
Stateful Traits and their Formalization ?

Alexandre Bergel a Stéphane Ducasse b Oscar Nierstrasz c

Roel Wuyts d

aLERO & DSG, Trinity College Dublin, Ireland
bLISTIC – University of Savoie, France
cSCG, University of Bern, Switzerland

dIMEC, Belgium, also Professor at Université Libre de Bruxelles, Belgium

Revised version submitted to Journal of Computer Languages, Systems
and Structures,

vol. 34, no. 2-3, 2008, pp. 83-108.

doi: 10.1016/j.cl.2007.05.005

Abstract

Traits offer a fine-grained mechanism to compose classes from reusable components
while avoiding problems of fragility brought by multiple inheritance and mixins.
Traits as originally proposed are stateless, that is, they contain only methods, but
no instance variables. State can only be accessed within stateless traits by accessors,
which become required methods of the trait. Although this approach works reason-
ably well in practice, it means that many traits, viewed as software components,
are artificially incomplete, and classes that use such traits may contain significant
amounts of boilerplate glue code. We present an approach to stateful traits that
is faithful to the guiding principle of stateless traits: the client retains control of
the composition. Stateful traits consist of a minimal extension to stateless traits in
which instance variables are purely local to the scope of a trait, unless they are
explicitly made accessible by the composing client of a trait. We demonstrate by
means of a formal object calculus that adding state to traits preserves the flatten-
ing property: traits contained in a program can be compiled away. We discuss and
compare two implementation strategies, and briefly present a case study in which
stateful traits have been used to refactor the trait-based version of the Smalltalk
collection hierarchy.

? We gratefully acknowledge the financial support of the Swiss National Science
Foundation Recast (SNF 2000-061655.00/1), the Cook ANR French projects, and
the Science Foundation Ireland and Lero — the Irish Software Engineering Research
Centre.

Email addresses: Alexandre.Bergel@cs.tcd.ie (Alexandre Bergel),

Preprint submitted to Elsevier Science 26 September 2008

1 Introduction

Traits are pure units of reuse consisting only of methods [SDNB03,DNS+06].
Traits can be composed to either form other traits or classes. They are rec-
ognized for their potential in supporting better composition and reuse, hence
their integration in newer versions of languages such as Perl 6, Squeak [IKM+97],
Scala [sca], Slate [Sla] and Fortress [for]. Although traits were originally de-
signed for dynamically-typed languages, there has been considerable interest
in applying traits to statically-typed languages as well [FR03,SD05,NDS06].

Traits make it possible for inheritance to be used to reflect conceptual hi-
erarchy rather than for code reuse. Duplicated code can be factored out as
traits, rather than being jimmied into a class hierarchy in awkward locations.
At the same time, traits largely avoid the fragility problems introduced by
approaches based on multiple inheritance and mixins, since traits are entirely
divorced from the inheritance hierarchy.

In their original form, however, traits are stateless, i.e., traits are purely groups
of methods without any instance variables. Since traits not only provide meth-
ods, but may also require methods, the idiom introduced to deal with state
was to access state only through accessors. The client of a trait is either a
class or a composite trait that uses the trait to build up its implementation.
A key principle behind traits is that the client retains control of the composi-
tion. The client, therefore, is responsible for providing the required methods,
and resolving any possible conflicts. Required accessors would propagate to
composite traits, and only the composing client class would be required to im-
plement the missing accessors and the instance variables that they give access
to. In practice, the accessors and instance variables could easily be generated
by a tool, so the fact that traits were stateless posed only a minor nuisance.

Conceptually, however, the lack of state means that virtually all traits are
incomplete, since just about any useful trait will require some accessors. Fur-
thermore, the mechanism of required methods is abused to cover for the lack
of state. As a consequence, the required interface of a trait is cluttered with
noise that impedes the understanding and consequently the reuse of a trait.
Even if the missing state and accessors can be generated, many clients will
consist of “shell classes” — classes that do nothing but compose traits with
boilerplate glue code. Furthermore, if the required accessors are made public
(as is the case in the Smalltalk implementation), encapsulation is unnecessar-
ily violated in the client classes. Finally, if a trait is ever modified to include
additional state, new required accessors will be propagated to all client traits

stephane.ducasse@univ-savoie.fr (Stéphane Ducasse),
oscar.nierstrasz@iam.unibe.ch (Oscar Nierstrasz), Roel.Wuyts@imec.be
(Roel Wuyts).

2

and classes, thus introducing a form of fragility that traits were intended to
avoid!

This paper describes stateful traits, an extension of stateless traits in which
a single variable access operator is introduced to give clients of traits control
over the visibility of instance variables. The approach is faithful to the guiding
principle of stateless traits in which the client of a trait has full control over
the composition. It is this principle that is the key to avoiding fragility in the
face of change, since no implicit conflict resolution rules come into play when
a trait is modified.

In a nutshell, instance variables are private to a trait. The client can decide,
however, at composition time to access instance variables offered by a used
trait, or to merge variables offered by multiple traits. In this paper we present
an analysis of the limitations of stateless traits and we present our approach
to achieving stateful traits. An important property of stateful traits (inherited
from stateless version) follows from the way that classes are constructed from
traits. The flattening property refers to the fact that in any class defined
using traits, the traits can be inlined to give an equivalent class definition that
does not use traits. We demonstrate this by formally describing stateful traits.
Then, we describe and compare two implementation strategies, and we briefly
describe our experience with an illustrative case study.

The article is an extension of [BDNW07], presenting a formal model of a
Smalltalk-like language, and then showing how stateless traits and statefull
traits can be added by “flattening” them down to the base language. The
structure of this paper is as follows: First we review stateless traits [SDNB03,
DNS+06]. In Section 3 we discuss the limitations of stateless traits. In Section 4
we introduce stateful traits, which support the introduction of state in traits.
Section 5 formally describes the semantics of flattening for stateless traits and
stateful traits. Section 6 outlines some details of the implementation of stateful
traits. In Section 7 we present a small case study in which we compare the
results of refactoring the Smalltalk collections hierarchy with both stateless
and stateful traits. In Section 8 we discuss some of the broader consequences
of the design of stateful traits. Section 9 discusses related work. Section 10
concludes the paper.

3

SyncStream
lock
lock
lock:
isBusy
hash

TSyncReadWrite
syncRead
syncWrite
hash

read
write
lock:
lock

@{hashFromSync -> hash}

TStream
read
write
hash

@{hashFromStream -> hash}

syncRead
 | value |
 self lock acquire.
 value := self read.
 self lock release.
 ^ value

syncWrite
 | value |
 self lock acquire.
 value := self write.
 self lock release.
 ^ value

hash
 ^ self hashFromSync
 bitAnd: self hashFromStream

Uses trait

Trait Name
provided
methods

required
methods

Fig. 1. The class SyncStream is composed of the two traits TSyncReadWrite and
TStream

2 Stateless traits

2.1 Reusable groups of methods

Stateless traits are sets of methods that serve as the behavioural building
block of classes and primitive units of code reuse [DNS+06]. In addition to
offering behaviour, traits also require methods, i.e., methods that are needed
so that trait behaviour is fulfilled. Traits do not define state, instead they
require accessor methods.

For example, in Figure 1, the trait TSyncReadWrite provides the methods
syncRead, syncWrite and hash. It requires the methods read and write, and
the two accessor methods lock and lock:. We use an extension to UML to
represent traits, where the right column lists required methods while the
left one lists the provided methods.

2.2 Composing classes from mixins

The following equation depicts how a class is built with traits:

class = superclass+ state+ trait composition+ glue code

A class is specified from a superclass, state definition, a set of traits, and
some glue methods. Glue methods are defined in the class and they connect
the traits together; i.e., they implement required trait methods (often for

4

accessing state), they adapt provided trait methods, and they resolve method
conflicts.

In Figure 1, the class SyncStream defines the field lock and the glue methods
lock, lock:, isBusy and hash. The other required methods of TSyncReadWrite,
read and write, are also provided since the class SyncStream uses another trait
TStream which provides them.

Trait composition respects the following three rules:

• Methods defined in the class take precedence over trait methods. This allows
the glue methods defined in a class to override methods with the same name
provided by the used traits.
• Flattening property. A non-overridden method in a trait has the same se-

mantics as if it were implemented directly in the class using the trait.
• Composition order is irrelevant. All the traits have the same precedence,

and hence conflicting trait methods must be explicitly disambiguated.

With this approach, classes retain their primary role as generators of instances,
whereas traits are purely behavioural units of reuse. As with mixins, classes are
organized in a single inheritance hierarchy, thus avoiding the key problems of
multiple inheritance, but the incremental extensions that classes introduce to
their superclasses are specified using one or more traits. In contrast to mixins,
several traits can be applied to a class in a single operation: trait composition
is unordered. Instead of the trait composition resulting implicitly from the
order in which traits are composed (as is the case with mixins), it is fully
under the control of the composing class.

2.3 Conflict resolution

While composing traits, method conflicts may arise. A conflict arises if we
combine two or more traits that provide identically named methods that do
not originate from the same trait. Conflicts are resolved by implementing a
method at the level of the class that overrides the conflicting methods, or by
excluding a method from all but one trait. In addition traits allow method
aliasing ; this makes it possible for the programmer to introduce an additional
name for a method provided by a trait. The new name is used to obtain
access to a method that would otherwise be unreachable because it has been
overridden [DNS+06].

In Figure 1, methods in TSyncReadWrite and in TStream are used by Sync-

Stream. The trait composition associated to SyncStream is:
TSyncReadWrite@{hashFromSync→hash} + TStream@{hashFromStream→hash}

This means that SyncStream is composed of (i) the trait TSyncReadWrite for

5

which the method hash is aliased to hashFromSync and (ii) the trait TStream

for which the method hash is aliased to hashFromStream.

2.4 Method composition operators

The semantics of traits composition is based on four operators: sum, overrid-
ing, exclusion and aliasing [DNS+06].

The sum trait TSyncReadWrite + TStream contains all of the non-conflicting
methods of TSyncReadWrite and TStream. If there is a method conflict, that is,
if TSyncReadWrite and TStream both define a method with the same name, then
in TSyncReadWrite + TStream that name is bound to a distinguished conflict
method. The + operator is associative and commutative.

The overriding operator constructs a new composition trait by extending an
existing trait composition with some explicit local definitions. For instance,
SyncStream overrides the method hash obtained from its trait composition. This
can also be done with methods, as we will discuss in more detail later.

A trait can be constructed by excluding methods from an existing trait using
the exclusion operator −. Thus, for instance, TStream − {read, write} has a
single method hash. Exclusion is used to avoid conflicts, or if one needs to
reuse a trait that is “too big” for one’s application.

The method aliasing operator @ creates a new trait by providing an addi-
tional name for an existing method. For example, if TStream is a trait that
defines read, write and hash, then TStream @ {hashFromStream →hash} is a trait
that defines read, write, hash and hashFromStream. The additional method hash-

FromStream has the same body as the method hash. Aliases are used to make
conflicting methods available under another name, perhaps to meet the re-
quirements of some other trait, or to avoid overriding. Note that because the
body of the aliased method is not changed in any way, so an alias to a recursive
method is not recursive.

3 Limitations of stateless traits

Traits support the reuse of coherent groups of methods by otherwise inde-
pendent classes [DNS+06]. Traits can be composed out of other traits. As a
consequence they serve well as a medium for structuring code. Unfortunately
stateless traits necessarily encode dependency on state in terms of required
methods (i.e., accessors). In essence, traits are necessarily incomplete since vir-
tually any useful trait will be forced to define required accessors. This means

6

that the composing class must define the missing instance variables and ac-
cessors.

The incompleteness of traits results in a number of annoying limitations,
namely: (i) trait reusability is impacted because the required interface is typ-
ically cluttered with uninteresting required accessors, (ii) client classes are
forced to implement boilerplate glue code, (iii) the introduction of new state
in a trait propagates required accessors to all client classes, and (iv) public
accessors break encapsulation of the client class.

Although these annoyances can be largely addressed by proper tool support,
they disturb the appeal of traits as a clean, lightweight mechanism for com-
posing classes from reusable components. A proper understanding of these
limitations is a prerequisite to entertaining any proposal for a more general
approach.

3.1 Limited reusability

The fact that a stateless trait is forced to encode state in terms of required
accessors means that it cannot be composed “off-the-shelf” without some ad-
ditional action. Virtually every useful trait is incomplete, even though the
missing part can be trivially fulfilled.

What’s worse, however, is the fact that the required interface of a trait is
cluttered with dependencies on uninteresting required accessors, rather than
focussing attention on the non-trivial hook methods that clients must imple-
ment.

Although this problem can be partially alleviated with proper tool support
that distinguishes the uninteresting required accessors from the other required
methods, the fact remains that traits with required accessors can never be
reused off-the-shelf without additional action by the ultimate client class.

3.2 Boilerplate glue code

The necessary additional client action consists essentially in the generation of
boilerplate glue code to inject the missing instance variables, accessors and
initialization code. Clearly this boilerplate code must be generated for each
and every client class. In the most straightforward approach, this will lead to
the kind of duplicated code that traits were intended to avoid.

Figure 2 illustrates such a situation where the trait TSyncReadWrite needs to

7

TSyncReadWrite
lockinitialize
syncRead
syncWrite

read
write
lock:
lock

SyncFile
lock
lock:
lock
read
write

SyncStream
lock
lock:
lock
read
write

SyncSocket
lock
lock:
lock
read
write

syncRead
 | value |
 self lock acquire.
 value := self read.
 self lock release.
 ^ value

syncWrite
 | value |
 self lock acquire.
 value := self write.
 self lock release.
 ^ value

Duplicated code

Use of trait

initialize
 super initialize.
 self lock: Lock new

Fig. 2. The lock variable, the lock and lock: methods are duplicated among trait
TSyncReadWrite users.

access a lock. This lock variable, the lock accessor and the lock: mutator have
to be duplicated in SyncFile, SyncStream and SyncSocket.

Once again, to avoid this situation, tool support would be required (i) to
automatically generate the required instance variables and accessors, and (ii)
to generate the code in such a way as to avoid actual duplication.

Another unpleasant side effect of the need for boilerplate glue code is the emer-
gence of “shell classes” consisting of nothing but glue code. In the Smalltalk
hierarchy refactored using stateless traits [BSD03], we note that 24% (7 out of
29) of the classes in the hierarchy refactored with traits are pure shell classes.

3.3 Propagation of required accessors

If a trait implementation evolves and requires new variables, it may impact all
the classes that use it, even if the interface remains untouched. For instance,
if the implementation of the trait TSyncReadWrite evolves and requires a new
variable numberWaiting intended to give the number of clients waiting for the
lock, then all the classes using this trait are impacted, even though the public
interface does not change.

Required accessors are propagated and accumulated from trait to trait, there-
fore when a class is composed of deeply composed traits, a large number of
accessors may need to be resolved. When a new state dependency is intro-
duced in a deeply nested trait, required accessors can be propagated to a

8

large number of client classes. Again, proper tool support can largely mitigate
the consequences of such changes, but a more satisfactory solution would be
welcome.

3.4 Violation of encapsulation

Stateless traits violate encapsulation in two ways. First of all, stateless traits
unnecessarily expose information about their internal representation, thus
muddying their interface. A stateless trait exposes every part of its needed
representation as a required accessor, even if this information is of no interest
to its clients. Encapsulation would be better served if traits resembled more
closely abstract classes, where only abstract methods are explicitly declared
as being the responsibility of the client subclass. By the same token, a client
class using a trait should only see those required methods that are truly its
responsibility to implement, and no others.

The second violation is about visibility. In Smalltalk, instance variables are
always private. Access can be granted to other objects by providing public
accessors. But if traits require accessors, then classes using these traits must
provide public accessors to the missing state, even if this is not desired.

In principle, this problem could be somewhat mitigated in Java-like languages
by including visibility modifiers for stateless traits in Java-like languages. A
trait could then require a private or protected accessor for missing state. The
client class could then supply these accessors without violating encapsulation
(and optionally relaxing the required modifier). Unlike this approach which is
very close to the impementation language, this paper proposes a more princi-
pled solution close to the original elegance of the stateless traits model.

4 Stateful traits: reconciling traits and state

We now present stateful traits as our solution to the limitations of stateless
traits. Although it may seem that adding instance variables to traits would
represent a trivial extension, in fact there are a number of issues that need to
be resolved. Briefly, our solution addresses the following concerns:

• Stateless traits should be a special case of stateful traits. The original se-
mantics of stateless traits (and the advantages of that solution) should not
be impacted.
• Any extension should be syntactically and semantically minimal. We seek

the simplest solution that could possible work.

9

• We should address the limitations listed in Section 3. In particular, it should
be possible to express complete traits. Only methods that are conceptually
the responsibility of client classes should be listed as required methods.
• The solution should offer sensible default semantics for trait usage, thus

enabling black-box usage.
• Consistent with the guiding principle of stateless traits, the client class

should retain control over the composition, in particular over the policy for
resolving conflicts. A degree of white-box usage is therefore also supported,
where needed.
• As with stateless traits, we seek to avoid fragility with respect to change.

Changes to the representation of a trait should normally not affect its clients.
• The solution should be largely language independent. We do not depend on

obscure or exotic language features, so the approach should easily apply to
most object-oriented languages.

The solution we present extends traits to possibly include instance variables.
In a nutshell, there are three aspects to our approach:

(1) Instance variables are, by default, private to the scope of the trait that
defines them.

(2) The client of a trait, i.e., a class or a composite trait, may access selected
variables of that trait, mapping those variables to possibly new names.
The new names are private to the scope of the client.

(3) The client of a composite trait may merge variables of different traits it
uses by mapping them to a common name. The new name is private to
the scope of the client.

In the following subsections we provide details of the stateful traits model.

4.1 Stateful trait definition

A stateful trait extends a stateless trait by including private instance variables.
A stateful trait therefore consists of a group of public methods and private
instance variables, and possibly a specification of some additional required
methods to be implemented by clients.

Methods. Methods defined in a trait are visible to any other trait with which
it is composed. Because methods are public, conflicts may occur when traits
are composed. Method conflicts for stateful traits are resolved in the same
way as with stateless traits.

Variables. By default, variables are private to the trait that defines them.
Because variables are private, conflicts between variables cannot occur when
traits are composed. If, for example, traits T1 and T2 each define a variable x,
then the composition of T1 + T2 does not yield a variable conflict. Variables

10

SyncStream

isBusy
hash

TSyncReadWrite
lock
initialize
syncRead
syncWrite
hash

read
write

@{hashFromSync -> hash}
@@{syncLock -> lock}

TStream

read
write
hash

@{hashFromStream -> hash}

syncRead
 | value |
 lock acquire.
 value := self read.
 lock release.
 ^ value

syncWrite
 | value |
 lock acquire.
 value := self write.
 lock release.
 ^ value

isBusy
 ^ syncLock isAcquired

hash
 ^ self hashFromSync
 bitAnd: self hashFromStream

initialize
 super initialize.
 lock := Lock new

Uses trait

Trait Name
provided
methods

required
methods

Fig. 3. The class SyncStream is composed of the stateful traits TStream and TSyn-
cReadWrite.

are only visible to the trait that defines them, unless access is widened by
the composing client trait or class with the @@ variable access operator.

Figure 3 shows how the example presented in Figure 1 is reimplemented us-
ing stateful traits. The class SyncStream is composed of the traits TStream

and TSyncReadWrite. The trait TSyncReadWrite defines the variable lock, three
methods syncRead, syncWrite and hash, and requires methods read and write.

Note that, in order to include state in traits, we must extend the mechanism for
defining traits. In the Smalltalk implementation, this is achieved by extending
the message sent to the Trait class with a new keyword argument to represent
the used instance variables. For instance, we can now define the TSyncReadWrite

trait as follows:

Trait named: #TSyncReadWrite
uses: {}
instVarNames: ’lock’

The trait TSyncReadWrite is not composed of any other traits and it defines
a variable lock. The uses: clause specifies the trait composition (empty in this
case), and instVarNames: lists the variables defined in the trait (i.e., the vari-
able, lock). The interface for defining a class as composition of traits is the
same as with stateless traits. The only difference is that the trait composition
expression supports an additional operator (@@) for granting access to vari-
ables of the used traits. Here we see how SyncStream is composed from the
traits TSyncReadWrite and TStream:

Object subclass: #SyncStream
uses: TSyncReadWrite @ {#hashFromSync →#hash}

11

@@ {syncLock →lock}
+ TStream @ {#hashFromStream →#hash}

instVarNames: ”
....

In this example, access is granted to the lock variable of the TSyncReadWrite

trait under the new name syncLock. As we shall now see, the @@ operator
provides a fine degree of control over the visibility of trait variables.

4.2 Variable access

By default, a variable is private to the trait that defines it. However, the
variable access operator (@@) allows variables to be accessed from clients under
a possibly new name, and possibly merged with other variables.

If T is a trait that defines a (private) instance variable x, then T@@{y →x}
represents a new trait in which the variable x can be accessed from its client
scope under the name y. x and y represent the same variable, but the name x

is restricted to the scope of t whereas the name y is visible to the enclosing
client scope (i.e., the composing classscope). For instance, in the following
composition:

TSyncReadWrite@{hashFromSync →hash} @@{syncLock →lock}
the variable lock defined in TSyncReadWrite is accessible to the class SyncStream

using that trait under the name syncLock. (Note that renaming is often needed
to distinguish similarly named variables coming from different used traits.)

In a trait variable composition, three situations can arise: (i) variables remain
private (i.e., the variable access operator is not used), (ii) access to a private
variable is granted, and (iii) variables are merged.

T1

getXT1
setXT1:

x

T2

getXT2
setXT2:

x

C

getX
setX:

x

c := C new.
c setXT1: 1.
c setXT2: 2.
c setX: 3.

{ Now:
 c getXT1 = 1
 c getXT2 = 2
 c getX = 3 }

Fig. 4. Keeping variables private: while composed, variables are kept separate. Traits
T1, T2 and C have their own variable x.

12

4.2.1 Keeping variables private.

By default, instance variables are private to their trait. If the scope of vari-
ables is not broadened at composition time using the variable access operator,
conflicts do not occur and the traits do not share state. Figure 4 shows a case
where T1 and T2 are composed without variable access being broadened. Each
of these two traits defines a variable x. In addition they each define accessor
methods. C also defines a variable x and two methods getX and setX:. T1, T2

and C each have their own variable x as shown in Figure 4.

The trait composition of C is: T1 + T2. Note that if methods would conflict
we would use the default trait strategy to resolve them by locally redefining
them in C and that method aliasing could be used to access the overridden
methods.

This form of composition is close to the module composition approach pro-
posed in Jigsaw [Bra92] and supports a black-box reuse scenario.

@@{ xFromT1 -> x }
T1

getXT1
setXT1:

x

@@{ xFromT2 -> x }

c := C new.
c setXT1: 1.
c setXT2: 2.

{ Now:
 c getXT1 = 1
 c getXT2 = 2
 c sum = 3 }

sum
 ^ xFromT1 + xFromT2

T2

getXT2
setXT2:

x

sum

C

Fig. 5. Granting access to variables: x of T1 and T2 are given access in C.

4.2.2 Granting variable access.

Figure 5 shows how the client class C gains access to the private x variables
of traits T1 and T2 by using the variable access operator @@. Because two
variables cannot have the same name within a given scope, these variables
have to be renamed. The variable x from T1 is accessible as xFromT1 and x

from T2 is accessible as xFromT2. C also defines a method sum that returns the
value xFromT1 + xFromT2. The trait composition of C is:

T1 @@ {xFromT1 →x} + T2 @@ {xFromT2 →x}

C can therefore build functionality on top of the traits that it uses, without
exposing any details to the outside. Note that methods in the trait continue
to use the ‘internal’ name of the variable as defined in the trait. The name
given in the variable access operator @@ is only to be used in the client classes.
This is similar to the method aliasing operator @.

13

T1

getX
setX:

x

T2

getY
setY:

y

C

getW
setW:

@@{w -> x}

@@{w -> y}

c := C new.
c setW: 3.

{ Now:
 c getX = 3
 c getY = 3
 c getW = 3 }

Fig. 6. Merging variables: variables x and y are merged in C under the name w.

4.2.3 Merging variables.

Variables from several traits can be merged when they are composed by using
the variable access operator to map multiple variables to a common name
within the client scope. This is illustrated in Figure 6.

Both T1 and T2 give access to their instance variables x and y under the name
w. This means that w is shared between all three traits. This is the reason why
sending getX, getY, or getW to an instance of a class implementing C returns
the same result, 3. The trait composition of C is:

T1 @@ {w →x} + T2 @@ {w →y}

Note that merging is fully under the control of the client class or trait. There
can be no accidental name capture since visibility of instance variables is never
propagated to an enclosing scope. Variable name conflicts cannot arise, since
variables are private to traits unless they are explicitly accessed by clients,
and variables are merged when they are mapped to common names.

The reader might well ask, what happens if the client also defines an instance
variable whose name happens to match the name under which a used trait’s
variable is accessed? Suppose, for example, that C in Figure 6 attempts to
additionally define an instance variable called w. We consider this to be an
error. This situation cannot possibly arise as a side effect of changing the
definition of a used trait since the client has full control over the names of
instance variables accessible within its scope. As a consequence this cannot be
a case of accidental name capture, and can only be interpreted as an error.

4.3 Requirements revisited

Let us briefly reconsider our requirements. First, stateful traits do not change
the semantics of stateless traits. Stateless traits are purely a special case of
stateful traits. Syntactically and semantically, stateful traits represent only a
minor extension of stateless traits.

14

Stateful traits address the issues raised in Section 3. In particular, (i) there is
no longer a need to clutter trait interfaces with required accessors, (ii) clients
no longer need to provide boilerplate instance variables and accessors, (iii) the
introduction of state in traits remains private to that trait, and (iv) no public
accessors need be introduced in client classes. As a consequence, it is possible
to define “complete” traits that require no methods, even though they make
use of state.

The default semantics of stateful traits enables black-box usage since no repre-
sentation is exposed, and instance variables by default cannot clash with those
of the client or of other used traits. Nevertheless, the client retains control of
the composition, and can gain access to the instance variables of used traits.
In particular, the client may merge variables of traits, if this is desired.

Since the client retains full control of the composition, changes to the definition
of a trait cannot propagate beyond its direct clients. There can be no implicit
side effects.

Finally, the approach is largely language-independent. In particular, there are
no assumptions that the host language provide either access modifiers for
instance variables or exotic scoping mechanisms.

5 Flattening Property

A key feature of stateless traits is that they can be flattened [DNS+06]. This
means that adding traits to a language does not require any change to the
operational semantics of the underlying language, and in particular does not
require a change to the method lookup semantics. In principle, traits can be
compiled away.

We demonstrate the flattening property for stateful traits by defining a flatten-
ing function for a minimal object-oriented language. The approach is similar
to that used previously to give a semantics for stateless traits for statically
typed object-oriented languages [NDS06]. However, instead of using Feath-
erweightJava as a the core language, we must use a language with state. We
therefore base our approach on the object model used by Flatt et al. [FKF98]
to give a semantics for mixins for Java-like languages. We adapt the (stateful)
ClassicJava model they introduce to develop SmalltalkLite, a simple
calculus that captures the key features of Smalltalk-like dynamic languages.
We similarly adapt their treatment of mixins to model traits.

We first present SmalltalkLite, a Smalltalk-like dynamic language featur-
ing single inheritance, message-passing, field access and update, and self and

15

P = defn∗e

defn = class c extends c { f ∗meth∗ }

e = new c | x | self | nil

| f | f=e | e.m(e∗)

| super.m(e∗) | let x=e in e

meth = m(x∗) { e }

c = a class name | Object

f = a field name

m = a method name

x = a variable name

Fig. 7. SmalltalkLite syntax

super sends. SmalltalkLite is similar to ClassicJava, but removes inter-
faces and static types. Fields are private in SmalltalkLite, so only local or
inherited fields may be accessed.

We then extend SmalltalkLite with stateless traits by specifying a flat-
tening function similar to that previously specified for FeatherweightJava
with traits [NDS06].

Finally we specify SmalltalkLite with stateful traits by defining a new
flattening function that takes fields into account. The key feature of this new
flattening function is that fields remain purely local to the traits in which
they are defined, unless they are explicitly exposed by an access declaration.
Conflicts therefore do not arise. Explicitly exposed fields whose names collide
are merged by the flattening function. Merging can be inhibited by aliasing a
field name.

5.1 SmalltalkLite

The syntax of SmalltalkLite is shown in Figure 7. SmalltalkLite is
similar to ClassicJava, but eliding the features related to static typing. We
similarly ignore features that are not relevant to a discussion of stateful traits,
such as reflection or class-side methods.

In order to simplify the reduction semantics of SmalltalkLite, we adopt an
approach similar to that used by Flatt et al. [FKF98], namely we annotate field
accesses and super sends with additional static information that is needed at
“run-time”. This extended redex syntax is shown in Figure 9. The figure also
specifies the evaluation contexts for the extended redex syntax in Felleisen
and Hieb’s notation [FH92].

Predicates and relations used by the semantic reductions are listed in Figure 8.
(The predicates ClassesOnce(P) etc., are assumed to be preconditions for
valid programs, and are not otherwise explicitly mentioned in the reduction

16

≺P Direct subclass

c ≺P c′ ⇐⇒ class c extends c′ · · · {· · · } ∈ P

≤P Indirect subclass

c ≤P c′ ≡ transitive, reflexive closure of ≺P

∈P Field defined in class

f ∈P c ⇐⇒ class · · · {· · · f · · · } ∈ P

∈P Method defined in class

〈m, x∗, e〉 ∈P c ⇐⇒ class · · · {· · ·m(x∗){e} · · · } ∈ P

∈∗P Field defined in c

f ∈∗P c ⇐⇒ ∃c′, c ≤P c′, f ∈P c′

∈∗P Method lookup starting from c

〈c, m, x∗, e〉 ∈∗P c′ ⇐⇒ c′ = min{c′′ | 〈m, x∗, e〉 ∈P c′′, c ≤P c′′}

ClassesOnce(P) Each class name is declared only once

∀c, c′, class c · · · class c′ · · · is in P ⇒ c 6= c′

FieldOncePerClass(P) Field names are unique within a class declaration

∀f, f ′, class c · · · {· · · f · · · f ′ · · · } is in P ⇒ f 6= f ′

FieldsUniquelyDefined(P) Fields cannot be overridden

f ∈P c, c ≤P c′ =⇒ f 6∈P c′

MethodOncePerClass(P) Method names are unique within a class declaration

∀m, m′, class c · · · {· · ·m(· · ·){· · · } · · ·m′(· · ·){· · · } · · · } is in P ⇒ m 6= m′

CompleteClasses(P) Classes that are extended are defined

range(≺P) ⊆ dom(≺P) ∪ {Object}

WellFoundedClasses(P) Class hierarchy is an order

≤P is antisymmetric

ClassMethodsOK(P) Method overriding preserves arity

∀m, m′, 〈m, x1 · · · xj , e〉 ∈P c, 〈m, x′1 · · · x′k, e′〉 ∈P c′, c ≤P c′ =⇒ j = k

Fig. 8. Relations and predicates for SmalltalkLite

rules.)

P ` 〈ε,S〉 ↪→ 〈ε′,S ′〉 means that we reduce an expression (redex) ε in the
context of a (static) program P and a (dynamic) store of objects S to a
new expression ε′ and (possibly) updated store S ′. A redex ε is essentially an

17

ε = v | new c | x | ε.f | ε.f=ε

| ε.m(ε∗) | super〈o, c〉.m(ε∗) | let x=ε in ε

E = [] | o.f=E | E.m(ε∗) | o.m(v∗ E ε∗)

| super〈o, c〉.m(v∗ E ε∗) | let x=E in ε

v, o = nil | oid

Fig. 9. Redex syntax

o[[new c]]c = new c

o[[x]]c = x

o[[self]]c = o

o[[nil]]c = nil

o[[f]]c = o.f

o[[f=e]]c = o.f=o[[e]]c

o[[e.m(e∗i)]]c = o[[e]]c.m(o[[ei]]
∗
c)

o[[super.m(e∗i)]]c = super〈o, c〉.m(o[[ei]]
∗
c)

o[[let x=e in e′]]c = let x=o[[e]]c in o[[e′]]c

Fig. 10. Translating expressions to redexes

expression e in which field names are decorated with their object contexts,
i.e., f is translated to o.f , and super calls are decorated with their object
and class contexts. Redexes and their subexpressions reduce to a value, which
is either an object identifier or nil. Subexpressions may be evaluated within
an expression context E.

The store consists of a set of mappings from object identifiers oid ∈ dom(S)
to tuples 〈c, {f 7→ v}〉 representing the class c of an object and the set of its
field values. The initial value of the store is S = {}.

Translation from the main expression to an initial redex is specified out by
the o[[e]]c function (see Figure 10). This binds fields to their enclosing object
context and binds self to the oid of the receiver. The initial object context
for a program is nil. (i.e., there are no global fields accessible to the main
expression). So if e is the main expression associated to a program P , then
nil[[e]]Object is the initial redex.

The reductions are summarised in Figure 11.

new c [new] reduces to a fresh oid , bound in the store to an object whose
class is c and whose fields are all nil. A (local) field access [get] reduces to
the value of the field. Note that it is syntactically impossible to access a field
of another object. The redex notation o.f is only generated in the context of
the object o. Field update [set] simply updates the corresponding binding of

18

P ` 〈E[new c],S〉 ↪→ 〈E[oid],S[oid 7→ 〈c, {f 7→ nil | ∀f, f ∈∗P c}〉]〉 [new]

where oid 6∈ dom(S)

P ` 〈E[o.f],S〉 ↪→ 〈E[v],S〉 [get]

where S(o) = 〈c,F〉 and F(f) = v

P ` 〈E[o.f=v],S〉 ↪→ 〈E[v],S[o 7→ 〈c,F [f 7→ v]〉]〉 [set]

where S(o) = 〈c,F〉 and f ∈ dom(F)

P ` 〈E[o.m(v∗)],S〉 ↪→ 〈E[o[[e[v∗/x∗]]]c′],S〉 [send]

where S(o) = 〈c,F〉 and 〈c,m, x∗, e〉 ∈∗P c′

P ` 〈E[super〈o, c〉.m(v∗)],S〉 ↪→ 〈E[o[[e[v∗/x∗]]]c′′],S〉 [super]

where c ≺P c′ and 〈c′,m, x∗, e〉 ∈∗P c′′ and c′ ≤P c′′

P ` 〈E[let x=v in ε],S〉 ↪→ 〈E[ε[v/x]],S〉 [let]

Fig. 11. Reductions for SmalltalkLite

new c [v/x] = new c

x [v/x] = v

x′ [v/x] = x′

self [v/x] = self

nil [v/x] = nil

f [v/x] = f

f=e [v/x] = f=e[v/x]

e.m(e∗i) [v/x] = e[v/x].m(e∗i [v/x])

super.m(e∗i) [v/x] = super.m(e∗i [v/x])

let x=e in e′ [v/x] = let x=e[v/x] in e′

let x′=e in e′ [v/x] = let x′=e[v/x] in e′[v/x]

Fig. 12. Variable substitution

the field in the store. When we send a message [send], we must look up the
corresponding method body e, starting from the class c of the receiver o. The
method body is then evaluated in the context of the receiver o, binding self
to the receiver’s oid . Formal parameters to the method are substituted by the
actual arguments (see Figure 12). We also pass in the actual class in which
the method is found, so that super sends have the right context to start their
method lookup.

super sends [super] are similar to regular message sends, except that the
method lookup must start in the superclass of class of the method in which

19

defn = class c extends c { f ∗meth∗τ ∗ }

| trait t { meth∗τ ∗ }

τ = t | τ alias m′ → m | τ minus m

t = a trait name

Fig. 13. Adding syntax for traits to SmalltalkLite

the super send was declared. When we reduce the super send, we must take
care to pass on the class c′′ of the method in which the super method was
found, since that method may make further super sends. let in expressions
[let] simply represent local variable bindings.

Errors occur if an expression gets “stuck” and does not reduce to an oid or
to nil. This may occur if a non-existent variable, field or method is referenced
(for example, when sending any message to nil). For the purpose of this paper
we are not concerned with errors, so we do not introduce any special rules to
generate an error value in these cases.

5.2 Stateless traits

We now add (stateless) traits to SmalltalkLite by (i) specifying an ex-
tended syntax for SmalltalkLite with traits (Figure 13), and (ii) specify-
ing a translation from programs with traits back to the core language without
traits (Figure 14).

We distinguish a named trait t from a trait expression τ which may alias or
exclude methods. A trait t declares a number of methods, but no fields. A
trait or a class may use any number of traits, possibly modifying them in a
trait expression. A trait expression τ may define an alias m′ for an existing
method m, or it may exclude a method m.

We give a semantics to SmalltalkLite with traits by flattening traits to
plain SmalltalkLite. The translation expands trait expressions to method
declarations. The translation is valid if the resulting classes contain no con-
flicts. (Intermediate trait expressions may contain conflicts, as long as these
are resolved by the client classes.)

The translation is specified in terms of four operators over stateless traits
(Figure 15). Trait composition (+) may generate conflicts if two methods with
the same name occur in the composed traits. Class methods take precedence
(.) over any used trait methods. Aliasing may generate a conflict if a method

20

[[def1 · · · defn]] = [[def1]] · · · [[defn]]

[[trait t { meth∗τ ∗ }]] = ∅

[[class c extends c′ { f ∗meth∗τ ∗ }]] = class c extends c′ { f ∗meth∗ . [[τ ∗]] }

[[τ1 · · · τk]] = [[τ1]] + · · ·+ [[τk]]

[[t]] =

 meth∗ if trait t { meth∗} ∈ P

meth∗ . [[τ+]] if trait t { meth∗τ+ } ∈ P

[[τ alias m′ → m]] = [[τ]][m′ → m]

[[τ minus m]] = [[τ]]−m

Fig. 14. Flattening SmalltalkLite with stateless traits to SmalltalkLite

M1 +M2 = · · ·mi(x
∗
i){>} · · ·mj(x

∗
j){ej} · · · ,

∀mi(· · ·){· · · } occurring in both M1 and M2

∀mj(x
∗
j){ej} occurring uniquely in one of M1 or M2,

M1 . M2 = · · ·mi(x
∗
i){ei} · · ·mj(x

∗
j){ej} · · · ,

∀mi(x
∗
i){ei} occurring in M1,

∀mj(x
∗
j){ej} occurring only in M2

M [m′ → m] =

M + [m′(x∗){e}] if m(x∗){e} ∈M

M otherwise

M −m =

 · · ·Mj−1 Mj+1 · · · if Mj = m(· · ·){· · · }

M otherwise

Fig. 15. Trait operations

already has been defined under the name of the alias. If the method being
aliased does not exist, there is no effect. Exclusion simply removes the named
trait.

5.3 Stateful traits

The syntax for SmalltalkLite with stateful traits is shown in Figure 16. All
we change is that trait declarations may include fields, and trait expressions
may widen access to a field.

21

defn = class c extends c { f ∗meth∗τ ∗ }

| trait t { f ∗meth∗τ ∗ }

τ = t | τ alias m′ → m | τ minus m | τ access f ′ → f

Fig. 16. SmalltalkLite with stateful traits syntax

[[def1 · · · defn]] = [[def1]] · · · [[defn]]

[[trait t {f ∗ meth∗τ ∗ }]] = ∅

[[class c extends c′ { f ∗meth∗τ ∗ }]] = class c extends c′ { f ∗meth∗ . [[τ ∗]]∅ }

[[τ1 · · · τk]]F = [[τ1]]F + · · ·+ [[τ1]]F

[[t]]F = µ(· · · f ′i · · ·mj(x
∗
j){ej[f

′
i/fi]} · · · . [[τ ∗]]F)

where

trait t {· · · fi · · ·mj(x
∗
j){ej} · · · τ ∗}

and

 f ′i = fi if fi ∈ F

f ′i is fresh otherwise

[[τ alias m′ → m]]F = [[τ]]F [m→ m′]

[[τ minus m]]F = [[τ]]F −m

[[τ access f ′ → f]]F = f ′ ([[τ]]F∪{f} \ f)[f ′/f]

Fig. 17. Flattening SmalltalkLite with stateful traits to SmalltalkLite

A flattened trait now returns a list of fields and methods. The flattening
function allows a field to be exposed. Once exposed, this field might be freely
renamed. Fields that are not explicitly exposed to the composite entity are
alpha-renamed, thus hiding them. [[t]]F hides all field names except those in
F . (See Figure 17.) A field is renamed using the field substitution mechanism
(Figure 19), that substitutes all occurrences of the name of a field with a new
name. Fields that are not hidden may end up multiply defined, so we explicitly
merge them. µ(f ∗meth∗) eliminates multiple declarations of any field f , thus
guaranteeing the precondition FieldOncePerClass(P) (See Figure 18).

A field declared as accessible within a trait has no special status — any further
classes or traits using that trait must again declare it to be accessible or it
will be hidden at the next level.

As an example, let’s assume we have a trait TColor defining a field color, and
two methods changeToWebColor() and isPrimaryColor():

22

µ(f ∗i meth∗) = f ′∗j meth∗ where f ′j ∈ {fi}

Fig. 18. Merging fields

new c [g/f] = new c

x [g/f] = x

self [g/f] = self

nil [g/f] = nil

f [g/f] = g

f ′ [g/f] = f ′

f=e [g/f] = g=e[g/f]

f ′=e [g/f] = f ′=e[g/f]

e.m(e∗i) [g/f] = e[g/f].m(e∗i [g/f])

super.m(e∗i) [g/f] = super.m(e∗i [g/f])

let x = e in e′ [g/f] = let x = e[g/f] in e′[g/f]

Fig. 19. Field substitution

trait TColor {
color
changeToWebColor () { color=... }
isPrimaryColor () { ...color... }

}

The trait TColor defines a coloring concern. A graphical widget that needs to
have a colored border line may use TColor a first time to define the color of
the widget, and a second time to give a color to the borderline. A class Colore-

dRectangleWithBorderLine that uses this trait twice can be defined as follows:

class ColoredRectangleWithBorderLine extends Object {
TColor access color → color
TColor access borderColor → color

alias changeBorderToWebColor → changeToWebColor
alias doesBorderUsePrimaryColor → isPrimaryColor
minus changeToWebColor
minus isPrimaryColor

draw () { ... } ”use color and borderColor for the drawing”
}

Once flattened, the class ColoredRectangleWithBorderLine is equivalent to:

class ColoredRectangleWithBorderLine extends Object {
color
borderColor
changeToWebColor() { color=... }
isPrimaryColor () { ...color... }
changeBorderToWebColor() { borderColor=... }
doesBorderUsePrimaryColor () { ...borderColor... }
draw () { ... } ”use color and borderColor for the drawing”

}

23

The expression TColor access borderColor → color is flattened to {borderColor,

changeToWebColor () { borderColor=... }, isPrimaryColor () { ...borderColor... }}.
Then changeToWebColor is aliased to changeBorderToWebColor and isPrimaryColor

to doesBorderUsePrimaryColor. Note that an alias creates a new entry in the
method dictionary, leaving the original name accessible. Conflict with the first
use of TColor is avoided by removing changeToWebColor and isPrimaryColor.

6 Implementation

We have implemented a prototype of stateful traits as an extension of our
Smalltalk-based implementation of stateless traits. 1

As with stateless traits, method composition and reuse for stateful traits do
not incur any overhead since method pointers are shared between method
dictionaries of different traits and classes. This takes advantage of the fact
that methods are looked up by name in the dictionary rather than accessed
by index and offset, as is done to access state in most object-oriented pro-
gramming languages. However, by adding state to traits, we have to find a
solution to the fact that the access to instance variables cannot be linear
(i.e., based on offsets) since the same trait methods can be applied to differ-
ent objects [BBG+02]. A linear structure for state representation cannot be
always obtained from a composition graph. This is a common problem of lan-
guages that support multiple inheritance. We evaluated two implementations:
copy-down and changing object internal representation. The following section
illustrates the problem.

6.1 The classical problem of state linearization

As pointed out by Bracha [Bra92, Chapter 7], in implementations of single
inheritance languages such as Modula-3 [CDG+92], and more recently in the
Jikes Research Virtual Machine [Jik], the notion of virtual functions is sup-
ported by associating with each class a table whose entries are the addresses
of the methods defined for instances of that class. Each instance of a class
contains a reference to the class method table. It is through this reference
that the appropriate method to be invoked on an instance is located. Under
multiple inheritance, this technique must be modified, since the superclasses
of a class no longer share a common prefix.

Since a stateful trait can have private state, and can be used in multiple

1 See www.iam.unibe.ch/∼scg/Research/Traits

24

http://www.iam.unibe.ch/~scg/Research/Traits

T2
v, x
getV

T1
x, y, z
getX

T3

T4

Memory layout
Model

T1

T1.x
T1.y
T1.z

T2

T2.v
T2.x

T3

T1.x
T1.y
T1.z

T4

T1.x
T1.y
T1.z
T2.v
T2.x

Variable
offsets

0
1
2
3
4

getX
 ^ x

getV
 ^ v

Fig. 20. Problem of combining multiple traits: variable’s offset is not preserved.

contexts, it is not possible to have a static and linear instance variable offset
list shared by all the methods of the trait and its users.

The top half of Figure 20 shows a trait T3 using T1 and a trait T4 using
T1 and T2. T1 defines 3 variables x, y, z and T2 defines 2 variables v, x. The
bottom part shows a possible corresponding representation in memory that
uses offsets. Assuming that we start the indexing at zero, T2.v has zero for
index, and T2.x has one. However, in T4 the same two variables might have
indexes three and four. 2 So static indexes used in methods from T1 or T2 are
no longer valid. Note that this problem occurs regardless of the composition
of trait T4 out of traits T1 and T2 (whether it needs access to variables,
whether or not it merges variable x, . . .). The problem is due to the linear
representation of variables in the underlying object model.

6.2 Three approaches to state linearization

Three different approaches are available to represent non linear state. C++
uses intra-object pointers [SG99]. Strongtalk [BBG+02] uses a copy-down tech-
nique that duplicates methods that need to access variable with different offset.
A third approach, as done in Python [Pyt] for example, is to keep variables in
a dictionary and look them up, similar to what is done for methods.

We implemented the last two approaches for Smalltalk so that we could com-
pare them for our prototype implementation. We did not implement C++’s
solution because it would require significant effort to change the object repre-
sentation to be compatible.

2 We assume that the slots of T2 are added after the ones of T1. In the opposite
case the argument holds for the variables of T1.

25

B
x: int
getX(): int

C
y: int
getY(): int

Memory layout
Model using virtual inheritance

D
z: int
getZ(): int

D
w

x

getW()

getX()

y
getY()

A

B

C

A
w: int
getW(): int

getZ()
z

D

VTables

Fig. 21. Multiple virtual inheritance in C++.

6.3 Virtual base pointers in C++

In C++ [SE90], an instance of a class C is represented by concatenating the
representations of superclasses of C. Such instance is therefore composed of
subobjects, where each subobject corresponds to a particular superclass. Each
subobject has its own pointer to a suitable method table. In this case, the
representation of a class is not a prefix of the representations of all of its
subclasses.

Each subobject begins at a different offset from the beginning of the complete
C object. These offsets, called virtual base pointers [SG99], can be computed
statically. This technique was pioneered by Krogdahl [Kro85,Bra92].

For instance, let’s consider the situation in C++ illustrated in Figure 21.
The upper part of the figure shows a classical diamond diagram using virtual
inheritance (i.e.,B and C inherit virtually A, therefore the w variable is shared
between B and C). The lower part shows the memory layout of an instance of D.
This instance is composed of 4 “sub-parts” corresponding to the superclasses
A, B, C and D. Note that C’s part, instead of assuming that the state it inherits
from A lies immediately “above” its own state, accesses the inherited state via
the virtual base pointer. In this way the B and C parts of the D instance can
share the same common state from A.

We did not attempt to implement this strategy in our Smalltalk prototype, as
it would have required a deep modification to the Smalltalk virtual machine.
Since Smalltalk supports only single inheritance, object layout is fundamen-

26

T1
x, y, z
getX

T2
v, x
getV

T4

Memory layout
Model

T4

getX
 ^ x

getV
 ^ v

@@ { v -> y }

@@ { v -> v }

T1.x val1
T1.y, T2.v val2

T1.z val3
T2.x val4

Fig. 22. Structure of objects is similar to a hash table with multiple keys for a same
entry.

tally simpler. Accommodating virtual base pointers in the layout of an object
would also entail changes to the method lookup algorithm.

6.4 Object state as a dictionary

An alternative implementation approach is to introduce instance variable ac-
cesses based on names and not on offsets. The variable layout has the semantics
of a hash table, rather than that of an array. For a given variable, its offset is
not constant anymore as shown by Figure 22. The state of an object is imple-
mented by a hash table in which multiple keys may map to the same value.
For instance, variable y of T1 and variable v of T2 are merged in T4. Therefore,
an instance of T4 has two variables (keys), T1.y and T2.v, that actually point
to the same value.

In Python [Pyt] the state of an object is represented by a dictionary. An
expression such as self.name = value is translated into self. dict [name] = value,
where dict is a primitive to access the dictionary of an object. A variable is
declared and defined simply by being used in Python. For instance, affecting
a value to an non-existing variable has the effect to create a new variable.
Representing the state of an object with a dictionary is a way to deal with
the linearization problem of multiple inheritance.

6.5 Copy down methods

Strongtalk [BBG+02] is a high performance Smalltalk with a mixin-aware
virtual machine. A mixin contains a description of its instance variables and
class variables, and a method dictionary where all the code is initially stored.
One of the problems when sharing code among mixin application is that the

27

physical layout of instances varies between mixin applications. This problem
is addressed by the copy down mechanism: (i) Methods that do not access
instance variables or super are shared in the mixin. (ii) Methods that access
instance variables may have to be copied if the variable layout differs from
that of other users of the mixin.

The copy down mechanism favors execution speed over memory consumption.
There is no extra overhead to access variables. Variables are linearly ordered,
and methods that access them are duplicated and adjusted with proper offset
access. Moreover, in Strongtalk, only accessors are allowed to touch instance
variables directly at the byte code level. The space overhead of copy-down is
therefore minimal. Effective inlining by the virtual machine takes care of the
rest, except for accessors which impose no space overhead.

The dictionary-based approach has the advantage that it more directly reflects
the semantics of stateful traits, and is therefore attractive for a prototype im-
plementation. Practical performance could however become problematic, even
with optimized dictionary implementations like in Python [Pyt]. The copy-
down approach, however, is clearly the better approach for a fast implementa-
tion. Therefore we decided to adopt it in our implementation of stateful traits
in Squeak Smalltalk.

6.6 Benchmarks

As mentioned in the previous section, we adopted the copy-down technique
for our stateful traits implementation. In this section we compare the per-
formance of our stateful traits prototype implementation with that of both
regular Squeak without traits and that of the stateless traits implementation.
We measured the performance of the following two case studies:

• the SyncStream example introduced in the beginning of the paper. The exper-
iment consisted of writing and reading large objects in a stream 1000 times.
This example was chosen to evaluate whether state is accessed efficiently.
• a link checker application that parses HTML pages to check whether URLs

on a webpage are reachable or not. This entails parsing large HTML files
into a tree representation and running visitors over these trees. This case
study was chosen in order to have a more balanced example that consists
of accessing methods as well as state.

For both case studies we compared the stateful implementation with the state-
less traits implementation and with regular Squeak. The results are shown in
Table 1.

28

Without
traits

Stateless
traits

Stateful
traits

SyncStream 13912 13913 13912

LinkChecker 2564 2563 2564
Table 1
Execution times of two cases for three implementations: without traits, with state-
less traits and with stateful traits (times in milliseconds).

As can be seen from the table, no overhead is introduced by accessing instance
variables defined in traits and used in clients. This was to be expected: the
access is still offset-based and almost no differences can be noticed. Regarding
overall execution speed, we see that there is essentially no difference between
the three implementations. This result is consistent with previous experiences
with traits, and was to be expected since we did not change the parts of the
implementation dealing with methods.

7 Refactoring the Smalltalk collection hierarchy

We have carried out a case study in which we used stateful traits to refactor
the Smalltalk collection hierarchy. We have previously used stateless traits
to refactor the same hierarchy [BSD03], and we now compare the results of
the two refactorings. The stateless trait-based Smalltalk collection hierarchy
consists of 29 classes which are built from a total of 52 traits. Among these 29
classes there are numerous classes, which we call shell classes, that only declare
variables and define their associated accessors. Seven classes of the 29 classes
(24%) are shell classes (SkipList, PluggableSet, LinkedList, OrderedCollection, Heap,
Text and Dictionary).

The refactoring with stateful traits results in a redistribution of the variables
defined (in classes) to the traits that effectively need and use them. Another
consequence is the decrease of number of required methods and a better en-
capsulation of the traits behaviour and internal representation.

Figure 23 shows a typical case arising with stateless traits where the class Heap

must define 3 variables (array, tally, and sortBlock). The behaviour of this class is
limited to the initialization of objects and providing accessors for each of these
variables. It uses the trait THeapImpl, which requires all these accessors. These
requirements are necessary for THeapImpl since it is composed of TArrayBased

and TSortBlockBased which require such state. These two traits need access to
the state defined in Heap.

Figure 24 shows how Heap is refactored to use stateful traits. All variables

29

TSortBlockBased
locksortBlock: privateSortBlock:

sortBlock

Heap
array
tally
sortBlock
array
array:
tally
tally:
privateSortBlock:
sortBlock

THeapImpl
lockadd:
copy
grow
removeAt:
...

array
array:
tally
tally:
privateSortBlock:
sortBlock

TExtensibleSeq
lock... ...

TArrayBased
locksize
capacity
...

array
array:
tally
tally:

TExtensibleInst
lock... ...

sortBlock: aBlock
 ...
 self privateSortBlock: aBlock
 ...

size
 ^ self tally

capacity
 ^ self array size

Fig. 23. Fragment of the stateless trait Smalltalk collection hierarchy. The class
Heap defines variables used by TArrayBased and TSortBlockBased.

Heap

THeapImpl

add:
copy
grow
removeAt:
...

TExtensibleSeq

... ...

TArrayBased
array
tally
size
capacity
...

TExtensibleInst

... ...

TSortBlockBased
sortBlock
sortBlock:
...

sortBlock: aBlock
 ...
 sortBlock := aBlock.
 ...

size
 ^ tally

capacity
 ^ array size

Fig. 24. Refactoring of the class Heap with stateful traits but keeping the trait
THeapImpl.

have been moved to the places where they were needed, leading to the result
that Heap becomes empty. The variables previously defined in Heap are now
defined in those traits that effectively require them. TArrayBased defines two
variables array and tally, therefore it does not need to specify any accessors
as required methods. The same happens for the variable sortBlock in the trait
TSortBlockBased.

If we are sure that THeapImpl is not used by any other class or trait, then we
can further simplify this new composition by moving the implementation of

30

TExtensibleSeq

... ...

TArrayBased
array
tally
size
capacity
...

TExtensibleInst

... ...

TSortBlockBased
sortBlock
sortBlock:
...

sortBlock: aBlock
 ...
 sortBlock := aBlock.
 ...

size
 ^ tally

capacity
 ^ array size

Heap

add:
copy
grow
removeAt:
...

Fig. 25. Refactoring of the class Heap with stateful traits removing the trait
THeapImpl.

the trait THeapImpl to Heap and eliminating THeapImpl alltogether. Figure 25
shows the resulting hierarchy. The class Heap defines methods like add: and
copy.

Refactoring the Smalltalk class hierarchy using stateful traits yields multiple
benefits:

• Encapsulation is preserved: Internal representation is not unnecessarily re-
vealed to client classes.
• Fewer method definitions: Unnecessary variable accessors are avoided. Ac-

cessors that were defined in Heap are removed.
• Fewer method requirements: Since variables are defined in the traits that

used them, we avoid specifying required accessors. Variable accessors for
THeapImpl, TArrayBased, and TSortBlockBased are not required anymore. There
is no propagation of required methods due to state usage.

8 Discussion

8.1 Flattening property

In the original stateless trait model [DNS+06], trait composition respects the
flattening property, which states that a non-overridden method in a trait has
the same semantics as if it were implemented directly in the class. This implies
that traits can be inlined to give an equivalent class definition that does not
use traits. It is natural to ask whether such an important property is preserved
with stateful traits. In short, the answer is yes, though trait variables may have
to be alpha-renamed to avoid name clashes.

In order to preserve the flattening property with stateful traits, we must en-

31

sure that instance variables introduced by traits remain private to the scope
of that trait’s methods, even when their scope is broadened to that of the
composing class. This can be done in a variety of ways, depending on the
scoping mechanisms provided by the host language. Semantically, however,
the simplest approach is to alpha-rename the private instance variables of the
trait to names that are unique in the client’s scope. Technically, this could
be achieved by the common technique of name-mangling, i.e., by prepending
the trait’s name to the variable’s name when inserting it in the client’s scope.
Renaming and merging are also consistent with flattening, since variables can
simply be renamed or merged in the client’s scope.

8.2 Limiting change impact

Any approach to composing software is bound to be fragile with respect to
certain kinds of change: if a feature that is used by several clients changes, the
change will affect the clients. Extending a trait so that it provides additional
methods may well affect clients by introducing new conflicts. However, the de-
sign of trait composition based on explicit resolution ensures that such changes
cannot lead to implicit and unexpected changes in the behaviour of direct or
indirect clients. A direct client can generally resolve a conflict without chang-
ing or introducing any other traits, so no ripple effect will occur [DNS+06].

In stateful traits adding a variable to a trait does not affect clients because
variables are private. Removing or renaming a variable may require its direct
clients to be adapted only if this variable is explicitly accessed by these clients.
However, once the direct clients have been adapted, no ripple effect can occur
in indirect clients. By avoiding required method propagation, stateful traits
limit the effect of changes.

8.3 About variable access

By default a trait variable is private, thereby enforcing black-box reuse. At the
same time we offer an operator enabling the direct client to access the private
variables of the trait. This may appear to be a violation of encapsulation
[Sny86]. However this approach is consistent with our vision that traits serve
as building blocks for composing classes, whether in a black-box or a white-
box fashion. Furthermore it is consistent with the principle that the client of
a trait is in control of the composition. It is precisely this fact that ensures
that the effects of changes do not propagate to remote corners of the class
hierarchy.

32

9 Related work

We briefly review some of the numerous research activities that are relevant
to stateful traits.

Self. The prototype based language Self [US87] does not have a notion of class.
Conceptually, each object defines its own format, methods, and delegation
relations. Objects are derived from other objects by cloning and modification.
Objects can have one or more parent objects; messages that are not found
in the object are looked for and delegated to a parent object. Self is based
around the notion of slots, which unifies methods and instance variables.

Self uses trait objects to factor out common features [UCCH91]. Nothing pre-
vents a trait object from also containing state. Similar to the notion of traits
presented here, these trait objects are essentially groups of methods. But unlike
our traits, Self’s trait objects do not support specific composition operators;
instead, they are used as ordinary parent objects.

Interfaces with default implementation. Mohnen [Moh02] proposed an
extension of Java in which interfaces can be equipped with a set of default
implementations of methods. As such, classes that implement such an inter-
face can explicitly state that they want to use the default implementation
offered by that interface (if any). If more than one interface mentions the
same method, a method body must be provided. Conflicts are flagged auto-
matically, but require the developer to resolve them manually. State cannot
be associated with the interfaces. Scala [sca] also supports traits i.e., partially
defined interfaces. While the composition of traits in Scala does not follow
exactly the one in stateless traits, traits in Scala cannot define state.

Mixins. Mixins [BC90] use the ordinary single inheritance operator to extend
various parent classes with a bundled set of features. Although this inheritance
operator is well-suited for deriving new classes from existing ones, it is not
necessarily appropriate for composing reusable building blocks. Specifically,
because mixin composition is implemented using single inheritance, mixins
are composed linearly. This gives rise to several problems. First, a suitable
total ordering of features may be difficult to find, or may not even exist.
Second,“glue code” that exploits or adapts the linear composition may be dis-
persed throughout the class hierarchy. Third, the resulting class hierarchies
are often fragile with respect to change, so that conceptually simple changes
may impact many parts of the hierarchy [DNS+06].

33

Eiffel. Eiffel [Mey92] is a pure object-oriented language that supports multi-
ple inheritance. Features, i.e., method or instance variables, may be multiply
inherited along different paths. Eiffel provides the programmer mechanisms
that offer a fine degree of control over whether such features are shared or
replicated. In particular, features may be renamed by the inheriting class. It
is also possible to select a particular feature in case of naming conflicts. Se-
lecting a feature means that from the context of the composing subclass, the
selected feature takes precedence over the possibly conflicting ones.

Despite the similarities between the inheritance scheme in Eiffel and the com-
position scheme of stateful traits, there are some significant differences:

• Renaming vs. aliasing – In Eiffel, when a subclass is created, inherited fea-
tures can be renamed. Renaming a feature has the same effect as (i) giving a
new name to this feature and (ii) changing all the references to this feature.
This implies a kind of mapping to be performed when a renamed method
is accessed through the static type of the superclass.

For instance, let’s assume a class Component defines a method update. A
subclass GraphicalComponent renames update into repaint, and redefines this
repaint with a new implementation. The following code illustrates this situ-
ation:

class Component
feature

update is
do

print (’1’)
end

end

class GraphicalComponent
inherit

Component
rename

update as repaint
redefine

repaint
end

repaint is
do

print (’2’)
end

end

In essence, the method repaint acts as an override of update. It means that
if update is sent to an instance of GraphicalComponent, then repaint is called.
This is illustrated in the following example:
f (c: Component) is

do
c.update

end
f (create{GraphicalComponent})
==> 2

This is the way Eiffel preserves polymorphism while supporting renaming.
In stateful traits, aliasing a method or granting access to a variable assigns

34

a new name to it. The method or the variable can therefore still be invoked
or accessed through its original name.
• Merging variables – In contrast to stateful traits, variables can be merged

in Eiffel only if they come from a common superclass. In stateful traits,
variables provided by two traits can be merged regardless of how these
traits are formed.

Jigsaw. Jigsaw [Bra92] has a module system in which a module is a self-
referential scope that binds names to values (i.e., constant and functions). A
module acts as a class (object generator) and as a coarse-grained structural
software unit. Modules can be nested, therefore a module can define a set of
classes. A set of operators is provided to compose modules. These operators
are instantiation, merge, override, rename, restrict, and freeze.

Although there are some differences between the definition of a Jigsaw module
and stateful traits, for instance with the rename operator, the more significant
differences are in motivation and setting. Jigsaw is a framework for defining
modular languages. Jigsaw supports full renaming, and assigns a semantic
interpretation to nesting. In Jigsaw, a renaming is equivalent to a textual re-
placement of all occurrences of the attribute. The rename operator distributes
over override. It means that Jigsaw has the following property:

(m1 rename a to b) override (m2 rename a to b) = (m1 override m2) rename a to b

Traits are intended to supplement existing languages by promoting reuse in
the small, do not declare types, infer their requirements, and do not allow
renaming. Stateless traits do not assign any meaning to nesting. Stateful traits
are sensitive to nesting only to the extent that instance variables are private
to a given scope. The Jigsaw operation set also aims for completeness, whereas
in the design of traits we sacrifice completeness for simplicity.

A notable difference between Jigsaw and stateful traits is with the merging
of variables. In Jigsaw, a module can have state, however variables cannot be
shared between modules. With stateful traits the same variable can be accessed
by the traits that use it (variables can be accessed by the classes that com-
pose the traits). A Jigsaw module acts as a black-box. A module encapsulates
its bindings and cannot be opened. While we value black-box composition,
stateful traits do not take such a restrictive approach, but rather let the com-
poser assume responsibility for the composition, while being protected from
the impact of changes.

It is worth mentioning typing issues raised when implementing Jigsaw. Bracha
[Bra92, Chapter 7] pointed out that the difficulty in implementing inheritance
in Jigsaw (which is operator-based) stems from the interaction between struc-
tural subtyping and the algebraic properties of the inheritance operators (e.g.,
merge and override).

35

A B

C

D

E F

Fig. 26. E and F are structurally equivalent but may have different representations.

For example, let’s consider the following classes A, B, C, D, E and F where C
is a subclass of A and B. E is a subclass of D and C. F is a subclass of D, A
and B. We have C = AB, E = DC and F = DAB where in Cnew = C1C2...Cn

the superclasses of Cnew are denoted Ci. (See Figure 26.) Expanding the def-
initions of all names (as dictated by structural typing), one finds that by
associativity E = F . This equivalence dictates that all three classes have the
same type, so that they can be used interchangeably. This in turn requires
that all three have the same representation. However, using the techniques
of C++ (Section 6.3), these three classes have different representations. This
problem is avoided in traits where a trait does not define a type.

Cecil. Cecil [Cha92] is a purely object-oriented language that combines a
classless object model, a kind of dynamic inheritance and an optional static
type checking. Cecil’s static type system distinguishes between subtyping and
code inheritance even if the more common case is when the subtyping hier-
archy parallels the inheritance hierarchy. Cecil supports multiple inheritance.
Inheriting from the same ancestor more than once, whether directly or in-
directly, has no effect other than to place the ancestor in relation to other
ancestors: Cecil has no repeated inheritance. Inheritance in Cecil requires a
child to accept all of the fields and methods defined in the parents. These fields
and methods may be overridden in the child, but facilities such as excluding
fields or methods from the parents or renaming them as part of the inheri-
tance are not present in Cecil. This is an important difference with respect to
stateful traits.

10 Conclusion

Stateless traits offer a simple compositional approach for structuring object-
oriented programs. A trait is essentially a group of pure methods that serves as
a building block for classes and as a primitive unit of code reuse. However this
simple model suffers from several limitations, in particular (i) trait reusability
is impacted because the required interface is typically cluttered with uninter-
esting required accessors, (ii) client classes are forced to implement boilerplate
glue code, (iii) the introduction of new state in a trait propagates required ac-

36

cessors to all client classes, and (iv) public accessors break encapsulation of
the client class.

We have proposed a way to make traits stateful as follows: First, traits can have
private variables. Second, classes or traits composed from traits may use the
variable access operator to (i) access variables of the used traits, (ii) attribute
local names to those variables, and (iii) merge variables of multiple used traits,
when this is desired. The flattening property is preserved by alpha-renaming
variable names that clash.

Stateful traits offer numerous benefits: There is no unnecessary propagation
of required methods, traits can encapsulate their internal representation, and
the client can identify the essential required methods more clearly. Duplicated
boilerplate glue code is no longer needed. A trait encapsulates its own state,
therefore an evolving trait does not break its clients if its public interface
remains unmodified.

Stateful traits represent a relatively modest extension to single-inheritance lan-
guages that enables the expression of classes as compositions of fine-grained,
reusable software components. An open question for further study is whether
trait composition can subsume class-based inheritance, leading to a program-
ming language based on composition rather than inheritance as the primary
mechanism for structuring code following Jigsaw design.

Acknowledgment

We also thank Gilad Bracha, Orla Greevy, Nathanel Schärli, Bernd Schoeller
and Dave Thomas for their valuable discussions and comments. Thanks to
Guillaume Marceau and Robby Findler for their help with the reduction se-
mantics package for PLT Scheme. Thanks to Tom Van Cutsem for having
found a typo in our formalization. Thanks to Ian Joyner for his help with the
MacOSX Eiffel implementation.

References

[BBG+02] Lars Bak, Gilad Bracha, Steffen Grarup, Robert Griesemer, David
Griswold, and Urs Hölzle. Mixins in Strongtalk. In ECOOP ’02
Workshop on Inheritance, June 2002.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance.
In Proceedings OOPSLA/ECOOP ’90, ACM SIGPLAN Notices,
volume 25, pages 303–311, October 1990.

37

[BDNW07] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts.
Stateful traits. In Advances in Smalltalk — Proceedings of 14th
International Smalltalk Conference (ISC 2006), volume 4406 of LNCS,
pages 66–90. Springer, 2007.

[Bra92] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity
and Multiple Inheritance. PhD thesis, Dept. of Computer Science,
University of Utah, March 1992.

[BSD03] Andrew P. Black, Nathanael Schärli, and Stéphane Ducasse. Applying
traits to the Smalltalk collection hierarchy. In Proceedings of 17th
International Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’03), volume 38, pages 47–64,
October 2003.

[CDG+92] Luca Cardelli, Jim Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 language definition. ACM
SIGPLAN Notices, 27(8):15–42, August 1992.

[Cha92] Craig Chambers. Object-oriented multi-methods in Cecil. In
O. Lehrmann Madsen, editor, Proceedings ECOOP ’92, volume 615
of LNCS, pages 33–56, Utrecht, the Netherlands, June 1992. Springer-
Verlag.

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew Black. Traits: A mechanism for fine-grained reuse. ACM
Transactions on Programming Languages and Systems (TOPLAS),
28(2):331–388, March 2006.

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the
syntactic theories of sequential control and state. Theor. Comput. Sci.,
103(2):235–271, 1992.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes
and mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 171–183.
ACM Press, 1998.

[for] The Fortress language specification.
http://research.sun.com/projects/plrg/fortress0866.pdf.

[FR03] Kathleen Fisher and John Reppy. Statically typed traits. Technical
Report TR-2003-13, University of Chicago, Department of Computer
Science, December 2003.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the future: The story of Squeak, A practical Smalltalk written
in itself. In Proceedings OOPSLA ’97, ACM SIGPLAN Notices, pages
318–326. ACM Press, November 1997.

[Jik] The Jikes research virtual machine. http://jikesrvm.sourceforge.net/.

38

[Kro85] Stein Krogdahl. Multiple inheritance in Simula-like languages. In BIT
25, pages 318–326, 1985.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[Moh02] Markus Mohnen. Interfaces with default implementations in Java. In
Conference on the Principles and Practice of Programming in Java,
pages 35–40. ACM Press, Dublin, Ireland, jun 2002.

[NDS06] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening
Traits. Journal of Object Technology, 5(4):129–148, May 2006.

[Pyt] Python. http://www.python.org.

[sca] The scala programming language. http://lamp.epfl.ch/scala/.

[SD05] Charles Smith and Sophia Drossopoulou. Chai: Typed traits in Java.
In Proceedings ECOOP 2005, 2005.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew
Black. Traits: Composable units of behavior. In Proceedings of
European Conference on Object-Oriented Programming (ECOOP’03),
volume 2743 of LNCS, pages 248–274. Springer Verlag, July 2003.

[SE90] Bjarne Stroustrup and Magaret A. Ellis. The Annotated C++ Reference
Manual. Addison Wesley, 1990.

[SG99] Peter F. Sweeney and Joseph (Yossi) Gil. Space and time-efficient
memory layout for multiple inheritance. In Proceedings OOPSLA ’99,
pages 256–275. ACM Press, 1999.

[Sla] Slate. http://slate.tunes.org.

[Sny86] Alan Snyder. Encapsulation and inheritance in object-oriented
programming languages. In Proceedings OOPSLA ’86, ACM SIGPLAN
Notices, volume 21, pages 38–45, November 1986.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle.
Organizing programs without classes. LISP and SYMBOLIC
COMPUTATION: An international journal, 4(3), 1991.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. In
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages
227–242, December 1987.

39

	Introduction
	Stateless traits
	Reusable groups of methods
	Composing classes from mixins
	Conflict resolution
	Method composition operators

	Limitations of stateless traits
	Limited reusability
	Boilerplate glue code
	Propagation of required accessors
	Violation of encapsulation

	Stateful traits: reconciling traits and state
	Stateful trait definition
	Variable access
	Requirements revisited

	Flattening Property
	SmalltalkLite
	Stateless traits
	Stateful traits

	Implementation
	The classical problem of state linearization
	Three approaches to state linearization
	Virtual base pointers in C++
	Object state as a dictionary
	Copy down methods
	Benchmarks

	Refactoring the Smalltalk collection hierarchy
	Discussion
	Flattening property
	Limiting change impact
	About variable access

	Related work
	Conclusion
	References

