On the Evaluation of a DSL for
Architectural Consistency Checking

Andrea Caracciolo
SCG, University of Bern, 3012 Bern, Switzerland
http://scg.unibe.ch

Abstract

Software architecture erodes over time and needs to be constantly mon-
itored to be kept consistent with its original intended design. Consis-
tency is rarely monitored using automated techniques. The cost asso-
ciated to such an activity is typically not considered proportional to its
benefits.

To improve this situation, we propose Dictd, a uniform DSL for speci-
fying architectural invariants. This language is designed to reduce the
cost of consistency checking by offering a framework in which existing
validation tools can be matched to newly-defined language constructs.

In this paper we discuss how such a DSL can be qualitatively and
qualitatively evaluated in practice.

1 Architecture erosion

Software architecture is the result of a design effort aimed at ensuring a certain set of quality attributes. The
decisions deriving from such an effort are typically constraints on various aspects of an implementation. These
may include invariants overs structural (e.g., naming conventions, dependencies) or behavioral (e.g., communica-
tion) aspects of the system. Even though explicitly specified, these constraints are rarely checked automatically.
In a previous study [Caral4], we show that only 40% of software architects formally specify and automatically
test such constraints. This situation can be explained by analyzing the limitations associated with the tools
currently available on the market. In fact, tools suffer from the following drawbacks:

e Scattered Functionality: Most tools are specialized in a narrow domain and are typically capable of evalu-
ating only limited types of constraints.

e Specification Language Heterogeneity: Current tools are based on different specification languages that differ
in both syntax and semantics.

e Specification Language Understandability: Tools often force the user to express constraints in a typically
overly technical and verbose form.

To improve this situation we built Dicto, a DSL (Domain Specific Language) for the specification of architec-
tural constraints.

Copyright (© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org



2 Dicto

Dicto is a language that aims at supporting software architects in formalizing and testing prescriptive assertions
on functional and non-functional aspects of a software system [Caral5]. Instead of dealing with multiple tool-
specific formalisms, one can define several types of architectural constraints using one uniform, highly-readable,
formal language (as shown in the example below).

Test = Package with name:"com.app.Test"
View = Package with name:"com.app.View"
Model = Package with name:"com.app.Model"

Controller = Package with name:"com.app.Controller"

Test, View can only depend on Model, Controller
Model cannot contain cycles

only Test can contain dead methods

The language is based on a plugin framework in which new language constructs can be defined along with
the logic required to validate the concepts they are expressing. Developers can create a new rule template (e.g.,
Method must be executed in < Integer ms) by implementing a set of pre-defined data transformers for a given
target tool. These transformers must be capable of (1) generating an input specification that is consistent with
the user specified invariants; (2) interpreting the results produced by the tool. The advantages of this language
are the following;:

e Separation of concerns: conceptual design (specification of constraints) and technical effort (rule evaluation)
are managed separately.

e Support for communication: a specification encoding valuable architectural knowledge should be accessible
and readable by multiple parties, including stakeholders that do not have the skills necessary to operate the
tool used to verify the expressed constraints.

e Reduce overall specification and validation effort: the time and effort involved in the process of writing
and testing rules should be minimized as much as possible. To achieve this goal, we built a solution that
offers reusable validation functionality, a uniform language syntax and a simple extension mechanism for
the integration of new tools.

3 Evaluation

In this paper we discuss how Dicto, a DSL designed for encoding architectural constraints, can be exhaustively
evaluated in an industrial context. Based on preliminary considerations, we would like to analyze the following
properties by answering the following questions:

Impact on the product : Does the solution improve code quality in any measurable way?
Impact on developers : Does the solution increase architectural awareness?

Impact on process : How is the solution integrated into the process? Are there any conflicts with pre-existing
practices?

Specification Expressivity : Does Dicto fit the specification needs of practitioners?
Specification Usability : Are constraints easy to read and write? Are the results actionable?
Ease of adoption : Is the effort required to support new requirements sustainable and cost-effective?

To answer these questions, we are currently running 3 different case studies with 3 different industrial partners.
Our approach is to analyze their needs, encode their constraints using our DSL and analyze the effect Dicto has
on the project. We plan to analyze the initial stages of the integration process, taking note on unsatisfiable
expectations and similarities with pre-existent solutions. We will ask the study subjects to customize the rules



and adapt them to emerging requirements. We also plan to involve stakeholders with different background (e.g.,
developers, analysts, technical managers) and ask them to explain their understanding of the formalized rules.
The general impact of the solution will also be measured by observing if reported violations are actually taken
into consideration and fixed, and if this has some other beneficial effect on other quality indicators (e.g., coupling,
test coverage, bug resolution time). Each constraint expressed in Dicto will be also compared with pre-existing
coding guidelines, and implicitly known rules. We also aim at reporting on the potential reuse of developed tool
adaptors (is a standard set of analyzers sufficient to express and test quality concerns across organizations?). By
collaborating with multiple industrial partners, we hope to see how our solution is accepted in different contexts.

4 Conclusion

In this paper we discuss several best practices for the evaluation of a quality assessment tool in an industrial
context. Our goal is to outline a concrete strategy for identifying the practical limitations of a prototypical
solution. This is done by measuring the impact and applicability of a tool together with practitioners. The
results of such an effort should help reaching a deeper understanding of the domain and generate new ideas for
research.

5 Acknowledgements
We gratefully acknowledge the financial support of the Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project Np. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).

References

[Carald] A. Caracciolo, M. F. Lungu, and O. Nierstrasz, “How do software architects specify and validate quality
requirements?” in European Conference on Software Architecture (ECSA), vol. 8627 of Lecture Notes
in Computer Science, pp. 374-389, Springer Berlin Heidelberg, Aug. 2014.

[Caralb] A. Caracciolo, M. F. Lungu, and O. Nierstrasz, “A unified approach to architecture conformance check-
ing” in Proceedings of the 12th Working IEEE/IFIP Conference on Software Architecture (WICSA),
ACM Press, 2015.



