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ABSTRACT of objects. Classes also provide for reuse in two different ways:

as factories, they can be used to instantiate many similar objects,
while as superclasses, they group methods so that they can be in-
%orporated into new subclasses. These two kinds of reuse often
have conflicting requirements. As factories, classes must be com-
plete; when creating new subclasses, it is more convenient to be
able to incorporate incomplete fragments of behavior.

We have developed a new programming construct, which we call
atrait, to address this problem. Traits are intended as fine-grained
units of code reuse. In essence, traits are first class collections of

collection-like things into true collections. Our refactoring reduced methods that can be reused by classes anywhere in the inheritance

the number of methods in the collection classes by approximately hierarchy. o )
10 per cent. More importantly, understandability maintainability ~ The contributions of this paper are:

Traits are a programming language technology that promote the
reuse of methods between unrelated classes. This paper report
on a refactoring of the Smalltalk collections classes using traits.
The original collection classes contained much duplication of code;
traits let us remove all of it. We also found places where the proto-
cols of the collections lacked uniformity; traits allowed us to correct
these non-uniformitiewithout code duplication. Traits also make

it possible to reuse fragments of collection cadgsideof the ex-
isting hierarchy; for example, they make it easy to convert other

and reusability of the code were significantly improved. e astudy of the internal structure of the existing Smalltalk col-
lections classes, with particular attention to the problems of
Categories and Subject Descriptors code duplication, unnecessary inheritance, and method re-

definition in inheritance chains;
D.3.3 [Language Constructs and Featurels Classes and objects;

D.2.3 [Coding Tools and Technique} Object-oriented program- e areport of our experience using traits to refactor the collec-
ming tion classes so as to remove these problems; and

e a description of the organization of the new classes that re-
General Terms sulted from our refactoring.

Design, Languages
2. WHAT IS THE PROBLEM?

Keywords Single inheritance is a very popular programming technology, and
Reuse, Mixins, Traits, Smalltalk, Collection hierarchy, Stream has_ been gdopted widely since itsintroducti_on in Simula 67 [_2]. In-
classes, Refactoring, Inheritance, Multiple Inheritance heritance is also very powerful, and the basis for several major suc-
cess stories, including Smalltalk and Java. But success and power
should not blind us to the fact that sometimes single inheritance is
1. INTRODUCTION just not up to the task of supporting the wide range of abstractions

We have long believed that classes have too many responsibilitiest"at We expect to find in a modern object-oriented framework.

in object-oriented programming [3]. In many languages, classes Let us illustrate this point with a small example. The class

are the prime (or only) mechanism for the conceptual classification RectangleMorph in the Squeak dialect of Smalltalk represents a

rectangular block of color that can be manipulated on the display.

*This research was partially supported by the National Science Foundation As such, it is a subclass @brderedMorph, from which it inherits

G e it nder e COA 0103218, R o823 a8 COR-and euses mary methodyeredagh n 1 & Subclass o
Morph. Squeak also defines a cla®sctangle, which inherits from
Object. However, aRectangleMorph is not a Rectangle; that is,
RectangleMorph does not implement all of the protocol understood

Permission to make digital or hard copies of all or part of this work for LY Rectangle objects.

personal or classroom use is granted without fee provided that copies are Rectangle adds 83 messages to the protocobafect. Of these,
not made or distributed for profit or commercial advantage and that copies only 13 messages are also understood iReaangleMorph; the

bear this notice and the full citation on the first page. To copy otherwise, to gther 70 are missing fronRectangleMorph's protocol. We say

republish, to post on servers or to redistribute to lists, requires prior specific “missing” because, to the client, RectangleMorph clearly is a
permission and/or a fee. . ’ ' ) .
OOPSLA'03pp. 47-64, October 26-30, 2003, Anaheim, California, USA. Rectangle; moreover, the state ofRectangleMorph includes a field

Copyright 2003 ACM 1-58113-712-5/03/001G55.00. namedbounds that represents thRectangle that it occupies.
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c s 1self i inputs and outputs. The open
arrow —{>> represents sub-
composite subclass classing. The notation a — m
d efrirrﬁzon represents a method with
name a and body m.
Csubclass: The sum operation takes two traits T and U as input;
#D uses: T the result is a trait T+U that contains the union of all of
varl the non-conflicting methods. Where T and U conflict
(e.g., at c), the resulting method is an explicit conflict
b —j marker.
d »w The overriding operation combines some explicit defi-
i - fvarl nitions with an existing trait. In the figure, the explicit

definitions of methods b and c override those
obtained from the trait T, and the definition of d is
added. The resulting trait V contains no conflicts
because the definition of b has been overridden.

The inheritance operation is used to create a new
subclass D from an existing superclass C, an existing
trait T, and some new, explicitly given, definitions.
Explicit definitions (e.g., of b) override those obtained
from the trait; definitions in the trait (e.g., of a) override
those obtained from the superclass.

Figure 1: The major operations on traits: sum, overriding, and inheritance.



A programmer who wishes to fix this problem is faced with
a number of unpleasant alternatives. One option is to copy
the 70 missing methods frorRectangle and paste them into
RectangleMorph. This is a clear violation of thBRY (don't repeat
yourself) principle [20].

Another option is to provide a conversion method
RectangleMorph>>asRectangle’, and expect the client to re-

The overriding operation constructs a new compogitat
named: #V uses: T... by extending an existing traitwith some
explicit local definitions. The local definitions override methods of
the same name in the trait because the local definitions are ex-
plicit, it is always clear what is being overridden. Thus, in the
figure, we see that the method fowith bodyp overrides the one
with body 1 self i.

member to use this conversion method whenever there is a need Traits are incorporated into classes by means of an extended

to send a message thatRectangleMorph does not understand.
For example, instead of sayimgyMorph area, the client must say
myMorph asRectangle area. This moves a burden onto the morph’s
client that we feel should be borne by the morph itself.

A third option is to delegate the 70 missing methods. The sim-
plest way of doing this is to implement each of them as a one line

form of inheritance. In conventional inheritance, a new subclass
B is constructed from a superclagsand from some local defini-
tions of instance variables and methods. In Smaltalk we would
write C subclass: #B ... and then add the local definitions B

Our extended form of inheritance is similar; a new subclass
constructed from a superclass and a traibh addition to the lo-

method that converts the receiver to a rectangle and resends thesal definitions. In Smalltalk we writ€ subclass: #Duses: T....

message. So tharea method would actually be implemented in
RectangleMorph as follows.

RectangleMorph >>area
T self asRectangle area

This seems like the best choice, but it increases the size of the ob-
ject code and make®ectangleMorph harder to understand because
it adds a lot of conceptually uninteresting“noise”. Constructing all
70 delegation methods requires tool support; using them introduces
run-time overhead.

Multiple inheritance has been proposed as another solution to
this problem; multiple inheritance would alloRectangleMorph
to haveRectangle and BorderedMorph as its superclasses and to
inherit methods from both. But multiple inheritance is complex,
and may introduce more problems than it solves. For example,
with multiple inheritanceRectangleMorph would inherit two sets
of state variables that represent the same information (the position

of the rectangle), and two sets of methods that access and chang%X

these variables. A whole literature has developed on how to resolve

these problems; Taivalsaari [30] provides a good starting point.
Traits provide a solution to the problem of giving

RectangleMorph the behavior of aRectangle while retaining

the simplicity of single inheritance. The trait solution avoids dupli-

cation of both source and object code, eliminates indirection, and

improves modularity, thus making the classes easier to understand

3. WHAT ARE TRAITS?

A trait is a first-class collection of named methods. The methods
must be “pure behavior”; they cannot directly reference any in-

We call D a composite class Methods defined locally in as part
of the inheritance operation (such las$n figure 1) replace meth-
ods obtained from the trait. Methods defined locally (such @}

and methods fronT (such asa) both override methods inherited
from the superclass, and can access the overridden methods us-
ing super . In practice, the trait that is used to build a composite
class is often the sum of several more primitive traits.

The aliasing operatd® creates a new trait by providing an addi-
tional name for an existing method. For example]J i a trait that
defines methods onandd, thenu@{e — c} is a trait that defines
methods for, d ande. The additional method has the same body
as the old method. Aliases are used to make conflicting methods
available under another name, perhaps to meet the requirements of
some other trait, or to avoid overriding. Note that because the body
of the aliased method is not changed in any way, an alias to a re-
cursive method is not recursive.

Finally, a trait can be constructed bycludingmethods from an
isting trait using the exclusion operater Thus,U — {c} has

a single methodl. Exclusion is used to avoid conflicts, or if one
needs to reuse a trait that is “too big” for one’s application.

Associated with each trait is a set fquired messages. Any
concrete class that uses a trait must provide methods for all of the
required messages. For example, if the methods in a trait use the
expressionelf size but the trait itself does not define a methuhak,
thensize will be in the requiresset of the trait. When this trait is
eventually incorporated into a class that is intended to be concrete,
size will have to be defined, perhaps as a method that fetches the
value of an instance variable, or perhaps as a method that calculates
the size.

stance variables. The purpose of a trait is to be composed into other

traits and eventually into classes. A trait has no superclass; if the
keywordsuper is used in a trait method, it remains unbound until
the trait is eventually used in a class.

Mixins are also collections of methods intended to be used as
components of classes [6, 15]. The major difference between mix-
ins and traits is that whereas mixins must be applied to classes one
at a time using the inheritance operation, traits are subject to a
richer set of composition operators, giving the programmer more
freedom in the way that they can be combined. Figure 1 illustrates
the sum, overriding and inheritance operations. The sunitrait
contains all of the non-conflicting methodsToéandu. However, if
there is aconflict that is, if T andu both define a method with the
same name (as they they do toin the figure), then iT + U that
name is bound to a distinguisheehflict method. Thet operation
is associative and commutative.

1The notatiorc>>name refers to the methodame in classc.

| equivalent |

)

Object Object

i

ColoredCircle ColoredCircle
TCircle
radius radius
TColor
hue hue
rgb rgb

Figure 2: Flattening. The classColoredCircle on the left sup-
plies an overriding local definition of draw. The bodies of the
corresponding methods are identical on the left and the right.



b4 System Browser: RectangularMorph mo
Eernel-Magnitudes = |RectangularMorph = -- all -- = =
Eernel-Numbers | -own- = |rectangle functions - -
Kernel-5T&0 Remnant: TRectangle transforming
TraitsPaperExzample FMP
Collections-Abstract accessing
Collections-Unordered printing
Collections-Sequencea’ truncation and round off
Collections-Text testing
Collections-Arrayed comparing
Collections-Streams private
Collections-Weak > -requires-
Collections-Support = - inst. | ? | class — —
Tam it s Thariscdbdrras
( TRectang zet exclusion -super-

Remove selector from trait: TRectangle
= aRectangle —

"Answer true if the receiver's species, origin and corner match aRectangle's”

sell species = aRectangls species
ifTrue: [*self origin = aRectangle origin and: [self corner = aRectangle corner]]
ifFalge: [Mfalse]

Figure 3: The programmer examines the list of overrides created wheRectangularMorph uses the trait TRectangle as a component.
The = method from TRectangle is inappropriate, and is excluded.

Because of the way that we define the operations on traits, the se-the 70Rectangle methods missing from its protocol. Besides illus-
mantics of a method is independent of whether it is defined in a trait trating one way to use traits, this example shows how a class can
T, orin aclass (or a trait) that usess a component. Consequently, be transformed into a trait, illustrates the difficulties that may be
provided that all trait conflicts have been resolved, it is always pos- encountered when using the trait, and gives a glimpse of the tool
sible to convert a program that uses traits into an equivalent pro- support that we have built.
gram that uses only ordinary classes, at the cost of possible code The first step is to construct a trait that contains the missing
duplication. We call this procegkattening it is similar to inlining methods. This is easy to do, because the appropriate code already
of procedures or expansion of macros. Similarly, a (conflict-free) exists in clas®Rectangle. In the traits browser, which is an exten-
composite trait can always be flattened into a simple trait. Flaten- sion of the standard Smalltalk browser that understands traits, we
ing is illustrated in figure 2: the composite claasloredCircle on use thenew trait from classnenu item to create a new trait from
the left, composed from two traits and a local definitiondiatw, is classRectangle. We call the new traiTRectangle; the initial T in
semantically equivalent to the flat clagsloredCircle on the right. the name of a trait is a convention that we follow throughout this

It is important that flattening never requires the bodies of the Paper.TRectangle contains all of the methods &ectangle, except
methods to be modified. Thus, a complex composite entity can be that theabstract va_lriablerefactoriné is first app!ied to any method
viewed as such; it can be completely flattened to remove all the that accesses an instance or class variable directly.
internal structure; or it can be viewed at any partially structured ~ For example, &ectangle has two instance variablessigin and
point in between these extremes. We believe thatfldtéening corner, which represent its top left and bottom right coordinates.
propertyis crucial in making traits easy to use; it is another critical S0 this method
differences between traits and mixins. Rectangle >>width

The reader interested in a deeper understanding of traits and their Answer the width of the receiver.
composition operators, and in how traits avoid the difficulties that
have beset multiple inheritance and mixins, is referred to compan-
ion papers [28, 29].

1 corner x — origin x

is converted into

TRectangle >>width
" Answer the width of the receiver.”

4. APPLYING TRAITS TO
RECTANGLEMORPH

Now that the reader has at least a superficial understanding of what 1S refactoring is given different names by different authors. Opdyke
. 25] calls it “abstract access to member variable”, and Fowler [16] calls it
traits are, we can return to the exampleR#ctangleMorph and

g “encapsulate field”. We follow the lead of the Refactoring Browser [27] by
show how traits can be used to makRextangleMorph understand using the name “abstract variable”.

1 self corner x — self origin x




Once this refactoring is completed, the new trait has all of 5. THE SMALLTALK COLLECTION CLASSES
Rectangle’s methods, but those methods that depended on the in-
stance variables atectangle now depend instead on the existence ‘
of methodsorigin andcorner. The traits browser lets us examine the  POS€ subclasses Gbllection andstream. The group of classes that
methods in traiTRectangle, and also shows its requires set, which appears in the “Blue Book’[18] contains 17 sub-classes of collec-
comprises the three messagegin, corner andspecies. tion and 9 sub-clasges of Stream,_for a total of 28 classes, and had

We can now use the browser to constrRettangularMorph as a already been redeS|gned several times be_fore the Smglltalk-80 sys-
new subclass oectangleMorph. The process is similar to creat- tem was released. This group of classes is often considered to be a

ing a new subclass in the ordinary Smalltalk browser, but uses the paradigmatic example of object-orlehted design.
extended form of inheritance that lets us specify a trait (or a trait- " Squeak, the abstract classllection has 98 subclasses, and

valued expression) that will hesedas a component. We define the abstract clasStream has 39 subclasses, but many of these
(like Bitmap, FileStream andCompiledMethod) are special purpose

classes and hence not categorized as “Collections” by the system

organization. For the purposes of this study, we use the term “Col-

lection Hierarchy” to meagollection and its 37 subclasses that are
As a result of this definition, a new clag&ctangularMorph is alsoin the system categor@ollections. We use the term “Stream

created that has the 70 methods it needs fRettangle. But the Hierarchy” to mearstream and its 10 subclasses that aisoin

new class is incomplete; the traits browser shows us that it still the system categorgollections. The full list is shown in figure 4.

The collection classes are a loosely defined group of general pur-

RectangleMorph subclass: #RectangularMorph
uses: TRectangle

requires methods fosrigin and corner. We define these methods
directly in the new class.

RectangularMorph >>origin Col/ngO:g
1 self bounds origin \dentityBag
CharacterSet

RectangularMorph >>corner
1 self bounds corner

SequenceableCollection
ArrayedCollection

The requiremenspecies has already been satisfied, because a Array WeakArray
species method is provided by our supercla@sctangleMorph. Array2D

The browser also shows us a list@ferriddenmethods, that is, g’g,if:rfgy
places where the new claRsctangularMorph defines a method that FloatArray
would otherwise have been inherited fr&®actangleMorph. An ex- IntegerArray
ample iscenter, which is present in the traitRectangle but which Zt“r?:;ray
is also defined irRectangleMorph. Each overridden method must Symbol
be examined to see whether it is appropriate to keep the version Text
from TRectangle, to keep the version from the superclass, or to WmdAJ{,i{ YAmavForSeament
write a new method. Buttons in the browser let us examine both of Heap Y 9
the alternatives and make our choice quickly. Interval

LinkedList

In the case otenter and most of the other overrides, the meth-
ods fromTRectangle are appropriate, because they ws# origin
and self corner to access the rectangle’s coordinates. However,

MappedCollection
OrderedCollection
SortedCollection

TRectangle’s methods for=, hash, and printOn: are inappropri- Set Dictionary
ate. We use a browser menu to exclude these methods from IdentityDictionary
RectangularMorph. We choose to do this bgetting an exclusion PluggableDictionary
(see figure 3), the effect of which is to modify the definition of WeakKeyDictionary
. WeakldentityKeyDictionary
RectangularMorph so that certain methods fromRectangle are WeakValueDictionary
never used; the equivalent declaration would be IdentitySet
PluggableSet
RectangleMorph subclass: #RectangularMorph WeakSet
uses: TRectangle — {#=. #hash. #printOn:} SkipList
. IdentitySkipList
WeakRegistry
Throughout this process, the traits browser helps us to focus on Stream

just those methods that require our attention. Once we have exam-
ined all of the overrides and satisfied all of the requirements, our

AttributedTextStream
PositionableStream

task is complete: we have created a new class that has the function- Q‘iﬁiﬁ}:‘:ﬂ
ality of both RectangleMorph and Rectangle. The only methods LimitedWriteStream
that we needed to write were the two “glue methodsgin and ReadWriteStream
corner, which express how the abstract state of a rectangle is ex- ?:’;’E;”c?i?)toe’:e“s"eam
tracted from aRectangleMorph. TextStream
Small examples like this are fun, but they are not by themselves a TranscriptStream

compelling test of a language extension that is intended to improve

the structure of large class libraries. To evaluate traits in a realistic Figure 4: The collection classes in Squeak. Indentation indi-
setting, they must be applied to a framework of significant size. cates subclassing. Abstract classes altalicized ; the classes that

We chose the Smalltalk collections classes as the target for such anye refactored are named inBold .

evaluation.




These 49 classes respond to 794 messages and define a total of 1236 2. Is the size fixed (intervals and arrays) or variable (sorted col-

methods.

5.1 The Varieties of Collection

To understand the challenge of refactoring the collection hierarchy,

the reader needs at least a superficial knowledge of the wide va-

riety of collections in these classes, their commonalities and their
differences. Those familiar with the Smalltalk collection classes
may safely skip this section.

Programming with aggregates rather than individual elements is
an important way of raising the level of abstraction of a program.
Suppose you have a data structure containing a collection of studen
records, and wish to perform some action on all of the students that

have a particular property. Programmers raised to use an impera-

tive language will immediately reach for a loop. But the Smalltalk
programmer will write

students select: [ :each | each gpa < threshold ]

which evaluates to a new collection containing precisely those ele-
ments ofstudents for which the bracketed function returtise *.

It is important to note that the messagect: is understood by
all collections in Smalltalk. There was no need to find out if the
student data structure was an array or a linked listséhect: mes-
sage is understood by both. Note that this is quite different from
using a loop, where one must know whethkeidents is an array or
a linked list before the loop can be set up.

In Smalltalk, when one speaks of a collection without being more
specific about the kind of collection, one means an object that sup-
ports well-defined protocols for testing membership and enumerat-
ing the elementsAll collections understand the testing messages
includes:, isEmpty andoccurrencesOf:. All collections understand
the enumeration messagés, select:, reject: (which is the oppo-
site of select:), collect: (which is like lisp’s map), detect:ifNone:
inject:into: (which performs a left fold) and many more. It is the
ubiquity of this protocol, as well as its variety, that makes it so
powerful.

Beyond this basic uniformity, there are many different kinds of
collection. For example, some collections are sequenceable, that is
an enumeration of the collection starts frorirst element and pro-
ceeds in a well-defined order tdaat element.Array andLinkedList
are examples (see figure 5)array and many other collections
are also indexable, that iapArray at: n retrieves then’" element
of anArray, andanArray at: n put: v changes the®” element tov.
However,LinkedList, although sequenceable, is not indexable, that
is, its instances they understaiitdt andlast, but notat:.

The clasrderedCollection is more general thaarray; the size
of an OrderedCollection grows on demand, and it has methods for
addFirst: andaddLast: as well asat: andat:put:. An Interval is an
immutable collection defined by a computational rule when it is
created. For exampls,to: 16 by: 2 is an interval that contains the
elements 5, 7, 9, 11, 13 and 15. It is indexable withbut cannot
be changed witht:put:.

The differences between the various kinds of sequenceable col-

lection manifest themselves in several different dimensions.

1. How is the order established? Sorted collections use a sup-

plied total ordering function, intervals are implicitly ordered,
while arrays and ordered collections are ordered explicitly
when elements are inserted.

3The expression in brackets can be thought of Asapression defining an
anonymous functiodz.z gpa < threshold.

lections, ordered collections, and linked lists)?

3. Is the collection immutablerterval andSymbol) or mutable
(the others)?

4. |s the collection constrained to hold a particular kind of ob-
ject, oris it completely general? For exampliakedLists are
constrained to hold elements that conform to th proto-
col, whileCharacterArrays, Strings andSymbols must contain
characters?

The non-sequenceable collections (sets, bags and dictionaries)

can be categorized in a different set of dimensions.

1. Are duplicates allowed (dictionary and bag) or disallowed
(set)?

2. Can the elements be accessed by a key (dictionaries), or not
(sets and bags)?

3. How are the keys (in a dictionary) or the values (in a set or
a bag) compareda.g, what test is used to ascertain whether
two elements added to a set are “equal”?

These categorizations by functionality are not our only concern;
as re-implementors of the collection hierarchy we must also un-
derstand how the collection classes are implemented. As shown in
Figure 6, five main implementation techniques are employed.

1. Arrays store their elements in the (indexable) instance vari-
ables of the collection object itself; as a consequence, arrays
must be of a fixed size, but can be created with a single mem-
ory allocation.

. OrderedCollections and SortedCollections store their ele-
ments in an array that is referenced by one of the instance
variables of the collection. Consequently, the internal array
can be replaced with a larger one if the collection grows be-
yond its storage capacity.

. The various kinds afet andDictionary also reference a sub-
sidiary array for storage, but use the array as a hash table.
Bags use a subsidiarpictionary, with the elements of the

) bag as keys and the number of occurrences as values.

4. LinkedLists use a standard singly-linked representation.

5. Intervals are represented by three integers that record the

bounds and the step size.

Readers interested in learning more about the Smalltalk collections
are referred to LaLonde and Pugh’s excellent book [22].

5.2 Streams

The collection protocol supports the storage, removal and enumer-
ation of the elements of a collection, but does not allow these op-
erations to be intermingled. For example, if the elements of an
OrderedCollection are processed bydo: method, it is not possible

to add or remove elements from inside the do block. Nor does the
collection protocol allow us to perform a merge sort by sequenc-
ing through twoOrderedCollections and repeatedly removing the
smallest first element. Procedures like these require that a traversal
index or position reference is maintained outside of the collection
itself, as captured in the Iterator pattern [17]. Smalltalieams
perform exactly this function. All stream objects are defined to

4A Symbol is a unique immutable string, used heavily in the language
implementation. The unique instance property means that equality tests
are particularly efficient.



Sequenceable Not Sequenceable

Accessible by Index Not Indexable Accessible by Key Not Keyed
Interval LinkedList Dictionary Set
SortedCollection SkipList IdentityDictionary IdentitySet
Array PluggableDictionary PluggableSet
ByteArray Bag
OrderedCollection IdentityBag
String
Symbol

Figure 5: Collections can be categorized according to whether or not they are sequencealtile,, whether there are clearly defined
first and last elements. All of the sequenceable collections excdpihkedLists and SkipLists can also be indexed by an integer key. Of
the non-sequenceable collectionjctionaries can be accessed by an arbitrary key, such as a string, whikets and Bags cannot.

Arrayed Ordered Hashed Linked Interval
Implementation Implementation Implementation Implementation Implementation
Array OrderedCollection Set LinkedList Interval
String SortedCollection IdentitySet SkipList
Symbol Text PluggableSet
Heap Bag
IdentityBag
Dictionary

IdentityDictionary
PluggableDictionary

Figure 6: Some collection classes categorized by implementation technique.

stream ovesome collection. For example: possible classes have a chance to inherit them. For exam-
r = ReadStream on: (1 to: 10). ple, c_ollect: is n_nplemented inCollection, bu_t the implementa-
r next. prints 1 tion is appropriate only for those collections that understand
I next. prints 2 add:. Consequently, this implementation is overridden by the ab-
r atEnd. prints false stract classSequenceableCollection in favor of an implementa-

tion usingat:put:. This second implementation is inherited by

WriteStreams are analogous: all of the ArrayedCollections, but also byOrderedCollection and

w := WriteStream on: (String new: 5). SortedCollection, for which it is not appropriate, and which over-
w nextPut: $a ride it again. All told, there are 10 implementationscofiect: in

w nextPut: $b _ the collections hierarchy.

w contents. prints * ab’

The following subsections examine these effects more systemat-
It is also possible to creareadWriteStreams that support both ically.
the reading and the writing protocols; defining such a class with-
out code duplication is a challenge for single inheritance. Squeak .1 Unnecessary Inheritance
chooses to makBeadWriteStream a subclass ofvriteStream, as

shown in figure 4. Inheritance is used quite heavily in the collection classes, mostly
for sharing implementation, but also for classification [11]. As
6. ANALYSIS OF THE a measure of the complexity of the inheritance relationships, we

counted the number of inheritance chains in which a method is de-
COLLECTION CLASSES fined three or more times. Figure 7 illustrates two examples: the
This section presents the results of an analysis of the collection Methodsatput: andadd: in the inheritance chains terminating in the
hierarchy as it existed before our refactoring. We will see that the classweakValueDictionary. We found 79 such inheritance chains.
collection hierarchy contains unnecessary inheritance, duplicated There is nothing intrinsically wrong with redefining a method
code, and other shortcomings. inherited from one’s superclass. On the contrary, the ability to use
Given the many dimensions in which the Smalltalk collection super to call the inherited definition from within the new method
classes can be categorized, it is inevitable that any attempt to or-gives inheritance much of its power, and many people consider
ganize them into a single inheritance hierarchy will run into severe that adding behavior before or after a super-send is the epitome
difficulties. As Cook showed[11], the hierarchy attempts to max- Of inheritance-oriented programming.

imize reuse at the expense of conceptual categorization, with the However, for the most part, redefinition usisgper is notwhat

consequence that, for examplBctionary is a subclass oet be- s going on here. A total of 258 methods are involved in the 79
cause it shares much of the same implementation, even though itmethod redefinition chains mentioned above. Since 79 methods are
presents a very different interface. at the top of a chain, 258 79 = 179 methods have the opportu-

Another way that the designers of the hierarchy attempted nity of sending tosuper : only 15 actually do so. Neither are these
to maximize reuse was to move methods high up, so that all redefinitions examples of “hook” methods that are being used to
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Figure 7: Redefinition of at:put: and add: in the superclasses of
WeakValueDictionary

parameterize the behavior of a template method [1]: all of the re-
defined methods are part of the functional interface. We deduce
that for the most part these redefinitions eoerecting rather than
augmenting, the behavior of the inherited method so that it is ap-
propriate for the new subclass. In other words, we have identified
164 places where a method was inherited unnecessarily.

What is the problem with unnecessary inheritance? The cost is
not in execution time nor in code space but in lost development

time. The task of understanding a class that inherits several meth-
ods but does not use them is more complicated than necessary. In

heritance is often considered to be an aid to understanding a com
plex class, since the programmer can work down the inheritance
chain, comprehending only thikfferencesdetween a subclass and

its superclass, rather than having to comprehend the entirety of the
final subclass in a single step. To the extent that methods are in-

herited unnecessarily, this process is made more difficult, and in-
heritance begins to hinder rather than to assist us in understandin
legacy code.

6.2 Code Duplication

When a new subclasioeswant to re-use a method from an ex-

common superclass of bofReadStream and WriteStream. Be-
causeReadWriteStream is a subclass ofwriteStream (see fig-

ure 4), many of the methods that support reading (for example,
reader next: 4 into: anotherCollection, andreader nextDelimited: $.)

are implemented iRositionableStream in terms ofself next.

The methodhext itself is explicitly disabled inwvriteStream, and
re-enabled (and duplicated) ReadWriteStream andReadStream.
The other “reading” methods iPositionableStream arenot explic-
itly disabled in WriteStream, but are inherited RgadStream and
ReadWriteStream. Thus, to avoid code duplication, methods spe-
cific to reading are implemented in the superclasg/ofeStream.
The tactic succeeds (except in the caseestf itself), but the price
is high: PositionableStream is polluted by many methods that have
nothing to do with positioning, and/riteStream appears to imple-
ment many reading methods, although these methods will fail if
they are ever used.

There is no easy way to ascertain how much duplication is caused
by the fact that methods can be inherited only from a superclass.
We made a superficial check by looking for methods whose de-
compile strings were identical. This check detected as duplicates
methods those that differed only in formatting, comments, or the
names of temporary variables. We excluded from our count error
methods such aself shouldNotimplement, which is used to cancel
an inherited method. Using this check we found 28 pairs of du-
plicated methods, and 3 triples. In most cases the duplication
was of a method from another part of the hierarchy, which con-
sequently could not be inherited, or of a method defined in a su-
perclass’ superclass. For exampbigtionary and Collection both
implementoccurrencesOf: identically, but even thougbictionary
is a subclass ofollection, there is an intervening definition of
occurrencesOf: in Set that preventDictionary from reusing the
method fromCollection.

However, these duplication counts are just the tip of the iceberg.
Our primitive duplicate detection technique certainly misses many
methods that differ in structure but not in semantics. For example,
if two methods compare andy for equality, but one expresses
this asx = y while the other useg = x, this duplication will not be
revealed by our search. During our refactoring of the collections
classes we also noticed many deeper examples of code duplication,
where a method had clearly been copied from an established class
into a newly created class, and then a single crucial statement had
been changed to obtain a different semantics. In addition, there is

%iso undoubtably duplication of collection code in classes outside

of the collection hierarchy, which we did not attempt to quantify.

6.3 Conceptual Shortcomings

In addition to the above implementation problems, the collection

isting class, it may nevertheless be unable to do so because ofclasses also suffer from some conceptual shortcomings.

the nature of single inheritance. For examptjggableSet and
PluggableDictionary share some methods, but there is no place from
which both classes could inherit theRluggableDictionary is a sub-
class ofDictionary, andPluggableSet is a subclass abet; there is

One of the reasons that there are so many collection classes is
that the designers have attempted to compensate for the fact that
classes are hard to reuse by providing all possible combinations
of features. For example, Sets, Bags and Dictionaries must com-

no appropriate common superclass in which methods shared by thepare elements (or keys) for equality. Thus, each structure needs

two pluggable classes can be placed. There inappropriatesu-
perclass:Set. The programmer is left with the choice of placing a
method “too high” in the hierarchy (iget), or duplicating it.

three variants: one that uses equality between elements, one
that uses identity==), and one that uses an equality function that is
“plugged in” when the structure is created. Thus, we have the three

The Stream classes provide a classic example of methods be-classesSet, IdentitySet, andPluggableSet; the same is true for Dic-

ing implemented too high. Conceptually, PasitionableStream

tionary and Bag, except th&luggableBag is missing. A similar

is an accessor for a sequence of objects hamed by external in-situation exists with the “weak” variants of the collection classes,
dices (such as characters in a string or a file). TPlosition- which hold onto their elements weaklye., in a way that does not

able protocol includes messages to set and reset the positionprevent them from being garbage collected. It would be nice if
of this index. However,PositionableStream is also the lowest these characteristics could be captured as reusable components, so



that programmers could combine pluggability with, say, SkipLists,
so that they could build the data structure that suits their applica-
tion. This would simultaneously simplify the collection hierarchy
(by eliminating the combinatorial explosion of featuresid give

the programmer the flexibility to choose from a wider range of col-
lections.

Immutability is a “feature” not provided in the current hierarchy

7.1 The New Collections Hierarchy

Figure 8 shows the new hierarchy for the 23 common concrete col-
lection classes that we have re-implemented, and 6 abstract super-
classes. In addition to the name of each class, the figure also
shows the traits from which the class is composed. The classes are
divided into three layers. At the top of the figure 8 is the abstract
classCollection, which is composed from two traits, and provides a

except in two special cases: Symbols and Intervals. Neverthe|ess’5ma” amount of behavior for all collections. Next we have a layer

immutable collections can be useful in many contexts. Strings are

almost always used as if they are immutable, as are literal arrays,

but this cannot be captured by the current collection classes.

of 5 abstract classes that represent different combinations of the ex-
ternally visible properties of collections. We call these properties
functional to distinguish them from thienplementatiomproperties,

that is, properties that characterize the internal data structures used

The stream classes also exhibit many orthogonal features, suchp, the implementation rather than the external behavior. Inheriting

as readvs. write, binaryvs. text, positionable (seekablgs. not-

from the functional classes we have 23 concrete classes, each of

positionable. The more necessary combinations are implementedyhich also uses one or more traits that specifies its implementa-

by duplicating code; many other combinations are simply unavail-
able.

tion. We now describe the functional and the implementation traits
in turn.

Another problem with the collection hierarchy, also observed by The Functional Traits
Cook, is that sometimes the interfaces of the classes are not what ’

one would expect: certain methods are missing. The claisesg

and Text provided an exampleString adds 142 new methods to
the protocol of its superclass (the abstract classyedCollection).
Most of these methods are related to parsing, converting to HTML,

Each kind of collection can be characterized by several proper-
ties such as being explicitly ordered.g, Array), implicitly or-
dered é.g, SortedCollection), unordered €.g, Set), extensible
(e.g, Bag), immutable €.g, Interval), or keyed €.g, Dictionary);

searching for substrings and regular expressions, and other operasee section 5.1 for more discussion. The various combinations of
tions specific to character strings, and so inevitably these methodsthese properties can be represented by combining the respective

must be defined specifically for the clesing. However, Squeak
also defines a clagext, for representing character strings that have
been attributed with font changes, hyperliniegg. All 142 String
messages ought to be understoodTbyt objects, but in the stan-
dard Squeak system, only 15 of them actually are. The remaining
127 are missing. Why is thisPext is not a subclass dftring, so

the “missing” methods cannot be inherited; the situation is similar
to the problem withRectangleMorph and Rectangle described in
section 2. Fixing this problem in Squeak would require either code
duplication or 127 delegation methods.

Finally, we mention that collection-like behavior is often desired
for objects that are not primarily collections. For example, the class
Path is a subclass dbisplayObject and thus not able to inherit from
Collection. A Path represents an ordered sequence of points; arcs,
curves, lines and splines are all implemented as subclasgsagof
Path implements some of the more basic kinds of collection-like
behavior; for example, it has methods far, at:put:, andcollect:.

But Path doesnot attempt to implement the full range of collection
behavior. For exampleRath does not provide methods feelect:
anddo:: there are simply too many such methods to make it vi-

traits. All that is necessary is to create a trait for each property
(see figure 9) and then combine them to build the abstract classes
of figure 8. In order to allow maximal reuse, we ensured that the
combinations of property traits are available in two forms: as com-
posite traits that can be reused outside of the collection hierarchy,
and as superclasses that can be inherited within it.

We modularized the primitive properties more finely than would
have been necessary if our only goal were to avoid code duplica-
tion. This fine structure gives us, and future programmers, more
freedom to extend, modify and reuse parts of the new hierarchy.
In addition, some of the property traits contain many methods, and
creating subtraits corresponding to individual sub-properties gives
them internal structure that makes them easier to understand. Be-
cause of the flattening property, there is no cost to this fine-grained
structure: it is always possible to flatten it out and to work with the
code in a less structured view.

Figure 9 also shows how the composite property traits are built
from each other and from the more primitive traits. We use the
following naming convention. Some names have a suffix consisting
of letters from the set§s, U} and{M, I1}. The letters indicates that

able to re-implement them, and the existing implementation cannot all of the methods in the trait require the collection to be sequenced,

be reused. Section 7.4 discusses how traits make collection-like

behavior available outside of the collection hierarchy.

7. RESULTS

In this section we explain how traits are used in the collection hi-
erarchy that emerged from our refactoring efforts. We start by de-
scribing how we distributed behavior from the pre-existing abstract
and concrete classes into traits, and how those traits are used t

whereadJ means that none of the methods in the trait requires the
collection to be sequenced. Similanly,means that all the methods
require the collection to be mutable, antheans that no method
requires the collection to be mutable. If the suffix does not contain
a letter from one of these sets, the trait contains some methods with
each characteristic.

As an example, the traiTEnumerationUl contains the part
of the enumeration behavior that does not require sequencing
(U), whereasTEnumerationl—which usesTEnumerationUl as a
subtrait—contains both methods that require sequencing and meth-

d)ds that do not. Furthermore, none of the methods in these traits

construct a new set of classes. We then analyze the new hierarchy"€2ts the target object as mutahle (

with respect to code duplication, possibilities for reuse, and other T
issues. The source code for the whole hierarchy and the tools that

produced it are available on the web ratp://www.iam.unibe.ch/-
~schaerli/smalltalk/traits/fOOPSLACo llectionRefactoring.zip

he Implementation Traits.

Besides the functional properties, which are visible to a client, each
collection class is also characterized by an implementation, which
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TCommot
TBaziclmpl
ExtensibleSequencedExplicitly Extensiblelnsequenced Sequencedlimmutable
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Figure 8: The refactored collection hierarchy. Classes with italicized nhames are abstract; below the class name we show the top-level
trait(s) from which the class is composed. Each of these traits is in turn composed from several subtraits, as shown in figures 9 and 10.
The names of implementation traits end in “impl”. Individual methods and instance variables are not shown.
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TCommon TSequencedImmutable TUnsequenced
TErintingll Tarithmeticl TarithmeticUl
TMizefitzUL ThirthmeticUl TBazicll
TRandom1 TBasicl TEmptyness
TEazicUl TCopyingUI
TCopyingl TConversionl
TArray TCopvingTl TEnumeration]
r : TCotrvetsionl TErrorsTl
TConversionl TErrorsSizelndependentUl
TElementaccesss
TEnumerationl y
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TS q dE: rll 'ﬂy Ext ibleS q J.Trnlnliriﬂy
TElementhccessihl TExtenziblel
TExtensibleSequencedExplicitly
TElementhcoessSM

Figure 9: The traits corresponding to functional properties are built from each other and from more primitive traits. The 11 boxes
represent the larger composite traits; subtrait relationships between them are shown by arrows. The remaining subtraits are listed
in the bottom part of each box, using indentation to show sub-subtraits.

is normally hidden from a client. The functional and implementa- 7.2 The New Stream Hierarchy

tion traits that capture these properties are largely independent. . . .
P prop gely P The refactored version of tt&ream hierarchy retains the abstract

The refactored hierarchy separates the traits specifying the im- c|asspositionableStream from the standard Squeak hierarchy, but
plementation of a collection from the traits specifying the func- ses it only to capture the notion of positionability, and not as a
tional properties. This allows us to combine the different func- place to put methods just so that they can be shared. Thus, the
tional property traits €.9, TExtensibleSequencedExplicitly and protocol ofPositionableStream is reduced from 84 messages to 29.
TExtensibleSequencedimplicitly) with any of the suitable imple-  reagwritestream, which was formerly a subclass WfriteStream,
mentations €.g, linked and array-based). In one place we also s now a direct subclass dfositionableStream, and shares traits
extended the functionality of a concrete class: bukedLists are with both ReadStream andWriteStream, as shown in figure 12.

indexablej.e. they understanat:. Seven traits are used to build the Stream classes; they have the
Figures 10 and 11 show the structure of the implementation simple structure shown in figure 13TReadablePositionable and

traits. The 9 implementation traits shown in figure 10 are “com- TwriteablePositionable actually adddifferent sets of methods to

mon” in the sense that they are used as components of severalrReadable andTWriteable because “positionability” means differ-

implementations. As an example, the behavior for creating new ent things for readers and writers.

instances rfew, with:, withAll;, etc) is collected into the trait

TlnstanceCreationlmpl, which is then used byOrderedimpl and 7.3 Measurements of the Refactored Classes

four other implementation traits. Each of the 12 traits in figure 11

captures the behavior of a specific concrete class, and is built from

a combination of local methods and the common implementation

traits. The traitTBasicimpl contains default implementations for

The refactored part of the collection class hierarchy shown in fig-
ure 8 contains 23 concrete classes and 6 abstract classes. These
classes are built from a total of 52 traits. The Stream hierar-
methods likencludes: andhash. These defaults are written soasto ¢ Shown in figure 12 contains 7 concrete classes and 2 abstract

be independent of the implementation of the underlying collection, ¢/asses, which are composeq from 15 trait.s. _
but may be unnecessarily slow for certain implementations. For  The average number of traits used to build a class is more than 5;

examplejncludes: is implemented usingnySatisfy:; this is always the maximum t.hat we used in any one class is 22. Further statistics
correct, butisO(n), whereas in hashed collectioinsludes: should are presented in table 1.
be O(1). Instead of usingBasicimpl as a subtrait of all the spe- BecausesString is something of an anomaly, containing many

cific implementation traits, we decided to use it in the root class of methods that do not appear elsewhere in the hierarchy (as explained
the collection hierarchy, from where its methods are inherited (and in section 6.3), we initially excludegtring andText from our mea-
possibly overridden) by the various implementations. For example, surements (see the first column of table 1). Most of the numbers
THashedImpl andTIntervallmpl have their own implementations of  are self-explanatory. “Methods saved” is the difference between
includes:. the number of methods in the original and the trait versions of the

11



|TBasicIrnp| || TInstanceCreationImpl ||T50r'1'BlockBasedIrnpl ||TAr'r'ayBasedImpl || TExtensibleImpl | TSequencedImpl |
A

|TExtensibleInsTanceCreaTionImpl| |TOr'der'edSor'TedComrnonIrnpl | | TExtensibleSequencedImpl |

Figure 10: Common implementation traits. Each of these traits provides behavior common to more than one of the specific imple-
mentation traits shown in figure 11.

THeapImpl TSortedImpl THashedImpl TArrayImpl
TArrayBasedimpl TExtenziblelnstanceCreationlml TarrayBasedlmpl TIihstanceCreationlmpl
TExtenziblelnstanceCreationlmpl | | TExtensitleSequencedlimpl TExtetiziblelmpl TSequencedlmgl
TExtensibleSequencedlmpl TOrderedSortedCommonlmgl TExtensiblelnstanceCreationlnpl
TSortBlockBasedlmpl TSortBlockBasedlmpl ? 3 5 j i ;

TOrderedImpl TSkipListImpl .

ThictionaryImpl || TByteArrayImpl || TTextImpl
TExtensziblelnstanceCreationImpl TExtensitlelmpl }
TExtenszitleSequencedImpl TExtensiblelnstanceCreationImpl
TOrderedSortedCommonImpl TSortBlockBasedlmpl

TLinkedImpl TIntervallmpl TStringImpl
TExtensiblelnstanceCreationlmpl TSequencedlmpl
TExtensiblelmpl

Figure 11: Specific implementation traits. Each of these traits supplies the implementation methods for a particular concrete class.
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ReadStream ReadWriteStream WriteStream
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TReadWriteCommon TWriteablePositionable | | TReadWriteCommon
TWriteable

TReadWriteCommaty

JPEGRzadStream Transcripten LimitedWriteStream

Figure 12: Classes in the refactoredstream hierarchy.
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Collection Collection Stream Totals
Classewithout  Classewith Classes without with
String & Text String & Text String & Text  String & Text
Number of concrete classes 21 23 7 28 30
Number of methods in original version 635 1044 208 843 1252
Number of methods in trait version 567 840 190 757 1030
Methods savedrf) 68 204 18 86 222
Methods saved (ratio) 10.7% 19.5% 8.7% 10.2% 17.7%
Source code saved (in bytes) 9527 14 586 1307 10834 15 893
Source code saved (ratio) 11.9% 10.4% 4.4% 9.9% 9.4%
Methods “too high” in original f) 55 55 76 131 131
Methods “too high” as percentage of original 8.7% 5.3% 36.5% 15.5% 10.5%
Methods “too high” not explicitly disabled 40 40 66 106 106
Total methods savedr( + h) 123 259 94 217 353
Total methods saved (ratio) 19.4% 24.8% 45.2% 25.7% 28.2%

Table 1: Summary of the Refactoring

tion, there is no need to resort to this tactic: each method is present
in exactly the classes that need it, and in no others. This makes the
classes much easier for a programmer to understand: browsing the
TReadable TWriteable protocol of a class tells one exactly which methods can be used.

The second column of the table includes the refact@w®idg
andText classes. The comparison is between the refactored classes
and a version of the collection hierarchy containing an augmented
Text class that defines all of the methods foundiring but missing

Figure 13: Traits used to build the Stream classes. from the standardlext class. Because regularity of the interfaces of
objects is so important to object-oriented programming, we argue
that this augmentetext class is the one that really ought to be pro-
vided by standard Squeak—if it were feasible to do so with existing

subject code. “Source code saved” is the difference in the size of technology. The refactored version uses traits to provéstewith
the two versions, measured in bytes, and computed by decompilingall the methods oftring, and thus achieves the same interfaces with
the methods. This excludes comments and automatically adjustsfar fewer methods.

for differences in formatting, naming of variables, and so on. The third column shows the situation with the stream classes.
The phenomenon of methods being implemented “too high” was Note that in this hierarchy there were fewer duplicated methods,
mentioned briefly in section 6.2. Suppose that one needs to use aand so the reduction in the number of methods achieved with traits
method in two classes andB that are not in a subclass relation- is slightly lower. However, the reason that there was less dupli-
ship. In a single inheritance language, the only way to do this (other cation is that an enormous number of methods were implemented
than duplicating the code) is to promote the method to the common “too high”, precisely so that they could be shared. Moreover, many
superclass of andB. Thus, each instance of a method being im- of these methods were not explicitly disabled. This makes the
plemented “too high” represents a method twauld have had to Stream classes hard to understand, because it appears that these
be duplicatedf it were implemented in the logically correct place. methods ought to work, but in fact they will break when they call
In fact, some of these methods would have to be duplicated severalanother method that explicitly disabled.
times. Thus, the “Total savings” row in table 1 is simply the sum  The final two columns present the totals for Collections and
of the number of methods that were found to be implemented t00 streams, excluding and including tBeing andText classes.
high, and the number that were duplicated.

Although the evils of duplication are well-known, the prob- 7.4 Assessment of the Refactored Classes
lem with implementing methods too high may not be so obvi- . o .
ous. Implementing methods too high means that inherited behav-BeS'defS the quantitative improvements '|n_the refactor(_ed part of the
ior is inappropriate and must be cancelled. For example, in the collection classes _noted a_lbove, the tr_alt_lmplementa_tlon has other
part of the collections hierarchy that we refactored, 15 messages@dvantages that will have impact both inside and outside the collec-
are explicitly disabled in subclasses (typically by defining them tion hierarchy.
as self shouldNotimplement). More problematic are the other 40 We undertook the refactoring in two phases. In the first phase we
methods that aremplicitly disabled because they directly or indi- refactored 13 concrete collection classes, and none of the Stream
rectly call explicitly disabled methods. Implementing methods too classes. This phase set up the basic structure of the functional traits
high may be better than code duplication, but it nevertheless makesand the implementation traits; we developed 46 traits in all. We
the whole hierarchy very much harder to understand. For example,did not need to use exclusion or aliasing, because we were free to
the methochddAll: in Collection sendsself add: for each element of split any trait that was too large for our needs. As we continued
the argument. Consequentlyajpppearshat every collection under-  our refactoring of the collection hierarchy, we foundiaareasing
standsaddAll;, although an attempt to use this method on, say, an percentage reduction in code size as we applied the same reusable
Array, will always cause a runtime error. In the trait implementa- traits to remove code from more and more classes.

| TCommon |TPosi1‘ionabIe TReadWriteCommon

|TR¢adabIePosi1‘ionable | | TWriteablePositionable
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Returning to the refactoring three months later, we found that we not always very clear. For example, it is sometimes the case that
were able to reuse many of our traits when we extended our refac-a particular implementation trait defines a optimized variant of a
toring to other parts of the hierarchy. Some of the traits were split method that is generically defined in a functional trait. Because the
into smaller pieces, but since these could be recombined without concrete classes acemposedrom the implementation traits but
any change in semantics, the classes that had already been refadnherit from superclasses built from the functional traits, we can be
tored were not affected. In some places we used exclusion to avoidsure that in these situations the implementation methods override
disturbing an existing trait. the functional methods.

The traits that we have written will also allow us to construct new
kinds of collection in the future, simply by composing the neces-
sary traits and implementing a few glue methods. For example, we 8. DISCUSSION

can build a clasBluggableBag by using the traiT PluggableAdaptor ) ) ) ) )
in a subclass oBag, and we can create immutable variants of col- In this section we first discuss some of the things we learned about

lections by omitting the mutable interface traits. In addition, the {raits during our refactorings. Then we examine some places where

availability of these traits frees the implementors of the collections the theoretical benefits of traits were of practical importance, and

framework from the need to ship pre-built collection classes for argue that a similarly fine-grained decomposition would be much

rarely used special cases. Instead, the main responsibilities of theh@rder to accomplish with mixins or multiple inheritance.

implementor become the provision of (1) a basic class hierarchy

that contains the more common collection classes and (2) a set of8.1 Lessons Learned

well-designed set of traits that can be composed with these classes.

Using this basis, another programmer can then easily recomposeDuring this refactoring we learned a number of things about traits

the traits in order to build special-purpose collections. and our programming tools, and also some more general things
Another advantage of the new framework is that some of the @bout refactoring.

traits can be usedutsideof the collection classes. As an example,

the trait TEmptyness, which requiressize and providessEmpty, Traits Simplify Refactoring

notEmpty, ifEmpty:, isEmptyOrNil ifEmpty: and ifNotEmpty:, can . . . ) )

be used inany class that definesize. Similarly, the trait Using traits, refactoring a major hierarchy such as the Smalltalk
TEnumerationUl can be used to provide a class with 24 methods Collections is not as hard a task as one might think. We are not
from the enumeration protocol, provided that it implemeuds wizards; when we started refactoring we did not have a very clear
emptyCopyofSameSize, and errorNotFound. Why is this impor- plan of where we would end up. We just started pair programming,

tant? We believe that much of the power of the object-oriented d0ing the simplest thing that could possibly work, until we found
paradigm comes from having madifferentobjects understand the  that it didn’t work—at which point we did something just slightly
sameprotocol in corresponding ways. For example, it can be quite More sophisticated.

frustrating to find that &oundBuffer, although it understandsze When we started dragging methods out of existing classes and
andisEmpty, doesnotunderstandEmpty:. The availability of fine- dropping them into traits, it was quite easy to identity the necessary
grained traits at last makes it possible to make protocols more uni- traits. We had a superficial familiarity with the Smalltalk collection
form across all of the classes in the system, with no cost in code classes, and had re-read Cook’s 1992 study [11]. So we expected
size or maintainability, and with eeductionin the effort required to find traits related to the five different implementations and the

to find one’s way around the system. major categories of functionality described in section 5.1. When
) o we found a method that did not seem to fit into one of the traits that
7.5 Design Decisions we had already defined, we simply created a new trait. Often, the

hardest part was finding appropriate names for the traits. Naming
is important and difficult; the naming scheme used in this paper
can surely be improved upon, even though it represents our third or
fourth attempt.

The availability of both trait composition and single inheritance
gave us a lot of freedom in designing the new collection classes.
Why did we choose the particular combination of trait reuse and
inheritance described above? An alternative approach would have
been to use trait composition exclusively and to minimize—or
eliminate—the use of inheritance. If we had done this, all the con- Tools are Important
crete collection classes would have been built using trait composi-

tlon alone, and every collection class would be_ a direct subclass Ofgramming tools (which allow one to look at not just classes but also
Object (or of an empty common superclassllection). all the implementors of and senders of a particular message) and the

We decided against this approach primarily for reasons of fa- trait specific tools (abstracting away from instance variables, view-
miliarity. Using both inheritance and trait composition in the new  jng unsatisfied requirements, being able to move a method and have
hierarchy makes it easier for programmers who are familiar with jnstance variable accesses automatically turn into message sends,
single inheritance code, and especially for programmers who know etc) turned out to be an enormous help. It was particularly useful
the old collection classes, to understand and extend the new onesto know that a layer of subtraits could be introduced or eliminated
Indeed, a flattened view of the new collection classes exhibits a without changing the semantics of any of the methods. Thus, we
structure quite similar to the old ones, although the abstract super-could consider our refactoring task as simply grouping the existing
classes do not correspond one-to-one. collection behavior into coherent traits. For each of the newly con-

The combination of single-inheritance and trait composition also structed traits, theequirescategory in the browser always showed
turns out to be well-suited for explicitly representing a functional us which methods were missing in order to make the trait complete.
property layer with abstract classes and a implementation layer Naturally, some of these missing methods belonged most logically
with concrete classes. This is particularly true because the sepa-in other traits; we simply continued adding methods to the trait until
ration between functional methods and implementation methods is all of the unsatisfied requirements belonged in other traits.

During the refactoring project, both the standard Smalltalk pro-
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Use Fine-grained Components Using mixins, the solution would be to either modif, or to
introduce a new intermediate mixin corresponding4e {a}. Nei-

ther choice is desirable. Modifying the components is bad because
it may break other places where these components are used. Intro-
ducing intermediate components makes the inheritance chains even
longer and harder to understand. This is particularly problematic
because the use efiper in mixins means that they do not support
the flattening property, and thus there is no way in which these long
inheritance chains can be “inlined”.

Defer the design of the Class Hierarchy With traits, these problem did not arise: sum and exclusion al-
lowed us to obtain the right composite behavior quite easily. One

Getting a class hierarchy “right” is known to be hard. The problem example of this is the traitSortedimpl where we had two con-

is that one is usually forced to make decisions too early, before flicts: atifAbsent: and collect:, but no single subtrait that takes

enough is known about the implementation. precedence for both of them. This is exactly the situation exclusion
Our response was to put off making decisions for as long as pos-is designed for, and we obtained the desired behavior by exclud-

sible, which turned out to be almost to the end of the first phase of ing at:ifAbsent: from the subtraitTExtensibleSequencedimpl and

the refactoring. The theoretical properties of traits made us confi- collect: from TOrderedSortedCommonimpl.

dent that things would turn out well in the end, provided that we  Ajiasing provides a way to access overridden behavior with-

col.lected behavior into Iogically.cohe.rent traits. Whether these oyt compromising the flattening property, and thus without reduc-

traits would eventually be combined into complete classes or be jng the understandability of composite traits. We used aliasing in

used to build a deep hierarchy of abstract and concrete classes didpjg way in the traitsrHeapimpl, TDictionarylmpl, and in the class
not matter, because we knew that trait composition and inheritanceitestream.

could be freely combined.

As our refactoring progressed, we realized that the methods in the
collection hierarchy could be grouped into traits at a much finer
granularity than we had initially thought. Given good tools, traits
do not impose any cost for the finer-grained structure: we didn't
have to make the trade-off between the elegance of the implemen-
tation and the understandability and usability of the functional in-
terface that characterizes both mixins and multiple inheritance.

; ) . . . In the process of our refactoring work, we also encountered
Once we had built the first few implementation and interface many situations where adding a new method to a component caused
traits, it became obvious how to combine them. The more we com- 4 conflict with another component in distant code. Thanks to the

bined traits, the more important the flattening property became. equirement of explicit conflict resolution all of these places were
However, we also realized the importance of the structured view, jnmediately detected, and we were able to re-establish the correct
because it shows the traits from which a class is composed andgemantics by making an appropriate adjustment to the appropriate
how they are interconnected. trait composition clause. It was never necessary to modify other

To summarize: we were able to put off the hard decisions until components, so we never found ourselves in a situation where re-
we knew enough about the system to make them correctly. This solving one conflict created two more.

was because of the combination of With mixins, this would not have been the case. First, we would

¢ alanguage technology with the right properties, particularly not have detected conflicting methods so easily because the order
flattening, and of the mixins automatically “resolves” each conflict, although not
necessarily in the way that the programmer intends! Second, even
* aset of tools that exploited those properties to provide mul- if we had noticed that a conflict had been resolved in an incorrect
tiple views of the program. way, it would have been much harder to actually re-establish the
correct behavior.

. . A comparison of our refactored collection classes to the mixin-
8.2 A Comparison to Mixins based collection framework of Strongtalk (Animorphic Smalltalk)

In arguing that traits are a valuable contribution to the language [7] provides more data on the effectiveness of mixins and traits.
designer’s arsenal, we must address the question of whether weBoth frameworks are based on Smalltalk-80 and are therefore quite
could not have obtained equally impressive results using mixins or comparable. Strongtalk has more collection classes, but uses only

multiple inheritance. We are convinced that the answer is “no”, and 10 different mixins, compared to 67 traits in our hierarchy. In par-
in this section will attempt to explain why. ticular, Strongtalk doesn'’t factor out characteristics such as exten-

We have previously presented theoretical arguments for the su-SiPle, implicitly sequenced, and explicitly sequenced; it also does
periority of traits over mixins and multiple inheritance[28]. Here qot make aspects like enumeration reusable outside of the collec-
we will focus on experience rather than theory. We will compare tion framework.
traits with mixins, since multiple inheritance can be considered as  Of course, the fact that the designers of Strongtalk decided not
a stylized application of mixins. to pursue a fine-grained decomposition into mixins does not mean

Our refactored collection classes are built from up to 22 traits; thatdoing so would be impossible. However, itis an indication that
on average each class contains more than 5 traits. This is feasibldhe Strongtalk designers decided that the disadvantages of a finer
because the sum operation lets us build a subclass from a groupstructure outweighed the advantages. In contrast, we have found
of traits in parallel. In contrast, mixins must be applied one at a thatwith traits the fine-grained decomposition has only advantages.
time; this would result in huge and hard to understand inheritance
chains With_ up to 22 Igvels. Even worse, th_ere are places where weg  RELATED WORK
use exclusion to avoid a method conflict in a way that could not

be simulated using mixins. For example, if traits and TB both The work presented here was inspired in part by Cook’s study
define methoda andb, then the expressiofiA - {a}) + (TB - {b}) of conformance and inheritance in the Smalltalk-80 collection
denotes a trait containing tleemethod fromTB and theb method classes[11]. Cook first extracts an interface hierarchy based on
from TA. If TA andTB were mixins rather than traits, there would conformance[4, 8] between the sets of public methods of the var-
be no way to mix both of them in and obtain this effect. ious classes. Then, to solve problems raised by messages being
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interpreted differently in different classes, he writes formal specifi- this issue is available in a companion paper [28].) The language
cations for the methods and corrects some method names. Cook’sSelf [33] even uses the name “traits”, although Self traits are ba-
results show that there is a wide divergence between the inheritancesically objects that play the role of method dictionaries shared by
mechanism used to build the hierarchy and the conformance rela-prototypes. As mentioned in section 8.2, Strongtalk is a typed ver-
tionship between the interfaces. sion of Smalltalk that uses mixins at a deep level. However, to the
Our work is complementary to Cook’s. We did not attempt to best of our knowledge there has been no scientific study evaluating
merge the implementation and conformance hierarchies. Insteadthe level of code reuse engendered by such approaches.
we moved almost all of the implementation into traits, where itcan ~ The Larch family of specification languages[19] is also based on
be widely reused; this frees the inheritance hierarchy to capture a construct called a trait; the relationship turns out to be more than
conformance. name deep. Larch traits are fragments of specifications that can be
Few other workers have reported measurements of the impact offreely reused at fine granularity. For example, it is possible to de-
mixin-like abstractions on non-trivial class hierarchies. Moore re- fine a Larch trait such asEmpty that adds a single operation to
ports on the use of a “Self improvement” tool called Guru, which an existing container data-type. There are, of course, significant
automatically restructures inheritance hierarchies and also refac-differences, since our traits are not intended to be used to prove
tors the methods in Self programs [24]. Moore applied Guru to the properties of programs, and adding a trait to a class does not for-
indexables, a fragment of the Self library that includes strings, vec- mally constrain the behavior of existing methods.
tors and sequences, and which contains 17 objects (most of which
play the role of classes). The restructured version of the hierarchy 10. FUTURE WORK
reduced the number of methods from 316 to 311, and the number
of overridden methods from 86 to 72. However, his method-level
refactoring introduced 79 additional methods.
Moore’s analysis finds some of the same problems with inheri-
tance that we have described in this paper, and also notes that som

times it is necessary to manually move a method higher in the hier- of code duplication, perhaps using a tool such as Duploc [13] or

rchy t tain maximal r . r work differs from Moore’s in . . -
?h;t )rqeouzgsaa toci tﬂu?ome;tisceaIISrZStn?ctu?e :nz rgfacto(r)ci)nﬁsr- Guru (see secthn 9)- B.Oth the Squ_eak Fc_)un_datlon and_ Cincom
itance hierarchies, whereas we developed a new language concepgave expressed Interest in incorporating traits into the main devel-
and associated tolols gupport the programmein writing better pment strea_m of t_helr Smalltalk systemg. If this happens, it would
(e.g, less duplicative) and more reusable code in the first place motivate the inclusion of all of the remaining classes |nt9 the refac-

2 " tored framework. A thorough testing of the new collection classes

uosuer df(i)cu?tslzlfonm'?p:%\cggau:ge;tsi\tgnﬁbgg;ow?J?}ﬁesrs?gﬁég%ﬁﬂ’ is also necessary. We believe that this can be accomplished using a
y ' y 9 P Y: random test generator and the existing classes as a test oracle.

. . T
because it introduces methods with generated names. However, it . :

would be very interesting to adapt the techniques used in Guru to aIvagu%rp?o‘r)tletﬁze[?rc\?gtehsgzvg ;\)A;ggrtgr?wrt'r?i(r)w l; wi?; Vt\:(:\iltqsav?rr?grlg Z(r:;u:::l
help the programmer identify traits by, for example, identifying du- few missing features, but the tools are quite usable by others and

plication in an existing hierarchy. ) ] . .
Our work also shares some similarity with research efforts in are available for dow_nload, we hope to hear_ repprts of their appli-
hierarchy reorganization and refactoring. Casais [9, 10] proposesc.atlon to pther domains. . e W".l use th.ls W|den|pg base of expe-
algorithms for automatically reorganizing. class hiere{rchies These rience to mfluen_ce the stlll-e_volvmg desug_n of traits; we also plan
: to study how traits might be incorporated into typed languages and

algorithms not only help in handling mogllflcatlpns to libraries O.f into languages in which instance variables can be part of an object’s
software components, but they also provide guidance for detecting interface

and correcting improper class modeling. Digktal. propose a new . . . . .

algorithm to insert classes into a hierarchy that takes into account Takmg a wider view, we do not see tralts.as Just another pro-

overridden and overloaded methods [12]. The key difference from gramming construct, but as one of the enabling technologies for a
: grander vision called multi-view programming. This vision is grad-

the results presented here is that all the work on hierarchy reorgani-uaII being realized in the Perspectives project [5]. Rather than
zation focuses on transforming hierarchies using inheritance as thethiniin o?a refactoring of a rcr: ram aspcn]aatin é new (equiv-
only tool. In contrast, we are interested in exploring other mecha- 9 9 prog 9 d

nisms, such as composition, in the context of mixin-like language ilrieni;)a?;%%r?g;égpoer;ge?obigmg aze(;;fpeerg'vezoﬁ ttr?et;(;ﬁ:ebgg-] the
abstractions. Mirza [23] also explores the use of fine-grained com- 9 : . red prog ) ;

e . . . stract entity. Like views on a database, this would raise the level of
position in a collections framework, but with different goatsy abstraction at which the user works. A new language technolo
binary deployment), and using different techniqueeg, simulated ! - ) ' guag 109y
delegation. like traits, which greatly extends the range of possible refactorings,

A . . . also defines a new set of views, and thus permits programming at
Refactorings—behavior preserving program transformations—

have become an important topic in the object-oriented reengineer- aozg[ﬁnﬁg?i;agt?s?g epoc;v;/r(]e :l;L(l)evee Ic.)ft,?]ifsullzr glriscussion of these

ing community [27, 31, 32]. Research on refactoring originates P P paper.

with the seminal work of Opdyke [25], which defines refactorings

for C++ [21, 26]. In this context, Tokuda and Batory [32] eval- 11. CONCLUSION

uate the impact of using a refactoring engine in C++. Fanta and We undertook this refactoring primarily to obtain some practical

Rajlich report on a reengineering experience where dedicated toolsexperience with the use of traits. We believed that the theoreti-

for the refactoring of C++ were developed [14]. However, they do cal properties that we had given to traits—especially flattening, but

not analyze the two versions of their code to compare the degree ofalso the retention of explicit conflicts in the sum operation—were

reuse. the right ones. But programing languages are tools, and theoreti-
Some other programing languages do have constructs similar tocal elegance is no substitute for usability. Only extensive use on a

traits, although they differ in some important details. (A study of realistic codebase could validate these beliefs.

We feel that our refactoring of the Collections classes has reached a
natural conclusion; although it is not complete, we have dealt with
a wide enough variety of classes that we do not believe that we
will learn very much more from filling in the remaining corners.
However, we would like to conduct a more sophisticated analysis
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It did. Although we had designed them, we were surprised how e made it possible to reuse collection caulgsideof the col-
well the tools and the trait concepts worked in practice. The the- lection hierarchy.

oretical characteristics do really seem to give the tools desirable 114 third claim improved understandability, is necessarily sub-

practical properties. jective. However, we argue that tvabjectivefeatures of the refac-
However wonderful a language technology may be to those who tored hierarchy support it. First, there is no discrepancy between
use it, new language features can be a real obstacle to those whahe apparent and actual interfaces of a class. In other words, we
have not previously met them. One of the pleasant properties never needed to resort to implementing a method “too high” in the
of traits is that they do not change the method-level syntax of hijerarchy just to enable reuse. As a consequence, when brows-
Smalltalk at all. Thus, an ordinary Smalltalk programmer can open ing the hierarchy, “what you see is what you get”: all of the pub-
an ordinary Smalltalk browser on our new hierarchy and understand lic methods in a class are actually available. Second, the struc-
everything that she sees. All of the concrete classes will be there, tured view (with fine grained traits) provides a lot of insight about
with all of their methods. Trait methods will appear to be defined the functional properties of the methods: which mutate the object,
directly in a subclass or inherited from a superclass exactly as in which require sequenceability, which do enumeration, and so on.
ordinary Smalltalk, and the semantics will be exactly the same. If Since the structured view containing this extra information is op-
the programmer modifies a method in a conventional class view, tional, there is no tradeoff to be made in supplying it: programmers
and the method is actually defined in a shared trait, then the effectwho do not find it useful can simply not use it.
will be to define a customized (unshared) version of the method

local to the class. Again, this is exactly the semantics of ordinary AcknowledgmentsThis work was initiated during a sabbati-
Smalitalk. cal visit by Andrew Black to the University of Bern, and continued
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tiple inheritance have not become popular is because of the com-sition Group in Bern for making the sabbatical possible, and for
plexity that they force on every programmer. For example, the rules being such intellectually stimulating and congenial hosts. We also
for linearizing multiple inheritance chains must be understood by thank the National Science Foundation and the late Professor Paul
every programmer who looks at or modifies a multiple inheritance Clayton, then Provost of the Oregon Graduate Institute, for the fi-
hierarchy. nancial support that made the visits possible.
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