
Third Workshop on Dynamic Languages and
Applications

Alexandre Bergel1, Wolfgang De Meuter2, Stéphane Ducasse3, Oscar
Nierstrasz4, Roel Wuyts5

1 Software Architecture Group, Hasso-Plattner-Institut, Germany
2 Vrije Universiteit Brussel, Belgium

3 University of Savoie, France
4 Software Composition Group, University of Bern, Switzerland

5 IMEC & Université Libre de Bruxelles, Belgium

Abstract. Following last two years’ workshop on dynamic languages at
the ECOOP conference, the Dyla 2007 workshop was a successful and
popular event. As its name implies, the workshop’s focus was on dynamic
languages and their applications. Topics and discussions at the workshop
included macro expansion mechanisms, extension of the method lookup
algorithm, language interpretation, reflexivity and languages for mobile
ad hoc networks.

The main goal of this workshop was to bring together different dynamic
language communities and favouring cross communities interaction. Dyla
2007 was organised as a full day meeting, partly devoted to presentation
of submitted position papers and partly devoted to tool demonstration.
All accepted papers can be downloaded from the workshop’s web site.

In this report, we provide an overview of the presentations and a sum-
mary of discussions.

1 Workshop Description and Objective

The advent of Java and C# has been a major breakthrough in the adoption
of some important object-oriented language characteristics. It turned academic
features like interfaces, garbage-collection and meta-programming into technolo-
gies generally accepted by industry. But the massive adoption of these languages
now also gives rise to a growing awareness of their limitations. On the one hand,
researchers and practitioners feel themselves wrestling with the static type sys-
tems, the overly complex abstract grammars, the simplistic concurrency pro-
visions, the very limited reflection capabilities and the absence of higher-order
language constructs such as delegation, closures and continuations. On the other
hand, dynamic languages like Ruby and Python are getting ever more popular.
Therefore, it is time for academia to move on and to help pushing such lan-
guages into the mainstream. On the one hand, this requires us to look back and
pick up what is out there in existing dynamic languages (such as Lisp, Scheme,
Smalltalk, Self,...) to be recovered for the future. On the other hand, it requires



2 A. Bergel et al.

us to further explore the power of future dynamic language constructs in the con-
text of new challenging fields such as aspect-orientation, pervasive computing,
mobile code, context-aware computing, etc.

The goal of this workshop is to act as a forum where we can discuss new
advances in the design, implementation and application of object-oriented lan-
guages that radically diverge from the statically typed class-based reflectionless
doctrine. The goal of the workshop is to discuss new as well as older “forgot-
ten” languages and features in this context. Topics of interest include, but are
certainly not limited to:

– agents, actors, active object, distribution, concurrency and mobility
– delegation, prototypes, mixins
– first-class closures, continuations, environments
– reflection and meta-programming
– (dynamic) aspects for dynamic languages
– higher-order objects & messages
– ... other exotic dynamic features which you would categorize as OO
– multi-paradigm & static/dynamic-marriages
– (concurrent/distributed/mobile/aspect) virtual machines
– optimisation of dynamic languages
– automated reasoning about dynamic languages
– “regular” syntactic schemes (cf. S-expressions, Smalltalk, Self)
– Smalltalk, Python, Ruby, Scheme, Lisp, Self, ABCL, Prolog, ...
– ... any topic relevant in applying and/or supporting dynamic languages.

In addition to the organisers, the program committee of the workshop in-
cluded:

– Johan Brichau (Universit catholique de Louvain, Belgium)
– Pascal Costanza (Vrije Universiteit Brussel, Belgium)
– Erik Ernst (University of Aarhus, Denmark)
– Robert Hirschfeld (Hasso-Plattner-Institut, University of Potsdam, Germany)
– Matthew Flatt (University of Utah, USA)
– Dave Thomas (Bedarra Research Labs, Canada)
– Laurence Tratt (King’s College London, UK)

2 Content

This section describes the organisation aspects of the workshop. The accepted
papers and workshop slides can be found on the workshop’s website1.

1 dyla2007.unibe.ch

dyla2007.unibe.ch


3rd Workshop on Dynamic Languages and Applications 3

Contrasting compile-time meta-programming in Metalua and Converge – Fabien
Fleutot and Laurence Tratt

Powerful, safe macro systems allow programs to be programatically con-
structed by the user at compile-time. Such systems have traditionally
been largely confined to LISP-like languages and their successors. In
this paper we describe and compare two modern, dynamically typed lan-
guages Converge and Metalua, which both have macro-like systems. We
show how, in different ways, they build upon traditional macro systems
to explore new ways of constructing programs.

This presentation raised several questions regarding differences with other
macro mechanism such as the one of Lisp-like languages. Also some issues re-
garding hygienic were successfully addressed by the presenter.

Relevant references related to this work are:

– The Converge programming language2 [Tra05]
– Metalua3

Collective Behavior – Adrian Kuhn

When modelling a system, often there are properties and operations
related to a group of objects rather than to a single object only. For
example, given a person object with an income property, the average
income applies to a group of persons as a whole rather than to a single
person. In this paper we propose to extend programming languages with
the notion of collective behavior. Collective behavior associates custom
behavior with collection instances, based on the type of its elements.
However, collective behavior is modeled as part of the element’s rather
than the collection’s class. We present a proof-of-concept implementation
of collective behavior using Smalltalk, and validate the usefulness of col-
lective behavior considering a real-life case study: 20% of the case-studys
domain logic is subject to collective behavior.

The need for an accurate comparison with C++ templates was a good point
raised by the audience. This will be addressed in future work, which also cover
a formal description of the semantics.

How to not write Virtual Machines for Dynamic Languages – Carl Friedrich
Bolz and Armin Rigo

Typical modern dynamic languages have a growing number of implemen-
tations. We explore the reasons for this situation, and the limitations it
imposes on open source or academic communities that lack the resources

2 convergepl.org/
3 metalua.luaforge.net

http://convergepl.org/
metalua.luaforge.net


4 A. Bergel et al.

to fine-tune and maintain them all. It is sometimes proposed that im-
plementing dynamic languages on top of a standardized general-purpose
object-oriented virtual machine (like Java or .NET) would help reduce
this burden. We propose a complementary alternative to writing custom
virtual machine (VMs) by hand, validated by the PyPy project: flexi-
bly generating VMs from a high-level “specification”, inserting features
and low-level details automatically – including good just-in-time com-
pilers tuned to the dynamic language at hand. We believe this to be
ultimately a better investment of efforts than the development of more
and more advanced general-purpose object oriented VMs. In this paper
we compare these two approaches in detail.

This presentation was preceded with a very convincing demonstration. A
small interpret for a reverse polish notation calculator has been implemented.
Very aggressive optimisations resulted in an highly optimised generated compiler
for this calculator. Discussions were mainly about VM performance, especially
when compared with Hotspot. Implementing Java on top of PyPy in order to
assess VM performance was suggested. More information about PyPy is avail-
able online4.

On the Interaction of Method Lookup and Scope with Inheritance and Nesting –
Gilad Bracha

Languages that support both inheritance and nesting of declarations
define method lookup to first climb up the inheritance hierarchy and then
recurse up the lexical hierarchy. We discuss weaknesses of this approach,
present alternatives, and illustrate a preferred semantics as implemented
in Newspeak, a new language in the Smalltalk family.

Pros and cons for having explicit self and outer sends in presence of virtual
classes were presented. Several questions were raised from the large audience.
Some of them covered the need of virtual classes in presence of closure. Gilad’s
answer was that each completes the other.

The Reflectivity: Sub-Method Reflection and more – Marcus Denker

Reflection has proved to be a powerful feature to support the design of
development environments and to extend languages. However, the granu-
larity of structural reflection stops at the method level. This is a problem
since without sub-method reflection developers have to duplicate efforts,
for example to introduce transparently pluggable type-checkers or fine-
grained profilers.

4 codespeak.net/pypy/dist/pypy/doc/news.html and pypy.org

codespeak.net/pypy/dist/pypy/doc/news.html
pypy.org


3rd Workshop on Dynamic Languages and Applications 5

This demo presents the Reflectivity, a Smalltalk system that improves
support for reflection in two ways: it provides an efficient implementa-
tion of sub-method structural reflection and a simplified and generalized
model of partial behavioral reflection. We present examples that use the
new reflective features and discuss possible future work.

A number of questions were raised concerning the memory overhead. This
appears to be largely due to the architecture of VMs, which are bytecode based.
AST compression is part of the future work.

Some work related to this presentation5 are Sub-Method Reflection [DDLM07],
Unanticipated Partial Behavioral Reflection [RDT07] and Higher Abstractions
for Dynamic Analysis [DGL06].

AmbientTalk/2: Object-oriented Event-driven Programming in Mobile Ad hoc
Networks – Elisa Gonzalez

The recent progress of wireless networks technologies and mobile hard-
ware technologies has led to the emergence of a new generation of ap-
plications. These applications are deployed on mobile devices equipped
with wireless infrastructure which collaborate spontaneously with other
devices in the environment forming mobile ad hoc networks. Distributed
programming in such setting is substantially complicated by the inter-
mittent connectivity of the devices in the network and the lack of any cen-
tralized coordination facility. Any application designed for mobile ad hoc
networks has to deal with these new hardware phenomena. Because the
effects engendered by such phenomena often pervade the entire applica-
tion, an appropriate computational model should be developed that eases
distributed programming in a mobile network by taking these phenom-
ena into account from the ground up. In the previous ECOOP edition, we
presented and demonstrated AmbientTalk, a distributed object-oriented
programming language specially designed for mobile ad hoc networks.
This demonstration showcases AmbientTalk/2, the latest incarnation of
the AmbientTalk programming language which supplants its predecessor
while preserving its fundamental characteristics. The language is still a
so-called ambient-oriented programming language which allow objects
to abstract over transient network failures. This demo will highlight the
new design choices in AmbientTalk/2 and the rationale behind them.
The most important ones are the adoption of an event-driven concur-
rency model that provides AmbientTalk/2 with finer grained distribu-
tion abstractions making it highly suitable for composing service objects
across a mobile network, and the integration of leasing techniques for
distributed memory management.
The demo is conceived as a hands-on experience in using the main fea-
tures of the language where we show and discuss the following:

5 scg.unibe.ch/Research/Reflectivity/

scg.unibe.ch/Research/Reflectivity/


6 A. Bergel et al.

– The development of an ambient application from ground up that
illustrates the simplicity and expressive power of AmbientTalk/2.

– While developing the application, participants become gradually ac-
quainted with AmbientTalk/2’s concurrency and distribution object
models as well as the dedicated language constructs to deal with par-
tial failures, service discovery and distributed memory management.

– We demonstrate how ambient applications actually behave in a real-
life context by showing the execution of a small yet representative
application on several portable devices such as laptops and smart
phones.

AmbientTalk/2 is available at prog.vub.ac.be/amop with documenta-
tion and examples.

This very convincing demonstration used a personal digital assistant to com-
municate to a laptop using a wireless communication protocol. AmbientTalk
[DCMTD06] proves to be more expressive than traditional programming lan-
guages, especially about error recovery.

3 Conclusion

Most of the presentations and discussions of Dyla’07 present extensions of tradi-
tional dynamic languages. For example Metalua augments lua with an expressive
macro mechanism, Converge is a Python dialect, Newspeak a Smalltalk dialect,
and AmbientTalk a Self-like language. Comments and encouragement expressed
by the audience asserted that dynamic languages constitute a viable research
area. Efforts for experimentation and prototyping are greatly reduced in pres-
ence of a dynamic type system.

Dyla’07 lived up to its expectations, with high-quality presentations and
demonstrations. Discussion were lively and stimulating.

Acknowledgments

We wish to thank Michael Cebulla and Jan Szumiec for their precious support.
We also wish to thank all the participants.

References

DCMTD06. Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, and Wolfgang
De Meuter Theo D’Hondt. Ambient-oriented programming in ambi-
enttalk. In Dave Thomas, editor, Proceedings of the 20th European Confer-
ence on Object-Oriented Programming (ECOOP ’06), volume 4067, pages
230–254. Springer-Verlag, 2006.

DDLM07. Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe
Marschall. Sub-method reflection. Journal of Object Technology, 6(9),
September 2007. To appear.

prog.vub.ac.be/amop


3rd Workshop on Dynamic Languages and Applications 7

DGL06. Marcus Denker, Orla Greevy, and Michele Lanza. Higher abstractions for
dynamic analysis. In 2nd International Workshop on Program Compre-
hension through Dynamic Analysis (PCODA 2006), pages 32–38, 2006.

RDT07. David Röthlisberger, Marcus Denker, and Éric Tanter. Unanticipated
partial behavioral reflection: Adapting applications at runtime. Journal
of Computer Languages, Systems and Structures, 2007. To appear.

Tra05. Laurence Tratt. The Converge programming language. Technical Re-
port TR-05-01, Department of Computer Science, King’s College London,
February 2005.


	Third Workshop on Dynamic Languages and Applications
	Alexandre Bergel, Wolfgang De Meuter, Stéphane Ducasse, Oscar Nierstrasz, Roel Wuyts

