
Analyzing Module Diversity

Alexandre Bergel1, Stéphane Ducasse1,2, Oscar Nierstrasz1

1Software Composition Group, University of Bern, Switzerland
www.iam.unibe.ch/∼scg

2LISTIC — Language and Software Evolution Group, University of Savoie,
France

www.listic.univ-savoie.fr

Abstract: Each object-oriented programming language proposes various grouping
mechanisms to bundle interacting classes (i.e., packages, modules, selector namespaces,
etc). To understand this diversity and to compare the different approaches, a common
foundation is needed. In this paper we present a simple module calculus consisting
of a small set of operators over environments and modules. Using these operators,
we are then able to specify a set of module combinators that capture the semantics
of Java packages, C# namespaces, Ruby modules, selector namespaces, gbeta classes,
classboxes, MZScheme units, and MixJuice modules. We develop a simple taxonomy
of module systems, and show how particular combinations of module operators help
us to draw sharp distinctions between classes of module systems that share similar
characteristics.

Key Words: package, module, selector namespaces, classboxes, virtual classes, Small-
talk, Java, Ruby, C#

Category: D.1.5, D.2.1, D.2.2, D.3.2, D.3.3

1 Introduction

Object-oriented languages support the construction of applications based on sets
of interacting classes. Classes, methods and global definitions are then grouped
together as packages or modules for deployment reasons or for delimiting ab-
straction layers. Unfortunately, though the intent behind packages and modules
is clear, their semantics often is not. The simple fact that the terms module and
package are overloaded with different semantics reveals a larger problem: the
diversity of grouping mechanisms hampers their comparison and understanding.

Numerous researchers have proposed module calculi as a medium for reason-
ing about the properties of module systems (e.g., [2, 8, 11, 31, 32]). These calculi
have been used to study various issues such as mutual recursion and high order
features [2] or to model classes and mixins in a typed setting [8]. As far as we
are aware, however, module calculi have not yet been proposed as a means to
study and compare the diverse approaches to module systems that are used in
practice.

For example, classical module systems, like those of Modula-3 [16], Oberon-
2 [36], Ada [40], Java [28], C++, C# [14], and Eiffel [33] do not support class
extensions (i.e., the fact that a method can be added or redefined from an-
other package). However, class extensions are widely used in the languages that
support it, such as Smalltalk [44], CLOS [29] and gbeta [21]. OpenClasses [17],
Keris [45] and MixJuice [25] offer packaging systems that introduce class exten-
sions, virtual classes and other new features to packages.

Other languages such as Ruby and Unit [24] support the definition and ap-
plication of mixins to modules at different levels. Languages such as Visual-
Works [43] totally decouple the issues of namespaces from those of code packag-
ing, hence a package in VisualWorks does not provide any support for scoping
of names.

In this paper we introduce a simple calculus of modules, together with a set of
operators designed to express various encapsulation policies, composition rules,
and extensibility mechanisms. Our work does not include deployment mecha-
nisms, therefore the study of each language is limited in expressing operators
applicable to grouping units (i.e., modules, packages). The contributions of this
paper are:

– A formalism for expressing semantics of different module systems,

– The identification of a set of properties useful to characterize different lan-
guages, and

– A taxonomy of different module systems.

The goal of the approach presented in this paper is to enable the language
designer to compare features of module systems for various object-oriented pro-
gramming languages.

In Section 2 we define the calculus and its operators. In Sections 3 through
10 we use the calculus to develop various module combinators that capture Java
packages, C# namespaces, Ruby modules, selector namespaces, gbeta virtual
classes, classboxes, MZScheme units and MixJuice modules. We chose Java and
C# as they are mainstream languages, Ruby as it defines the notion of module
mixin, Modular Smalltalk [44] and Smallscript [39] as they define changes that
crosscut classes with selector namespaces, Beta [30] as it introduces the notion
of virtual classes, classboxes [6, 7] as they illustrate the local rebinding property,
MZScheme unit [23] as it separates the unit definition from the dependency
statements, and MixJuice [25] as it constrains only one class version to be present
in the system.

In Section 11 we develop a taxonomy to characterize the studied module
systems according to the set of properties we modeled. In Section 12 we describe
related work. In Section 13 we conclude by summarizing the results obtained
and outlining future work.

2 A Simple Module Calculus

The module calculus we propose makes use of the primitive notion of an en-
vironment. In Section 2.1 we define environments and the basic operators for
manipulating them. In Section 2.2 we define modules as abstractions over envi-
ronments, and we propose combinators for composing and manipulating mod-
ules. Note that the module calculus and the various combinators have been
implemented in DrScheme [20]. The source code, accompanied with test units,
is available at www.iam.unibe.ch/∼scg/Research/Classboxes/module.scm.

2.1 Environments

Definition 1 (Environment). An environment ε : D → R? , is a mapping
from some domain D to an extended range R? = R∪{⊥}, such that the inverse
image ε−1(R) is finite. The set of environments is E and we assume it to be a
subset of R.

We will represent environments as finite sets of mappings, for example:

ε1 = {a 7→ x, b 7→ y}

is an environment that maps a to x and b to y. All other values in the domain
of this environment (for example, c 6∈ {a, b}) are mapped to ⊥.

We will normally leave out unessential parentheses. Since an environment is
a function, we simply invoke it to look up a binding. In this case, ε1 a = x,
ε1 b = y and ε1 c = ⊥.

Definition 2 (Keys). The set of keys of an environment ε : D → R? is κ ε:

κ ε
def= {x ∈ D | ε x 6= ⊥}

For instance, κ ε1 = {a, b}.

Definition 3 (Override). An environment ε : D → R? may override another
environment ε′. We define ε B ε′ : D → R? as follows:

(ε B ε′) x
def=

{
ε′ x if ε x = ⊥
ε x otherwise

Note that B is associative but not symmetric.
For example, if ε2 = {b 7→ z, c 7→ w}, then (ε1 B ε2) a = x, (ε1 B ε2) b = y,

and (ε1 B ε2) c = w.

Definition 4 (Extend). An environment ε : D → R? such that ε a = ⊥may be
extended to produce a new environment ε‖{a 7→ x} containing all the mappings
of ε plus a 7→ x.

ε‖{a 7→ x} def=
{

ε B {a 7→ x} if ε a = ⊥
⊥ otherwise

Note that the ‖ operator does not allow an entry to be added if the key is
already present.

Definition 5 (Exclusion). Given an environment ε : D → R? and a key a, the
exclusion ε\a is:

(ε\a) x
def=

{
ε x if x 6= a

⊥ otherwise

Exclusion simply removes any binding present for the given key.

2.2 Modules

Definition 6 (Module). A module m : E → E? , is a mapping from an envi-
ronment to an environment. We denote E? = E ∪{⊥} and M the set of modules.

Example. We represent modules as functions taking an environment and re-
turning an environment. An example of two modules m1 and m2 follows:

m1 = λε. {a 7→ 1, b 7→ 2}
m2 = λε. {a 7→ 3, b 7→ ε a}

As we see in m2, the ε parameter makes it possible for entries in a module to
look up other bindings in the parameter environment. Shortly we will see how
a module can be instantiated to an environment by taking its fixpoint with the
fix operator. Therefore, an instantiated module can look up bindings in itself.

We overload the operators previously introduced, and from the context it is
always clear whether we mean the environment or module operator.

Definition 7 (Override). A module m can override another module m′ to
produce m B m′.

m B m′ def= λε. (m ε) B (m′ ε)

Note that m and m′ both have access to the parameter ε, thus effectively merging
the two modules. Note that this operator is associative but not symmetric. As
is the case with the other operators, we unambiguously overload the operator
B for modules, defining it in terms of B for environments. It is easy to check
that module overriding, like environment overriding, is also associative but not
symmetric.

Definition 8 (Extend). A module can be extended with a new mapping using
the ‖ operator:

m‖{a 7→ x} def=
{

λε. (m ε) ‖ {a 7→ x} if (m ε) a = ⊥
⊥ otherwise

Definition 9 (Exclusion). Exclusion on modules is expressed using \:

m\x def= λε. (m ε)\x

Restricting a key on a module removes the key from the environment that
this module defines.

2.3 Module Encapsulation Operators

Module encapsulation is articulated by operators manipulating the set of keys
visible from outside the module. We call this set the module’s interface. Three
operators are here involved: fix is used to instantiate a module, κ to extract
all the keys (i.e., defined names) of a module, and hide to remove one mapping
from a module interface.

Definition 10 (Fix). A module m : E → E? can be instantiated to an environ-
ment as follows:

fix m
def= µε.mε

(We assume the usual definition of µ, where µx.e reduces to e[µx.e/x], so fix m =
m(fix m).)

Since m is a function from environments to environments, fix m represents a
fixpoint in which all the mappings provided by the module are made available to
each other. This is analogous to Cardelli’s use of fixpoints to model self-references
in object-oriented languages [15].
Example. For instance, for the two modules m1 = λε. {a 7→ 1, b 7→ ε} and
m2 = λε. {a 7→ 2} we have:

(fix (m2B m1)) b a = 2
(fix (m2B λε. {b 7→ (fix m1) b})) b a = 1

In the first example, let Φ = fix(m2 B m1). By unfolding the fixpoint, this
gives Φ = {a 7→ 2}B {a 7→ 1, b 7→ Φ}, so Φ b a = Φ a = 2. Since m1 and m2 are
effectively merged, m2’s binding of a becomes visible within m1.

In the second example, let Φ1 = (fix m1) = {a 7→ 1, b 7→ Φ1} and Φ2 =
fix(m2 Bλε. {b 7→ Φ1 b}) = {a 7→ 2}B {b 7→ Φ1}. So Φ2 b a = Φ1 a = 1. Here m1

is effectively closed, so merging it with m2 has no effect on the binding of a.

Definition 11 (Keys). The set of keys of a module m is defined as:

κ m
def= κ (fix m)

Definition 12 (Hide). Given a module m : E → E? , a binding to the key a
can be removed from its interface using the hide operator:

hide a
def= λm. λε. m\a ({a 7→ (fix m) a}B ε)

hide {x1, x2, . . . , xn}
def= (hide x1)(hide {x2, . . . , xn})

The hide operator makes a binding inaccessible from outside a module. It
can still be accessed from within it (cf. example below). This is different from
simply removing a binding, because there is no distinction between the interface
and the implementation of a module.
Example. Hiding a binding of a module removes the entry from the module’s
interface, but the binding’s value is still internally accessible through other bind-
ings. For example, for the two modules m = λε. {a 7→ 1, b 7→ ε}, we have:

(fix (hide a)(m)) a = ⊥
(fix (hide a)(m)) b a = 1

2.4 Class Definition

Within a module, a value associated to a key represents a definition. If the cal-
culus is intended to express the semantics of a module system which is part of a
procedural (or functional) language, values of bindings describe functions [1, 31].
In the rest of this paper we will focus only on expressing semantics of module
systems for class-based object-oriented programming languages. Definitions con-
tained within a module describe classes. A class is represented as an environment
whose mappings define state and methods. We also do not model class instanti-
ation. Note that we do not model the pseudo-variable super because this would
add unnecessary complexity to the calculus and shift the focus of the paper.
Moreover, super is not present in all the languages we consider here. We also
do not model classes as modules because our goal is to study module operators,
not class operators. An attempt to unify modules and classes would generate
unnecessary confusion.

We define the following domains:

– The set of modules is represented by M.

– The set of class names by C. It represents keys of the mappings defining a
module.

– The set of definitions defining the state and behavior of a class is denoted
by D.

Example. For instance a module containing Point and PointFactory classes
can be defined as:

GraphicsModule = λε. {
Point 7→ {

x 7→ 0,
y 7→ 0,

moveBy 7→λdx. λdy. λself. {
x 7→ self x + dx,
y 7→ self y + dy } B self},

PointFactory 7→ { newPoint 7→ λself. ε Point } }

By accessing a binding within a given environment we obtain a copy of the
bound value. New objects are therefore obtained by simply accessing a class in
a fixed module. For instance, a new point is obtained by evaluating:

aPoint = (fix GraphicsModule) Point.
Messages are sent by passing a message name and arguments to an object.

Note that a reference to self has to be provided. For instance, a point can be
moved by performing: aPoint moveBy 2 3 aPoint.
The self-reference is supplied as a trailing argument. The reason for this is that
we do not model a dynamic environment (i.e., a runtime stack that would contain
the self reference and other arguments).

Inner classes [26] treat their enclosing class as a kind of module that restricts
the scope of their definition. However, inner classes are mainly used as a con-
venient mechanism for defining callback classes and other small helper classes.
To the best of our knowledge, no major application has ever been developed
using inner classes as the sole module mechanism. We therefore do not consider
this form of modularization in our comparison and classes do not contain inner
classes.

Within our calculus, inheritance over classes is expressed by the extend-
Class operator, defined below.

Definition 13 (ExtendClass). In a module m, a class c extends a superclass
sup with a set of definitions d using the extendClass combinator defined as:

extendClass : M→ C → C → D →M
extendClass = λm. λsup. λc. λd. λε. m ε‖{c 7→ d B (m ε sup)}

Class members are denoted by d. When creating a new class, these simply over-
ride definitions provided by the superclass (m ε sup) by performing d B (m ε

sup).
Example. The previously described GraphicsModule is refined into a Colored-
GraphicsModule as:

ColoredGraphicsModule = extendClass GraphicsModule Point ColoredPoint ext
where ext = { color 7→ nil,

setColor 7→ λ newCol. λself. {color 7→ newCol} B self }

2.5 The Calculus in Action

The following sections illustrate the calculus by expressing the semantics of var-
ious module systems. For each of these module systems we use the calculus to
define a set of module combinators that express the module composition mech-
anisms provided by the programming language in question. Depending on the
language under consideration, a module may represent a Java package, a C#
namespace, a selector namespace (Modular Smalltalk [44]), a Ruby module [42],
a virtual pattern in gbeta [21], a classbox [6, 7], a MZScheme unit [23], or a
MixJuice module [25].

A typical combinator is applied to a module mt with some arguments ms and
some classnames c. We make use of the following conventions: (i) each combinator
is expressed as a module generator (combining two modules together yielding a
new module), (ii) a t subscript (e.g., mt) refers to a input “template module”
to be modified: the result of applying the combinator is a modified copy of the
template module, (iii) an s subscript (e.g., ms) refers to the module provided as
argument.

3 Java

Java [4] classes are grouped within packages. Packages can be “composed” with
each other by means of the import relationship. (In this paper, we do not consider
the use of fully qualified names in Java or other languages, i.e., a class name
preceded by the name of the package.) We also did not model the CLASSPATH

mechanism as it is not particularly relevant to the paper’s focus on the expression
of grouping unit operators. A package that imports a class from another package
simply references this class by its name. There are two levels of granularity of
the import relationship: (i) a package may import a single class from another
package, and (ii) a package may import all visible classes (i.e., public at the
package level).

The semantics of Java packages is expressed using two different import com-
binators (importClass and importPackage) corresponding to the two granularity
levels. Class privacy is expressed using the private combinator, which is described
later.

Individual class import. A package mt that imports a class c defined in a
package ms yields a copy of mt augmented with a new mapping for the imported
class.

importClass : M→M→ C →M
importClass = λmt. λms. λc. (hide c)(mt ‖ {c 7→ (fix ms) c})

A package that imports a class cannot re-export it. This is expressed by (hide c).
According to Definition 12, (hide c) is a function that takes a module as argument

and returns a copy of it where c is removed from its interface only. This class c is
accessible to definitions in the importing package, however it cannot be accessed
from another package.

A conflict occurs when a defined and an imported class have the same name.
The restriction on key uniqueness is expressed by the ‖ operator, which does not
allow a key to be added if it is already present. A name that already refers to a
defined class cannot be used to refer to an imported one and vice-versa.

References between classes are static, which means that importing a class
does not rebind the references. Let’s suppose a package graphics contains a class
PointFactory that refers to a class Point. Importing the class PointFactory (in
another package) does not impact the original references between PointFactory
and Point, even if in the importing package a class Point is present. This re-
striction is expressed by (fix ms). An example of a graphics package is:

package graphics;

public class Point {
int x = 0, y = 0;

void moveBy (int dx, int dy) {
x = x + dx; y = y + dy;

}
}
public class PointFactory {

static void newPoint () {
return new Point();

}
}

graphics = λ ε. {
Point 7→

{x 7→ 0,
y 7→ 0,
moveBy 7→ λ self. λ dx. λ dy.

{ x 7→ self x + dx,
y 7→ self y + dy} B self},

PointFactory =
{ newPoint 7→ ε Point }}

Importing the class PointFactory from graphics in a new package graphics2

where a class Point already exists does not make PointFactory use Point of graph-

ics2.

graphics2 = importClass λε. {Point 7→ {}} graphics PointFactory

Evaluating graphics2 PointFactory newPoint returns an environment con-
taining the keys x, y, and moveBy. However, evaluating graphics2 Point yields
an environment with no mapping in it (according to the definition of Point in
graphics2.

Individual package import. Importing a whole package is equivalent to im-
porting individually each class defined in the imported module. In a Java pro-
gram, this is expressed as package mt; import ms.*;.

importPackage : M→M→M
importPackage = λmt. λms. (hide (κ ms))(λε. (mt ε) B (fix ms))

When importing a whole package, locally-defined classes mask the classes
that are imported. For instance, the following code is correct:

package p1;

public class A{}
public class B{}

package p2;

import p1.*;

public class A extends B{}

In the package p2, a class named A is locally defined, which masks the class
A implicitly imported from p1. The name A within p2 refers to the p2 imple-
mentation of A, whereas in p1 the name A refers to the p1 implementation of
A.

This is expressed by the B operator (which allows one mapping to be re-
placed by a new one) used in importPackage.

Class privacy. Classes declared as private in a package cannot be imported to
other packages.

private : M→ C →M
private = λm. λc. (hide c) m

Syntactically this is written package m; class C {...}. The class C is vi-
sible only within m and is not accessible from outside.

4 C#

In C# a unit of modularization is called a namespace. Classes defined in a
namespace can be imported under a different name (alias) in the importing
namespace. C# provides a unique directive using to import a class (aliased or
not) to a namespace and to import a whole namespace.

We express the semantics of the using directive with the three combinators
usingClassAs, usingClass and usingNamespace.

Using alias and class directives. An imported class can be aliased. This
means that this class is accessed within the importing namespace under a dif-
ferent name. This is expressed in C# as namespace MT { using A = MS.C; }.

usingClassAs : M→M→ C → C →M
usingClassAs = λmt. λms. λa. λc. (hide a)(mt‖{a 7→ (fix ms)c})

The value a refers to the new name given to the class c. The need for (hide a) and
(fix ms) is similar to that in Java’s case: (hide a) constrains the imported class
to be imported from another module, and (fix ms) binds all classes contained
in ms to their dependencies. Also, when importing c in mt, dependencies of c

are preserved.
Importing a class without renaming it is expressed as an import aliased to

the class name. This is expressed in C# as namespace MT { using MS.C;}.

usingClass : M→M→ C →M
usingClass = λmt. λms. λc. usingClassAs mt ms c c

Note that usingClass is equivalent to importClass previously described for
Java.

Using the namespace directive. As in Java, all the classes defined in a name-
space can be imported using a single directive. In a C# program, this would be
expressed as namespace MT { using MS; }.

usingNamespace = importPackage

The combinator usingNamespace is equivalent to importPackage described
previously.

C# provides the extern alias keywords to enable references to two different
versions of deployment units (i.e., assemblies) that have the same fully-qualified
type names. This allows two or more versions of a given deployment unit to
be used in the same application. Since the focus of this paper is on code pack-
aging mechanisms rather than application deployment, we do not consider this
mechanism in our comparison.

5 Ruby

In Ruby, modules serve two distinct purposes: (i) modules encapsulate functions,
methods, classes, and constants, and (ii) a module is a namespace of methods
that can also be used as a mixin. In this section we therefore separately consider
two operators, includeModule and newClassWithMixin, that respectively express
these two purposes.

Modules as namespaces. A module mt uses the code provided by another
module ms by means of an include directive. This directive takes as parame-
ter the name of the module intended to be reused. In the following example a
module named MPoint defines a class Point containing a constructor. Another
module MColoredPoint imports the definitions of MPoint and defines a subclass
ColoredPoint of Point.

#Defined in a file MPoint.rb

module MPoint

class Point

def initialize(x, y)

@x = x

@y = y

end end end

#Defined in a file MColorPoint.rb

load ”MPoint.rb”

module MColoredPoint

include MPoint

class ColoredPoint < Point

...

end end

We define an includeModule combinator that expresses the semantics of this
include relationship between two modules. The resulting module of this combi-
nator is a merge between the two where (i) local definitions hide those of the
imported module, and (ii) references of classes contained in the provider module
are preserved.

includeModule : M→M→ C →M
includeModule = λmt. λms. λε. mt ε B (fix ms)

Definitions contained in the importing module mt have precedence over those
of the imported module ms in case of duplicate definitions. Before including a
module, this one needs to be fixed because references between classes in this
module are preserved.

Modules as mixins. As defined by Bracha and Cook [10], a mixin is a subclass
definition that may be applied to different superclasses to create a related family
of modified classes. In Ruby, a module mixin is a set of methods intended to be
used as part of class definitions. When a module mixin defines only a set of
functions, a module can be used as a mixin using an include construct stated
within a class. In that case all the functions defined in the module are methods
applicable to any instance of the class.

The following example shows the definition of a module mixin named MColor

and a class ColoredPoint that uses it:

#Defined in a file MColor.rb

module MColor

def getColor()

@color

end

def setColor(col)

@color = col

end

def setToBlack()

self.setColor(”Black”)

end

end

load ”MColor.rb”

class ColoredPoint

include MColor

def initialize (x, y)

@x = x

@y = y

self.setToBlack()

end

def getX() @x end

def getY() @y end

end

The two methods getColor() and setColor() can be invoked on instances cre-
ated by the class ColoredPoint. For example, the following code yields 5 and
Black.

@p = ColoredPoint.new(2,3)

puts @p.getX() + @p.getY(); puts @p.getColor()

The semantics of the include construct which treats a module as a mixin can
be expressed within the calculus as follows:

newClassWithMixin : M→M→ C → D →M
newClassWithMixin = λmt. λmixin. λc. λd.

mt‖{c 7→ fix(λσ. d B mixin σ)}

The module mixin intended to be included in the class c is named mixin.
The self-reference contained in the module mixin is rebound to the class being
created by the fix operator.

A mixin can only be used by creating a new class. To represent this, we
defined the newClassWithMixin combinator expressing the semantics of creating
a new class composed of one mixin. To keep the model concise, we do not handle
situations (i) where a subclass includes some mixins and (ii) when a class can
be composed of several mixins. These can easily be expressed by a combinator
that would accept a superclass and a set of mixins.

6 Selector Namespaces

It is a tradition for Smalltalk and Lisp-based programming languages to offer
a mechanism for introducing class extensions [6]. A class extension is a method
addition or a redefinition applied to a class already present in a system. The
result is an evolution of the behavior defined by this class without introducing
a subclass. The intent of this mechanism is to enable better distribution of
responsibility among the involved classes.

The concept of selector namespaces was first introduced in Modular Smalltalk [44],
and more recently in Smallscript [39], a Smalltalk implementation for .Net. A
selector namespace defines a namespace for methods and is used to manage con-
flicting class extensions. Within such a namespace one can extend any class in
the system without producing conflict: another namespace can contain a class
extension having the same name. This is illustrated by Figure 1 where the class
String is extended by two namespaces UrlNamespace and NetPackage, each of
them adding a method asUrl.

For instance, Figure 2 shows a class Object defined in a namespace English.
This class contains a method printOnStream: and two methods printString. A first
implementation of printString is provided by the selector namespace English, and
the second one by German. A possible implementation is presented on the right
side of Figure 2, the class Object contains three entries in its method dictionary.
Each method has its name preceded by the name of the selector namespace
that implements it. The method lookup is done according to which namespace
messages are sent from.

String

System

URL

UrlNamespace

asUrl
asUrl

URL

NetNamespace

Figure 1: Two class extensions occur on the class String: two methods asUrl are
added by two different namespaces UrlNamespace and NetNamespace.

EnglishGerman

printString

Object

printOnStream:

Model Memory

German.printString

Object

English.printOnStream:

printString

stream
nextPutAll:

self printString

"German
version"

English.printString

Figure 2: The class Object is composed of three methods: two versions of
printString and a printOnStream: method.

Sending the message printOnStream: within the selector namespace German

results in the following steps: (i) look up for German.printOnStream:, (ii) Ger-

man.printOnStream: does not exist, therefore, (iii) because German imports Ob-

ject from English, lookup continues by searching for English.printOnStream:. (iv)
This method is found and invoked.

Selector namespaces are non reentrant. If within a selector namespace a
particular method is not found, then the lookup is pursued in the selector name-
space from which the class is imported. However, a method implementation is
always looked up according to the namespace within which the message is ac-
tually sent. For instance, invoking printOnStream: within the namespace German

triggers the method English.printOnStream:. This method triggers printString,
also the implementation used is English.printString because the call for it occurs
in the namespace English. Even if called from within German, the method En-

glish.printOnStream: cannot invoke German.printString. We qualify this lookup as
non reentrant.

Importing and extending. Two combinators can be applied to a selector
namespace: (i) import and extend a class (extend), or simply (ii) import (import)
a class. Importing from a namespace ms and extending a class c with a set of
methods d is expressed with the extend combinator:

extend : M→M→ C →M→M
extend = λmt. λms. λc. λd. mt‖{c 7→ (fix d) B ((fix ms) c)}

When a selector namespace extends a class, the extending methods need to
keep a reference to the scope that contains them. In order to keep this reference,
a set of methods is a module (note that for the above formula d ∈M) and it is
fixed when used to extend a class (fix d).

For instance, a namespace English containing a class Object (Figure 2) is
defined as:

English = extend λε. {} Object
λs. {printString 7→ λself. englishVersion},

printOnStream 7→ λself. (s B self) printString}

This class Object is extended with a German implementation of the printString

method. The German namespace is defined as:

German = extend λε. {} English Object
λs. {printString 7→ λself. germanVersion}

The second combinator associated to selector namespace is the import. A
namespace imports a class without extending with:

import : M→M→ C →M
import = λmt. λms. λc. extend mt ms c λε. {}

7 Virtual Classes

The notion of virtual classes offered by gbeta [22], Caesar [34] or Keris [45] al-
lows class names to be dynamically looked up (rather than statically, at compi-
lation time). Virtual classes unify the method and class lookup under a common
lookup algorithm: as well as methods, class definitions are looked up along the
inheritance of outer classes.

In gbeta, virtual classes are implemented as inner classes, and outer classes
define the unit of modularization. Class names are looked up in the same way

Widgets

Point
x, y
moveBy(int ,int)

PointFactory

newPoint()

ColoredWidgets

Point
color
setColor (Color)

new Point()

Figure 3: The outer class ColoredWidgets refines the class Point. Because classes
are looked up, points produced from a factory obtained from ColoredWidgets are
colored.

methods are looked up: inner classes can be refined within subclasses of the outer
class.

Figure 3 shows the case where a set of inner classes contained in an outer
class Widgets is refined in ColoredWidgets. The class Point defined in Widgets

is subclassed into a new class Point in ColoredWidgets. The class PointFactory

is visible into this last class because inherited. When the method newPoint() is
triggered, the class Point is looked up according to the hierarchy of outer classes.
If the factory is obtained from an instance of the outer class ColoredWidgets,
then the points produced are colored.

Two operations modeling inheritance are involved when handling virtual
classes: (i) inheritance between outer classes and (ii) inheritance between inner
classes. Within our calculus the semantics of these two operations are expressed
with the combinators extendEncapsulated and extendInner.

Elements in the subclass hide ones defined in the superclass. Inheritance
between outer classes is simply expressed using the operator B. The extendEn-
capsulated combinator is defined as:

extendEncapsulated : M→M→M
extendEncapsulated = λmt. λms. mt B ms

Inheritance between inner classes is defined in a similar way that classical
inheritance (Definition 13). The extendInner combinator is:

extendInner : M→ C → D →M
extendInner = λmt. λc. λd. λε. (mt\c) ε‖{c 7→ d B (mt ε c)}

For instance, assuming an outer class Widgets, ColoredWidgets is defined as:

ColoredWidgets = extendInner (extendEncapsulated λε. {} Widgets)

Morph

WidgetsClassbox

paint()
repaint()

Button

Morph

EnhWidgetsClassbox

paint()

Button

Button new repaint Button new repaint

Old
Implementation

self paint

Enhanced
Implementation

Figure 4: Implicitly rebinding classes within classboxes.

Point colorExtensions
where colorExtensions ={color 7→ black,

setColor 7→ λnewCol. λself.{color 7→ newCol} B self}

8 Classboxes

The classbox model [6] is a module system that supports local rebinding. A class
defined in one particular classbox can be extended via method addition or redef-
inition in other classboxes. The changes made by a classbox are only visible to
that extending classbox and classboxes that import it. Moreover, redefined meth-
ods take precedence over existing one when invoked from an extending classboxes,
and this even if the methods are called via methods only defined in the extended
classbox. Whereas virtual classes (i.e., gbeta) unify the lookup of methods and
the lookup of classes under a common algorithm, classboxes offer a scoping
mechanism to limit the visibility of class extensions.

The following example illustrates a method extension with local rebinding [6].
Figure 4 depicts a classbox WidgetsClassbox that defines a class Morph, which
is the root of the graphic element hierarchy in Squeak [27] (a smalltalk dialect
in which classboxes are implemented), and a subclass Button. Morph contains a
paint() method and a repaint() that calls paint(). The classbox EnhWidgetsClass-

box imports Morph and redefines the paint() method. It also imports the sub-
class Button. In the context of WidgetsClassbox, invoking the repaint() method
on an instance of Button invokes the definition of paint() in Morph defined by
this classbox. Within EnhWidgetsClassbox, invoking repaint() triggers the new
implementation of paint() defined in this classbox.

Within our calculus the semantics of classboxes are expressed using the
extend operation. Within a classbox, it imports a class defined in another class-
box and extends it using a set of definitions.

This combinator is defined as:

extend : M→M→ C → D →M
extend = λmt. λms. λc. λd. λε. mt ε‖{cms 7→ d B (ms ε c)}

For instance, the extension between EnhWidgetsClassbox and WidgetsClassbox

is stated:

EnhWidgetsClassbox = extend λε. {} WidgetsClassbox Morph {paint 7→ . . . }

The superscript (e.g., cms) is used to identify the originating classbox in
which a class is first defined. This makes it possible to distinguish classes that are
defined from those that are imported and extended, even if they have the same
name. Let’s suppose that classbox WidgetsClassbox defines two classes Morph

and Button, where Button makes use of Morph. If a classbox EnhWidgetsClassbox

imports Button from WidgetsClassbox and defines a new class Morph, then this
new class has nothing to do with the Morph originating in WidgetsClassbox and
should not affect the imported Button class. The superscript identifying the
originating classbox ensures that no confusion will result. If, on the other hand,
EnhWidgetsClassbox imports and extends Morph from WidgetsClassbox, then this
extended Morph will have the same originating classbox superscript, and will
affect the imported Button class.

In the same way, new classes are defined as

newClass : M→ C → C → D →M
newClass = λmt. λsup. λc. λd. λε. ms ε‖{cmt 7→ d B ε sup}

A shortcut to extend a class with an empty set of definition is stated as:

import : M→M→ C →M
import = λmt. λms. λc. extend mt ms c {}

9 Units

MZScheme [23] offers an advanced module system based on units. A program
unit is an unevaluated fragment of code intended to be linked with other units
in order to form executable programs. There is no global namespace of units.

A unit describes its import requirements without specifying a particular unit
that supplies those imports. The actual linking of the unit is specified externally
at a later stage. Unlike in ML, unit linking is specified for groups of units with
a graph of connections, which allows mutual recursion across unit boundaries.
Furthermore, the result of linking a collection of units is a new (compound)
unit that is available for further linking. One important point of this module

Point
x
y

Circle
radius
center

Factory

newPoint
newCircle

Point Circle

Point Circle

import
export

Unit

Link

compound1

widgets

widgetsFactory

Figure 5: Composing two units, widgets and widgetsFactory, into one compound,
compound1.

system is that connections between modules are specified separately from their
definitions.

The link combinator is defined as:

link : M→M→ C → C →M
link = λmt. λms. λa. λc. λε. mt ε‖{a 7→ ms ε c}

Applying a link combinator between a unit mt and ms makes the value
associated to c in ms available in mt under the alias a. For instance, Figure 5
shows a widgets unit defining two classes Point and Circle and a widgetsFactory
unit defining a class Factory. The corresponding expression is:

widgets = λε. {Point 7→ { x 7→ 0, y 7→ 0},
Circle 7→ {radius 7→ 0, center 7→ ε Point}}

widgetsFactory = λε. {Factory 7→ {newPoint 7→ ε Point},
newCircle 7→ ε Circle}}

To make widgetsFactory use the widgets a new compound compound1 is
created using:

compound1 = link (link widgetsFactory widgets Point Point)
widgets Circle Circle

ColoredPoint
color
x, y

ColoredCircle
color
radius, center

Factory

newPoint
newCircle

Point Circle

ColoredPoint ColoredCircle

import
export

Unit

Link

compound2

coloredWidgets

widgetsFactory

Figure 6: The unit widgetsFactory is composed with a new unit coloredWidgets.

The unit compound1 is the result of linking classes Point and Circle defined in
widgets under their original names (Point and Circle) in the unit widgetsFactory.
This compound is obtained by linking the class Point obtained from widgets to
the name Point in the unit widgetsFactory. Then, the class Circle of widgets is
linked to the name Circle in widgetsFactory.

As illustrated in Figure 6, the widget factory is used by colored widgets,
without altering the original definition of widgetsFactory. This is expressed with:

coloredWidgets = λε. {ColoredPoint 7→ { color 7→ blue, x 7→ 0, y 7→ 0},
ColoredCircle 7→ {color 7→ blue, radius 7→ 0,

center 7→ ε Point}}
compound2 = link (link widgetsFactory coloredWidgets ColoredPoint Point)

coloredWidgets ColoredCircle Circle

The unit compound2 is the result of linking the class ColoredPoint and Col-
oredCircle obtained from coloredWidgets to the unit widgetsFactory under the
names Point and Circle.

10 MixJuice

MixJuice [25] is a module system for Java in which a module encapsulates the
differences between the original program and the extended program. The differ-
ence is a set of definitions of additions and modifications of classes, fields and
methods. Modules may inherit other modules. As explained below, an important

distinction between MixJuice module system and classboxes is that an original
and a modified version of a set of classes cannot be present at the same time in
the same system.

For instance, a module defining a point is defined as:

module point {
define class Point {

define int x = 0;

define int y = 0;

define void moveBy (int dx, int dy) { x += dx; y+= dy;}
define String toString () { return ”point ”+x+”,”+y;}

}
}

The keyword define is used to define a new class member. Without this keyword,
the class is refined. Here the class Point is refined to a colored point:

module coloredPoint extends point {
class Point {

define Color c; // Variable addition

// Redefinition of the method toString()

String toString () { return ”colored point ”+x+”,”+y;}
}

}

The example above uses a single inheritance link between modules. However,
multiple inheritance is permitted. In that case, all modules are linearized by
topological sort (similar to the class linearization done in CLOS [19]).

Within our calculus, semantics of MixJuice modules are expressed using two
combinators: extends to express inheritance between modules, and refineClass
to refine some part of a class using redefinition of its class members.

Inheritance of modules is expressed as:

extends : M→M→M
extends = λmt. λms. mt B ms

This combinator is the same as that expressing inheritance between outer classes
(extendEncapsulated) for gbeta.

Classes are refined using refineClass:

refineClass : M→ C → D →M
refineClass = λmt. λc. λd. λε. (mt\c)ε ‖{c 7→ d B (mt ε c)}

MixJuice does not allow multiple versions of a given class to be present at the
same time in the same running system. This is the major difference with class-
boxes apart from the import relationship being specified as inheritance between

yes no

Java, C#
Unextensible classes

class creator class user

Ruby

noyes

Selector namespaces

noyes

MixJuice

Local
rebinding

Supporting class
extension

Responsibility
of extending

Multiple class versions
 at the same time

noyes

Virtual ClassesClassboxes

Keeping identity
when extending

noyes

MZScheme

Connections separated
from definitions

Figure 7: Taxonomy of different module systems.

modules. As a consequence, a program can be composed either of colorless points
(i.e., using the point module) or of colored points (i.e., using the coloredPoint

module). But a colorless point and a colored point cannot coexist in the same
system. Note that this restriction is not expressed in the combinators described
above because the calculus does not handle program execution.

11 Module System Analysis

We present some of the key characteristics that the different module systems
exhibit and that the calculus helps to clearly identify. Figure 7 presents a clas-
sification of the module systems we have discussed. The module systems are
classified according to properties that enable extension.

11.1 Unextensible Classes

With Java or C#, classes can only be refined through subclassing. The definition
of the imported class cannot be enlarged with a set of new definitions (method or
field addition or method change) from a package other than the package defining

it. We refer to such imported classes as unextensible. These extensions have to
be defined on subclasses.

This restriction is expressed within the calculus by (i) fixing the module from
which the imported class comes from and (ii) not extending this class with B
(override) or ‖ (extend). Basically, this is identified by (i) the pattern (fix ms) c

present in the import statement and by (ii) the absence of B or ‖.
For instance, importing a class in Java (Section 3) is defined as:

importClass = λmt. λms. λc. (hide c)(mt ‖ {c 7→ (fix ms) c})

The new class c is defined as ((fix ms) c) which makes it unextensible because
it contains fix and no overriding or extension operations.

11.2 Class Extensions

Some module systems allow methods to be added or redefined separately from
the definition of the class they belong to. The specification of the class is therefore
spread over more than one module. This mechanism complements subclassing.
A class extension is the result of a separation between a definition of a class and
definitions that compose this class (i.e., method definitions). AspectJ [5] with the
notion of inter-type declaration, MultiJava [35] with open-classes, HyperJ [41]
with hyper-slices, Smalltalk, CLOS, and Objective-C offer such a mechanism.
Within such systems, there is a conceptual difference between a class definition
and its method definitions: a method definition is not physically included in a
class definition but can be defined externally to the class it belongs to.

The ability of a module system to offer class extensions is expressed in apply-
ing an B or a ‖ operator to the imported class. For instance, ModularSmalltalk
(Section 6) and classboxes (Section 8) allow a class to be extended by adding
or redefining methods. This is illustrated in the extend combinator for selector
namespaces (Section 6):

extend = λmt. λms. λc. λd. mt‖{c 7→ d B ((fix ms) c)}

The imported class c is the result of ((fix ms) c), i.e., the definition of the
class c looked up in the fixed (self-rebound) module. A set of new definitions is
added to it by using d B . The class obtained from the provider module ms is
extended with a set of definitions d.

With virtual classes, class extensions and mixins, a part of the definitions
composing a class can be stated at a different location than the class declaration.
Gbeta allows a class to be refined in another unit of modularization (i.e., outer
classes). With selector namespaces, part of the behavior can be defined in a
namespace different from the one where the class is declared.

Aspect languages offer certain features similar to those offered by module
systems. We do not consider these in our comparison, however, for the simple
reason that aspects refer to runtime semantics in the specification of pointcuts.
This is out of the scope of the present work.

11.3 Extension Responsibility

We defined a class extension as a method addition or redefinition for an already
existing class (Section 6). The responsibility of extending a class belongs to its
users. For instance, with selector namespaces or classboxes, a class is imported,
and then extended. This responsibility belongs to user of this class, and not to its
creator. With classboxes this is expressed with the extend combinator intended
to be applied to an already existing class (Section 8).

extend = λmt. λms. λc. λd. λε. mt ε‖{cms 7→ d B (ms ε c)}

The (ms ε c) contained in extend assumes that the class already exists in ms.
The variable d contains features used to extend the class c defined in ms with.

The decision to use a mixin or not when creating a class is made by the
creator of the class. This is why, in Ruby, including a module mixin in the
definition of a class is not a class extension in the sense we defined previously.
The choice of using a mixin is taken when the class is created. This is expressed
with the newClassWithMixin combinator where the mixin to use is designated
when the class is created.

newClassWithMixin = λmt. λmixin. λc. λd.

mt‖{c 7→ fix(λσ. d B mixin σ)}

No previous class definition is looked up in a provider module. The variable
d contains the features that the new class c will be composed of, and mixin
contains the mixin module used by c.

11.4 Local Rebinding

The local rebinding property is provided by an extension mechanism in which
extensions are visible by and see former definitions of the code. A change defined
by some class extensions can invoke the former definitions, and former definitions
can invoke the new extensions.

A module system offers a local rebinding property if within an import state-
ment a fix operator is not applied on the module from which a class is imported.
The effect of this fixpoint is to make the imported class use definitions of the im-
porter module. In the studied module systems, gbeta, classboxes, and MixJuice
have the local rebinding property but not selector namespaces.

Object

English

asString
asString

German

printOn(aStream)

^ 'Object of class ', self class
^ 'Objekt der Klasse ', self class

^ aStream printOn: self asString
Object new asString
=> 'Objekt der Klasse Object' Object new asString

=> 'Object of class Object'
Object new printOn: Stdout
=> 'Object of class Object'

Object new printOn: Stdout
=> 'Object of class Object'

Figure 8: In Modular Smalltalk, namespace selectors are not reentrant: invoking
printOn() from the German namespace does not invoke the German version of
asString.

For instance, in gbeta (Section 7), refinements over a set of inner classes are
defined within a subclass of the encapsulating class using the extendEncapsula-
ted combinator:

extendEncapsulated = λmt. λms. mt B ms

As no fix operator is involved, the class definition in the parent encapsulating
class can introduce further refinements.

In the same way the extend combinator used to express the class extension
with classboxes is:

extend = λmt. λms. λc. λd. λε. mt ε‖{cms 7→ d B (ms ε c)}

The extended class is the value given by dB ms ε c. The extensions d override the
definition of c obtained from ms s (the module from which the class is obtained).
Methods originally defined in ms s c can call methods defined in d.

Selector namespaces (Section 6) allow a class to be imported and then ex-
tended with new methods. These new methods can invoke the former methods.
However, the other direction is not possible: former methods cannot invoke re-
defined definitions. We call this property non-reentrance. Selector namespaces
do not support local rebinding because they are not reentrant. For instance, in
Smallscript [39] a German translation could be defined as shown in Figure 8. A
namespace German extends the class Object with a German translation of as-

String. However, the English version of this method belongs to the namespace
English where printOn(aStream) is specified. Therefore, the English version of
asString is always invoked by printOn(aStream) even if the execution occurs from
within the German namespace.

The extend combinator used to express the class extension semantics with
selectors namespace is:

extend = λmt. λms. λc. λd. mt‖{c 7→ d B ((fix ms) c)}

The module ms is fixed before taking the definition of the class c intended to be
extended. The definition obtained from ((fix ms) c) cannot call the extensions
defined by d.

With virtual classes or classboxes, on the other hand, a German translation
would be printed whenever the printOn(aStream) is invoked from within the
package German. These two systems exhibit the local rebinding property. Local
rebinding is characterized by taking into account the calling context.

11.5 Privacy in a Module

Module privacy is expressed using the hide operator. For example to declare a
class as private within a Java package, one may use:

private = λm. λc. (hide c) m

With Java and C#, an imported class may be referred to only within the
importing package or namespace. An imported class does not belong to the
module’s interface, and so, cannot be imported from that module by yet another
module. This is expressed by the hide operator applied to the result of the import.
For instance, the C# usingClassAs combinator (Section 4) which expresses class
import with an alias, is defined as:

usingClassAs = λmt. λms. λa.λc. (hide a)(mt‖{a 7→ (fix ms) c})

The use of (hide a) prevents one from importing the class from another module.
An imported class cannot be re-imported by another module. For instance, the
following Java code is illegal:

package a; class C { };
package b; import a.C;

package c; import b.C; // Error, class C is not accessible from package b

On the other hand, with classboxes (Section 8), a class can be imported,
extended and then imported again by another classbox. The extend combinator
used to express extension is:

extend = λmt. λms. λc. λd. λε. mt ε‖{cms 7→ d B (ms ε c)}

A class that is imported by a classbox and extended is available to clients of
that classbox.

11.6 Mixin Behavior

A Ruby module may define functions that are turned into methods whenever
they are used by a class (Section 5). Such a behavior is called a module mixin

in the Ruby community. The module mixin is applied to the environment rep-
resenting the class being defined. This is expressed by the use of the fixpoint
operator fix within newClassWithMixin.

newClassWithMixin = λmt. λmixin. λc. λd.

mt‖{c 7→ fix(λσ. d B mixin σ)}

The expression mixin σ binds the class being defined σ to the module argu-
ment ε of mixin. This mechanism is illustrated here with Ruby’s module mixin
but it is also applicable to other mixin mechanisms like those of MzScheme [24]
or Jigsaw [9].

11.7 Identity of the Extended Classes

Refining a class by subclassing it does not preserve class identity: the original
and refined definitions are implemented by two distinct classes. With virtual
classes (Section 7), a class is refined by creating a new class that substitutes the
first one when a class lookup is performed. As a consequence, an instance of a
class is not an instance of the refined class.

With classboxes, new methods can be added or redefined on an imported
class. The new methods are part of the class behavior but they are only visible
from the context of the classbox that defines them. As a consequence, these
methods are only accessible in this classbox and in other classboxes that import
the class from the extending classbox. The identity of the class is preserved. As a
consequence, the set of methods understandable by an instance of a class created
by a classbox CB1 may be enlarged if this instance is referenced by some code
in a classbox CB2. This is expressed in our calculus by making the originating
classbox explicit by means of a superscript (e.g., cms).

11.8 Multiple Class Versions at the Same Time

A class defined in a classbox can be refined in another without conflicting with
the original definition. This is a result of allowing multiple versions of the same
class to coexist in the same system. Each version of a given class can have
different collaborating classes present in the same system.

MixJuice offers the possibility of extending a system by defining differential
modules. Such modules are then composed to form a executable system. How-
ever, one strong constraint is that only one particular version of a class can be
present in a system. Therefore, a particular combination of modules may lead
to some unexpected results because some modifications might be propagated to
clients that rely on the original version only.

One current limitation of our formalism is that the restriction of having only
one particular version of a class present in a system is not reflected by the

combinators described above. The notion of executable system is not defined,
therefore no restriction related to the execution can be formulated.

11.9 Connections Separated from Module Definitions

The advantage of units over conventional module and class languages is that
connections between modules or classes are separately specified from their def-
initions. Separating the definition of classes from their use in different modules
makes it easy to replace the original classes with new classes without modifying
the client.

12 Related Work

Considerable effort has been invested in studying theoretical foundations of mod-
ule systems, but to the best of our knowledge there is no work defining a calculus
to compare existing object-oriented module systems. We limit this section to
summarizing work done in expressing module systems of various object-oriented
languages.

In their work on mixins operators Van Limberghen and Mens [32] present the
operator encaps appropriated to deal with multiple inheritance problems, which
is an alternative to the hide operator proposed by Bracha and Lindstrom [12].
They mainly focused on multi-inheritance mechanisms.

Ancona and Zucca [2] define a module calculus suitable for encoding various
existing mechanism for composing modules. They define a module as a set of
imports, a set of exports, and a set of function definitions, i.e., components.
Modules are composed using a set of operators: sum, reduct, freeze, selection.
The operator sum glues two modules together, and is roughly equivalent to
our override (in our calculus, import and export are not explicitly part of a
module). The operator reduct is a form of renaming; import and export com-
ponents are separately renamed via two renamings. The freeze operators binds
input to output names. Finally, selection is used by clients of a module to access
its components. Their approach enables a large variety of existing mechanisms
for combining software components to be expressed (e.g., ML functions, mixin
modules). However, no attempt has been made to express module systems of
mainstream object-oriented languages.

Bono et al., [8], define some basic object-oriented constructs in a lambda-
calculus with records. While they focus on expressing mixin composition as the
primary extension mechanism, they do not address the notion of modules and
composition operators.

Leroy [31] presents an implementation of an SML-like module system. The
SML module system consists of three notions: a structure which is a set of named
components, a signature which is an interface for a structure, and a functor

which is a function that maps a structure into a new structure. A module is
defined by a structure which can be associated with more than one signature. A
module can either be user-defined, or the result of applying a functor to another
module. Leroy describes an attempt at transferring thus module system to other
languages such as core C and mini-ML which are subsets of C and of ML,
respectively.

Linking modules together by functor application prevents the definition of
mutually recursive types or procedures across modules boundaries [23]. Objec-
tive Caml [38] provides an object-oriented layer as well as an SML-like module
system. We did not include this in our comparison because it would be redundant
with the study of MZScheme units.

13 Conclusion

We have defined a simple calculus in which modules and classes are combined
using a set of basic operators like hide and fix. Then, for various object-oriented
programing languages, we expressed their module systems (i.e., Java packages,
C# namespaces, gbeta virtual classes, . . .) by defining combinators like im-
port or extend . The focus of this work is to express various packaging mecha-
nisms using a common foundation. Results of this analysis are summarized in
the taxonomy presented in Section 11. Even if only a very few languages are
treated in this paper compared to the number of module systems proposed over
the last decades, mainstream languages as well as representative languages are
studied.

When defining the representation of classes, we expressed inheritance with
the extendClass combinator. However, we did not model the super reference.
This would have introduced additional complexity to the calculus that would
have shifted the focus of this paper. Furthermore, not all the of languages we
considered support super (e.g., gbeta).

The presented calculus is untyped. As a future work we plan to explore typing
rules for this calculus in order to express, for instance, which compositions of
modules are type safe. Virtual classes (like in Eiffel) represent an unchecked use
of covariance, which is not type-safe [13], whereas the gbeta approach was always
based on checking for covariance (which is possible because, in contrast to Eiffel,
covariance is always explicitly declared).

In this paper we mainly focused on expressing import and extend relation-
ship. Our future work is to apply our approach to other systems such as Modula-
3 [16], ModularJava [18], JavaMod [3] and Nested Inheritance [37] as they offer
the notion of explicit interface.

Numerous formalisms have been developed in recent years to model new
kinds of module systems and their features. However, to our knowledge, ours

is the first attempt to develop a general calculus for modeling and comparing
the diversity of module systems provided by various mainstream object-oriented
programming languages.

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the projects “A Unified Approach to
Composition and Extensibility” (SNF Project No. 200020-105091/1, Oct. 2004
- Sept. 2006) and “Recast: Evolution of Object-Oriented Applications” (SNF
2000-061655.00/1).

We would like to thank Gilad Bracha, William Cook, Erik Ernst, and Eric
Tanter for the valuable discussions we have had, which helped to improve the
presentation of this paper.

References

1. D. Ancona and E. Zucca. A theory of mixin modules: Basic and derived operators.
Mathematical Structures in Computer Science, 8(4):401–446, August 1998.

2. D. Ancona and E. Zucca. A primitive calculus for module systems. In
G. Nadathur, editor, Principles and Practice of Declarative Programming, num-
ber 1702 in LNCS, pages 62–79. Springer Verlag, 1999.

3. D. Ancona and E. Zucca. True modules for Java-like languages. In J. L. Knudsen,
editor, ECOOP 2001, number 2072 in LNCS, pages 354–380. Springer Verlag, 2001.

4. Ken Arnold and James Gosling. The Java Programming Language. Addison Wes-
ley, 1996.

5. AspectJ home page. http://eclipse.org/aspectj/.
6. Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Class-

boxes: Controlling visibility of class extensions. Computer Languages, Systems and
Structures, 31(3-4):107–126, May 2005.

7. Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Classboxes: A minimal
module model supporting local rebinding. In Proceedings of JMLC 2003 (Joint
Modular Languages Conference), volume 2789 of LNCS, pages 122–131. Springer-
Verlag, 2003.

8. Viviana Bono, Amit Patel, and Vitaly Shmatikov. A core calculus of classes and
mixins. In R. Guerraoui, editor, Proceedings ECOOP ’99, volume 1628 of LNCS,
pages 43–66, Lisbon, Portugal, June 1999. Springer-Verlag.

9. Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multi-
ple Inheritance. PhD thesis, Dept. of Computer Science, University of Utah, March
1992.

10. Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings OOP-
SLA/ECOOP ’90, ACM SIGPLAN Notices, volume 25, pages 303–311, October
1990.

11. Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. Uucs-91-017,
University of Utah, Dept. Comp. Sci., October 1991.

12. Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proceedings
of the IEEE International Conference on Computer Languages, pages 282–290,
April 1992.

13. Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative to
virtual types. In Proceedings ECOOP ’98, pages 523–549. Springer-Verlag, 1998.

14. C#. http://www.ecma-international.org/publications/standards/Ecma-334.htm.

15. Luca Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138–164, 1988.

16. Luca Cardelli, Jim Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and
Greg Nelson. Modula-3 language definition. ACM SIGPLAN Notices, 27(8):15–
42, August 1992.

17. Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch for Java. In OOPSLA
2000 Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, pages 130–145, 2000.

18. John Corwin, David F. Bacon, David Grove, and Chet Murthy. MJ: a rational
module system for Java and its applications. In Proceedings of the 18th ACM
SIGPLAN conference on Object-oriented programing, systems, languages, and ap-
plications, pages 241–254. ACM Press, 2003.

19. Linda G. DeMichiel and Richard P. Gabriel. The common lisp object system:
An overview. In J. Bézivin, J-M. Hullot, P. Cointe, and H. Lieberman, editors,
Proceedings ECOOP ’87, volume 276 of LNCS, pages 151–170, Paris, France, June
1987. Springer-Verlag.

20. DrScheme. http://www.drscheme.org/.
21. Erik Ernst. Propagating class and method combination. In R. Guerraoui, editor,

Proceedings ECOOP ’99, volume 1628 of LNCS, pages 67–91, Lisbon, Portugal,
June 1999. Springer-Verlag.

22. Erik Ernst. Family polymorphism. In J. L. Knudsen, editor, ECOOP 2001, num-
ber 2072 in LNCS, pages 303–326. Springer Verlag, 2001.

23. Matthew Flatt and Matthias Felleisen. Units: Cool modules for hot languages.
In Proceedings of PLDI ’98 Conference on Programming Language Design and
Implementation, pages 236–248. ACM Press, 1998.

24. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-
ins. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 171–183. ACM Press, 1998.

25. Yuuji Ichisugi and Akira Tanaka. Difference-based modules: A class independent
module mechanism. In Proceedings ECOOP 2002, volume 2374 of LNCS, Malaga,
Spain, June 2002. Springer Verlag.

26. Atsushi Igarashi and Benjamin C. Pierce. On inner classes. Lecture Notes in
Computer Science, 1850, 2000.

27. Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
future: The story of Squeak, A practical Smalltalk written in itself. In Proceedings
OOPSLA ’97, ACM SIGPLAN Notices, pages 318–326. ACM Press, November
1997.

28. Java. http://java.sun.com/.
29. Sonia E. Keene. Object-Oriented Programming in Common-Lisp. Addison Wesley,

1989.
30. Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kris-

ten Nygaard. The BETA programming language. In B. Shriver and P. Wegner,
editors, Research Directions in Object-Oriented Programming, pages 7–48. MIT
Press, Cambridge, Mass., 1987.

31. Xavier Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

32. Tom Mens and Marc van Limberghen. Encapsulation and composition as orthog-
onal operators on mixins: A solution to multiple inheritance problems. Object
Oriented Systems, 3(1):1–30, 1996.

33. Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.
34. Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In Proceed-

ings of the 2nd international conference on Aspect-oriented software development,
pages 90–99. ACM Press, 2003.

35. Todd Millstein, Mark Reay, and Craig Chambers. Relaxed multijava: balancing ex-
tensibility and modular typechecking. In Proceedings of the 18th ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and applications,
pages 224–240. ACM Press, 2003.

36. Hanspeter Mössenböck. Object-Oriented Programming in Oberon-2. Springer-
Verlag, 1993.

37. Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility
via nested inheritance. In OOPSLA ’04: Proceedings of the 19th annual ACM
SIGPLAN Conference on Object-oriented programming, systems, languages, and
applications, pages 99–115. ACM Press, 2004.

38. Ocaml. http://caml.inria.fr/.
39. Dave Simmons. Smallscript, 2002. http://www.smallscript.com.
40. S. Tucker Taft. Ada 9x: From abstraction-oriented to object-oriented. In Proceed-

ings OOPSLA ’93, volume 28, pages 127–143, October 1993.
41. Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N Degrees

of Separation: Multi-dimensional Separation of Concerns. In Proceedings of ICSE
’99, pages 107–119, Los Angeles CA, USA, 1999.

42. David Thomas and Andrew Hunt. Programming Ruby. Addison Wesley, 2001.
43. Cincom Smalltalk, September 2003. http://www.cincom.com/scripts/smalltalk.dll/.
44. Allen Wirfs-Brock and Brian Wilkerson. An overview of modular Smalltalk. In

Proceedings OOPSLA ’88, pages 123–134, November 1988.
45. Matthias Zenger. Type-safe prototype-based component evolution. In Proceedings

ECOOP 2002, volume 2374 of LNCS, pages 470–497, Malaga, Spain, June 2002.
Springer Verlag.

