
Surgical Information to Detect Design Problems with MOOSE

Muhammad Usman BHATTI1, Stéphane DUCASSE2

1CRI, Université de Paris 1 Sorbonne, France
2Language and Software Evolution Group, Université de Savoie, France

muhammad.bhatti@malix.univ-paris1.fr, stephane.ducasse@univ-savoie.fr

Abstract

The quality attributes, such as understandability and
modularity manifest their importance in the later part of the
software life where a lot of resources are required to main-
tain or reuse software whose quality has been marred by
the urgencies of time to market. In this position paper, we
present and analyze an existing system meant to be reused
on various product lines. We intend to use the MOOSE
framework to precisely identify the needs of a reengineer
in terms of code-smells, visualization and metrics. In this
position paper, we discuss some of the limitations of the ex-
isting software system and inadequacy of existing toolkits to
automate the task of detection of these limitations. We in-
tend to discuss the appropriateness of MOOSE as a remedy
to these deficiencies.

1. Introduction

Software design is an iterative process and it is very dif-
ficult to achieve an ideal design in terms of quality in the
first iteration. While managers and developers are working
to satisfy the marketing needs in a minimum time, software
quality is their last preoccupation. Therefore, the use of a
certain technology or a paradigm doesn’t mean ideal soft-
ware quality. Reverse Engineering and Reengineering are
used to analyze the code of a software having very little or
no existing documentation [1]. One of the aims of reegni-
neering activity is to generate high-level models and dia-
grams from the only artefact that represents the true state of
the affairs vis--vis business of an enterprise, along with the
technical architecture to support this business, so that these
can be visualized and manipulated by reengineers.

The first author is working in an company which pro-
duces a range of blood plasma analysis automatons. The
overall cost of an instrument includes a huge chunk for soft-
ware that drives the instruments and managers are always
looking to reduce the cost of development, and once devel-

oped, the cost of software maintenance. Development costs
can be reduced by reusing the existing artefacts which are
developed earlier to be reused in the existing development
process.

But the existing software contains a lot of deficiencies in
terms of the quality of its components partly due to the lack
of knowledge of object-oriented design methodologies.

We would like to use a tool-based, reverse-engineering
approach in order to improve the quality of existing soft-
ware to enable the reuse of individual components. For that
purpose, MOOSE [7] seems to be an ideal candidate with
its visualization and metric-based plug-ins. One of the lim-
itations that has been encountered during the work is the
absence of the research tools supporting Microsoft .NET
Framework and associated languages. For this purpose, we
are in the process of development of a plug-in to integrate
MOOSE with .NET environment.

2 Case Study: Blood Plasma Analysis Ma-
chines

We are working in a company that builds blood plasma
analysis machines. The machine is composed of two main
parts: the hardware part concerning mechanics and elec-
tronics like the arms, the drawers, and the software part
managing the hardware with an aim of analyzing the blood
plasma. The user of the machine (operator, biologist, etc),
after authentication, loads one or more tubes of plasma, as
well as products, in the drawers of the machine, associates
a test of analysis each tube, and launches the analysis. The
automaton performs the analysis for blood-related diseases
and the results of the analyses are displayed on the display
device.

For the sake of precision and clarity, we shall only be
talking about the layer that manages the business objects
and operates with the database layer to manage the data as-
sociated with these objects.

Although the software cannot be considered to be a
legacy one, it presents rudimentary examples of object-

oriented code lacking object-oriented design [4]. We dis-
cuss this issue in detail in the next section.

3 Business Entity Layer

The business entity layer of the software is supposed to
support functionality such as patient data, tubes, blood anal-
yses, results, reagents used, etc. An extract for the class
diagram of this layer is shown in the figure below.

Figure 1. Class Diagram Entity Layer

Although the above diagram is not very clear in terms of
its contents, nevertheless it communicates some facts about
the business entity layer.

• There is a lack of hierarchical structure, via inheritance
one of the tenet of code reuse and a fundamental ele-
ment of object-oriented design.

• Presence of huge classes encapsulating functionality
pertaining to multifaceted objects and entities.

These problems which are visible from a very high-level
abstract extraction from the code in question, show that
rudimentary restructuring is needed in terms of design and
quality of the software.

Unfortunately, most of the tools available for C# lan-
guage provide this level of view and reengineers are sup-
posed to manually follow the track from these abstract
maps. These visualizations are helpful in understanding the
overall system architecture but not adapted to fine-grained
problems associated with the software architecture. Argu-
ment stating that software metrics only represent numbers
and provide information that require further interpretation,
in this case, seems to carry weight [2]. They do not go far-
ther than the information depicted in the figure above since
they do not provide comprehensive information to ease the
task of software reengineering. For example, Table 1 is a set
of quality metrics for the mammoth class in Figure 1 above,
called ServicePatient.

Table 1. Classification of Aspectized services

Metric Value
Lines of Code 4000
of Methods 262

Depth of inheritance 1
Lack of Cohesion Of Methods (LCOM) 0.8501908
LCOM Henderson-Sellers (LCOMHS) 0.8534483

Cyclomatic Complexity 1368

For a reengineer, the gap between the visualization
needed for her refactoring activity and information provided
by the metrics remains largely obscure.

An example may illustrate the things better: While man-
ually analyzing the software in question we found that there
is no object related to the patient’s tube and the logic to
add, search, manipulate and delete the tube data associ-
ated to tubes is scattered in other classes of the system.
These classes directly operate over the table tube found in
the database, and we used manual techniques to identify
places where the information was changed in the database
as shown in Figure 2. During code inspection, we found
that any change to the tube related logic requires changes in
several classes spread over two software layers. These are
clear code smells for for encapsulation related problems [5]

This bad code smell related to the absence of encapsula-
tion could be identified using visualization techniques [?],
it is not straightforward since most visualization techniques
do not support the detection of this design anomaly [8, 3].
In addition, it requires a manual effort to understand the ef-
fects of absence of this object on the future evolutions of the
software.

The extract class refactoring suggested by [5] provides
a possible solution consisting of extracting all the methods
and attributes related to tubes to be extracted from the main
class. This extracted code can then be placed in a class that
can encapsulate the logic associated to the tube object and
the code can be modified accordingly. The visualization
has a great part to play to support unwanted effects of the
refactoring exercise. This can be done by identifying all the
attributes and methods that are effected by the movement of
the code from one class to another. As defined above, the vi-
sualization techniques support more legacy code problems
such as code duplication and large classes. But there is no
visualization technique that supports the actual refactoring
process.

A reengineer at this point would find the following infor-
mation useful:

• Classes containing the logic pertaining to a particular
object, in our case tube.

Figure 2. Classes directly manipulating the
Patient’s Tube Information

• Dependencies of these classes at a coarse-grained level
and the methods at a fine-grained level to calculate the
impact of restructuring activities on other modules.

• A set of metrics indicating the impact on software
quality with the progress of software restructuring.

For this purpose, we intend to exploit the MOOSE sys-
tem to extract what we call surgical information to guide
our reengineering activities. The purpose of this exercise is
to find a set of visualizations and metrics that identify prob-
lems more precisely than the existing techniques. For this
purpose, more details and semantically rich metrics such as
FAN in analysis and Formal Concept Analysis should be
investigated. This would allow the reengineer to gain an in-
sight into the code which provides much more than mere
structural information to detect design defects.

4 Tool Used - Related Work

The number of research studies and tools for C# based
systems is inferior to that of Java-based systems due par-
tially to the license and availability issues of the two prod-
ucts. Nevertheless, some research prototypes are still avail-
able to study existing C# systems. For this activity, we used
Altova’s Class Diagram extractor to extract the class dia-
grams for the module in question. NDepend provides a
useful tools with limited license for academic purposes to
calculate various metrics of the software systems developed
in C#. These include an extensive set of information for
the dependencies of type-based information. But since tube
type doesn’t already exist in the system, it already requires
a lexical analysis of the system to search for possible candi-

dates methods and properties named tubes. This is the limi-
tation of this tool that the reengineer needs to resort to other
tools for lexical analysis of various statements to study the
dependency of a software concern deeply embedded in the
system. Devmetrics provides a set of high-level metrics for
the system developed in C# language but doesn’t provide
class diagram extraction functionality. Doxygen is useful
tool to generate Javadoc-type documentation for the exist-
ing systems. It can be easily inferred that existing appli-
cations for the reengineering of C# systems lack all-in-one
information needed to guide the reengineering activity.

5 Conclusion

Software quality is understood to be a topic of academic
interest in the industrial world. The software generally have
inferior quality due to time to market urgencies. Hence, new
software is needed to be developed for each new product
without reusing the existing components. We are currently
working on a system of this type and trying to ameliorate
its quality. We are facing a lack of tools which may guide
reengineer’s activities. Normally a mix of tools are used
to extract this information. In addition, C#-based systems
are not studied in research for the problem of restructuring,
hence the lack of tools and information is accentuated for
this family of systems. We intend to use MOOSE frame-
work to infer what we call surgical information needed to
guide reengineering tasks with a set of visualizations and
metrics.

References

[1] E. J. Chikofsky and J. H. C. II. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7(1):13–
17, 1990.

[2] O. Ciupke. Automatic detection of design problems in
object-oriented reengineering. In TOOLS ’99: Proceed-
ings of the Technology of Object-Oriented Languages
and Systems, page 18, Washington, DC, USA, 1999.
IEEE Computer Society.

[3] Y. Crespo, C. López, R. Marticorena, and
E. Manso. Language independent metrics sup-
port towards refactoring inference, jul 2005.
http://pisuerga.inf.ubu.es/clopez/refactoring/.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-
Oriented Reengineering Patterns. Morgan Kaufmann,
2002.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of Ex-
isting Code. Addison Wesley, 1999.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[7] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of
moose: an agile reengineering environment. volume 30,
pages 1–10, New York, NY, USA, 2005. ACM Press.

[8] C. Parnin and C. Gø̂rg. Lightweight visualizations for
inspecting code smells. In SoftVis ’06: Proceedings
of the 2006 ACM symposium on Software visualiza-
tion, pages 171–172, New York, NY, USA, 2006. ACM
Press.

