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Abstract—Software erosion can be controlled by periodically
checking for consistency between the de facto architecture and
its theoretical counterpart. Studies show that this process is often
not automated and that developers still rely heavily on manual
reviews, despite the availability of a large number of tools. This
is partially due to the high cost involved in setting up and
maintaining tool-specific and incompatible test specifications that
replicate otherwise documented invariants. To reduce this cost,
our approach consists in unifying the functionality provided by
existing tools under the umbrella of a common business-readable
DSL. By using a declarative language, we are able to write
tool-agnostic rules that are simple enough to be understood by
untrained stakeholders and, at the same time, can be interpreted
as a rigorous specification for checking architecture conformance.

I. INTRODUCTION

Architecture erodes when the implemented architecture of
a software system diverges from its intended architecture [1].
Monitoring architecture conformance is one of the ways to
limit this phenomenon. By controlling the evolution of an
architecture, one can ensure that the desired quality attributes
of a system are correctly reflected in the implementation.
Maintaining architectural consistency is also essential for doc-
umentation and knowledge sharing purposes.

Erosion can be minimized through process-oriented ac-
tivities, such as architecture compliance monitoring and de-
pendency analysis [2]. Compliance monitoring can be imple-
mented by continuously comparing an ideal specification with
an evolving code base (e.g., using reflexion models [3]). Any
discrepancy between the enforced model and the actual system
is reported back to the user and can be treated as a design viola-
tion. This kind of check can be performed using dedicated tools
(e.g., SAVE [4], Structure101') or source code queries (e.g.,
Semmle.QL?). Other tools (e. g., DSM [5], Sotograph3) can be
used to detect, correct and prevent undesired dependencies,
helping therefore preserving the integrity of the initial design.

All the previously listed tools provide valuable support,
but are often disregarded by practitioners. In fact, as several
studies show, the majority of practitioners still heavily relies
on manual reviewing during the conformance checking process
[6], [7]. Based on the evidence collected during a previous
study we observe that tools often fail to fulfill the needs of
practitioners and are hard to adapt to the actual requirements
[7]. Most solutions are specialized for a single domain and are
based on a unique set of technical and conceptual assumptions.
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Architecture erosion can also be minimized by docu-
menting design decisions with the intent of disseminating
knowledge and raising awareness [2]. Architecture descrip-
tion languages (ADLs) are a prominent and well-researched
technique for supporting this approach. ADLs offer a uniform
declarative high-level notation that can be used to describe
an architecture in a formal and semantically consistent way.
The resulting specification can later be used to support various
tasks, such as communication, analysis and code generation.
Unfortunately ADLs have failed to attract a large number of
practitioners and are only used within smaller communities
working on well understood domains [8]. As recognized by
Medvidovic et al. [9], most ADLs lack adequate support for
ensuring conformance between a system and a user-specified
architecture. ADLs also provide poor support for extensibility
and neglect aspects that are of most concern to stakeholders

[9].

In this paper we propose a solution that aims at combining
the practical utility of existing compliance checking tools with
the abstractness and readability of ADLs. In our approach,
architectural rules can be specified through a domain specific
language (DSL) and automatically verified through external
off-the-shelf analysis tools. The DSL can be further extended
as new concerns, and consequently tools, are supported. The
logical steps required to evaluate user-defined rules are en-
coded in purpose built tool adapters. This makes the speci-
fication easier to maintain, accessible to untrained users and
decoupled from a specific analysis platform.

The remainder of this paper is organized as follows. First,
we motivate the need for a unified approach for architecture
conformance checking (section II). From section III to VI
we describe and discuss a novel approach that addresses the
identified limitations. Finally, we conclude (sections VII-VIII).

II. MOTIVATION

Architectural rules and constraints are essential to the for-
mulation of architectural specifications [10]. The compliance
of a system to architectural constraints can be monitored over
time using various techniques (e.g., Reflexion models [3]) [2].

Unfortunately, the tools that implement these techniques
are at best used to provide basic support information during
manual tasks. Studies show that developers still heavily rely on
manual reviews as a means to check architectural conformance.
In fact, static analyzers are used in only 33% of the cases
[6]. The use of manual techniques does not scale and entails
additional costs that could be minimized by automating parts
of the process and using existing solutions and technologies.
These observations are consistent with the results we obtained
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in our previous study in which we showed that, on average,
59% of software architects adopt non-automated techniques
(e.g., code review or manual validation) or avoid validation
completely [7].

To understand the lack of adoption of automated tech-
niques, we investigated ourselves several tools. The first obser-
vation was that many tools provide insufficient documentation
material. We run a small experiment in which we analyzed
how 4 tools compare on the evaluation of several dependency
constraints: JDepend*, Macker®, Dependometer® and Classcy-
cle’. The first tool, JDepend kept failing without reporting the
cause of the error. Only later we realized that the tool required
the user to explicitly list all packages contained in the analyzed
system. This unintuitive requirement was not documented
and required a considerable amount of time to be deduced.
Dependometer also failed in delivering satisfying guidelines to
set up our experiment. In fact, the documentation artifact that
helped us the most in understanding how properly configure
the tool was a loosely commented XML configuration template
published on the project’s website. Macker could not even be
set up. The documentation provided was not sufficient to cover
our use case.

The reluctance of using available tools might be thus par-
tially related to the general problem of insufficient availability
of industry strength solutions and to the steep adoption curve
that every individual tool presents. Where tools exist, users
typically face several other obstacles that hinder adoption. In
the remainder of this section we identify three main obstacles
to the adoption of architectural monitoring tools. To match
these obstacles we propose corresponding requirements that,
if fulfilled, can help mitigate them.

A. Scattered Functionality

Most existing tools are specialized on a narrow domain
and are typically capable of evaluating only a small number
of constraint types. Pruijt et al. [11] compare several tools
for checking architecture compliance and conclude that “not
one of the tested tools is able to support all the [..] rule types
included in our classification”.

In our previous study [7], we show that tools used in
industry are capable of handling at most 3 out of the 22
quality requirements typically specified by practitioners. If
one, for example, had to check whether a given architecture
correctly fulfills a certain set of structural invariants (e.g.,
dependencies, meta-annotations, signatures) and meets prede-
fined performance objectives (e.g., latency, throughput), she
would need to choose at least two different tools. In a real
architectural specification one would need to check many more
constraints.

To reduce fragmentation and increase the operability of
existing tools we suggest to: Consolidate the functionality
offered by existing tools under a single coherent interface
(Req. 1).
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B. Specification Language Heterogeneity

Current tools are based on different specification languages
that differ in both syntax and semantics. In our experiment
(introduced at the beginning of the section) we encountered
three different types of specification formats: XML, Java,
textual DSL.

The fact that tools operate independently, also increases
the incidence of duplicated information across specifications.
To evaluate three dependency rules across all tools, we had to
write four specifications in four different languages. Common
configuration parameters (e.g., source code path, analyzed
package filters, etc.) had to be replicated multiple times.

Language heterogeneity appears to be a problem also when
dealing with the output of the analysis. Results are encoded
in arbitrarily defined formats (e.g., XML, CSV). The activity
of merging the results of various tools into a single report is
a time-consuming and sometimes hard to automate task.

To mitigate the costs that stem from language heterogeneity
we suggest to: Decouple the specification from the various
individual syntaxes (Req. 2).

C. Specification Language Understandability

The language used to specify architectural rules is of
essence. In some cases stakeholders invest effort into hiding
the details of the specification language imposed by the tool
and in others, they jump through hoops to adapt to an inflexible
language.

In our previous study we encountered an architect who
specified the dependencies allowed in his system as a depen-
dency structure matrix inside a spreadsheet [7]. To test these
dependencies, he implemented a custom generator that parsed
the spreadsheet and produced an executable JDepend test suite.
For this user, having a simplified and testable representation
of his architectural rules justified the cost for building a
(functionally unnecessary) custom conversion tool.

In their experiment, Pruijt er al. note that some rules need
to be specified though workarounds (e.g., “X is only allowed
to use Y” was expressed as a combination of “X cannot use
anything” and “X can use Y”)[11]. When that happens, the
viewpoint of the user has to adapt to the conceptual model
imposed by the tool. This forms a threat to maintainability
since, once specified, rules cannot easily be traced back to the
originating concern that they are expressing [11].

Finally, the success of several test-oriented requirement
formalization solutions, such as FitNesse® and Cucumber®
demonstrates the need for managing business and architectural
rules through a readable and accessible interface. These solu-
tions clearly separate the definition of a rule from the mecha-
nisms used to test it. This enables less-technical stakeholders
to contribute to the definition of requirements that are at the
same time readable and testable.

To improve specification understandability we argue that:
Rules should be designed using a specification language
that reflects current practices (Req. 3).
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III. OUR APPROACH IN A NUTSHELL

We propose a novel approach to architecture conformance
checking that addresses the limitations identified in section II.
Or solution aims at utilizing the functionality offered by
existing tools to test architectural rules specified using a
single coherent specification language. This goal is achieved
by integrating tools through custom-developed adaptors and
transforming user-defined rules into easily verifiable boolean
predicates. In our approach, we decouple the specification, as
formulated by the user, from the conceptual and operational
idiosyncrasies characterizing the tools used to evaluate it.

Our approach consists of:

e Dicto: A DSL for the specification of architectural
rules. The language aims at supporting software archi-
tects in formalizing and testing prescriptive assertions
on functional and non-functional aspects of a software
system.

e Probo: A tool coordination framework that verifies
rules written with Dicto using third-party tools. Sup-
ported tools and analyzers are managed through cus-
tom crafted adapters.

With our approach, a software architect could define a new
rule by writing the statement highlighted in Figure 1 (line 5).

Test = Package with name:"com.app. Test" Dicto Rules
View = Package with name:"com.app.View"

Model = Package with name:"com.app.Model"

Controller = Package with name:"com.app.Controller"

Test, View can only depend on Model, Controller

L

Ol |

Probo

[depend-on( com.app.Test, com.app.View ) ]

[depend-on( com.app.Test, com.app.Controller) ]

.

[[depend—on(. ..) ] }

Fig. 1. A quick overview of our approach: (1) rule normalization and
predicate definition (2) predicate evaluation (3) result presentation.

This rule states that a certain number of subject entities
(i.e., Test, View) must fulfill a given constraint (i.e., depend
on) with respect to a certain number of objects (i.e., Model,
Controller). Different modifiers (i.e., must, cannot, only .. can)
can be used to change the semantics of a given rule. In our
example, we require that all subject entities can only depend
on the object entities.

The remaining statements shown in our example (lines 1-
4 in Figure 1), are used to define the mapping between the
symbolic entities used in rules and the corresponding concrete
entities present in the system. Symbolic entities have a type
(e.g., Package, Class, Website) and are described by properties.
A symbolic entity may be mapped to multiple concrete entities
by using regular expressions as property values (e.g., Test =
Package with name:”*.*Test”) or specifying properties which
are common to multiple concrete entities (e.g., Test = Package
with parentPackage:”org.test”).

Rules written in Dictd can automatically be validated
by Probo (Figure 1-1). The proposed tool suite is designed
to evaluate constraints related to structural and behavioral
properties which can be checked automatically at any point
in time (this excludes properties which cannot be directly
measured by inspecting or executing intermediate development
artifacts; e.g., usability, resource consumption). The evaluator
normalizes each rule into a conjunction of smaller and more
manageable sub-rules. Normalized rules are used to generate
predicates, which are evaluated though third-party tools. In our
example, the considered rule can be evaluated by assessing the
truth-value of the following predicates:

depend-on (com.app.Test, com.app.View)
depend-on (com.app.Test, com.app.Controller)
depend-on (com.app.Test, com.app.Test)
depend-on (com.app.Test, com.app.Util)
depend-on (com.app.Test, com.app.Model)

Predicates are evaluated by external tools through custom
implemented adapters (Figure 1-2). Adapters are assigned to
predicates according to a set of pre-defined syntactic matching
criteria specified in the adaptor class. They are responsible of
generating a test specification that, once executed, produces
sufficient information to evaluate the predicates they are as-
signed to.

In our example, we evaluate the obtained predicates using
Moose'?, a software analysis platform that can be used to
explore structural characteristics of an object-oriented system
using user-defined queries. Moose can be executed from the
command line and queries can be specified in a script passed as
argument. To test our rule, we define a set of queries that check
whether each pair of packages indicated in the intercepted
predicates are actually dependent on each other. The results
are fed back to Probd and used to compose an aggregated
report that lists all the rules violated in the analyzed system
(Figure 1-3).

IV. FORMAL DESCRIPTION

We here formalize the syntax and semantics of the Dictod
language and describe how rules get evaluated in Probo.

A. Dicto Syntax

Dicto is designed to resemble the form and structure of
industrial specifications. In a previous study [7], we collected
several documentation artifacts used in real projects. Some
contained developer guidelines while other described higher
level design decisions and constraints. We focused on identify-
ing statements that could be categorized as rules. Hereafter we
report selected sentences (translated and adapted from german)
encountered during the process :

1) MoneyAmount must be annotated with
@org.hibernate.annotations.Columns [..].

2) The execution time of validateCombination() must be
below 10 ms.

3) The (XML) Text Element must contain a Font Element

with the following attributes: size, style, [..].
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4) ApplicationExceptions cannot automatically trigger a
rollback when the exception is thrown by a method
belonging to a BusinessService.

5) Models [..] cannot invoke operations from Business Ser-

vices.
6) Throwable cannot be caught (only its subclasses).
7) [..] Domain.jar [..] can be accessed by WebService and

Admin GUI. Write operations can only be accessed by
Admin GUI

Based on this limited sample, we observe that rules are
essentially predicates related to a variable number of subjects
through the use of modal verbs (e.g., must, can). One of
the documents that we analyzed clearly defines the modal
verbs used in the artifact. The list includes: must, cannot,
should, should not, can. Since Dictd was designed to support
conformance checking, we chose to support must and cannot
(with its variations only can and can only).

All the rules reported above can be converted in Dicto
statements as follows:

MoneyAmount must be annotated with "@[..]Columns"
ValidateCombination must be executed in < 10 ms
TextElement must contain FontElementWithAttributes
AppExThrownByBS cannot invoke Rollback

Models cannot invoke BSMethods

only ThrowableSubclasses can be caught

Domain can only be accessed by AdminGUI

These statements can be evaluated by third-party tools
through purpose built adapters. Each rule contains references to
symbolic entities (capitalized) which are declaratively mapped
to concrete entities existing in the project (e.g., package,
class). The first rule, for example, contains a reference to
MoneyAmount which could be declared as follows:

MoneyAmount = Class with name:"x.MoneyAmount"

A symbolic entity is characterized by a set of properties.
Properties can be seen as a complement to the information
encoded in a rule. If, for example, we consider rule number 3,
we see that the rule not only requires that the (XML) element
Text contains Font, but also specifies that Font must have a
certain number of attributes. Instead of specifying this two
conditions as two separate Dictd rules (which is also possible),
we can choose to write a single rule (as specified in the box
above) and describe the Font entity as follows:

FontElementWithAttributes = XMLElement with
name:"Font-Element", attribute:"size",
attribute:"style",

All the statements presented in this section are syntactically
consistent with the specification in Figure 2.

B. Meta-Model

Dicto specifications are evaluated using Probd. Probo trans-
forms a parsed specification into a model that complies to the

specification = (entity | rule)*

entity = symbol ‘=" type ‘with’ prop ‘2> val (*, prop ‘’ val)*

rule = (rule-subj (‘must’ | ‘cannot’ | ‘can only’) rule-pred)
| Conly’ rule-subj ‘can’ rule-pred)

rule-subj = symbol (‘, symbol)*

rule-pred = predName (val | symbol) (‘, (val | symbol))*

prop = predName = symbol = type = String

val = StringLiteral | Integer

Fig. 2. DSL syntax specification (EBNF)

meta-model illustrated in Figure 3.
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Fig. 3. Semantic domain meta-model. White entities are defined by the user
while grey ones depend on implementation choices taken in Probo.
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In our meta-model, R is the set of user-defined rules, S are
user-defined symbolic entities, C are concrete entities existing
in the analyzed system, II are the properties that describe both
concrete and symbolic entities and P are the predicates into
which a rule is converted. Concrete entities are automatically
deduced from the source code by using a fact extractor.
This tool statically analyzes the project and returns a list of
concrete entities found in the source code. In our prototype
implementation (section V) we use Verveinel'! as a Java fact
extractor. Elements belonging to the previously described sets
are differentiated through categorization elements defined on
the right hand side of the model diagram (illustrated with
grey background in Figure 3). These categories are pre-defined
in Probo (based on the adapters supported or other types of
configuration). The categories are defined as the following sets:
R,,, is the set of rule modes allowed for a rule, E; and II,,
are the sets of entity types and property names supported by
the framework, and P,, is the set of predicate names for which
dedicated adapter support exists. Additionally we define V, a
set containing Primitive values defined by the user (i.e., Strings
and Integers).

The rule modes currently supported in our solution are the
following: must, cannot, can-only, only-can. Entity types and
property names are defined based on the information produced

https://gforge.inria.fr/projects/verveine;j/
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by the fact extractor. Our current fact extractor is able to
detect, for example, packages which are described by various
properties (e.g., name, is empty) and relationships (e.g., parent
package, contained classes). Since we have this information,
we can decide to support entities of type “package” associated
with properties named “name” and “parentPackage”. Predicate
names are defined by the adapters installed in Probd. If an
adapter declares that it is capable of handling rules containing
“depend on”, it means that we can provide support for rules
with predicate name ‘“depend on”. User-defined rules may
include multiple predicates declared in different adapters.

C. Semantic domain

Entities belonging to previously described sets are related
through various associations. Entities and properties support
the associations described in Figure 4.

name : E — String entity name (1)
type : E — E entity type 2)
value : IT -V property value 3)
name : 11 — 11, property name @)
suppNames : E; — 210 supported property names  (5)
props : E — 21 entity properties (6)

m € props(e) <= name(n) € suppNames(type(e))

Fig. 4. Domain functions for entities and properties. With 25 (eq. 5 and 6)
we denote the power set of S (i.e., P (S)).

If our previous example (shown below), we can identify 4
symbolic entities (i.e., Test, View, Model, Controller).

Test = Package with name:"com.app.Test"

View = Package with name:"com.app.View"

Model = Package with name:"com.app.Model"
Controller = Package with name:"com.app.Controller"
Test, View can only depend on Model, Controller

The entity s described in the first line has name(s) =
“Test” and is of type(s) = Package. This entity is associated
to a property 7 which has name(w) = name and val(w) =
“com.app.Test”. Since name € suppNames(Package), we
can say that 7 is a valid attribute of s (7w € props(s)).

Entity properties are used to define a declarative mapping
between symbolic and concrete entities. The mapping logic
used in Probo is described in Figure 5.

stry ~ stra string matching predicate (7)
stry matches regular expression in strg

T R T2 property compatibility predicate  (8)
T R Te <= name(m1) = name(mz) A val(m) ~ val(m2)

¢:S—C entity mapping function 9)
¢ € ¢(s) <= c € “concrete entities in target system”A
(Vmrs € props(s))(Ime € props(c))(mwe = ms)

Fig. 5.

Domain functions for entity mapping.

In our example, the entity s (named “Test”) is mapped to
a concrete entity ¢ (named ‘“com.app.Test”) with compatible
properties (7' € props(c), m € props(s) and ' ~ 7). A
property is compatible with another if the value of the first
matches the regular expression defined as the value of the
second.

mode : R = R,, rule mode (10)
subjs: R — 28 rule subjects a1
objs : R — 25V rule objects 12)
predy, : R — P, predicate name (13)
subs: R — 2F sub-rules (14)

r' € subs(r) <= subjs(r’) C subjs(r) Aobjs(r’) C objs(r)
A mode(r") = mode(r) A pred, (r') = predn,(r)

w:R — 2F
r" € u(r) <= r' € subs(r)A
|subjs(r')| = |objs(r')| =1,
|subjs(r’)| = 1 A objs(r’) = objs(r),
subjs(r') = subjs(r) A lobjs(r’)| = 1,

normalized rules (15)

if mode(r) = M/C
if mode(r) = CO
if mode(r) = OC

Fig. 6. Domain functions for: Rule (R). The following abbreviations have
been used: M/C = must/cannot; CO = can-only; OC = only-can.

Rules are described by a mode, a set of subjects and
optional objects (Figure 6). Our example contains a single
rule 7, with mode(r) = can-only. The rule has two subjects
(subjs(r) = {Test, View}) and two objects (objs(r) = {Model,
Controller}). The predicate name of the rule is pred,(r) =
depend-on. Rule subjects are the symbolic entities for which
the rule needs to be evaluated. Subjects and objects will be
used to form the predicates derived from the rule (Equation
19).

Since rules can vary in complexity (i.e., the number of
subject and object entities is not constrained), they need to
be broken down into smaller more manageable rules (called
normalized rules). User-defined rules are equivalent to the
conjunction of all the normalized rules derived from them. In
our example, the normalized rules obtained from the original
rule are the following:

Test can only depend on Model, Controller
View can only depend on Model, Controller

Normalized rules are obtained in different ways depending
on the mode of the original rule (Equation 15). They share the
common property of being a sub-rule of a common ancestor
rule (Equation 14). This means that all share a subset of the
subjects and objects associated to the rule they are derived
from.

name : P — P, predicate name (16)
t1:P—>E predicate term 1 (17)
ta:P— (EUV) predicate term 2 (18)
preds : R — 2F rule predicates (19)

p € preds(r) <= name(p) = pred,(r)A

ds € subjs(r),o € objs(r):

ti(p) € ¢(s) A (t2(p) € ¢(0) V t2(p) ~ 0), if mode(r)= M/C

t1(p) € ¢(s) A (t2(p) ¢ ¢(0) Vt2(p) ~ o), if mode(r)= CO
) 0), if mode(r)= OC

ta(p) & #(s) A (t2(p) € ¢(0) V t2(p)
predsn : R — P common sub-rule predicates  (20)
p € predsn(r) <= Vr' € subs(r) : p € preds(r’)

b

Fig. 7. Domain functions for: Predicate (P). The following abbreviations
have been used: M/C = must/cannot; CO = can-only; OC = only-can.

Normalized rules are eventually transformed into predicates



(Figure 7). Predicates are generated to further simplify the
evaluation process. In fact, adapters can safely accomplish
their task ignoring the original rule defined by the user. Their
logic simply has to cope with boolean predicates generated
by Probo. These predicates, if evaluated correctly, provide
sufficient information to derive whether the original rule has
been violated or not.

Let’s consider a sub-rule derived from the first of previ-
ously mentioned normalized rule: Test can only depend on
Model. If we assume that our system is made of 5 packages
(View, Test, Model, Controller, Util), we obtain the following
predicates:

depend-on (com.app.Test, com.app.View)
depend-on (com.app.Test, com.app.Controller)
depend-on (com.app.Test, com.app.Test)
depend-on (com.app.Test, com.app.Util)
depend-on (com.app.Test, com.app.Model)

Predicates contain up to two terms and have a name. The
first term is a concrete entity to which one of the subjects of
the normalized rule has been mapped (or not mapped) to. The
second term may be either a concrete entity corresponding (or
not corresponding) to an object of the same rule or a simple
primitive value. The first predicate p in our example has a
name(p) = depend-on and two terms t1(p) = com.app.Test and
to(p) = com.app.View. It was obtained by taking the subject
(Test) and object (Model) of the given rule and deriving all per-
mutations existing between the concrete entities corresponding
to the first and the concrete entities not corresponding to the
second. This process varies according to the rule mode.

The predicates in our example are defined to prove the
existence of relationships between two given entities. The first
predicate is true if com.app.Test depends on com.app.View, and
false otherwise. If the second term is not an entity, it means that
the evaluation implies the verification of a property (e.g., have-
latency(MyWebsite, 10ms), contain-code-clones(MyPackage)).

Equation 20 is an auxiliary function that is used during
the evaluation of can-only and only-can rules (See equation
22). This function returns the intersection of predicates de-
rived from the sub-rules of a given (normalized) rule. In our
case, predsn(r), where r = Test can only depend on Model,
Controller, equals to:

depend-on (com.app.Test, com.app.View)
depend-on (com.app.Test, com.app.Test)

depend-on (com.app.Test, com.app.Util)

Two predicates (depend-on([..].Test, [..].Controller) and
depend-on([..].Test, [..].Model)) are not included in the set,
since they can only be generated from one of the sub-rules
derived from r.

D. Semantic Interpretation

After describing the semantic domain of our model, we de-
scribe how user-defined statements (conforming to the schema
in Figure 2) are transformed into domain objects and how rules
get eventually evaluated. The semantic equations in Figure 8§,

are a complete abstract specification of the interpretation
algorithm implemented in Probo.

stmt: RxS - RxS
subj: S

spec: 2T 13
prop: 11 obj: SUV
(a) specification[[S] = { eval(r), r € rules }
where: (rules, entities) = stmt[S](0, 0)
(b) stmt[S1; S,](r, e) = stmt[S,](stmt[S1](r, e))
(c) stmt[NAME : TYPE with PROPS](r, e) = (1, ¢’)
where ¢’ = e U s, s € S, props(s) = prop[PROPS],
name(s) = NAME, 7(s) = TYPE
(d) stmtfonly S can P O](r, e) = stmt[S only-can P O](r, e)
(e) stmt[S can only P O](r, e) = stmt[S can-only P O](r, e)
() stmt[S T P O](r, ) = (1", e)
where 1" = r U rule, rule € R, subj(rule) = subj[S](e),
bj(rule) = obj[O](e), kind(rule) = T, predType(rule) = P
(2) prop[P1, Pn] = prop[P1] U prop[F]
(h) prop[NAME = “VALUE”] =
where 7 € 11, 7(m)=NAME, value(7)=VALUE
(i) subj[S1, Sn](e) = subj[S1](e) U subj[Sx](e)
(j) subj[S](e) = s where: s € e, name(s) = S
(k) obj[O1, On](e) = 0bj[O1](e) U obj[On](e)
(1) obj[“O”](e) = o where: 0 €V, 0 ~ O
(m) obj[O](e) = o where: o € e, name(o) = O

o

Fig. 8. Semantic transformations.

The spec equation takes a full user specification as input
and returns the evaluation results computed for every inter-
preted rule. Rules are defined in the stmt equation. subj and obj
are used to evaluate entities and values declared in a rule and
link them to entities defined beforehand by the user. We assume
that all statements used to define symbolic entities precede rule
declarations. Entities are similarly interpreted using the stmt
and prop equation.

The user-defined rule in our example (Test, View can
only depend on Model, Controller) would define a rule object
associated to two subject entities, two object entities and
having a specific rule mode. A new rule model entity would be
defined in function f (invoked by a through e¢), which invokes
i and j to define its subjects and k and [ to define its objects.

Once we obtain a full semantic model out of the initial
user specification, we can evaluate all the rules by using the
two functions defined in Figure 9.

AP {T,1} predicate evaluation 20
evaluate predicate through best matching adapter
based on user-provided project configuration

eval : R — {T, L1} rule evaluation (22)
eval(r) = T <= Pn € p(r) :
p € preds(n) AX(p) =L, if mode(r) =M
p € preds(n) ANX(p) =T,  if mode(r) = C
p € predsn(n) AX(p) =T, if mode(r) = CO/OC

Fig. 9. Rule and predicate evaluation functions. The following abbreviations
have been used: M/C = must/cannot; CO = can-only; OC = only-can.

The eval function iterates over all the rules obtained
through the previously described interpretation process and
evaluates them. The evaluation produces a positive outcome
if none of the normalized rules derived from the given rule



satisfies the condition prescribed for its rule mode. The con-
dition is tested through a A function, which will be executed
using the best matching adapter capable of handling the given
predicate.

In our example, none of the predicates in predsn(n)
(where n is a normalized rule derived from the evaluated rule)
are allowed to evaluate to true. We assume that the results for
the predicates derived from our normalized rule 7Test can only
depend on Model, Controller are evaluated as follows:

depend-on (com.app.Test, com.app.View) = false
depend-on (com.app.Test, com.app.Controller) = true
depend-on (com.app.Test, com.app.Test) = false
depend-on (com.app.Test, com.app.Util) = true
depend-on (com.app.Test, com.app.Model) = true

Predicates presented in bold are common to all the sub-
rules of the considered rule. Since the fourth rule belongs to
all the sub-rules and evaluates to true, we can derive that the
evaluated basic rule fails. The original user-defined rule (7est,
View can only depend on Model, Controller) is the conjunction
of its normalized sub-rules. Since one of them (here discussed)
fails, Probd can conclude that the original rule is not correctly
enforced in the target system.

V. PROTOTYPE IMPLEMENTATION

The approach, as described in section III and section IV,
has been implemented in a proof-of-concept prototype (avail-
able on our website'?). The prototype is implemented in Pharo
Smalltalk'?, a modern Smalltalk dialect, and currently supports
7 types of conformance rules (Table I).

Rule Evaluation tool
Package [must, cannot, ..] depend on Package, .., Package, Moose!*
Package [must, cannot, ..] contain code clones PMD"

Website [must, cannot, ..] handle load from int users” IMeter'®
Website [must, cannot, ..] have latency < ”int ms” JMeter

Website [must, cannot, ..] have uptime of “double%” Ping]7

Class [must, cannot, ..] lead to deadlock JPF'®

File [must, cannot, ..] contain text “string” grepw

TABLE 1. RULE TYPES SUPPORTED IN DICTO. EACH RULE IS CHECKED
THROUGH THE TOOL LISTED ON THE RIGHT HAND SIDE OF THE TABLE.

While building this prototype we chose to implement
adapters for tools commonly used by practitioners and be-
longing to different analysis domains. In its current imple-
mentation, the prototype supports rules related to maintain-
ability (dependencies, code clones), performance (response
time, throughput), compatibility (data structure) and reliability
(deadlock-freeness, availability).

To define a new adapter, we followed these steps:

e  Task definition: gather requirements for the adapter
based on the properties that need to be tested.

2http://scg.unibe.ch/dicto/

Bhttp://pharo.org
4http://www.moosetechnology.org
5http://pmd.sourceforge.net
16http://jmeter.apache.org
"Thttp://www.unix.com/man-page/All/0/ping/
18http://babelfish.arc.nasa.gov/trac/jpf
19http://www.unix.com/man-page/All/0/grep/

e Tool selection: search for the best tool that fits the
identified needs.

e Tool analysis: learn how to specify a valid test input
in order to satisfy the identified needs.

e  Adapter implementation: implement an adapter that
is capable of checking basic invariants derived from
user-defined rules by interacting with the selected tool.

The effort required to implement an adapter for a well-
understood tool is relatively modest. The average size of an
adapter class is 64 lines of code. The size mostly varies
depending on the verbosity of the input schema prescribed
by the adapted tool.

Adapters are programmed to decide the truth value of a set
of predicates that they agreed on handling. To better understand
how this happens, let’s consider the following predicate:

have-latency-less—-than (http://www.xyz.com, "100 ms")

This predicate, in our current implementation of Probd,
will be assigned to an adapter that relies on JMeter'®. The
adapter generates an XML file (88 lines of code) containing
the specification of a JMeter test plan. The adaptor also defines
a set of pre-specified commands that allow the execution
of the generated test-case. The output resulting from the
execution will be analyzed by the adapter though a specific
function that decides whether a given predicate is actually
verified or not. In this adapter, test results are traced back to
the corresponding predicates using alphanumerical identifiers
defined in our model.

Other adapters are implemented using similar approaches.
Some (e.g., the ones relying on JPF'® and PMD'") don’t
require the generation of an input specification since all
configuration options are defined as command line parameters.
Others (e.g., the ones relying on UNIX command line utilities:
ping'” and grep'®) generate a UNIX shell script which is then
invoked by during execution.

VI. DISCUSSION

Dicto limits the cost of conformance checking by fulfilling
the requirements presented in section II. We here discuss how
our solution addresses the proposed requirements.

A. Scattered Functionality

We propose an integrated solution that employs the func-
tionality of a variable number of tools to test a wide range
of rules. The heterogeneity of the supported tools is hidden
behind a single uniform coordination framework called Probo.
Support for new tools is defined through adapters. Adapters
are not built to directly expose the features offered by a given
tool to the end user. They are rather designed to exploit the
functionality offered by a tool to obtain information that can
be used to evaluate rule-derived predicates.

This approach allows us to decouple Dictd, the high level
language used for rule specification, from the semantic and
operational model associated to a specific tool. Adding an
additional level of indirection between users and tools also
implies that less control can be exercised on the configuration
of the evaluation tool. Adapter developers can choose which
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kind of parameters should be exposed to designers (e.g., in
a load test performed with JMeter, the number of concurrent
connections) and which, for the sake of simplicity and tool-
independence, should be pre-defined by the adapter (e.g., in
the same test, “Use KeepAlive header” option defined in the
generated test case). Adapter developers are also encouraged to
build parametrized adapters, in which secondary configuration
values that influence the outcome of the analysis can be
adjusted based on the designer’s needs.

Hiding the specifics of the tools used for evaluation has the
advantage of saving designers from discovering, learning and
comparing tools. On the other side, these tasks still need to be
performed to build adaptors. In our approach we hope to reduce
the cost of these activities by curating an open repository
of contributed tool adapters. By adopting this strategy we
hope to grow a collection of reusable components that can be
directly installed to support new functionalities. Users adopting
a contributed adapter are not required to learn about the
operational details related to the analysis tool used.

We plan to evaluate the possibility of sharing reusable
adapters by running a case study in which we examine the
actual overlap between user requirements. This study will be
conducted by supporting various practitioners from different
organizations on defining a comprehensive set of rules for
an active project in which they are involved. Participants will
partially be selected among the people involved in our previous
empirical study [7]. As we proceed, we will gradually be able
to assess whether the number of adapters needed to satisfy the
user’s requirements grows or stabilizes over time.

B. Specification Language Heterogeneity

Dicto was designed to offer a single coherent specifica-
tion language for expressing architectural rules to software
architects. This language is independent from the specification
mechanisms supported by existing tools. Tool-specific input
is generated by adapters on the basis of a simplified model
(consisting mainly of predicates) derived from a more complex
originally defined set of rules. Tool-specific notations are indi-
rectly supported through a well coordinated generative process
partially managed by adapters. Rule designers are not required
to have any knowledge regarding the tools that are employed
to check their statements. This allows them to focus on the task
at hand without being distracted by arbitrary implementation
choices taken by tool providers. Similarly, adapter developers
do not need to cope with the full complexity of user-defined
specifications. In fact, each rule defined though the DSL is
broken down into more manageable predicates, which can be
checked by evaluating the existence of simple relationships or
properties in the code base of the target system.

This level of indirection allows the user to avoid dealing
with more technical notations (e.g., XML, Java) while using a
friendlier high-level language. This allows for a wider range
of stakeholders to take part to the design process. In fact,
very little technical skill is required to read and write rules
in Dicto. This may partially limit the control of the designer
over the final specification. It is the responsibility of the adapter
developer to expose the right amount of configurability to the
end-user.

Dict6 also provides support for model-to-code traceability.
Traceability is achieved though declarative mapping direc-

tives defined together with symbolic entities. This lightweight
mechanism has the advantage of being mostly unintrusive
and comprehensible to untrained users. Concrete entities are
automatically resolved by Probd, thus not requiring adapters
and tools to provide support for any kind of resolution strategy.

A generative approach also allows us to minimize the
amount of redundant information that needs to be maintained.
Tool specifications are mainly built based on the information
contained in a single uniform model that encodes the archi-
tectural rules defined by the user. Additional configuration
attributes (e.g., project source folder, source code language) are
specified per project and are also shared among all adapters.

C. Specification Language Understandability

Dicto is a DSL designed to reflect how architectural rules
are actually specified in practice. The language, as discussed in
subsection IV-A, resembles basic specification patterns com-
monly encountered in industrial documentation artifacts. Dicto
is sufficiently expressive to enable multifaceted modeling. The
syntax of the language can be extended by installing new
adapters or defining new concepts in Probo. This guarantees
support for a wide range of highly diversified rules belonging
to different domains and viewpoints.

Martin Fowler suggests that non-technical stakeholders
(“business people”) should become more involved in the
design decision process of a software system?’. He suggests
that software rules should at least be read and understood
when presented to a non-technical audience. Pruijt er al. [11]
conclude on a similar note, recommending to “Minimize the
difference between logical rules, as perceived by the architect,
and technical implementation in the tool”. The DSL presented
in this paper may be used as an effective step towards achieving
this objective. The syntax of our DSL is largely consistent
with other solutions [12], [5] and formalisms presented in
academic literature [11]. In the future we plan to evaluate
the actual usability of our language by involving different
users in an experiment and asking them to write, understand
and adapt a pre-defined set of rules. By involving people
with different backgrounds and measuring the success rate for
solving these tasks, we aim at finding out how well the DSL
matches practitioners needs from a usability and knowledge
management standpoint.

We are also currently involved in a project that aims at
integrating Dicto into the development process of a major
open-source web-based learning management system (Ilias>').
Our partners are interested in monitoring the architectural
integrity of their system and supporting developers in the
process of identifying relevant candidates for reengineering
[13]. Throughout the project, we will have the chance to verify
to which extent rules can be defined and understood by the
numerous stakeholders involved in the project.

VII. RELATED WORK

Our approach is designed to evaluate declaratively defined
rules by using third party analysis tools. We here review
existing architecture conformance tools and ADLs.

20http://www.martinfowler.com/bliki/BusinessReadableDSL.html
2l http://www.ilias.de
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A. Architecture conformance tools

Architecture conformance tools have been analyzed and
compared in various studies. De Silva et al. [2] proposes a
taxonomy for categorizing existing techniques and approaches.
Prujit et al. [11] and Passos et al. [14] compare multiple
tools by evaluating their capabilities through an experiment.
In both studies the authors conclude that existing tools offer
complementary features and none of them can be considered
as a perfect replacement for all the others. In a previous study
[7] we run a survey to discover which tools practitioners use
to test architectural constraints.
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- relationships v v v v v v v
- elements v v v v v
- code smells v
detected RM relations
- convergence v v v v v v v v v
- absences v v v oo v v v o v
- divergencies v v - v - - - v v v
DSL extensibility
- new predicates v v - - - -

programming language [J: Java; S: Smalltalk; P: Prolog; D: Datalog; C: C++]
- analyzed system J 1y J ysi1 ycilJg 11 .net J
- tool implem. J P J S D 1 I J J .net J
TABLE II. COMPARISON AMONG CONFORMANCE CHECKING TOOLS
BASED ON A TEXTUAL DSL.

Table II shows an overview of the most prominent confor-
mance testing tools that accept a textual specification as input.
Many solutions (e.g., DCL, inCode.Rules) verify constraints
on relationships between classes and modules (e.g., access,
declaration, extension). Some languages (e.g., SOUL, LogEn,
SCL) focus more on structural properties of classes and
methods (e.g., identifiers, keywords, constructs). inCode.Rules
[16] also detects code smells (e.g., God class, Data class).

The large majority of these solutions, with the exception
of DCL[12] and TamDera[15], are only able to detect one of
the following violations: absences or divergencies[22]. Only
two of the reviewed solutions offer support for language-
level extension (i.e., SOUL [17] and LogEn [18]). Both are
logic programming languages in which new predicates can
be defined by composing existing predicates. The general
lack of support for extensibility limits the expressiveness of
the solution. Almost all techniques, with the exception of
ArchFace [20] and ArchlJava [21], assume that architectural
constraints are specified in a separated text file. ArchFace and
ArchJava require the user to define constraints directly in the
source code by using special constructs that are checked at
compile time.

B. Architecture description languages

ADLs allow us to describe the architecture of a system in
a formal, declarative and human-readable way. Existing ADLs

22pttp://classycle.sourceforge.net
Zhttp://www.ndepend.com
Zhttps://semmle.com

cover a wide range of use cases and fulfill various practical
needs (i.e., analysis, customization, efc.). Despite this fact,
most ADLs are completely ignored by practitioners [23], [8].

Some languages allow the user to implicitly define con-
straints by supporting the specification of meta-annotations
on first-class model entities. AADL [24] has a pre-defined
catalogue of properties for its different component types.
xADL 3.0 [25] allows the user to define new entity attributes
by customizing the XML schema. ACME [26] supports the
specification of arbitrary named attributes for both compo-
nents and connectors. Unicon [27] can handle a pre-defined
set of attributes introduced to constrain the structure and
relationships of components. MetaH [28] allows the user to
define timing-related constraints through component attributes.
Rapide [29] is one of the few ADLs that provides a rich
vocabulary of well documented constraints over observable
events. Each constraint is defined as a set of boolean conditions
that is expected to hold or not hold when a specific event
occurs. SADL [30] allows defining run-time invariants on the
state of a component. Wright [31] supports the definition
of architectural styles which may include constraints over
the defined configuration. UML [32] models can be enriched
through OCL [33], a textual declarative language used for
defining rules regarding elements and relationships of a model.

According to various studies, ADLs fall short in fulfilling
the following requirements:

Extensibility: “Most ADLs are quite restrictive and im-
pose a particular architectural model on the architect, which
often isn’t appropriate” [34]. In a study by Malavolta et al.
“about 68% of respondents extended the ALs [(architectural
languages)] they used by adding new views (about 48%) or
constraints (13%) or both” [8].

Usability: ADLs “need to be simple and intuitive enough
to communicate the right message to the stakeholders involved
in the architecting phase, but shall also enable formality so to
drive analysis and other automatic tasks” [8]. “Heavyweight
and complex ALs often deter practitioners. A good combi-
nation of features fulfilling practitioners’ needs is crucial for
adoption, and closing the gap between industry and academia”

[8].

Multifaceted modeling: In a large study ‘“about 85% of
respondents declare to use multiple views for architectural
description” [8]. The type of views mentioned are: “struc-
tural (76%), behavioral (48%), physical (45%) and concep-
tual (41%)” [8]. Unfortunately, “many ADLs do not support
multiple viewpoints” [35].

In our approach we propose Dictd, a DSL that dynamically
adapts to the features offered by the adapted evaluators.
Usability concerns are addressed by offering a compact and
intuitive language that reflects current practice. The possibility
of modeling different heterogeneous aspects of a system is
guaranteed by the generality of the language. In fact, Probo
can be extended to reflect concerns related to various domains.

VIIL

We presented a novel approach that aims at optimizing
the cost of architectural conformance checking. Software ar-
chitects have the possibility to declaratively define and au-
tomatically check architectural rules without directly dealing

CONCLUSION
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with the idiosyncrasies of currently available tools. With
our approach we reduce the effort required to describe and
maintain rules, involve a larger number of stakeholders in the
design process and effectively test system conformance reusing
the functionality offered by state-of-the-art tools.
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