Domain-Specific Profiling*

Alexandre Bergel®, Oscar Nierstrasz?, Lukas Renggli!, Jorge Ressia?
! PLEIAD Lab, Department of Computer Science (DCC),
University of Chile
pleiad.dcc.uchile.cl

2 Software Composition Group, University of Bern, Switzerland
scg.unibe.ch

Abstract. Domain-specific languages and models are increasingly used
within general-purpose host languages. While traditional profiling tools
perform well on host language code itself, they often fail to provide
meaningful results if the developers start to build and use abstractions
on top of the host language. In this paper we motivate the need for
dedicated profiling tools with three different case studies. Furthermore,
we present an infrastructure that enables developers to quickly prototype
new profilers for their domain-specific languages and models.

1 Introduction

Recent advances in domain-specific languages and models reveal a drastic change
in the way software is being built. The software engineering community has
seen a rapid emergence of domain-specific tools, ranging from tools to easily
build domain-specific languages [18], to transform models [17], to check source
code [11], and to integrate development tools [13].

While research on domain-specific languages has made consistent progress in
language specification [5], implementation [4], evolution [6] and verification [8],
little has been done to support profiling. We consider profiling to be the activity
of recording and analyzing program execution. Profiling is essential for analyzing
transient run-time data that otherwise would be difficult to harvest and compare.
Code profilers commonly employ execution sampling as the way to obtain dynamic
run-time information. Unfortunately, information extracted by regularly sampling
the call stack cannot be meaningfully used to profile a high-level domain built on
top of the standard language infrastructure. Specialized domains need specialized
profilers.

Let us consider the example of the Mondrian visualization engine (details
follow in Section 2.1). Mondrian models visualizations as graphs, i.e., in terms of
nodes and edges. One of the important performance issues we recently faced is
the refresh frequency: nodes and edges were unnecessarily refreshed too often.
Standard code profilers did not help us to localize the source of the problem
since they are just able to report the share of time the CPU spends in the

* In Objects, Models, Components, Patterns, 49th International Conference, TOOLS
2011, Zurich, Switzerland, June 28-30, 2011. LNCS 6705, pp. 68-82, 2011.
doi:10.1007/978-3-642-21952-8_7

http://pleiad.dcc.uchile.cl/
http://scg.unibe.ch/
http://dx.doi.org/10.1007/978-3-642-21952-8_7

2 A. Bergel, O. Nierstrasz, L. Renggli, J. Ressia

method displayOn: of the classes MONode and MOEdge. The problem was finally
resolved by developing a custom profiler that could identify which nodes and
edges were indeed refreshed too often. This domain-specific profiler was able
to exploit knowledge of Mondrian’s domain concepts to gather and present the
needed information.

We argue that there is a need for a general approach to easily develop
specialized profilers for domain-specific languages and tools. A general approach
must offer means to (i) specify the domain concepts of interest, (ii) capture the
relevant information from the run-time execution, and (iii) present the results to
the developer.

In this paper we introduce MetaSpy, an event-based approach for domain-
specific profiling. With MetaSpy, a developer specifies the events of interest for a
given domain. A profiler captures domain information either by subscribing to
existing application events, or by using a reflective layer to transparently inject
event emitters into the domain code. The collected events are presented using
graph-based visualizations.

The contributions of this paper are: (1) the identification of the need for
domain-specific profilers, (2) the presentation of three real-world case-studies
where domain-specific profilers helped to significantly improve performance and
correctness of domain-specific code, and (3) the presentation of an infrastructure
for prototyping domain-specific profilers.

Outline. The remainder of this paper is structured as follows: Section 2 illustrates
the problems of using a general-purpose profiler on code that is built on top of a
domain-specific language. Section 3 introduces our approach to domain-specific
profiling. Section 4 demonstrates how our approach solves the requirements of
domain-specific profilers with three use cases. Section 5 presents our infrastructure
to implement domain-specific profilers. Section 6 presents an analysis on the
performance impact of MetaSpy. Section 7 summarizes the paper and discusses
future work.

2 Shortcomings of standard profilers

Current application profilers are useful to gather runtime data (e.g., method
invocations, method coverage, call trees, code coverage, memory consumption)
from the static code model offered by the programming language (e.g., packages,
classes, methods, statements). This is an effective approach when the low-level
source code has to be profiled.

However, traditional profilers are far less useful for a domain different than
the code model. In modern software there is a significant gap between the
model offered by the execution platform and the model of the actually running
application. The proliferation of meta-models and domain-specific languages
brings new abstractions that map to the underlying execution platform in non-
trivial ways. Traditional profiling tools fail to display relevant information in the
presence of such abstractions.

Domain-Specific Profiling 3

2.1 Difficulty of profiling a specific domain

This section illustrates two shortcomings of traditional profiling techniques when
applied to a specific domain.

CPU time profiling

Mondrian [10] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised®. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [7], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk?,
textually describes the execution in terms of CPU consumption and invocation
for each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8), {11501ms} MORoot (MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:
| 18.1% {3799ms} MOEdge>>displayOn:

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:

23.47 {4911ms} MOEdge>>displayOn:

We can observe that the virtual machine spent about 54% of its time in the
method displayOn: defined in the class MORoot. A root is the unique non-nested
node that contains all the nodes of the edges of the visualization. This general
profiling information says that rendering nodes and edges consumes a great share
of the CPU time, but it does not help in pinpointing which nodes and edges
are responsible for the time spent. Not all graphical elements equally consume
resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

3 nttp://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116
4 http://www.pharo-project.org/

http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#a2261116
http://www.pharo-project.org/

4 A. Bergel, O. Nierstrasz, L. Renggli, J. Ressia

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [12].

A number of grammars have been implemented with PetitParser, including
Java, Smalltalk, XML and SQL. It would be useful to establish how much of the
grammar is actually exercised by a set of test files to identify untested productions.
The if statement parsing rule is defined as follows®:

PPJavaSyntax>>ifStatement
~ ('if' asParser token , conditionalExpression , statement) ,
('else' asParser token , statement) optional

Coverage tools assess the coverage of the application source code by listing the
methods involved in an execution. Some tools can even detect the coverage inside
methods. Let us consider a Java grammar in PetitParser which is defined in 210
host language methods. These methods build a graph of objects describing the
grammar. Traditional coverage tools focus on the source code artifacts instead of
domain-specific data. In the example this means that all methods are covered
to build the grammar, but some parts of the resulting graph are not used. This
is why we are unable to analyze the parsing and production coverage of this
grammar with traditional tools.

2.2 Requirements for domain-specific profilers

The two examples given above are representative. They illustrate the gap between
a particular domain and the source code model. We argue that to efficiently
profile an arbitrary domain, the following requirements need to be fulfilled:

— Specifying the domain. Being able to effectively designate the objects relevant
for the profiling is essential. Since we are concerned with what makes up a
visualization in Mondrian, we are interested in the different nodes and the
invocation of the displayOn: methods, rather than focusing on the implemen-
tation classes. Grammars in PetitParser are represented as an executable
graph of primitive parser objects, each with its own execution behavior.

— Capturing domain related events. Relevant events generated by the domain
have to be monitored and recorded to be analyzed during or after the
execution. An event represents a particular change or action triggered by the
domain being profiled. Whereas the class M0GraphElement and its subclasses
total more than 263 methods, only fewer than 10 methods are related to
displaying and computing shape dimensions.

® Readers unfamiliar with the syntax of Smalltalk might want to read the code examples
aloud and interpret them as normal sentences: An invocation to a method named
method:with:, using two arguments looks like: receiver method: argl with: arg2.
Other syntactic elements of Smalltalk are: the dot to separate statements: statement1.
statement2; square brackets to denote code blocks or anonymous functions: [
statements]; and single quotes to delimit strings: 'a string'. The caret ~ returns
the result of the following expression.

http://www.squeaksource.com/PetitJava.html

Domain-Specific Profiling 5

— FEffectively and concisely presenting the necessary information. The informa-
tion collected by traditional profilers is textual and targets method invocation.
A method that invokes another will be located below it and indented. More-
over, each method frame represented has a class name and a method name,
which completely ignores the identity of the object and arguments that are
part of the call. Collected information has to be presented in such a way
as to bring the important metrics and domain object composition into the
foreground.

Common code profilers employ execution sampling as the way to cheaply
obtain dynamic information. Unfortunately, information extracted when regularly
sampling the method call stack cannot be used to profile a domain other than
the source code model.

3 MetaSpy in a nutshell

In this section we will present MetaSpy, a framework to easily build domain-
specific profilers. The key idea behind MetaSpy is to provide domain-specific
events that can later be used by different profilers with different objectives.

Instrumentation strategies Profilers
M Profiler
handler model
install strategies
setUp observeClass:do:
tearDown observeClass:selector:do
uninstall observePackage:do:

observePackagesMatching:do:
observeParser:in:do:
install

A Methodinstr Parserinstr setUp
Instrumenter theClass parser tearDown

announcer selector grammar uninstall

install methdo replacement A

uninstall doesNotUnderstand: install
run:with:in: uninstall
install
setUp MondrianProfiler OmniBrowserProfiler PetitParserProfiler
tee}rDown setUp setUp setUp
uninstall visualize visualize visualize

User provided classes

Fig. 1. The architecture of the MetaSpy profiler framework.

Figure 1 shows a class diagram of MetaSpy. There are two main abstractions:
the instrumentation strategies and the domain-specific profilers.

An instrumentation strategy is responsible for adapting a domain-specific
model and triggering specific actions in the profiler when certain events occur. A
profiler models a domain-specific profiling requirement by composing multiple
instrumentation strategies.

Some instrumentation strategies work by registering to existing events of the
application domain. Other instrumentation strategies intercept the system by

6 A. Bergel, O. Nierstrasz, L. Renggli, J. Ressia

meta-programming, i.e., conventional instrumentation. Installing an instrumenta-
tion strategy activates it and its associated events, while uninstalling deactivates
them.

Some of the instrumentation strategies provided by MetaSpy are:

— Announcement Instrumenter dispatches events satisfying a particular condi-
tion from the announcement framework to the external profiler.

— Method Instrumenter triggers an event whenever a specific method is invoked
on any instance of a specified class.

Object Instrumenter triggers an event whenever a specific method is invoked
on a particular object. This is called object-specific profiling.

Parser Instrumenter triggers an event whenever a specific grammar produc-
tion is activated. This is a very specific instrumentation strategy only working
with PetitParser productions.

Other dedicated instrumentation strategies can be implemented by adhering
to the same interface.

Profilers are responsible for modeling the domain-specific behavior to profile
the main abstractions in each domain. The abstract Profiler class models the
behavior of a general profiler. Subclasses are instantiated with a domain-specific
model and implement the set-up and tear-down of one or more instrumentation
strategies into the model. Furthermore, they define how and what data is collected
when the instrumented model is exercised. To actually instrument the model
and start collecting events the method install is used. Similarly, to remove all
instrumentation from the model, uninstall is used. Both methods dispatch the
requests to the respective instrumentation strategies using the current model.

Each profiler is responsible for presenting the collected data in the method
open. Depending on the nature of the data, this method typically contains a
Mondrian [10] or Glamour [3] script, or a combination of both. Mondrian is a
visualization engine to depict graphs of objects in configurable ways. Glamour is
a browser framework to script user interfaces for exploratory data discovery.

Next, we will show real-world examples of domain-specific profilers.

4 Validation

In this section we will analyze three case studies from three different domains. We
will show how MetaSpy is useful for expressing the different profiling requirements
in terms of events. We will also demonstrate how MetaSpy fulfills the domain-
specific profiling requirements, namely specifying, capturing and presenting
domain-specific information.

For each case study we show the complete code for specifying and capturing
events. We do not show the code for visualizing the results, which typically
consists of 20-50 lines of Mondrian or Glamour scripts.

Domain-Specific Profiling 7

4.1 Case Study: Displaying invocations

A Mondrian visualization may comprise a great number of graphical elements. A
refresh of the visualization is triggered by the operating system, resulting from
user actions such as a mouse movement or a keystroke. Refreshing the Mondrian
canvas iterates over all the nodes and edges and triggers a new rendering. Elements
that are outside the window or for which their nesting node has an active bitmap
in the cache should not be rendered.

A graphical element is rendered when the method display:on: is invoked.
Monitoring when these invocations occur is key to having a global view of what
should be refreshed.

Capturing the events

The MetaSpy framework is instantiated to create the MondrianProfiler profiler.

Profiler subclass: #MondrianProfiler
instanceVariableNames: 'actualCounter previousCounter'

MondrianProfiler defines two instance variables to monitor the evolution of
the number of emitted events: actualCounter keeps track of the current number
of triggered events per event type, and previousCounter the number of event
types that were recorded before the previous visualization step.

MondrianProfiler>>initialize
super initialize.
actualCounter := IdentityDictionary new.
previousCounter := IdentityDictionary new

The installation and instrumentation of Mondrian by MetaSpy is realized by
the setUp method:

MondrianProfiler>>setUp
self model root allNodes do: [:node |
self

observeObject: node

selector: #displayOn:

do: [:receiver :selector :arguments |

actualCounter

at: receiver
put: ((actualCounter at: receiver ifAbsent: [0 1) + 1)] 1]

All the nodes obtained from the root of the model object are “observed” by
the framework. At each invocation of the displayOn: method, the block given
as parameter to do: is executed with the object receiver on which displayOn: is
invoked, the selector name and the argument. This block updates the number of
displays for each node of the visualization.

Specifying the domain

The instrumentation described in the setUp method is only applied to the model
specified in the profiler. This model is an object which models the domain to

8 A. Bergel, O. Nierstrasz, L. Renggli, J. Ressia

be profiled, in this case a Mondrian visualization. The instrumentation is only
applied to all nodes in this visualization. Only when these nodes receive the
the message displayOn: will increment the actual counter. This object-specific
behavior is possible due to the use of a reflection framework called Bifrost [14].

Presenting the results

The profiling of Mondrian is visualized using Mondrian itself. The visualizeOn:
method generates the visualization given in Figure 2.

0606 Mondrian Profiler Ol (666 Mondrian Renderer =
Exporthw E)cportht +B -
~ ~

ByteArray m—

ByteString
ByteSymbol u
CharacterSet ™=
CharacterSetComplement E—————— |:||:||:||:|Dn
o
=]

Collection ———

Color Array m—

CompiledMethod ™= dc
Cubic® o

D dentsArray m—
ependentsArray I = o O B 4
Dicrinnary - - < - "] 4

Fig. 2. Profiling (left) the System Complexity visualization (right).

One important point of visualizeOn: is to regularly update the visualization
to be able to see the evolution of the domain events over time. The profiler is
uninstalled when the profiler Mondrian visualization is closed.

Figure 2 gives a screenshot of a visualization and the profiler. The right-hand
side is an example of the System Complezity visualization [9] of the collection
class hierarchy in Pharo. The left-hand side shows the profiler applied to the
visualization. The horizontal bar indicates the number of times the corresponding
node has been displayed.

The profiling monitors each node of the profiled visualization. Each node
is associated to a progress bar that widens upon node refresh. The profiled
visualization remains interactive. Clicking and drag-and-dropping nodes refreshes
the visualization, thus increasing the progress bar of the corresponding nodes.
This profile helps identifying unnecessary rendering. We identified a situation in
which nodes were refreshing without receiving user actions. This was perceived
by the user with a sluggish rendering. Edges were constantly refreshed, even
without being apparent. This problem is addressed in version 2.30 of Mondrian.

4.2 Case Study: Events in OmniBrowser

OmniBrowser [2] is a framework to define and compose new browsers, i.e.,
graphical list-oriented tools to navigate and edit elements from an arbitrary

Domain-Specific Profiling 9

domain. In the OmniBrowser framework, a browser is described by a domain
model specifying the domain elements that can be navigated and edited, and a
metagraph specifying the navigation between these domain elements. Nodes in
the metagraph describe states the browser is in, while edges express navigation
possibilities between those states. The OmniBrowser framework then dynamically
composes widgets such as list menus and text panes to build an interactive
browser that follows the navigation described in the metagraph.

OmniBrowser uses announcements for modeling the interaction events of the
user with the IDE. A very common problem is to have certain announcements be
triggered too many times for certain scenarios. This behavior impacts negatively
the performance of the IDE. Moreover, in some cases odd display problems are
produced which are very hard to track down.

Capturing the events

To profile this domain-specific case we implemented the class OmniBrowser-
Profiler:

Profiler subclass: #0mniBrowserProfiler
instanceVariableNames: 'actualCounter previousCounter'

The instrumentation in the setUp method counts how many times each
announcement was triggered.

OmniBrowserProfiler>>setUp
self
observeAnnouncer:
do: [:ann |
actualCounter
at: ann class

self model announcer

put: (actualCounter at: ann class ifAbsent: [0]) + 1]
OO OomniBrowser profiler Ol 1666 Bezier3Segment
Announcements-Core CompressedBoundary, - all - 4 asBezier2Points
EFTLG I\"J\E’J Announcements-View a LineSegment accessing asEszierZSsgmsntah

OBTextCommandScan

Balloon-Collections Bezier2Segment bezier clipping

asBezierShape

Balloon-Engine Bezier3Segment converting asBezierShape
QBshowSenders Balloon-Fills initialization asPointArray
Balloon-Simulation vector functions 4+ asTangentSegment
oBShawimpl " !
owimplEmentars Collections-Abstract private bezier2SegmentCou

0BShowHierarchySenders
OBShowHisrarchylmplementors

OBSelectionChange d S—

Collections-Arrayed
Collections-Sequencez
Balloon-Geometry
Collections-Stack

bezier2SegmentCoL
bezierClipHeight:

+ bounds

+ controlPoints

Collections-Streams < > + controlPointsDo:
OBSelectingNode ¥ -
electingNode gol\ectlons Strings)., L?/‘ Class 2degree .
OBRefreshRequired =8 (<) — —
Variables)(Implementors) (Inheritance e 3 e

OBNodeDeleted ®
OBNodsCreated®
OBNodeCommands can Se——
OBNodeChanged
OBDefinitionChange d Se—
OBChildrenChanged
OBAboutToChangeSilently

OBAboutToChange Mem—

(Browse)(Hierarchy

LineSegment subclass: #Bezier3Segment
instanceVariableNames: 'vial via2'
classVariableNames: "
poolDictionaries: "
category: 'Balloon-Geometry'

Fig. 3. Profiling (left) an OmniBrowser instance (right).

[N R

10 A. Bergel, O. Nierstrasz, L. Renggli, J. Ressia

Specifying the domain

We specify the entities we are interested in profiling by defining the model in
the profiler. For example, we could define 0BSystemBrowser browsing a specific
class. All OmniBrowser instances have an internal collaborator named announcer
which is responsible for the signaling of announcements. This is the object used
by the profiler to catch the announcement events.

Presenting the results

A Mondrian visualization was implemented to list the type and the number of
announcements triggered (Figure 3).

4.3 Case Study: Parsing framework with PetitParser

Rigorous test suites try to ensure that each part of the grammar is covered by tests
and is well-specified according to the respective language standards. Validating
that each production of the grammar is covered by the tests is a difficult activity.
As mentioned previously, the traditional tools of the host language work at the
method and statement level and thus cannot produce meaningful results in the
context of PetitParser where the grammar is modeled as a graph of objects.

Capturing the events

With MetaSpy we can implement the grammar coverage with a few lines of code.
The instrumentation happens at the level of the primitive parser objects. The
method observeParser:in: wraps the parser object with a handler block that is
called for each activation of the parser.

PetitParserProfiler>>setUp
self model allParsers do: [:parser |
self observeParser: parser in: self grammar do: [
counter
at: parser
put: (counter at: parser ifAbsent: [0]) + 1]]

Line 2 iterates over all primitive parser objects in the grammar. Line 3 attaches
the event handler on Lines 4-6 to each parser in the model. The handler then
counts the activations of each parser object when we run the test suite of the
grammar.

Specifying the domain

The domain in this case is an instance of the grammar that we want to analyze.
Such a grammar may be defined using hundreds of interconnected parser objects.

Presenting the results

This provides us with the necessary information to display the grammar coverage
in a visualization such as that shown in Figure 4.

Domain-Specific Profiling 11

AN AN

Fig. 4. Visualization of the production coverage of an XML grammar with
uncovered productions highlighted in black (left); and the same XML grammar
with updated test coverage and complete production coverage (right). The size
of the nodes is proportional to the number of activations when running the test
suite on the grammar.

5 Implementing instrumentation strategies

MetaSpy has two ways of implementing an instrumentation strategies: listening to
pre-existing event-based systems, or using the meta-level programming techniques
of the host language to define a meta-event the strategy is interested in.

Let us consider the class AnnouncementInstrumenter, whose responsibility is
to observe the generation of specific announcements.

AnnouncementInstrumenter>>install
self announcer
on: Announcement
send: #value:
to: self handler

The install method installs an instrumentation strategy object on the domain
specified in the install method. In this snippet of code we can see that the
strategy is hooked into the announcement system by evaluating the strategy’s
handler when an announcement is triggered.

However, not all profiling activities can rely on a preexisting mechanism for
registering to events. In some cases, a profiler may be hooked into the base code
using an existing event mechanism, for example the OmniBrowser profiler. In
other cases, extending the base code with an appropriate event mechanism is
simply too expensive. Because of this, we need to rely on the meta-programming
facilities of the host language. These facilities are not always uniform and require
ad hoc code to hook in behavior. To avoid this drawback we decided to use a
framework that provides uniform meta-programming abstractions. Bifrost [14]
offers a model of fined-grained unanticipated dynamic structural and behavioral
adaptation. Instead of providing reflective capabilities as an external mechanism,
Bifrost integrates them deeply into the environment. Bifrost is a reflective system
based on explicit meta-objects to improve meta-level engineering.

12 A. Bergel, O. Nierstrasz, L. Renggli, J. Ressia

Bifrost has been designed as an evolution of partial behavioral reflection
for Smalltalk [15], which in turn was conceived as an extension of the Reflex
model [16]. Bifrdst’s meta-objects provide a structural view and a behavioral view.
In the context of MetaSpy we were mainly interested in behavioral reifications.
A behavioral meta-object reifying message sends was used for the message send
instrumenter. A Message Received event is also provided by the behavioral
meta-object. State read and write are also supported thus MetaSpy can profile
these dynamic events. Bifrost meta-objects when attached to a single object are
object-specific in nature, thus fulfilling an important domain-specific profiler
design requirement.

Let us consider the Message Received Instrumenter, whose responsibility is
to instrument when a specific object receives a specific message.

MessageReceivedInstrumenter>>install
self observerMetalObject bind: self object

MessageReceivedInstrumenter>>setUp
profilingMetaObject := BehaviorMetaObject new
when: self selector
isReceivedDo: self handler

The method install binds a meta-object to the object to be observed. The
method setUp initializes the profiling meta-object with a behavioral meta-object.
This meta-object evaluates the handler when a specific message is received by
the profiled object. This mechanism is termed object-specific instrumentation.

Object-specific instrumentation is not trivial to achieve in class-based lan-
guages like Smalltalk and Java. Classes are deeply rooted in the language inter-
preter or virtual machine and performance is tweaked to rely heavily on these
constructs. Moreover, most languages provide a good level of structural reflection
to deal with structural elements like classes, method, statements, etc. Most lan-
guages, however, do not provide a standard mechanism to reflect on the dynamic
abstractions of the language. There are typically no abstractions to intercept
meta-events such as a message send, a message receive, a state read, etc.

In our implementation, the profiled application, the profiler, and the visu-
alization engine are all written in the same language, Pharo, and run on the
same virtual machine. Nothing in our approach prevent from decoupling these
components and having them written in a different language or running remotely.
This is actually what often happen with the profilers and debuggers running on
the Java virtual machine (e.g., Java debugging interface®).

6 Micro-benchmark

Profiling always impacts the performance of the application being analyzed.
We have performed a micro-benchmark to assess the maximal performance
impact of MetaSpy. We assume that the behavior required to fulfill the profiling
requirements is constant to any instrumentation strategy.

5 http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html

http://download.oracle.com/javase/1.5.0/docs/guide/jpda/jvmdi-spec.html

Domain-Specific Profiling 13

We analyze the impact of MetaSpy on both profiling uses cases. All benchmarks
were performed on an Apple MacBook Pro, 2.8 GHz Intel Core i7 in Pharo 1.1.1
with the jitted Cog VM.

Registering instrumentation strategies to a preexisting event-based system
depends heavily on the the system used and how it is used.

Using meta-level programming techniques on a runtime system can have a
significant performance impact. Consider a benchmark in which a test method is
being invoked one million times from within a loop. We measure the execution
time of the benchmark with Bifrost reifying the 10 method activations of the
test method. This shows that in the reflective case the code runs about 35 times
slower than in the reified one. However, for a real-world application with only few
reifications the performance impact is significantly lower. Bifrost’s meta-objects
provide a way of adapting selected objects thus allowing reflection to be applied
within a fine-grained scope only. This provides a natural way of controlling the
performance impact of reflective changes.

Let us consider the Mondrian use case presented in Section 2.1. The main
source of performance degradation is from the execution of the method displayOn:
and thus whenever a node gets redisplayed. We developed a benchmark where
the user interaction with the Mondrian easel is simulated to avoid human delay
pollution in the exercise. In this benchmark we redraw one thousand times the
nodes in the Mondrian visualization. This implies that the method displayOn: is
called extensively. The results showed that the profiler-oriented instrumentation
produces on average a 20% performance impact. The user of this Mondrian
visualization can hardly detect the delay in the drawing process. Note that our
implementation has not been aggressively optimized. It has been shown [1] that
combining instrumentation and sampling profiling leaded to accurate profiles (93—
98% overlap with a perfect profile) with low overhead (3-6%). The profilers we
presented in this paper are likely to benefit from such instrumentation sampling.

7 Conclusions and future work

Our contributions are the following:

1. We demonstrated the need for domain-specific profilers. We argued that
traditional profilers are concerned with source code only and are inadequate
for profiling domain-specific concerns. We demonstrated this drawback with
two use cases.

2. We formulated the requirements domain-specific profilers must fulfill: specify-
ing the domain, capturing domain related events and presenting the necessary
information.

3. We presented MetaSpy, a framework for defining domain-specific profilers.
We also presented three real-world case-studies showing how MetaSpy fulfills
the domain-specific profiler requirements.

As future work we plan to:

— Provide ready-made and pluggable visualizations that can be used by new
domain-specific profilers. We plan to use Glamour to build these visualizations.

14

A. Bergel, O. Nierstrasz, L. Renggli, J. Ressia

— Apply MetaSpy in the context of large meta-models, such as the FAMIX

meta-model in Moose and the Magritte meta-model in Pier.

— Provide additional ready-made event types that enhance the expressibility of

new profilers.

— Profiler scoping is of key importance to obtain adequate information. We

plan to enhance the scoping mechanism to be able to dynamically attach
events to groups of objects.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science Foundation
for the project “Synchronizing Models and Code” (SNF Project No. 200020-131827,
Oct. 2010 — Sept. 2012). We also like to thank Toon Verwaest for his feedback on earlier
drafts of this paper.

References

1.

10.

11.

Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
In: Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation. pp. 168-179. PLDI ’01, ACM, New York, NY, USA
(2001)

. Bergel, A., Ducasse, S., Putney, C., Wuyts, R.: Creating sophisticated development

tools with OmniBrowser. Journal of Computer Languages, Systems and Structures
34(2-3), 109-129 (2008)

. Bunge, P.: Scripting Browsers with Glamour. Master’s thesis, University of Bern

(Apr 2009)

. Cuadrado, J.S., Molina, J.G.: A model-based approach to families of embedded

domain specific languages. IEEE Transactions on Software Engineering 99(1) (2009)

. Deursen, A., Klint, P.; Visser, J.: Domain-specific languages: An annotated bibliog-

raphy. ACM SIGPLAN Notices 35(6), 26-36 (Jun 2000)

. Freeman, S., Pryce, N.: Evolving an embedded domain-specific language in Java. In:

OOPSLA’06: Companion to the 21st Symposium on Object-Oriented Programming
Systems, Languages, and Applications. pp. 855-865. ACM, Portland, OR, USA
(2006)

. Gupta, A., Hwu, W.M.W.: Xprof: profiling the execution of X Window programs.

In: Proceedings of the 1992 ACM SIGMETRICS joint international conference
on Measurement and modeling of computer systems. pp. 253-254. SIGMETRICS
’92/PERFORMANCE ’92, ACM, New York, NY, USA (1992)

. Kabanov, J., Raudjarv, R.: Embedded typesafe domain specific languages for Java.

In: PPPJ’08: Proceedings of the 6th International Symposium on Principles and
Practice of Programming in Java. pp. 189-197. ACM, Modena, Italy (2008)

. Lanza, M., Ducasse, S.: Polymetric views—a lightweight visual approach to reverse

engineering. Transactions on Software Engineering (TSE) 29(9), 782-795 (Sep 2003)
Meyer, M., Girba, T., Lungu, M.: Mondrian: An agile visualization framework. In:
ACM Symposium on Software Visualization (SoftVis’06). pp. 135-144. ACM Press,
New York, NY, USA (2006)

Renggli, L., Ducasse, S., Girba, T., Nierstrasz, O.: Domain-specific program checking.
In: Vitek, J. (ed.) Proceedings of the 48th International Conference on Objects,
Models, Components and Patterns (TOOLS’10). LNCS, vol. 6141, pp. 213-232.
Springer-Verlag (2010)

12.

13.

14.

15.

16.

17.

18.

Domain-Specific Profiling 15

Renggli, L., Ducasse, S., Girba, T., Nierstrasz, O.: Practical dynamic grammars for
dynamic languages. In: 4th Workshop on Dynamic Languages and Applications
(DYLA 2010). Malaga, Spain (Jun 2010)

Renggli, L., Girba, T., Nierstrasz, O.: Embedding languages without breaking tools.
In: D’Hondt, T. (ed.) ECOOP’10: Proceedings of the 24th European Conference
on Object-Oriented Programming. LNCS, vol. 6183, pp. 380—404. Springer-Verlag,
Maribor, Slovenia (2010)

Ressia, J., Renggli, L., Girba, T., Nierstrasz, O.: Run-time evolution through explicit
meta-objects. In: Proceedings of the 5th Workshop on Models@run.time at the
ACM/IEEE 13th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2010). pp. 3748 (Oct 2010)

Rothlisberger, D., Denker, M., Tanter, E.: Unanticipated partial behavioral reflec-
tion: Adapting applications at runtime. Journal of Computer Languages, Systems
and Structures 34(2-3), 46-65 (Jul 2008)

Tanter, E., Noyé, J., Caromel, D., Cointe, P.: Partial behavioral reflection: Spa-
tial and temporal selection of reification. In: Proceedings of OOPSLA ’03, ACM
SIGPLAN Notices. pp. 27-46 (nov 2003)

Tisi, M., Cabot, J., Jouault, F.: Improving higher-order transformations support in
atl. In: Proceedings of the Third international conference on Theory and practice of
model transformations. pp. 215-229. ICMT’10, Springer-Verlag, Berlin, Heidelberg
(2010)

Visser, E.: Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In: Lengauer, C., et al. (eds.) Domain-Specific
Program Generation, Lecture Notes in Computer Science, vol. 3016, pp. 216-238.
Spinger-Verlag (Jun 2004)

	Domain-Specific Profiling
	Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, Jorge Ressia
	Introduction
	Shortcomings of standard profilers
	Difficulty of profiling a specific domain
	Requirements for domain-specific profilers

	MetaSpy in a nutshell
	Validation
	Case Study: Displaying invocations
	Case Study: Events in OmniBrowser
	Case Study: Parsing framework with PetitParser

	Implementing instrumentation strategies
	Micro-benchmark
	Conclusions and future work

