
Dictō: A Unified DSL for Testing Architectural Rules

Andrea Caracciolo, Mircea Filip Lungu, Oscar Nierstrasz
Software Composition Group, University of Bern, Switzerland

scg.unibe.ch

ABSTRACT
Software architecture consists of a set of design choices that
can be partially expressed in form of rules that the imple-
mentation must conform to. Architectural rules are intended
to ensure properties that fulfill fundamental non-functional
requirements. Verifying architectural rules is often a non-
trivial activity: available tools are often not very usable and
support only a narrow subset of the rules that are commonly
specified by practitioners. In this paper we present a new
highly-readable declarative language for specifying architec-
tural rules. With our approach, users can specify a wide
variety of rules using a single uniform notation. Rules can
get tested by third-party tools by conforming to pre-defined
specification templates. Practitioners can take advantage of
the capabilities of a growing number of testing tools without
dealing with them directly.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
languages

General Terms
Documentation, Verification

Keywords
Software Architecture, DSL, Validation

1. INTRODUCTION
Architecture is concerned with the selection of architec-

tural elements, their interactions, and the constraints on
those elements and their interactions necessary to provide
a framework in which to satisfy the requirements and serve
as a basis for the design [17]. Quality requirements and re-
lated constraints can be expressed in the form of rules and
validated by exercising specific features of the system or an-
alyzing its source code.

Unfortunately quality requirements are rarely validated
using automated techniques [3]. On average, about 60%

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Paper draft
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of practitioners adopt non-automated techniques (e.g., code
review or manual testing) or avoid testing completely.

Some of the reasons that limit the use of automatic testing
techniques are:

• The absence of a general unified specification language
for describing architectural rules: Each testing solution
introduces its own particular notation and conceptual
model.

• Fragmented tool support: Current testing tools are
highly specialized and can typically handle at most
one type of rule.

• Poor usability of current tools: Each testing solution
is based on its own set of (often undocumented) theo-
retical and operational assumptions. These contribute
to increasing the overall effort needed to interact with
the tool.

In this paper we present Dictō, a lightweight DSL that
overcomes the outlined limitations by offering:

• A generic uniform notation that can be used to specify
most rules;

• A plug-in framework that allows developers to test
user-specified rules using arbitrary third-party tools.

Dictō is generic enough to be used for describing most of
the architectural constraints and quality requirements en-
countered in practice (e.g., Response time, dependencies,
authentication) [3]. Our goal is to offer support for including
architectural testing in the continuous integration process
[15] while in the same time, enabling stakeholders involved
in the specification process to avoid conceptually irrelevant
technical details related to the testing process.

2. MOTIVATING EXAMPLE
Quality requirements are typically validated by testing ar-

chitectural rules. Unfortunately even simple rules might re-
quire considerable effort to be tested.

To better understand the problem, let’s consider a con-
crete (and simplified) scenario:

A software architect is designing a web service, and is
given the following non-functional requirements:

NFR1. The system must be modular and easy to maintain.

NFR2. The system must be responsive and provide its ser-
vices within a reasonable time.

http://scg.unibe.ch/

The architect plans to ensure the first requirement by
strictly separating the user interface, the business logic, and
the persistent data. To ensure this separation and validate
the second requirement, she defines the following rules on
her Java implementation:

R1a. org.app.Model must depend on org.app.Database

R1b. org.app.Database must depend on org.app.Util

R1c. org.app.Model cannot depend on org.app.View

R1d. org.app.Util cannot depend on org.app.Database

R2a. The web service must answer user requests within
10ms.

Such rules have been encountered multiple time during a
previous on-the-field study [3] and can therefore be consid-
ered representative for the architect’s needs.

To verify those rules, we organized a small experiment
involving five tools. The rules were tested on an implemen-
tation complying to R1a, R1d and R2a, but not to R1b and
R1c. The violation of rule R1b is commonly defined in lit-
erature as an absence (the model prescribes a dependency
that does not exist in the source code). The violation of R1c
is called a divergence (a dependency that is not included in
the model actually exists in the source code).

The results are summarized in Table 1.

Rule T1 T2 T3 T4 T5

R1a: Model → Database X − X N/A −
R1b: Database → Util X − X N/A −
R1c: Model → View − χ − N/A −
R1d: Util → Database − X − N/A −
R2a: RT < 10ms − − − − X

Table 1: Five constraints (rows) have been tested us-
ing five tools (T1: Dependometer; T2: Classcycle;
T3: JDepend; T4: Macker; T5: JMeter). Testing
outcome can be: X(successfully tested), χ(wrong re-
sult), − (rule type not supported), N/A (tool could
not be operated)

As we can see, none of the selected tools was able to verify
all defined rules. We also observed that:

• Dependometer (T1) didn’t offer sufficient guidelines for
defining dependency rules. The most helpful piece of
information that helped us setting up the experiment
was a poorly commented XML template containing a
large number of parametrized options.

• Classcycle (T2) reported a wrong result for R1c and
didn’t raise any error when attempting to test for a
dependency involving a non-existent package.

• JDepend (T3), one of the most popular dependency
testing tools, also revealed some shortcomings. This
tool not only requires us to specify each single package
of the analyzed system, but also fails without expla-
nation when the user forgets to do so. This important
fact appears to be undocumented and forces the user
to write needlessly long test specifications.

• Macker (T4) could not be correctly configured and of-
fered very poor configuration.

• JMeter (T5) performed well in our test but, due to
its complexity and poor user interface, required us to
constantly refer to the documentation.

Our experiment shows how testing five simple rules may
often require the user to: install multiple tools; deal with
various kinds of configuration annoyances; encode rules ac-
cording to different specification models and notations.

3. OUR APPROACH IN A NUTSHELL
To address the issues highlighted in the previous section,

we propose Dictō, a DSL for the specification of architectural
rules. Our approach distinguishes itself from others (see
section 5) in the following three aspects:

1. It has a lightweight and uniform syntax that allows a
user to specify a wide range of rule types.

2. It is designed to allow easy integration of specialized
third-party tools for testing user-defined rules on a con-
crete system implementation.

3. It supports incremental specification, since it does not
require a full description of the architecture.

Using Dictō, we can encode the rules defined in section 2
as follows:

Model: Component with package="org.app.Model"
DB: Component with package="org.app.Database"
View: Component with package="org.app.View"
Util: Component with package="org.app.Util"
App: WebService with url="http://app.com/"

Model must DependOn(DB)
DB must DependOn(Util)
Model cannot DependOn(View)
Util cannot DependOn(DB)
App must HaveResponseTimeLessThan(10ms)

Our DSL is built on top of a framework that offers an
extension point for developing tool-specific adapters. If such
adapters exist (in our case we would need one for T1, T2,
and T5), the individual rules in the above specification are
automatically dispatched to the appropriate backend (i.e.,
T1, T2 and T5).

An adapter must be able to:

1. Analyze user-defined Dictō rules to generate a test
specification that can be given as input to the adapted
tool;

2. Execute the generated test;

3. Interpret the obtained test result to be able to report
back to the user.

Adapters must declare which kind of rules they are ca-
pable of handling. This requires them to specify the main
properties that rules (e.g., predicate names, number of pred-
icates, number of subjects) and subject entities (e.g., entity
type, number of specifiers, negated specifiers) must exhibit
in order to be recognized by the adapter.

Adapters enable a fully automated verification process
that does not require any further interaction with the un-
derlying testing tools. This allows for a good separation
between conceptual design (i.e., writing rules) and technical
realization (i.e., developing adapters). Even non-technical
stakeholders can be involved in the specification of rules.

Predicates, entity types and entity specifiers are not de-
fined in the language and have no pre-defined semantics.
Users and adapter developers can easily extend the DSL
with new terminology without modifying the language in-
terpreter. Semantic interpretation of those terms is within
the responsibilities of the adapters and is typically highly
dependent from the characteristics of the adapted tool.

4. THE DICTŌ SYNTAX
To support our approach, we propose a unified DSL named

Dictō. The language is based on two main concepts: subject
entities and rules.

Rules are used to describe architecturally relevant user
constraints. In our DSL we support four rule modes: must,
cannot, only-can, can-only. Examples of these rules are:

MyWebsite must HaveUptimeOf(99%)
Module1, Module2 cannot ContainCodeClones()
only MoneyAttr can HaveAnnotation("@Formatted")
DataComp can only ContainClassesNamed("*Data")

A rule is essentially a list of predicates that are evaluated
based on the specified subject entities.

We derived this syntactic structure from the analysis of
different specification documents written by software archi-
tects in the context of industrial projects. Architectural
rules often adhere to the following specification pattern:

• considered artifacts (e.g., “Business Service interfaces
and implementations”)

• enforced constraint (e.g., “must end with ..Service”)

Predicates are used to express a condition that must (or
must not) hold for the described subject entities. Whether
a predicate should hold or not can be defined using rule
modes (e.g., must vs. cannot). Rule modes have been intro-
duced to express commonly encountered specification varia-
tions used to describe constraints. For example, constraints
like “Repository Interfaces contain only find..() methods” 1

can be expressed as:

IRepository can only HaveMethodsNamed("find*")

“Service classes are the only classes allowed to throw Ap-
plicationException” can be described by:

only Services can ThrowException("
ApplicationException")

Subject entities are mapped to concrete elements as
follows:

MoneyAttr: all Attribute with type="com.app.
model.Money", value!="null"

DataComp: Package with name="com.app.Data"

Each subject has a name, a nominal type, and is described
by a set of specifiers. Specifiers are essentially attributes
that are used to characterize the entity to which they are
associated.

For example, an entity described as: “log file [..] named
‘web-audit.log’ and located at ‘/var/log/myApp/’ [..]” can
be described by:

1The rule examples in this section are extracted from
specification documents analyzed in the context of a previ-
ous study

Log: File with path="/var/log/myApp/web--audit.
log"

Our language also supports comments. With comments,
users can document statements providing examples or com-
plementary information (e.g., design rationale, references).

5. RELATED WORK
The DSL presented in this paper is designed to support

practitioners in describing and enforcing architectural rules.
One of the main advantages of using a DSL is that users

can express solutions at the level of abstraction of the prob-
lem domain [5]. DSL design and implementation method-
ologies have been largely studied and documented [12, 4, 5].
Many DSLs have been proposed for describing architectural
properties and structures.

ADLs (architecture description languages) are DSLs that
aim at facilitating the specification of various aspects of
an architecture. Most ADLs offer support for modeling
structural elements, such as components and connectors.
Some ADLs allow to specify finer-grained properties and
constraints at the component level (e.g., timing-related con-
straints, state constraints) [7, 2, 13]. Others support the
specification of control- and data-flow sequences reflecting
the expected behavior of the described system [6, 7, 10].
Unfortunately no strong support is offered to verify defined
constraints in a target implementation. Logical model enti-
ties are rarely mapped to concrete system elements. ADLs
are typically used to support model checking and do not
provide any real advantage for practitioners who need to
validate the actual architecture of a concrete system.

Other DSLs are more effective in verifying architectural
concerns in a concrete target implementation. ArchFace [19]
and ArchJava [1] support the specification of dependency
constraints directly within the code. Those constraints are
successively checked by an ad-hoc pre-compiler or trans-
formed in equivalent AOP crosscutting concerns. DCL [18],
TamDera [8] and inCode.Rules [11] can be used to define
various types of allowed or forbidden dependencies that can
successively be verified by dedicated tools. These languages
lack both in expressivity and extensibility. Rules must be
written according to a strictly pre-defined grammar that
does not leave space for domain specific terminology. Each
language also provides support for testing a very limited
number of rule types and typically only one type of violation
type (absence or divergence [14]). If the user is interested
in other types of rules, he will likely need to opt for another
tool or language.

Architectural rules are typically defined to fulfill non func-
tional requirements. Those type of requirements have been
largely studied. ISO/IEC 9126 [9] describes a quality model
for the categorization of quality attributes. OGM’s MARTE
UML profile [16] is a meta-model for the specification of non-
functional requirements in the context of real time and em-
bedded systems. Both contributions could help rationalizing
the process of defining an initial robust set of predicates for
the definition of architectural rules.

6. CONCLUSION
In this paper we propose a new DSL for specifying ar-

chitectural rules. The language is supported by an extensi-
ble framework that enables easy integration of third-party
testing tools for the validation of user-defined rules. This

approach aims at reducing the overall cost for validating
architecturally relevant quality requirements. With a sin-
gle homogeneous unifying language, practitioners can indi-
rectly exploit the capabilities of a large variety of testing
tools without bothering with technical details.

Acknowledgment
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Assessment” (SNSF project Np. 200020-144126/1, Jan 1,
2013 - Dec. 30, 2015).

7. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava:

Connecting software architecture to implementation.
In ICSE’02: Proceedings of the 24th International
Conference on Software Engineering, pages 187–197,
Orlando, FL, USA, 2002. ACM.

[2] P. Binns, M. Engelhart, M. Jackson, and S. Vestal.
Domain-specific software architectures for guidance,
navigation, and control. International Journal of
Software Engineering and Knowledge Engineering,
6(2):201–227, 1996.

[3] A. Caracciolo, M. F. Lungu, and O. Nierstrasz. How
do software architects specify and validate quality
requirements? In Software Architecture, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, Aug.
2014.

[4] J. C. Cleaveland. Building application generators.
IEEE Softw., 5(4):25–33, July 1988.

[5] A. Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. ACM
SIGPLAN Notices, 35(6):26–36, June 2000.

[6] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The
architecture analysis & design language (AADL): An
introduction. Technical report, DTIC Document, 2006.

[7] D. Garlan, R. T. Monroe, and D. Wile. ACME: An
architecture description interchange language. In
CASCON’97: Proceedings of the 7th Conference of the
Centre for Advanced Studies on Collaborative
Research, pages 169–183, Toronto, Ontario, Canada,
Nov. 1997.

[8] A. Gurgel, I. Macia, A. Garcia, A. von Staa,
M. Mezini, M. Eichberg, and R. Mitschke. Blending
and reusing rules for architectural degradation
prevention. In Proceedings of the 13th International
Conference on Modularity, MODULARITY ’14, pages
61–72, New York, NY, USA, 2014. ACM.

[9] ISO/IEC 9126-1:2001 Software engineering – Product
quality, 2001.

[10] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4):336–355, 1995.

[11] R. Marinescu and G. Ganea. inCode.Rules: An agile
approach for defining and checking architectural
constraints. In Intelligent Computer Communication
and Processing (ICCP), 2010 IEEE International
Conference on, pages 305–312, Aug. 2010.

[12] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, 2005.

[13] M. Moriconi and R. A. Riemenschneider. Introduction
to SADL 1.0: A language for specifying software
architecture hierarchies. Sri-csl-97-01, SRI
International, 1997.

[14] G. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source and
high-level models. In Proceedings of SIGSOFT ’95,
Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 18–28. ACM Press,
1995.

[15] O. Nierstrasz and M. Lungu. Agile software
assessment. In Proceedings of International Conference
on Program Comprehension (ICPC 2012), pages 3–10,
2012.

[16] OMG. UML Profile for MARTE, v1.1. Object
Management Group, 2011. formal/2009-11-02.

[17] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40–52, Oct. 1992.

[18] R. Terra and M. T. Valente. A dependency constraint
language to manage object-oriented software
architectures. Software: Practice and Experience,
39(12):1073–1094, Aug. 2009.

[19] N. Ubayashi, J. Nomura, and T. Tamai. Archface: A
contract place where architectural design and code
meet together. In ICSE’10: Proceedings of the 32nd
International Conference on Software Engineering,
pages 75–84, Cape Town, South Africa, 2010. ACM.

	Introduction
	Motivating Example
	Our approach in a nutshell
	The Dicto Syntax
	Related work
	Conclusion
	References

