets
the raw content of a page designated byurl using the classHTTPSocket. It then parses the page us-
ing the classHTMLParser, obtaining an AST of the page. Then it invokes the methodgetLinks on the
root of that AST, obtaining a collection of all the links on the page. Finally it checks the liveness of
these links by pinging the hosts mentioned in each link.LinkCheckerCB imports the complete classbox
GetLinksCB, so all the extended classes (HTML nodes) are visible within it. As a consequence, within the
classboxLinkCheckerCB the AST generated byHTMLParser (class imported fromHtmlCB) understands
the extensions brought byGetLinksCB. To solve the problem that the methodping: host in the classbox
SqueakCB displays its results in a dialog box, the classboxLinkCheckerCB redefines it to raise an exception
instead.

3.3. Discussion

Locality of changes. Although the methodping of classSocket is redefined, its visibility is confined
to theLinkCheckerCB classbox. Unrelated code in the system relying on the original definition of this
method is not affected. This illustrates bothclass extensions with redefinitionandlocality of changes.
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Socket
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SqueakCB
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LinkCheckerCB
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Socket
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...

Fig. 3. The methodping is extended by two different classboxes. Conflict is avoided because extension are confined to their
respective classboxes.

Local rebinding. The classboxSqueakCB defines the classSocket with two methods:ping: host onPort:
number andping: host. The first one calls the second one, and the latter posts a popup menu to display the
result of pinging a host. This implementation is not suitable for our application. The classboxLinkCheck-
erCB imports the classSocket from SqueakCB and extends it by redefining the methodping: host with an
implementation that throws an exception when a host is not reachable. Callingping: host onPort: number
within LinkCheckerCB triggers the new implementation ofping: host. This illustrates thelocal rebinding
property.
Conflict. The classboxLinkCheckerCB extends the classSocket by redefining the methodping. This

extension is local to the classbox.Fig. 3shows another classboxSocketIcmpCB that also imports the class
Socket and redefines the same methodping. This class extension is local toSocketIcmpCB. Conflict is
avoided because each extension is confined to the classbox that defines it.

4. The classbox model

This section presents a set-theoretic model that precisely defines the semantics of classboxes. We
abstract away from the operational details of statements and expressions of a given object-oriented
language, and instead focus on the key features that interact with classboxes. We start by introducing a
basic model ofclasses, objectsandnamespaces, where we captureinstantiation,message sending, and
self- andsuper-calls.
On top of this basic model, we then show how classboxes are defined as a mechanism for introducing

class extensions, and for controlling the visibility of class extensions in different namespaces. We show
how locality of changesand local rebindingarise as a consequence of the way that classboxes are
composed.

4.1. Environments

We use the basic concept of an extensibleenvironmentas a mechanism for modeling classes, objects
and classboxes.

Definition 1. An environment� : D → R∗, is a mapping from some domainD to an extended range
R∗ = R ∪ {⊥}, such that the inverse image�−1(R) is finite.

We represent environments as finite sets of bindings, for example:�1 = {a �→ x, b �→ y} is an
environment that mapsa to x and b to y. All other values in the domain of this environment (for
example,c) are mapped to⊥.
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We normally leave out unessential parentheses. Since an environment is a function, we simply invoke
it to look up a binding. In this case,�1a = x, �1b = y and�1c= ⊥.

Definition 2. An environment� : D → R∗ mayoverrideanother environment�′.We define� � �′ : D →
R∗ as follows:

(���′)x def=
{

�′x, if �x= ⊥,

�x, otherwise.

For example, if�2 = {b �→ z, c �→ w}, then(�1��2)a = x, (�1��2)b = y, and(�1��2)c = w. We employ
overriding both for method dictionaries and class namespaces.

4.2. Classes, namespaces and objects

The primitive elements of our model are the following disjoint sets:C, a countable set ofclass names,
M, a countable set ofmessages, andB, a countable set ofmethod bodies.

Definition 3. A method dictionary, � ∈ D is an environment,� : M → B∗ that maps a finite set of
messages to bodies.

For example,� = {m1 �→ b1, m2 �→ b2} defines a dictionaryd that maps messagem1 to bodyb1 and
m2 to b2, and all other messages to⊥.
Note that, for the purpose of this paper, we are not concerned with the implementation details of the

method bodies. We only consider which kinds of messages are sent in the bodies.

Definition 4. A class, c〈�, B, �〉 consists of a method dictionary�, a superclass nameB ∈ C ∪ {nil}, and
an environment�, called aclass namespace, that binds class names to classes.

nil represents an empty class, from which the root of a class hierarchy inherits. By convention, every
class namespace is assumed to contain the bindingnil �→ c〈∅, nil, ∅〉, which we therefore do not list
explicitly.

Definition 5. An objecto〈c, �〉 consists of a classc and an environment�, which is a class namespace
(obtained fromc) extended with a binding forself.

Note that, for the present purposes, we do not model attributes (instance variables) of objects, aside
from the pseudo-variablesself andsuper.
We can send messages to classes and to objects. We use the notationx[m] to send the messagem to

the class or objectx.

Definition 6. We caninstantiatean object by sending the messagenew to a classc = c〈�, B, �〉

c[new] def= ��.o〈c, {self �→ �}��〉.
At this point we recursively bindself to the value of the object itself.
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As usual,�x.E binds free occurrences ofx in E to the value of the recursive expression itself, i.e.,

�x.E
def= E{�x.E/x}, whereE{y/x} is the usual substitution operation, replacing free occurrences ofx

in E by ywhile avoiding name clashes.
Although we do not model the internal details of method bodies here, we must take care to be precise

about the environment within which methods are evaluated. As we shall see when we define classboxes,
it is precisely the way in which these environments are composed that determines the scope within which
class extensions are visible.

Definition 7. A method closurem〈b, �〉 consists of a method bodyb and a class namespace� that
additionally binds bothself andsuper.

Note thatsuper is bound by methods, not objects, sincesuper-calls are relative to the class in which a
method is defined, not the class from which the object is instantiated.

Definition 8. We cansend a message mto an objecto〈c, �〉, wherec = c〈�, B, �〉 obtaining a method
closure

o〈c, �〉[m] def=
{m〈�m, {super �→ o〈�B, �〉}��〉, if �m �=⊥,

o〈�B, �〉[m], else if B �= nil,
⊥ , otherwise.

This definition captures the basic method lookup algorithm of object-oriented programming languages. If
the message sent does not correspond to a method defined in the class of the object, the lookup continues
in the parent class, and so on. If the method is not found, the message is reported as not being understood
(⊥). If a suitable method is found, it is evaluated in a context wheresuper is bound to the current object,
but from the perspective of the method’s superclass. As we can clearly see,super is an object, not a class.
Note that according to Definition 4 the superclassB can be nil.

Definition 9. A closure may be evaluated, in which case it may send various messages. Here we are
interested inself- andsuper-sends, and static class references:

m〈b, �〉�self m�
def= (� self)[m],

m〈b, �〉�super m�
def= (� super)[m],

m〈b, �〉�C new�
def= (� C�)[new].

4.3. Classboxes

A classbox is anopenentity that provides a number of classes, and which can be extended. When a
classbox isclosed, it yields an ordinary class namespace (Definition 4).
The key point in modeling classboxes is that multiple versions of the same class may be implic-

itly present within the same classbox. Suppose that we import the classLinkChecker from the classbox
LinkCheckerCB, and we locally define a classSocket. Even thoughLinkChecker collaborates withSocket,
ours is adifferentsocket class that has nothing to do with theSocket class known toLinkChecker. To
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capture this aspect we must refine the notion of class names to express theoriginating classboxto which
a class belongs:

• C is the countable set ofraw class names,
• X is the set of classbox names,
• C+ = {Cn|C ∈ C, n ∈ X} is the set ofdecorated class names.

Thedecorated class namesimply encodes the classbox to which the class belongs, i.e., where it was first
defined. We call the superscriptn of a decorated class nameCn its origin.

Definition 10. A raw class nameC matchesa decorated class nameBn if C = B:

C ∼ Bn iff C = B.

For example, when we use the raw class nameSocket, it may not be clearwhichSocket class we are
referring to. However the decorated class nameSocketSqueakCB unambiguously identifies theSocket class
first introduced in theSqueakCB classbox.
Note that it is thissameclass that is extended inLinkCheckerCB, since there is noSocket class defined

there. There is noSocketLinkCheckerCB.

Definition 11. A classboxb〈n, �〉 consists of an identifiern ∈ X (i.e., classbox names) and a function
from class namespaces to class namespaces.

The intuition here is that a classbox isopenbecause it canalways beextendedwith newclass definitions,
imports and extensions. As a consequence, we do not yet know the class namespace of the classes it
provides. However we canclosea classbox, thereby fixing the class namespace of all the provided
classes.

Definition 12. A classboxb〈n, �〉 can beclosedby sending it theclose message, generating a fixpoint:

b〈n, �〉[close] def= ��.��.

The resulting class namespace must be closed, i.e., all used class names must be defined. Since� is a
function from class namespaces to class namespaces,��.�� represents a fixpoint in which all the classes
provided by the classbox are made visible to each other.

Definition 13. We maylookupthe decorated class nameCn corresponding to a raw class nameC in a
classboxb〈n, �〉:

C�
def=

{
Cn, if ∃!n ∈ X, (b〈n, �〉[close])Cn �=⊥,

⊥ , otherwise.

Suppose theLinkCheckerCB classbox is represented byb〈LinkCheckerCB, �〉. Then Socket� yields
SocketSqueakCB, sinceSqueakCB is the origin ofSocket in theLinkCheckerCB classbox.

Definition 14. An empty classboxwith identifier n is: empty(n)
def= b〈n, �� �→ ∅〉. Note that

empty(n)[close] = ∅, i.e., closing an empty classbox yields an empty class namespace.
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Definition 15. We canintroduceto a classboxb〈n, �〉 a new classC that subclassesB (defined in a
classboxb〈m, �〉) with � as method dictionary by sending it the messagedef subclasses with.

b〈n, �〉[def C subclasses Bm with �]
def=

{
b〈n, ��.{Cn �→ c〈�, Bm, �〉}���〉, if C�= ⊥,

⊥ , otherwise.

Note that the formal parameter� represents the fixpoint we obtain when the classbox is finally closed.
We must therefore extend�� with the new subclass definition, obtaining{Cn �→ · · ·}���. We retain� as
a formal parameter so that the classbox remains open (i.e.,��. · · ·). The side condition states that it is an
error to introduce a class that is already defined in the classbox. Within a classbox, only decorated class
names occur. The newly introduced class has the originn. We also explicitly identify the originmof the
superclass.

4.4. Importing classes

Definition 16. A classboxb〈n, �〉 may import a raw named class from another, classboxb〈m, �〉, by
sending it the messageimport.

b〈n, �〉[import C from b〈m, �〉]
def=

{
b〈n, ��.{C� �→ (��.�(���))C�}���〉, if C�= ⊥,

⊥ , otherwise.

Let us call the new classbox we obtainb〈n, �′〉.�′ extends� with the imported definition, but we must
also take care that the environment of the imported class is properly extendedwith anypertinent definitions
that occur in�′. As before,� represents the class namespace that we obtain when we take the fixpoint of
�′. We therefore pass� to � so it is available to all the existing class definitions in�. We must also look up
the correct decorated class nameC�. Finally, we must bind this to the correct definition from�, extended
with any new definitions from�′.
Suppose we would simply useC� �→ (��.��)C�, this would clearly be wrong, because the class we

obtain would only see other class definitions from�, and not any definitions that may have already been
extended in�. Instead, we create anintermediate namespace��.�(���).��� represents the environment
of � extended with any new definitions from�′. We then pass this into� to make it available toall class
definitions in�. Finally we extract this definition, bind it toC� and use it to extend��.
Consider, for example, the import relationships inFig. 2. The classboxLinkCheckerCB importsHTML-

Parser from HtmlCB andHTMLEntity and its subclasses fromGetLinksCB. If HTMLParser were naively
imported fromHtmlCB, it would not see the extensions imported fromGetLinksCB. Instead, the import
operation is defined so that whenHTMLParser is imported, its environment (i.e.,�) is extended by all
definitions inLinkCheckerCB (i.e.,���). So whenHTMLParser is imported, it sees the extended versions
of HTMLEntity and its subclasses. This is thelocal rebindingmechanism of classboxes.
Note that it is critical thatHTMLEntity imported fromGetLinksCB has the same origin as that expected

byHTMLParser. If LinkCheckerCB orGetLinksCBwere to define anewclassHTMLEntity, then this would
have a different decorated class name from theHTMLEntity originally defined inHtmlCB, and would
therefore be invisible toHTMLParser.
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4.5. Extending imported classes

Definition 17. A classboxb〈n, �〉 mayextenda raw class named class from another classboxb〈m, �〉,
by sending it the message extendwith.

b〈n, �〉[extend C with �′ from b〈m, �〉]
def=

{
b〈n, ��.{C� �→ �′�(��.�(���))C�}���〉, if C�= ⊥,

⊥ , otherwise,

where

�′�c〈�, B, �〉 def= c〈���, B, �〉.
Extend works just like import, except that the imported class definition is extended with�′.
As a consequence, importing a class is the same as extending it with a nil extension

b〈n, �〉[import C from b〈m, �〉] ≡ b〈n, �〉[extend C with ∅ from b〈m, �〉].
As should be clear from the definition, class extensions are purely local to the classbox making the
extension. This guaranteeslocality of changes. Extensions become visible to other classboxes only when
they are explicitly imported, or implicitly made visible by the mechanism of local rebinding (as seen in
theHTMLParser example discussed above).
Method redefinitionis supported since the�′ introduced by a class extension can redefine methods

existing in the class being extended. For example, not only can theGetLinksCB classbox extend the
HTMLEntity and related classes with a newgetLinksmethod, but theLinkCheckerCB classbox can import
Socket from theSqueakCB classbox andredefinethepingmethod.

4.6. Proving classbox properties

Proposition 1. A method defined in a classbox is visible within this classbox.

Proof. Because amethod is defined either when a class is (i) defined or (ii) imported, this proof is divided
in two parts.
(i) Methods defined at the same time than the class they refer to are visible within the classbox where

they are effectively defined. This first part of the proof consists in showing that defining a classCwith a
methodm bound to a compiled methodCMmakes this method visible within the classbox (i.e., invoking
mon an instance ofC triggers the expected methodCM).
Without loss of generality, assume thatC has no superclass (i.e., it inherits fromnil).

b〈n, �〉[def C subclasses nil with {m �→ CM}]
= b〈n, ��.{Cn �→ c〈{m �→ CM}, nil, �〉}���〉 = b〈n, �′〉.

Closing this classbox yields

b〈n, �′〉[close] = ��.�′� = 	 = {Cn �→ c〈{m �→ CM}, nil, 	〉}��	.
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Now the instance of this classCn is obj= o〈	Cn, {self �→ obj}�	〉. Sending a messagem to it yields

obj[m] =m〈{m �→ CM}m, {super �→ c〈∅, nil, ∅〉}�	〉.
The implementation identified for the methodm is the result of{m �→ CM}m= CM.

(ii) Methods defined when importing a class are visible within the importing classbox.

b〈n, �〉[extend C with {m �→ CM} from b〈m, �〉]
= b〈n, ��.{Cn �→ c〈{m �→ CM}, nil, �〉}�(��.�(���))C�}���〉.

Assuming thatC� = Cp closing this classbox yields

b〈n, . . .〉[close] = 	 = {Cp �→ c〈{m �→ CM}, nil, 	〉}.
The rest of the proof follows what is already shown in (i).�

Proposition 2. Importing a class makes its methods previously defined visible in the importing classbox.

Proof. If b〈m, �〉C� = c〈{m �→ CM, }, B〉� then
b〈n, �〉[import C from b〈m, �〉] = b〈n, ��.{C� �→ (��.�(���))C�}���〉.

Assuming thatC� = Cp closing the resulting classbox yields

b〈n, . . .〉[close] = 	 = {Cp �→ �Cp} = {Cp �→ c〈{m �→ CM}, B, 	〉}��	.

Then as already shown in the first proof, sending amessagemto an instance of	Cp triggers the execution
of CM. �

Proposition 3. Within a classbox, amethod redefinition takes precedence over its former implementation.

Proof. Within a classboxb〈m, �〉 a classC has in its method dictionary an entrym bound to a first
implementationCM1. This proof consists in showing that importingC in another classbox and redefining
m bound toCM2 hides the former implementation.
If b〈m, �〉C� = c〈{m �→ CM1}, B, �〉 then

b〈n, �〉[extend C with {m �→ CM2} from b〈m, �〉]
= b〈n, ��.{C� �→ {m �→ CM2}�(��.�(���))C�}���〉.

Assuming thatC� = Cp closing the resulting classbox yields

b〈n, . . .〉[close] = 	 = {Cp �→ {m �→ CM2}��Cp}
= {Cp �→ {m �→ CM2}�b〈m �→ CM1, B〉	}
= {Cp �→ c〈{m �→ CM2}, B, 	〉}.

The conclusion of this proof follows the end of the very first proof. InstantiatingCp and sending the
messagem executes the new implementationCM2. �
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Fig. 4. Resolving diamond conflicts.

4.7. Resolving diamond conflicts

Conflictsare largely avoided. Classes that coincidentally have the same name but are introduced in
different classboxes do not conflict because they have separate origins. Contradictions arising from
attempts to import the same class from different classboxes of course cannot be resolved automatically.
However, an important class ofindirect conflicts is automatically resolved by the nature of the local
rebinding mechanism.
Fig. 4 illustrates a diamond pattern arising from two import chains with a common ancestor class.

ClassboxCB1 defines a classA which provides a methodfoo returning the value 1. This class is imported
by CB2 where the methodfoo is redefined to return 2.CB2 also defines a subclass ofA namedB. In a
similar way, classboxCB3 importsA from CB1 and redefinesfoo to return 3. A subclass ofA namedC is
also defined. A fourth classboxCB4 importsB fromCB2 andC fromCB3. CB4 does not explicitly import
classA.
In the context ofCB4 invoking foo on an instance ofB yields the value 2, whereas invokingfoo on an

instance ofC yields 3. However, ifCB4 would explicitly importA from any one ofCB1, CB2 or CB3,
then that version ofA would be visible to bothB andC. For example, ifCB4 would importA from CB1
and redefine foo to return 4, then both instances ofB andC would return 4 when foo is invoked.

5. Implementation issues

Classboxes can be implemented by changing the method lookup algorithm in the virtual machine. This
requires a virtual machine that is available for changing, which is why we performed our experiments in
Squeak, a Smalltalk environment of which the virtual machine is open source[10,11]. We adapted the
method lookup and compiled a new virtual machine that is classbox-aware. In this section we evaluate
the impact of this extended method lookup algorithm on performance.

5.1. Method lookup description

Encoding the classbox with the method signature makes it possible for different implementations a
method to coexist. However, to take advantage of this, the method lookup mechanism has to be changed
as well.Fig. 5describes the lookup algorithm we implemented that ensures the local rebinding property.
The proposed method lookup implementation requires three extra arguments (added to the method

name and the receiver’s class) to search over the graph of classboxes. Theselector argument refers to the
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Fig. 5. The lookup algorithm that provides the local rebinding.

method name as a symbol;cls refers to the receiver’s class;startbox refers to the first classbox where the
initial expression is evaluated;currentbox is initialized withstartbox when the algorithm is triggered and
is used to keep a reference over recursive call of the algorithm; and finallypath contains the chain of
import for a given method call and its value is computed prior starting the algorithm. InFig. 4evaluating
the expressionB new foo in the classboxCB4 generates a path (CB4, CB2), and evaluatingC new foo
generates (CB4,CB3). This path is computed using some reflective feature of Squeak: it is computed from
the method call stack.
The algorithm first checks whether the class in the current classbox implements the selector we are

looking for (lines 5–9). If it is found, the lookup is successful and we return the found method (line 9).
If it is not found, we recurse. The algorithm favours imports over inheritance,meaning that first the import
chain is traversed (in lines 12–18) before considering the inheritance chain (in lines 19–30). This last part
is the difficult part of the algorithm, since we need to find the classbox where the superclass is defined
that is closest to the classbox we started the lookup from. Therefore the algorithm remembers the path
while traversing the import chain (line 12), and uses this when determining the classbox for the superclass
(line 21).

5.2. Import takes precedence over inheritance

Fig. 5, lines 11–12 shows that if a class is imported (parentBox is not nil) then the lookup pursues in
the provider classbox. If this class is not imported (parentBox is nil), as shown at the line 19, then the
lookup continues in the superclass.
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Fig. 6. Import takes precedence over inheritance.

The lookup in a superclass is done only if it is stated that a class does not provide any implementation
for a given message.Within the classbox model this implies that we have to run over the chain of imports
to make sure that a classbox does not extend this class with the corresponding method.
Fig. 6 illustrates this property of the algorithm by depicting an example. It shows four classboxes:

GraphicCB, RoundedWindowCB, DoubleBufferCB andDoubleBufferAndRoundedCB. Each of theses defines
extensions or simply imports classes to combine some of the extensions.
GraphicCB defines a hierarchy composed of three classes:Component provides the methodsupdate

andpaint, andWindow andFrame both override the methodpaint. Window andFrame are imported in
RoundedWindowCB. This first class is extended with a new implementation ofpaint to make corners
of windows smooth by rounding them.DoubleBufferCB extendsComponent, which is imported from
GraphicCB, and simply importsFrame from this same classbox.Component is extendedwith a redefinition
of paint to take double buffering facility into account. Finally,DoubleBufferAndRoundedCB combines the
two characteristics by importingComponent from DoubleBufferAndRoundedCB and by importingFrame
from RoundedWindowCB.
In RoundedWindowCB the new implementation ofpaint does asuper paint which executes thepaint

method inGraphicCB. EvaluatingFrame new update in RoundedWindowCB triggers theupdate method
contained inComponent and the local definition ofpaint is executed, the one provided byRoundedWin-
dowCB.
DoubleBufferAndRoundedCB combines the double buffer and the rounded facilities by importingCom-

ponent fromDoubleBufferCB andFrame fromRoundedWindowCB. EvaluatingFrame new update in Dou-
bleBufferAndRoundedCB triggersupdate defined inGraphicCB which send the messagepaint. The im-
plementation taken is the one provided byRoundedWindowCB becauseFrame is imported from it. This
implementation does asuper paint, which execute thepaintmethod defined inDoubleBufferCB.

5.3. Method lookup performance

Making the overhead related to our new method lookup as low as possible was one of our major
concerns. Compared to the description given in[7], our implementation of themodel is greatly enhanced:
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there is no need tomodify theVM (due to themessage passing controlmechanism[12] offered bySqueak)
and the cost of the new method lookup greatly reduced (thanks to a cache mechanism).
Classboxes allow you to have several versions of a method to coexist simultaneously. Depending on

where this method is called from (i.e., from which classbox) the right method implementation is selected
according to the method lookup algorithm described previously. When a classbox extends a class it can
either be a method addition or a method redefinition. With our current implementation, calling a method
that has been simply added by a classbox does not impose any overhead. However calling a method that
has been redefined has an extra cost: the lookup algorithm previously presented is performed. However,
this result is cached. Our cache mechanism is based on the following basic assumption:a redefined
method is often called by the same object within the same classbox. The byte-code of an extendedmethod
is transformed to include 5 byte-codes that check if the caller for this method is the one that has been
previously cached. For method addition there is no need to use a cache because there is only one version
of the method present in the system.
The following table illustrates the cost of the lookup of a redefined method compared with traditional

lookup.

6.000,000 calls Classbox lookup (ms)

Over 1 Classbox 5176
Over 2 Classboxes 5126
Over 3 Classboxes 5145
Normal method 1477

The experiment consists in calling 6 million times a method that is redefined. It shows that there is
a constant overhead that does not depend on the graph of import. This overhead is due to the extra few
byte-codes added at the beginning of the method. The method used for the benchmarks is composed of
one byte-code (simply return a numerical value). The same method that checks if the cache is valid is
about 2.5 times((5176− 1477)/1477) slower.

6. Related work

Selector Namespaces. Languages like ModularSmalltalk[9], Subsystems[13] and Smallscript[8]
provide a scoping mechanism calledSelector Namespaces, in which methods are inserted. As a result,
class extension conflicts are avoided, and several applications can bring the same class extension referring
to the same class and method without interfering with each other. As a result, class extensions are not
globally visible, but confined to a bounded scope. However selector namespaces do not support thelocal
rebindingproperty, since a new definition does not take precedence when original code is called.
Multijava.Multijava[5] is anextensionof Java that supportsopenclassesandmultiplemethoddispatch.

An open classis a class whosemethods are extensible. Newmethods can be added to an open class. These
newmethodsare visiblewithin thepackage that provides themand in thepackages importing that package.
Method redefinitions are not allowed: an open class cannot have one of its existing methods redefined.
On the other hand, two class extensions can define a method on the same class with the same signature.
In that case the extensions are scoped separately.
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Unit. MZScheme[14] offers an advanced module system where aunit is the basic building block.
A unit is a packaging entity composed of requirements, definitions and exports. Units have to be instan-
tiated and composed with each other to form a program. The key point of this model is that connections
between modules or classes are specified separately from their definitions. This principle allows a mod-
ule to be instantiated at link time. Reusability and extensibility are expressed by recombining units. An
application, made of units, can be recomposed and by aliasing new units can be inserted. Units differ
from classboxes since a unit acts as a black box: a class within a unit cannot be extended. Instead a new
unit has to be provided and included in a recomposition.
Hyper/J. Hyper/J[15] is basedon thenotionofhyperspaces, andpromotes compositionsof independent

concernsat different times.Hyperslicesarebuildingblockscontaining fragmentsof classdefinitions.They
are intended to be composed to form larger building blocks (or complete systems) calledhypermodules.
A hyperslice defines methods on classes that are not necessarily defined in that hyperslice. Such methods
define a class extension, and classes intended to be extended are known at integration time. However this
kind of extension does not allow redefinition and consequently does not help in supporting unanticipated
evolution.
Virtual Classes. The specification of avirtual class[16,17]is completely analogous to the specification

of a virtual procedure. By introducing a dynamic lookup of a class name in a hierarchy of encapsulating
entities (module for Keris[18], collaboration interfaces for Caesar[19,20], classes for gbeta[21], or teams
for Objectteams[22]) it is possible to refine a class within a subentity. One limitation with virtual classes
is that the “virtuality” is scoped to a hierarchy: outside this hierarchy a class is not virtual anymore. For
instance let us assumeC to be a virtual class attribute in a hierarchyH1. In an unrelated hierarchyH2,
classC is not virtual anymore and cannot be redefined.
Object-Based Inheritance. By providing true delegation, Lava [23] supports dynamic unanticipated

changes using class wrappers. By introducing a new language construct, an objecta (instance ofA) can
delegate all nonunderstood messages it receives to adelegateeobjectb (instance ofB). Lava provides a
true-delegationmechanism whereas the self reference used in the classB refers to the delegating object
a. Methods defined inb that are unknown toa are the extensions brought ona. So redefined or new
methods are attached to a particular object rather than a class. True delegation provides a way for adding
or redefining methods for a particular object whereas classboxes extend classes.

7. Conclusion and future work

Classboxesaddress the problem that classical module systems do not offer the ability to add or replace
a method in a class that is not defined in that module. Classboxes offer a minimal module system for
object-oriented languages in which extensions (method addition and replacement) to imported classes are
locally visible. Essentially, a classbox defines a scope within which certain entities, i.e., classes, methods
and variables, are defined. A classbox mayimportentities from other classboxes, and optionally extend
themwithout impacting the originatingclassbox. Concretely, classesmay be imported, andmethodsmay
be added or redefined, without affecting clients of that class in other classboxes. Local rebinding strictly
limits the impact of changes to clients of the extending classbox, leading to better control over changes,
while giving the illusion from a local perspective that changes are global.
To see the impact of classboxes on a real-world example we remodularized an existing application (the

seaside web server application[24] built upon a web server[25]) with classboxes. The goal is to show the
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usefulness of class extensions bymeasuring the proportion of class extension among the definedmethods
(for more details see the technical report[26]).
We have implemented a proof-of-concept prototype of classboxes in Squeak. In our implemen-

tation, the method lookup mechanism in the Squeak virtual machine has been modified to take
classboxes into account. This prototype exhibits an overall 10% slowdown in performance for real-world
applications.
In the future we will analyze some very large applications developed without any local rebinding

facilities in order to identify places where programmers simulated local rebinding.
Currently classboxes function purely as a packaging and scoping mechanism.We intend to investigate

variousextensionsof classboxes.Weexpect that an integrationwith traitswill be fruitful, as thiswill enable
packaging of collaborating traits[27] (and their associated tests). Presently classboxes lack any notion of
acomponent model. We expect that explicit interfaces and composition mechanisms for classboxes will
increase their usefulness. In particular, we intend to investigate the application of encapsulation policies
[28] to classboxes.
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