
How Do Software Architects Specify and
Validate Quality Requirements?

Andrea Caracciolo, Mircea Filip Lungu, and Oscar Nierstrasz

Software Composition Group, University of Bern, 3012 Bern, Switzerland
{caracciolo,lungu,oscar}@iam.unibe.ch

http://scg.unibe.ch

Abstract. Software architecture is the result of a design effort aimed at
ensuring a certain set of quality attributes. As we show, quality require-
ments are commonly specified in practice but are rarely validated using
automated techniques. In this paper we analyze and classify commonly
specified quality requirements after interviewing professionals and run-
ning a survey. We report on tools used to validate those requirements and
comment on the obstacles encountered by practitioners when performing
such activity (e.g., insufficient tool-support; poor understanding of user’s
needs). Finally we discuss opportunities for increasing the adoption of
automated tools based on the information we collected during our study
(e.g., using a business-readable notation for expressing quality require-
ments; increasing awareness by monitoring non-functional aspects of a
system).

Keywords: software architecture, empirical study, quality requirements,
validation

1 Introduction

The primary task of a software architect is to define and specify a suitable
high-level design solution that fulfills all major technical and operational re-
quirements. The document describing the architecture provides requirements and
guidelines that will help in maintaining the conceptual and technical integrity
of a software product. Quality requirements describe expected characteristics
of specific aspects of the system, from its implementation to its observable be-
havior. They may refer to externally visible product qualities (e.g., performance
requirements) or to implementation details that support them (e.g., legitimate
module dependencies). Ensuring the enforcement of quality requirements and
their deriving constraints should prevent architectural decay and make the sys-
tem more adaptable to new, emerging requirements [3].

In this study we set out to survey whether the definition of quality require-
ments is a common practice in IT companies. We want to understand whether
this activity is systematic and supported by tools and processes or rather based
on personal assumptions and using makeshift tools. Finally, we are interested
whether quality requirements, given their importance, are also automatically
validated as the software system evolves.

http://scg.unibe.ch

2 A. Caracciolo, M. F. Lungu, O. Nierstrasz

Previous studies [7,8,13] propose solutions for specifying architectural invari-
ants. Other studies [1,18,19,10] rank non-functional qualities (e.g., performance,
usability, availability, etc.) by carrying out surveys. In neither case is effort made
to explore quality attributes from the point of view of practitioners.

In our study we focus on the following research questions:

1. What kind of quality requirements do architects define in practice?
2. How are quality requirements specified?
3. How are quality requirements validated?

To answer these questions, we use empirical methods to identify quality at-
tributes that practitioners consider when designing their architecture. Further-
more we analyze how practitioners specify quality requirements in their docu-
mentation and explore the various techniques that are used for validation.

We observe that architects do not always adopt automated techniques to
validate quality requirements and when they do, they automatically verify only
a small subset of all the specified requirements. We discuss possible obstacles that
might cause this situation as well as research opportunities that could lead to a
general improvement in the practice of quality requirements validation (Section
5). Among the identified opportunities we consider the advantages of adopting a
business-readable declarative language for specifying quality requirements. We
also explore the benefits of promoting architectural visibility by introducing
continuous validation support for user-defined quality requirements in current
monitoring platforms (e.g., Sonarqube).

2 Research Method

This paper uses a mixed research methods strategy: sequential exploratory design
[4]. This approach consists of two different research methodologies: a qualitative
investigation followed by a quantitative validation survey which triangulates the
results of the first.

In the first study, we focused on collecting qualitative data. The goal of this
study was to gain a possibly comprehensive overview of the state of practice in
the definition and validation of quality requirements. The questions have been it-
eratively refined by conducting three internal pilot interviews with PhD and mas-
ter students with professional experience in the field. The final list of questions,
used as loose guideline for the actual interviews, is available on our web site1.
Fourteen people working for six different organizations agreed to participate in
our study (Table 1). More than 70% of the participants have been contacted
indirectly through an intermediary and had no relevant links to the academic
community. The remaining subjects were contacted directly and belonged to our
industrial collaboration network. All interviews were carried out independently,
leading to a set of complementary and partially overlapping observations. A total
of approximately 18 hours of conversation have been recorded.

1http://scg.unibe.ch/research/arch-constr/study

http://scg.unibe.ch/research/arch-constr/study

How Do Software Architects Specify and Validate Quality Requirements? 3

Role Org. Project (domain; type) team size

A CEO, architect C1 government / enterprise <5
B business manager C2 government / enterprise 10-50
C project manager C3 insurance / enterprise >50
D architect C4 logistic / enterprise(integration) <5
E developer C4 logistic / enterprise(integration) <5
F CTO C5 banking / enterprise >50
G architect C2 government / enterprise 5-10
H architect C2 government / enterprise 10-50
I architect C6 logistic / enterprise(migration) >50
J* developer C2 government / development support tool <5
K architect C5 banking / enterprise 5-10
L architect C6 transportation / control systems 5-10
M* developer C5 banking / source code analysis >5
N* architect C5 banking / development support tool 5-10

Table 1. Interview study participants. Candidates with an asterisk worked in projects
aimed at supporting architectural design. The remaining candidates worked as soft-
ware architects or project managers in medium to large projects and have more direct
experience in architectural design.

The main outcome of this qualitative study was the list of quality attributes
presented in Table 2. These quality attributes were inferred by analyzing the
interviews and synthesizing the main concerns using coding techniques [17]. To
support this activity, we identified and labeled quality requirements in interview
transcriptions as well as the documentation files (i.e., Software Architecture
Documents, Developer guidelines) that we collected at the end of several inter-
view sessions. To gather more evidence that the observations coming from the
first study actually reflected the state-of-practice of a broader community, we
created an e-survey. Over a time span of two months we collected 34 valid and
complete responses. Invitations were sent to professionals selected among indus-
trial partners and collaborators (i.e., convenience sampling method), including
people involved in the first phase of the study. The survey was also advertised
in several groups of interest related to software architecture hosted by LinkedIn
and on Twitter2 (i.e., voluntary sampling method). Survey participants were
asked to specify whether the quality attributes identified in the first study were
ever encountered in a past project, their perceived level of importance (on a scale
from 1 to 5, with 5 being the highest), the formalism adopted to describe them
and the testing tool used for their validation. A complete copy of the survey can
be found on our web site1.

3 Learning from Practitioners: a Qualitative Study

During interviews, we tried to elicit a possibly wide range of distinct architec-
turally significant quality attributes. We asked our respondents to enumerate

2http://www.linkedin.com; http://www.twitter.com

http://www.linkedin.com
http://www.twitter.com

4 A. Caracciolo, M. F. Lungu, O. Nierstrasz

those concerns that could be considered fundamental for their architecture. For
each of those, we asked them to describe their main properties and the form
in which they were typically specified. Table 2 shows all identified quality at-
tributes. For each quality attribute, we also present additional details collected
during our quantitative study (columns 3-6 in Table 2).

Quality attributes are categorized based on the closest matching ISO-25010[11]
quality characteristic. For simplicity’s sake, we decided to pair each attribute
with one single category. For clarity, we also published some explanatory re-
quirements for all presented quality attributes on our web site1.

Quality Quality Attribute Importance Form.

Characteristic (Internal / External / Process) Q1 Q2 Q3 Fam. Not.

Performance Response time (E) 3 4 5 15% 14%

Throughput (E) 3 4 4 26% 13%

Hardware infrastracture (I) 2 3 4 29% 0%

Compatibility Signature (I) 3 4 4 18% 52%

File location (I) 1 3 4 29% 18%

Data structure (I) 2 3 4 29% 47%

Communication (I) 2 4 4 15% 22%

Usability Visual design (E) 2 3 3.5 9% 21%

Accessibility (E) 1 2 3.5 50% 0%

Reliability Availability (E) 4 4 5 15% 14%

Recoverability (E) 2 3 5 32% 5%

Data integrity (I) 3 3 4 18% 23%

Event handling (I) 2 3 4 35% 25%

Software update (P) 1 2 3 59% 0%

Security Authorization (E) 4 4 5 3% 23%

Authentication (E) 3 4 5 21% 12%

Data retention policy (I) 2 3 4 12% 13%

Maintainability Meta-annotations (I) 1 3 4 32% 39%

Code quality (I) 2 3 3.5 15% 19%

Dependencies (I) 2.5 3 4 18% 53%

Naming conventions (I) 2 3 3 12% 38%

Portability Software infrastracture (I) 3 3 4 24% 8%

Table 2. Taxonomy of quality requirements (grouped by supported quality characteris-
tic). Columns (from left to right): Matching quality characteristic; Quality requirement;
Evaluated importance (first, second and third quartile); Participants who encountered
the requirement in a previous project (familiarity); Participants who specified the re-
quirement using a formal notation. Columns 3-6 contain data collected during our
quantitive study.

3.1 Identified Quality Attributes

We now comment on the identified quality attributes.

How Do Software Architects Specify and Validate Quality Requirements? 5

Performance: performance was often mentioned as being a key concern.
Requirements on response time and throughput are commonly part of the accep-
tance criteria defined with the customer at the beginning of a project. Several
respondents (e.g., A, B) define latency requirements on the execution of specific
tasks (e.g., The system has to answer each request within 10 ms). Others (e.g.,
A, D) set limits for the accepted throughput (e.g., The system must be able
to execute a certain task 10’000 times per hour). These requirements are often
validated by collecting timestamps during execution or simulating high traffic
load with a script. Hardware infrastructure requirements, specifying the hard-
ware resources required to support a specific software implementation, also play
a role in determining performance.

Compatibility: multiple interviewees (B, F, J) mentioned communication
as one of the most important aspects in their architecture. F built a client
simulator to test conformance with the prescribed communication protocol and
check syntactical/semantical data consistency. N defined a guideline stating that
data has to be passed from one layer to the other using Data Transfer Objects. G
wrote a detailed specification of all service interfaces composing his application
(signature attribute). This included details regarding accepted parameter values
and activity diagrams describing the message exchange protocol. Interoperability
between different components and tools often requires files to be placed into
pre-determined folders or structure files according to a given shared schema (file
location attribute).

Usability: visual design and compliance to accessibility guidelines were men-
tioned as typical requirements for application front-ends. H developed a web in-
terface that had to conform to a set of rules defined in the corporate visual style
guide. This requirement was satisfied by defining global stylesheets and forcing
their inclusion into all related applications.

Reliability: robustness and fault-tolerance are important features for almost
any kind of application. H’s application was required to guarantee 96% avail-
ability and a clear recovery procedure was defined for each type of fault that was
likely to occur. Data integrity is also a major concern. K managed to maintain
internal data consistency by defining data type classes for all supported business
value types. H and G constrained field values specifying Hibernate or Spring
formatting annotations. Specific rules were also defined to regulate strategies for
handling events (e.g., exceptions, notifications) and update software packages
(e.g., libraries).

Security: security is also considered critical and is often tested thoroughly.
Verification becomes a necessity when the system is directly exposed to a large
untrusted audience. Testing seems to have lower priority if the application is just
deployed within an intranet (E). Most of the time, widely known frameworks
(e.g., JAAS) are used to implement authentication and authorization rules.

Maintainability: class dependencies and syntactic code invariants are com-
monly considered tightly related to software architecture. H even claims that
“dependencies between modules are the main characteristic of a software archi-
tecture”. Requirements on these two aspects are defined to support architectural

6 A. Caracciolo, M. F. Lungu, O. Nierstrasz

principles (loose coupling, high cohesion) and minimize the cost of future main-
tenance.

Portability: requirements related to software infrastructure configuration
are common. Prescriptions on technologies to be adopted can be found in al-
most every specification document. J, for example, specifies that the “persistence
layer” of his application must use Hibernate as a persistence framework. Software
infrastructure requirements are often related to rules addressing compatibility
issues (i.e., file location, data structure).

3.2 Specifying Quality Requirements

All the participants of our study describe their quality requirements in one or
more text documents. The vast majority adopt a well-known standard template
(e.g., 4+1[12], togaf3, arc424). Textual documentation is always complemented
with diagrams based on a common shared visual language (e.g., UML, BPML,
BPEL, flowchart, informal notation).

Documentation Audience Documentation is written to satisfy the needs of
three main stakeholders: customers, architects and developers.

For customers: documentation is written to meet contractual requirements.
In this case documentation is often seen as a burden for the architect and pro-
vides limited support to practitioners working on the project. It provides a non-
technical specification that can be used to prove compliance to agreed require-
ments during a post-development validation phase (G).

For architects: documentation is written to maintain a general overview of
the system and support high-level design reasoning. Some respondents believe
that developers are not interested in reading about architecture. “Developers
only care about functionality and tend to ignore non-functional properties” (E).
This assumption supports the idea that architecture and implementation are on
different levels of abstraction and are hard to link together. Low effort is usually
dedicated to keep documentation aligned and up-to-date with changes originated
in the implementation. I stated that he rarely got any sort of feedback from the
assumed recipients of his documentation work.

For developers: documentation is a map, providing a high-level description
of the system to technical users involved in the development process. It is par-
ticularly useful as an initial entry-point for new developers learning about the
system. D said that “new developers start by reading the documentation, look
into the code and finally sort out remaining doubts by talking with colleagues”.
Documentation is used to transfer knowledge, is open for change and needs to
be kept up-to-date.

Documentation Intent In our study we identified two type of documentation
styles: descriptive and prescriptive.

3http://www.opengroup.org/togaf
4http://www.arc42.de

http://www.opengroup.org/togaf
http://www.arc42.de

How Do Software Architects Specify and Validate Quality Requirements? 7

Descriptive documentation: is meant to provide sufficient evidence to
support developers in decision making activities. It is not written to set precise
guidelines and rules but to help developers in evaluating alternatives and make
good design choices. Architects writing “descriptive documentation” are usually
skeptical about enforcing design rules through documentation. D said that “doc-
umented rules are often perceived as pedantic and restrictive”. He added that
“forcing developers to learn them beforehand is a failing strategy and often leads
to poor results” because “they could be ignored and neglected”. Apparently a
much better approach is to provide useful feedback to developers when they
break such rules.

Prescriptive documentation: is more oriented towards the definition of
strict guidelines and rules. The goal is to limit developers in their design choices
in order to guarantee high-level properties (e.g., maintainability). In this case,
it’s often convenient to express quality requirements in a clear and objective way.
Most of the documents collected during our studies contained coding guidelines
(general practices and syntax format rules) and quality requirements regarding
data values and event handling.

Formalization of Quality Requirements Quality requirements are rarely
described formally. Formal specification is only used in practice to support spe-
cific verification tools. In this case, users are forced to extract architectural rules
from the specification document and encode them in a separate file using a
tool-specific notation.

In rare cases, companies develop their proprietary description language. N
worked in a company where all developed applications are documented as visual
diagrams based on a proprietary meta-model. Their models include a hierar-
chically organized set of interlinked logical components. All types of entities
are characterized by various properties (e.g., interface structure for components;
message format, protocol, integration type for communication links). Each sys-
tem, consisting of a set of components, is mapped to the specific infrastructural
entity on which it is supposed to be deployed. This last information is used to
feed a semi-automatic process for verifying the actual deployment configuration.
N said that the documentation model adopted in his company is very helpful
for keeping information consistent, accurate and closed to interpretation.

In other cases, users face the lack of usability of current specification mech-
anisms. D, for example, decided to verify package dependencies using a specific
testing framework (JDepend). Unfortunately the test specification required by
the adopted tool was not readable enough to be included in the official doc-
umentation. To solve this problem, he decided to specify the requirements in
a spreadsheet and build a parser to generate a corresponding set of tests. In
this case, having a simplified and testable representation of architectural rules
justified the cost for building a conversion tool.

3.3 Validating Quality Requirements

We observed that quality requirements are validated using various approaches.

8 A. Caracciolo, M. F. Lungu, O. Nierstrasz

Manual Validation According to the answers collected during our study, one
way of validating quality requirements is simply by running the system and
manually checking some operational properties (e.g., Response time, Authenti-
cation). This validation strategy is usually preferred when automated testing
tools are not available or exist but are too expensive to buy or customize. Scal-
ability is sometimes verified by generating a large number of requests using a
script and evaluating responsiveness by interacting with the application through
an additional session. Properties that manifest themselves in source code (e.g.,
Code conventions), are often checked through code reviews. As mentioned by
L, “the number of existing [testing] tools is far from being exhaustive”. He said
that “companies rarely see the value of investing time in researching new testing
techniques”. In many cases manual validation seems to be the most viable and
frequently chosen alternative.

No Validation Some respondents avoid the need for direct verification by re-
lying on a framework or code generator. If the framework is not developed inter-
nally, the fact that certain quality requirements are actually fulfilled is based on
trust. J, responsible for the development of an internal framework used across
multiple company projects, said that “frameworks should not be invasive but
support the developer by simplifying his tasks and reducing possible design de-
cisions in a non-invasive way”. Frameworks that are built to limit implementation
choices, as confirmed by M, are not well perceived by developers. A framework
should convince developers to use its functions by offering useful services that
contribute to reducing the cost of development (J). Code generators are typ-
ically used to simplify the maintenance and creation of modules that depend
on business needs that vary through time. Our interviewees agreed on the fact
that building testing tools is usually not an economically viable option. Building
testing tools is also seen as a challenging task requiring advanced programming
skills.

Automated Validation When possible, architects prefer to use automated
techniques. This can be done by writing programmatic tests or relying on tools
developed by a third party. Existing tools do not always fit the needs of our re-
spondents. Multiple respondents said that some of the currently available tools
were lacking in flexibility and usability. F worked on a project where compo-
nents could be identified by looking at the suffix of class names. All the tools he
tried supported package name matching as the only mapping strategy. K was
working on a system based on the OSGi framework5. He was not aware of any
tool that allowed him to automatically check whether the specified dependencies
existing between the OSGi bundles composing his system were actually consis-
tent with the architectural specification. The only way to verify the alignment
between implementation and specification was to manually inspect large XML
configuration files.

5http://www.osgi.org/

http://www.osgi.org/

How Do Software Architects Specify and Validate Quality Requirements? 9

Most of the tools force users to operate on an overly technical level. This
fact prevents non-technical stakeholders from accessing valuable information and
introduces new costs for setting-up and maintaining architectural tests. Current
testing solutions require the user to specify testing rules in separate files. Quality
requirements must be specified twice: in the official documentation using natural
language (for supporting communication and reasoning) and in a purpose-built
formal specification file (for supporting a specific testing solution). The resulting
fragmentation leads to increased costs for maintaining multiple specifications
aligned and consistent.

4 Corroborating the Evidence: a Quantitative Study

To confirm the validity of our impressions on a larger scale, we developed a
second study. This study was aimed at obtaining a more uniform overview on
how quality attributes (identified in the first study and presented in Table 2)
are considered by practitioners.

We now report some of the main observations resulting from the analysis of
the obtained results.

O1. Most requirements are not formally specified : Our survey confirms that
very few requirements are formally or semi-formally specified (Table 2). In fact,
only 2 quality requirements (Signature, Dependencies) out of 22 are formally
specified more than 50% of the time. Signature quality requirements are specified
using UML with custom profiles, XSD and IDLs (OMG IDL, MIDL, WSDL). De-
pendencies are described using tool-specific notations (e.g., JDepend, ndepend,
macker, DCL, SOUL), Java annotations and UML with custom profiles. Oth-
ers (Data structure, Naming conventions) are also quite frequently formalized.
Naming conventions can be specified using regular expressions, EBNF gram-
mars, tool-specific notations (e.g., SOUL for IntensiVE) or Java (e.g., plugins
for Checkstyle and PMD). Data structure quality requirements are either spec-
ified using standard schema definition languages (DTD, XSD) or semi-formal
modeling notations (ER, UML).

O2. Automated testing is not commonplace: Results show that the use of
automated techniques (i.e., using white-/black-box testing or tools) for validat-
ing quality requirements is not commonplace (Figure 1). On average, 59% of
the surveyed population adopts non-automated techniques (e.g., code review or
manual validation) or avoids validation completely. Based on the results of our
survey (Figure 1), the following quality requirements are mostly validated manu-
ally: Dependencies (10 users), Visual design (8), Naming conventions (7), Com-
munication (5). Quality requirements that remain most often unvalidated are:
hardware infrastructure (50% of respondents), recoverability (48%) and software
update (44%). Automated validation is not commonplace and is mostly adopted
to validate quality requirements regarding end-user properties (e.g., Response
time, Throughput) and security (e.g., Authorization, Authentication, Data reten-
tion policy). Table 3 shows which tools are used by the participants of our survey

10 A. Caracciolo, M. F. Lungu, O. Nierstrasz

14% 51% 27%

18% 29% 41%

19% 13% 50%

22% 22% 44%

24% 5% 48%

25% 39% 14%

26% 33% 15%

31% 19% 31%

32% 42% 16%

38% 35% 23%

39% 6% 35%

42% 34% 16%

43% 7% 21%

48% 19% 19%

48% 33% 14%

50% 14% 7%

53% 19% 14%

56% 25% 13%

58% 24% 16%

58% 14% 11%

68% 10% 16%

70% 23% 5%

Naming conventions
File location

Hardware infrastructure
Software update
Recoverability
Dependencies

Signature
Software infrastructure

Data structure
Event handling

Availability
Communication

Accessibility
Code quality

Meta-annotation
Visual design
Data integrity
Authentication

Data retention policy
Response-time

Throughput
Authorization

0 25 50 75

Testing
Automated

Manual

None

Fig. 1. Survey results: various approaches for validating quality requirements.

to validate the identified quality attributes.

O3. Tool support for automated validation is insufficient : One of the reasons
why automated validation is not widespread seems to be related to the scarce
availability of industrial-strength tools matching some practitioner’s needs. A
number of quality attributes (e.g., Code dependencies, Naming conventions) can
be checked with a large number of tools, while others (e.g., Data integrity, Meta-
annotations), considered as equally important, can only rely on a much smaller
range of solutions.

O4. User’s needs are still not completely recognized : Figure 1 shows that several
requirements are also more frequently validated manually than automatically.
The most striking examples are Data structure, signature, dependencies. This
suggests the possibility that some requirements are still left unaddressed and
need to be investigated further by conducting on-the-field studies. We believe
that further analysis of emerging requirements could lead to new opportunities
for future research in the field of tool development and tool building support.

O5. Emphasis is given to secondary requirements: Another interesting obser-
vation is that quality attributes that have been most frequently encountered in
past work experiences (e.g., Software update, accessibility) generally do not have
a significant impact on the outcome of an industrial project (See “familiarity”
and “importance” columns in Table 2). Further studies should analyze current
design and specification methodologies and propose improvements on existing
documentation practices.

How Do Software Architects Specify and Validate Quality Requirements? 11

Constraint Tool Reported Testing Tools

authorization 15% SoapUI / other: Framework (JAAS)

throughput 26% Meter, LISA, Selenium, Lucust, Gatling, HP LoadRunner

response-time 17% JMeter, LISA, Selenium

data retention policy 8% no tool specified

authentication 3% other: Framework (JAAS, Spring)

data integrity 8% Moose / other: db-constraints, Framework

visual design 4% other: Framework

code quality 39% Sonar, Findbugs, Code critics, Checkstyle, Emma, Clover

meta-annotation 19% dclcheck

accessibility 0% no tool specified

communication 8% Moose, dclcheck

availability 10% DynaTrace, Gomez, Shell script + Selenium, Pingdom

event handling 12% dclcheck, Moose

data structure 16% Moose / other: Custom tools

software infrastr. 8% other: Automated declarative provisioning

signature 7% Moose, JMeter, soapUI

dependencies 22% SAVE, dclcheck, Patternity, Jdepend, Ndepend, Macker,
IntensiVE, SmallLint, DSM tool

recoverability 0% no tool specified

software update 0% no tool specified

hardware infrastr. 6% no tool specified

file location 0% other: Guaranteed by framework

naming conventions 11% Code critics, Checkstyle, PMD, FxCop, IntensiVE, Petit-
Parser

Table 3. Survey results related to tool-aided architectural constraints testing. Columns
(from left to right): Constraint name; respondents using third-party tools for testing
the constraint; adopted tools.

O6. Tools do not take advantage of existing formalizations: Figure 1 shows that
some constraints (e.g., dependencies, naming conventions) are more often for-
mally specified than automatically validated. However, formally specifying con-
straints without automatically verifying them is less than optimal. Based on our
analysis, we observe that some adopted notations do not provide sufficient details
to support validation (e.g. UML for describing signature) and other notations
are not fully taken advantage of by the existing tools (e.g. regular expressions
for describing naming conventions). We think that more empirical studies are
needed in order to expose actual formalization practices. The results of these
studies might expose common flaws of existing notations and provide concrete
evidence of practitioner’s needs.

12 A. Caracciolo, M. F. Lungu, O. Nierstrasz

5 Discussion

In this section we discuss some general strategies that could help address the
issues raised in the previous section.

Reduce the Gap between Specification and Implementation As ob-
served, many of the current tools force the user into a needlessly technical ex-
ercise. Several dependency testing tools (e.g., JDepend, Dependometer), for ex-
ample, not only require the test specification to be written using a technical
notation (i.e., Java or XML), but also offer poor documentation on how to do
so.

Architects should be able to express their concerns in a single uniform format.
Respondent G said that having the option to embed a formal (yet readable) test
specification of his architectural rules in a Word document would be extremely
appealing to him. This would allow him to write well-formed testing rules in a
familiar environment with the additional benefit of automatic validation.

Terra et al. [20] and Marinescu et al. [15] proposed two different DSLs (Do-
main Specific Languages) for expressing quality requirements (See section 7).
Both languages serve the purpose of encoding valuable information in a testable
yet readable format. Unfortunately the expressiveness of such DSLs is strongly
defined by the capabilities of the underlying tool. Völter [21] reports on a case
study where a DSL is defined progressively by interacting with the customer.
The language, grammar and support tooling is developed iteratively and will
eventually be used as the basis for code generation and analysis. Cucumber6, a
behavior-driven development framework, is based on a similar concept. Tests are
written by non-technical stakeholders and are checked by building an interpreter
that translates the text into actual unit tests.

These approaches show that having business-readable descriptions of rele-
vant design properties helps keeping alive the conversation between all involved
stakeholders. It also shows that a well engineered DSL is useful for encoding
information in a uniform and unambiguous manner, which can turn useful for
supporting more sophisticated testing activities. We believe that users should
not be asked to describe their quality requirements within the boundaries de-
fined by a testing tool. Instead, tools should be employed to verify user-defined
rules on a best effort basis.

Increase Awareness through Continuous Feedback Several respondents
(G, H, J) use Sonarqube as a guide for driving code review activities. Sonar-
qube aggregates code analysis reports from multiple sources and presents them
in a customizable web-based interface. Information is constantly kept up-to-date,
well integrated and easy to navigate. All aspects exposed by the tool relate to
general low-level characteristics of the system that are typically of little interest
for architects. The strength of Sonarqube mostly seems to be bound to its inte-
grability (analysis can be configured to run as a build step in a wide range of

6http://cukes.info

http://cukes.info

How Do Software Architects Specify and Validate Quality Requirements? 13

continuous integration servers), the concreteness of its result and the fact that
all information are current and kept up-to-date.

Having seamless access to a comprehensive set of system-wide properties
and infringed rules is a good way to exercise control over non-functional aspects
of an implementation. If architects had the chance to define domain-specific
rules for testing design constraints that are relevant for their architecture, they
would be able to reach a higher and more targeted level of control. Our in-
tuition is that monitoring platforms, such as Sonarqube would largely benefit
from being integrated with highly customizable DSL-based tools (e.g., DCL[20],
InCode.Rules[15]). Being able to specify similar and more articulated rules on
this and other aspects of the system would eventually reduce the generality of
the results minimizing the number of false warnings and optimizing review-time.

6 Threats to Validity

Internal Validity During our first study, we tried to gather impressions and
opinions by conducting semi-structured interviews. Our goal was to gather a
clear answer to all the research questions presented in the introduction. All
discussions have therefore been partially moderated by the interviewer. We did
our best to minimize the influence of the interviewer on the respondent, but we
cannot exclude the existence of biased answers. Some observations or questions
made by the interviewer might have induced the respondent to articulate his
answer in an unnatural way. The effect of a similar threat should have been
mitigated by the number of different answers to the same question.

Users taking part in the survey had the right to remain anonymous. 41%
of them chose not to share any identifying personal information (i.e., email ad-
dress). Among those, 71% (29% of the total population) did not specify their
professional title. Due to this lack of information, we are unable to make general
statements over the population participating to the survey. It would anyway be
reasonable to assume that most of the people were either architects or profes-
sionals playing a comparable role. The fact that we contacted people belonging
to our industrial collaborators network and that we posted invitations only on
architecture-oriented virtual communities should support our hypothesis.

External Validity Another limitation could be seen in the relatively modest
number of participants who participated in each phase of the study. The first
study involved 14 respondents, while the survey counted 34 valid results. These
numbers could appear small, but in fact are comparable to those reported by
similar studies. Four out of five of all the interview-based studies centered around
non-functional requirements [1] involve 14 or fewer participants. If we consider
the surveys related to the same topic [1], we see that two out of four studies
draw their conclusions based on fewer than 34 responses.

14 A. Caracciolo, M. F. Lungu, O. Nierstrasz

7 Related Work

In our work we discuss the nature of quality requirements and report on the tech-
niques used for their verification. We examine both topics from a very pragmatic
point of view, taking in consideration concrete examples and specific informa-
tion. To the best of our knowledge, no other empirical study covers the same
topics adopting a similar standpoint.

Several surveys related to NFRs (non-functional requirements) have been
carried out (See related work by Ameller et al. [1]). The main outcome of all
these studies often consists of a ranking showing how non-functional require-
ments compare based on the level of importance attributed by the users. All
these studies focus on generic quality characteristics ignoring actual quality at-
tributes that practitioners address in the requirements. Our study provides new
insights from a complementary point of view, showing which quality attributes
are considered relevant and providing details of their validation.

Poort et al. [18] found a statistical correlation between the verification of
NFRs and project success. According to their results, the benefits of verification
are also more significant if NFRs are verified in early stages of a project. In our
study we explore how NFRs get actually validated in practice.

Various research contributions show that architecture-related requirements
can be formalized using ADLs (architectural description languages). ADLs allow
to model an architecture as a set of interlinked components enriched with a pre-
defined meta-annotations. These models are typically weakly related with the
implementation. Tools are sometimes provided for checking the semantic consis-
tency of relationships and annotations but only at the model level. Moreover,
there is scarce evidence that the general concepts defined in ADLs (i.e., Com-
ponents, Ports, etc.) actually reflect the the way architects think about their
architecture. Case studies, showing evidence of the practical utility of the lan-
guage, can only be found for a few of the most prominent ADLs (i.e., AADL
[6,5] and xADL [2]). We think that the lack of support for testing concrete archi-
tectures combined with the possible mismatch between offered features and real
needs can be the cause of the — by now confirmed [14] — failure of adoption of
ADLs by the general public. In this paper we draw observations that could help
making ADLs more effective and useful.

Recent research efforts try to make up for these limitations by proposing
more test-oriented ADLs. Terra et al. [20] proposed a specification language for
expressing restrictions on the existence of certain types of relationships (e.g.,
access, extension) between sets of classes. Marinescu et al. [15] supports the
specification of undesired dependencies and class-level anti-patterns. Both ADLs
are supported by custom-built testing tools that enable rule verification at the
code level. Other languages (i.e., SOUL [16] and LePUS3/Class-Z [9]) are more
formal and support more complex specifications. They provide the means to
validate quality requirements at code level, but also require considerable training
before usage.

How Do Software Architects Specify and Validate Quality Requirements? 15

8 Conclusion

We presented the results of two empirical studies that explore how quality re-
quirements are defined and validated in practice. The studies show that archi-
tects care about the validation of quality requirement but are often unable to
make best use of the currently available tools.

We observe that the present offering of tools is limited in number and that
several solutions are not able to satisfy common requirements (see section 5).
Practitioners are rarely willing to develop solutions for governing architectural
decay and are not motivated to formalize their quality requirements. Current
formalization notations are typically strongly tied to specific testing solutions
and are often lacking in readability. To improve this situation, we propose some
ideas for specifying quality requirements and for reducing the cost of validation.
Future testing solutions should take advantage of existing formalizations and
provide functionalities that fulfill empirically recognized requirements.

In the future we plan to apply some of the discussed ideas by experimenting
with new solutions for supporting the specification and validation of quality
requirements.

Acknowledgment

We thank Erwann Wernli for valuable discussions regarding the content of this
paper, and we thank the anonymous reviewers and the shepherd assigned to this
paper for their many helpful suggestions. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project “Agile Software
Assessment” (SNSF project No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).
We also thank CHOOSE, the special interest group for Object-Oriented Systems
and Environments of the Swiss Informatics Society, for its financial contribution
to the presentation of this paper.

References

1. D. Ameller, C. Ayala, J. Cabot, and X. Franch. How do software architects consider
non-functional requirements: An exploratory study. In Requirements Engineering
Conference (RE), 2012 20th IEEE International, pages 41 –50, Sept. 2012.

2. N. Boucké, A. Garcia, and T. Holvoet. Composing structural views in xADL. In
Proceedings of the 10th international conference on Early aspects: current chal-
lenges and future directions, pages 115–138, Berlin, Heidelberg, 2007. Springer-
Verlag.

3. S. J. Carrière and R. Kazman. The perils of reconstructing architectures. In
Proceedings of the third international workshop on Software architecture, ISAW
’98, pages 13–16, New York, NY, USA, 1998. ACM.

4. J. W. Creswell and Vicki. Designing and Conducting Mixed Methods Research.
Sage Publications, Inc, 1 edition, Aug. 2006.

5. P. Feiler, D. Gluch, J. Hudak, and B. Lewis. Embedded systems architecture
analysis using SAE AADL. Technical Report CMU/SEI-2004-TN-005, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2004.

16 A. Caracciolo, M. F. Lungu, O. Nierstrasz

6. P. Feiler, D. Gluch, and K. Woodham. Case study: Model-based analysis of the
mission data system reference architecture. Technical Report CMU/SEI-2010-
TR-003, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2010.

7. P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis & design
language (AADL): An introduction. Technical report, DTIC Document, 2006.

8. D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description of
component-based systems. In G. T. Leavens and M. Sitaraman, editors, Founda-
tions of Component-Based Systems, chapter 3, pages 47–67. Cambridge University
Press, New York, NY, USA, 2000.

9. E. Gasparis, J. Nicholson, and A. Eden. Lepus3: An object-oriented design de-
scription language. In G. Stapleton, J. Howse, and J. Lee, editors, Diagrammatic
Representation and Inference, volume 5223 of Lecture Notes in Computer Science,
pages 364–367. Springer Berlin Heidelberg, 2008.

10. M. Haigh. Software quality, non-functional software requirements and it-business
alignment. Software Quality Control, 18(3):361–385, Sept. 2010.

11. ISO/IEC. ISO/IEC 25010 — Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software
quality models, 2010.

12. P. B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50,
Nov. 1995.

13. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In ESEC’95: Proceedings of the 5th European Software Engineer-
ing Conference, volume 989 of LNCS, pages 137–153, Sitges, Spain, Sept. 1995.
Springer-Verlag.

14. I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. What industry needs
from architectural languages: A survey. Software Engineering, IEEE Transactions
on, 39(6):869–891, 2013.

15. R. Marinescu and G. Ganea. inCode.Rules: An agile approach for defining and
checking architectural constraints. In Intelligent Computer Communication and
Processing (ICCP), 2010 IEEE International Conference on, pages 305–312, Aug.
2010.

16. K. Mens and A. Kellens. IntensiVE, a toolsuite for documenting and checking
structural source-code regularities. In Software Maintenance and Reengineering,
2006. CSMR 2006. Proceedings of the 10th European Conference on, pages 10 pp.
–248, mar 2006.

17. M. B. Miles and M. Huberman. Qualitative Data Analysis: An Expanded Source-
book(2nd Edition). Sage Publications, Inc, 2nd edition, 1994.

18. E. Poort, N. Martens, I. Weerd, and H. Vliet. How architects see non-functional
requirements: Beware of modifiability. In B. Regnell and D. Damian, editors, Re-
quirements Engineering: Foundation for Software Quality, volume 7195 of Lecture
Notes in Computer Science, pages 37–51. Springer Berlin Heidelberg, 2012.

19. R. Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, and R. Feldt. Qual-
ity requirements in industrial practice — an extended interview study at eleven
companies. Software Engineering, IEEE Transactions on, 38(4):923–935, 2012.

20. R. Terra and M. T. Valente. A dependency constraint language to manage object-
oriented software architectures. Softw. Pract. Exper., 39(12):1073–1094, Aug. 2009.

21. M. Voelter. Architecture as language: A story. InfoQ, Feb. 2008.

	How Do Software Architects Specify and Validate Quality Requirements?
	Introduction
	Research Method
	Learning from Practitioners: a Qualitative Study
	Identified Quality Attributes
	Specifying Quality Requirements
	Documentation Audience
	Documentation Intent
	Formalization of Quality Requirements

	Validating Quality Requirements
	Manual Validation
	No Validation
	Automated Validation

	Corroborating the Evidence: a Quantitative Study
	Discussion
	Reduce the Gap between Specification and Implementation
	Increase Awareness through Continuous Feedback

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion

