
Automated Conformance Monitoring:
Exploring the Path to Industrial Adoption

Andrea Caracciolo
SCG, University of Bern
3012 Bern, Switzerland

caracciolo@inf.unibe.ch

Mircea Lungu
University of Groningen
9747 Groningen, The

Netherlands
m.f.lungu@rug.nl

Oskar Truffer
Studer + Raimann AG

3097 Liebefeld, Switzerland
ot@studer-raimann.ch

Kirill Levitin
bbv Software Services AG
8050 Zürich, Switzerland

Oscar Nierstrasz
SCG, University of Bern
3012 Bern, Switzerland
oscar@inf.unibe.ch

ABSTRACT
Architectural decisions can be interpreted as structural and
behavioral constraints that must be enforced in order to
guarantee overarching qualities in a system. Enforcing those
constraints in a fully automated way is often challenging and
not well supported by current tools. Practitioners are reluc-
tant to invest in new solutions because of the difficulty of
estimating the cost-effectiveness of a new tool, scarce re-
sources allocated to quality related activities and a general
lack of expertise in the domain. In this paper we investigate
the dynamics involved in choosing and adopting a new au-
tomated conformance checking solution within an industrial
context. We analyze a series of interviews identifying the
most relevant criteria that affect user’s decisions. We also
report on multiple case studies, describing how those crite-
ria were used to steer the actual evaluation, integration and
operation of a prototypical solution. Our study shows the
advantages of using a flexible and semi-formal language for
describing relevant design concerns. We observe that assum-
ing any pro-active behavior from end-users is often unreal-
istic and that developers need to be actively informed and
motivated. We show that integration with established qual-
ity reporting infrastructure is a key strategy for minimizing
the impact of a new tool on processes and roles.

Categories and Subject Descriptors
D.2.9 [Management]: Software quality assurance (SQA)

General Terms
Experimentation, Human Factors

Keywords
Conformance checking, process description, architectural rules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
As a system evolves, its architecture tends to drift away

from its intended design, leading to a phenomenon called ar-
chitecture erosion [1]. Architectural erosion leads to a grad-
ual decrease in quality and to the accumulation of technical
debt. To limit the impact of this phenomenon, practition-
ers resort to commercial analysis tools that provide various
insights into the quality state of an application. Some of
these tools are easy to set up but provide limited configura-
bility. Other are highly customizable but hard to maintain
or integrate with existing platforms and dashboards.

In this paper we aim to empirically understand the dy-
namics involved in choosing and adopting an automated
conformance monitoring solution. We investigate the cri-
teria that need to be taken into account when designing,
adapting and/or deploying an automated quality monitor-
ing solution within a company. We analyze a set of 14 inter-
views conducted with practitioners involved in architectural
duties working in four distinct Swiss companies to derive a
list of criteria that influence the decision of whether to adopt
a conformance monitoring solution.

These criteria describe the different priorities that profes-
sionals take into account when evaluating the possibility of
transitioning to a new quality assessment tool for confor-
mance checking. Understanding which forces are involved
and how to maximize one factor over another can make a
difference between setting up a solution that everybody ig-
nores and one that actually contributes to improving the
quality of a system. To further understand how these cri-
teria are valued in an industrial context, we planned 3 case
studies. We developed our own prototype and tried to lead
various professionals to adopt it within one of their project.

Thanks to the acquired experience we identified five phases
that might be encountered on the path towards successful
adoption of a conformance checking solution. Each phase
is related to multiple judgement criteria that, based on our
experience, are worth to be taken into account in order to
maximize the chances of higher acceptance and impact of
the conformance monitoring solution. Different criteria may
be considered to be more or less important depending on
various socio-technical aspects that characterize the target
organization.

The paper is structured as follows: We motivate and de-
scribe our study (section 2-3); identify relevant decision fac-

tors (4); analyze how these influence the adoption of an au-
tomated conformance monitoring solution (5).

2. BACKGROUND
During an on-the field study [2], we observed that soft-

ware architects are clearly aware of having little control over
the implementation of their architecture. They typically ex-
press design decisions in terms of guidelines or specification
constraints. Those are supposed to be read and periodically
checked by developers but this hardly happens. As a project
grows, quality checks become less frequent and more arbi-
trary. Knowing whether a certain architectural invariant is
actually correctly reflected in the implementation often be-
comes a matter of trust.

To overcome this issue and properly assess the confor-
mance of a software system with respect to a set of for-
merly defined architectural constraints, practitioners typ-
ically resort to specialized commercial tools (e.g., Sonar-
Qube1, SonarGraph2). Unfortunately the setup and mainte-
nance costs related to such tools often outweigh the benefits
that can be derived from their results. In fact, most of these
tools suffer from three main limitations:

Poor maintainability: Tools are typically hard to set
up and configure. Practitioners are often afraid of adopting
new solutions because of the effort typically required for cus-
tomization and integration. This effort is hard to estimate
and to justify to higher management.

Narrow scope: The tools currently available on the mar-
ket are very specialized and typically offer support for check-
ing at most a couple of rule types. This means that practi-
tioners are likely to need multiple tools, based on heteroge-
neous conceptual models and low chances of integration.

Low usability: Introducing a new solution typically in-
volves training dedicated personnel, and producing explana-
tory documentation. The specification of rules is typically a
non-collaborative process and which requires specific tech-
nical knowledge.

In our study, 4 out of 14 participants said they used tools
in the past and later on decided to switch to manual inspec-
tions due to the excessive costs involved in the process. 6
participants did not even attempt to set up an off-the-shelf
automatic solution. The reasons behind these choices could
often be related to missing support from key stakeholders,
lack of availability of an adequate tool and limitations in
formalizing and testing the desired invariant. Participants
reported that the value of conformance checking is often un-
derestimated by decision makers. The “cost of misalignment
is not perceived”(A) and the“return of investment [of a con-
formance checking solution] is not clearly seen” (A). “Devel-
opers do not care about non-functional requirements” (E).
“Automatic validation [of architectural constraints] would be
useful and will eventually probably be implemented, but is
not feasible at the moment” (J) since “it’s not a high priority
and nobody would exactly know how to do it” (I). In other
cases practitioners recognize that “there are things which

1http://www.sonarqube.org
2https://www.hello2morrow.com/products/

sonargraph

can’t be verified and decided automatically”(B). Sometimes,
“verification is not heavily used because most of the concerns
cannot be formalized” (E). In those cases “it’s better to del-
egate to humans (e.g., pair-programming, checklists)” (E).
This might be due to mismatches between a specific archi-
tecture and an existing tool (e.g., F could not use JDepend
because the tool did not allow to identify components over
package naming). Sometimes professionals recognize that
“all their rules could be checked with static analysis” (J)
and that “if a tool existed it would be very useful” (I). Un-
fortunately “the tools available today are not enough” (I)
and nobody feels qualified to contribute a new one on his
own.

After collecting a considerable number of opinions, we
reached the conclusion that an automated conformance check-
ing solution was typically desirable but considered to be too
expensive to set in place. To solve this problem we started
developing a solution that could at the same time address
most of the identified requirements and minimize the draw-
backs encountered by the interviewed practitioners. The
prototype that we eventually developed reflected our under-
standing of this multitude of viewpoints and experiences.
We developed an informal and intuitive model for describing
the needs and expectations of our ideal user matured further
as we started using the prototype in multiple case studies.
During almost two years of collaboration, we started dis-
covering new concerns, similar adoption patterns and unex-
pected requirements across different organizations. This led
us to explicitly analyze and characterize all different factors
that influence the way an automated conformance checking
solution is evaluated by professional users. In the remainder
of the paper, we try to reconstruct and analyze the pro-
cess that needs to be followed in order to establish a quality
assessment solution within an industrial organization.

3. STUDY DESIGN
In this paper we report on a blocked subject-project study

[3]. Our goal is to observe different case studies and gener-
alize the adoption process through common characteristics.
To carry out our case studies we developed a prototypical
solution which was refined in response to emerging require-
ments and feedback. The aim of this study is not to prove
intrinsic properties of the tool, but rather classify the events
that happen around its introduction process.

Role Organization Project Team

A CEO, architect govt. (1) enterprise 5
B business manager govt. (2) enterprise 10-50
C project manager insurance (3) enterprise 50+
D architect logistic (4) enterprise 5
E developer logistic (4) enterprise 5
F CTO banking (5) enterprise 50+
G architect govt. (2) enterprise 5-10
H architect govt. (2) enterprise 10-50
I architect logistic (6) enterprise 50+
J developer govt. (2) dev. tool 5
K architect banking (5) enterprise 5-10
L architect trans. (6) control sys. 5-10
M developer banking (5) code analysis 5-10
N architect banking (5) dev. tool 5-10

Table 1: Interview participants. All have direct professional
experience with architectural design.

Before planning our case studies, we interviewed 14 profes-

http://www.sonarqube.org
https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph

sionals working on tasks related to software architecture (See
Table 1). We recorded approximately 18 hours of conver-
sation and collected several project documents (e.g., archi-
tecture specification, developer guidelines). The qualitative
data collected in this preliminary phase were analyzed using
coding techniques [4]. Our goal at this stage was to identify
important factors that may have a role in deciding on the
selection, adoption and maintenance of a quality assurance
tool for monitoring architectural conformance. As a result,
we identified most of the criteria described in section 4.

In a subsequent phase, we developed a prototypical tool
for monitoring architectural conformance. We designed a
generic DSL, called Dictō, capable of expressing the archi-
tectural conformance criteria previously identified, and used
it as a unifying front-end to a range of conformance checking
tools [5].

Finally, we carried out five industrial case studies (see Ta-
ble 2) with the intension of introducing our tool in the con-
text of a live development project. In the first case study
(i.e., C1) we dealt with a consortium of vendors of an open-
source PHP application called Ilias3, an e-learning platform
used internationally by millions of users. In C2 and C3 we
approached two teams working for a company with one of
the largest IT divisions in Switzerland. The team in C2
counts more than 30 developers working full-time on a 10+
year migration project (from Cobol to J2EE) of a B2B ap-
plication used for managing orders and coordinate traffic.
C3 was a smaller team responsible for the development of a
J2EE basic framework employed in almost all the hundreds
of projects running in the company. In C4 we approached
a medium-sized consulting company with public sector con-
tracts. In C5 we tried to establish a collaboration with a
branch of one of the largest Swiss insurance companies.

#
Organization
domain (employees)

Project
tech. - size (team)

Phase
Reached

C1 E-learning (12 vendors) PHP - 1 M (25) 5
C2 Transportation (1.000+) J2EE - 0.5 M (30+) 4
C3 Transportation (1.000+) J2EE - 50 K (5) 1
C4 E-government (1.000+) J2EE - 50 K (5) 1
C5 Insurance (1.000+) J2EE - n/a (n/a) 1

Table 2: List of project teams participating to our case stud-
ies.

The study was conducted over the span of almost one
year. All the companies were using some sort of commercial
quality assurance tool. In C1, the collaboration was carried
out through a special interest group (SIG) responsible for
the proposal and design of new architectural concepts that
could improve the overall quality of the system.

The case studies reached various stages of maturity (See
section 5). In the first case study (C1), the tool was fully
deployed and integrated into the production environment.
In the second, we got it installed on single workstations
and have it used in isolation. In all other case studies, the
tool was officially presented to the team but was never fully
adopted. In C3, we introduced the tool by showing some
violations that we knew were relevant and partially already
checked by the team. The inability to continue to further
stages highly depended on a general lack of trust and low
motivation. In C4, we interacted directly with higher man-
agement and immediately gained interest and willingness to

3http://www.ilias.de

collaborate. Unfortunately the company was subsequently
acquired and restructured by a larger company. Our agree-
ment, which was in the process of being formally defined by
the legal department of one of their clients, was never made
official. In C5, we similarly got in touch with higher man-
agement and presented our tool. After the initial meeting
we tried to propose a project, but we didn’t hear back from
them.

4. DECISION FACTORS
In this section we characterize the decision factors that

play a decisive role in driving decisions when discussing over
the adoption of a conformance monitoring solution. This
classification is non-exhaustive and is entirely based on our
direct experience. It includes factors that were discovered
by analyzing 18 hours worth of interviews applying coding
techniques (as described in section 3). Additional categories
(i.e., performance, accuracy, feature set, analytics support)
were discovered during the cases studies.

4.1 Product
Cost – As in almost any industry, cost is often a pri-

mary concern. Embracing a new quality assurance solu-
tion typically entails new licensing costs and often requires
skilled labor for adapting and maintaining the acquired so-
lution. “The automation of conformance tests is expensive”
(interviewee A) and “budget resources allocated to quality
related tasks is limited”(G) in most of the cases. “Automatic
checking [of architecturally relevant constraints] would be a
big advantage” (G), but is not always a “high priority” (J),
given that the customer and non-technical management of-
ten think that “the only important thing is that the product
is delivered with the right functionalities” (G). This leads to
situations where architectural conformance is checked “man-
ually” (G), through generic tools (e.g., SonarQube (H)) or
“is evaluated [on the client side] on the basis of produced
specification documents” (A). In general, software quality“
is hard to quantify and management is always skeptic be-
cause it concerns issues out of its domain”.

Usability – A usable software product should be easy to
understand, learn and use [6]. “Software architects usually
do not care about [implementation] details, they reason on
a more abstract level” (K). They typically find themselves
in the situation of taking decisions over architectural invari-
ants which, in order to be checked, would require them to
deal with variably complex tools. Some architects “prefer
visual representations when it comes to understand archi-
tectural structure” (H). Some may even develop their own
toolchain in order to check dependencies as specified in a well
maintainable Excel spreadsheet (D). This shows that non-
technical declarative specifications are normally preferred
over tool-specific configurations.

Performance – Software efficiency can be measured in
terms of time and resources consumed to complete a given
task [6]. Analysis execution time is an important feature of
a quality assessment tool. If architectural invariants need
to be checked in near real-time (e.g., at commit-time, on
request), performance becomes key in providing a usable
experience.

Accuracy – This quality is ensured if the software prod-
uct is able to provide results with the needed degree of preci-
sion [6]. Analysis results need to be as correct and complete
as possible. In our studies, we spent a considerable amount

http://www.ilias.de

of time in validating the results of our tool. This process
was crucial to increase the reliability of our solution and to
proceed with our evaluation.

Feature set – Users select and compare software prod-
ucts according to the features they support [6]. In our case,
the ability to describe and check multiple characteristics of
a system was relevant to our collaborators. It influenced the
requirements elicitation phase and was a clear discussion
point when deciding on the adoption of the tool. Features
are often used for comparison with other commercial prod-
ucts.

Integrability – Software products don’t exist in isolation,
but need to co-exist and interact with other, independently-
developed products in the target environment [6]. Confor-
mance checking solutions are typically introduced into es-
tablished contexts and have to harmonize with pre-existing
processes and tools. Practitioners expect that a new solu-
tion can non-intrusively enrich their experience by providing
information when and where required. In fact, G advocated
a conformance checking tool with “integration with word
or enterprise architect” while J said that “it would be nice
to have rules checked by an IntelliJ plugin”. Some orga-
nizations have some kind of periodic reporting mechanism
already in place (e.g., email reports generated during the
nightly build (G)) and would appreciate if those could ex-
tended instead of being replaced or replicated.

Proactiveness – To effectively enforce guidelines and
guarantee architectural invariants, one needs to be proac-
tively reminded of relevant anomalies and opportunities for
improvement. “Constraints cannot be enforced if they are
simply described in a document; they either need to be im-
plemented in a framework or a verification tool must check
them” (K). In fact, “people forget about rules or don’t even
know of their existence” (I). “An architectural specification
is almost worthless” and “it’s important to have continuous
feedback (e.g., checks integrated in the continuous integra-
tion server)” (E). Developers need to be reminded of their
mistakes and tools should support them to prevent acciden-
tal violations.

4.2 Process
Transparency – Architects and developers are keen to

have an accurate and up-to-date overview of particular as-
pects of their system. More transparency over quality re-
lated issues leads to “easier risk assessment and reduced
hidden costs” (N). For example, “detecting dependency vio-
lation early during development [..] would be very helpful”
(K). Delivering convenient reporting reduces the risk of in-
curring into technical debt and“exposes conceptual fallacies”
(K).

Analytics support – Rules and analysis results may
have managerial value (e.g., estimate relevance/effort of tasks,
validate new design concepts). In our studies we observed
that violations can be used to show progress over mainte-
nance or migration processes. Similarly, rule specifications
can be used as a means to assess the feasibility and effort
involved in realizing complex design changes.

4.3 User
Engagement – Another important factor that contributes

to the success of a conformance checking solution is its level
of acceptance. As we have seen, developers need to be prop-
erly motivated and encouraged to contribute. If they don’t
feel sufficiently involved in the process of defining and fol-

lowing common objectives, the solution is likely to be soon
ignored and eventually abandoned.

5. ADOPTION PHASES
In this section we describe the phases that we encountered

while introducing an actual prototypical solution in various
IT companies. Each phase is linked to one or more decision
factors that must be taken into consideration during that
particular phase of the process. The single phases and the
associated decision factors are described in Figure 1 and in
the subsequent sections.

Promo%onDeployment
Rules	
Elicita%on

Process
Defini%onEndorsement

1 2 3 4 5

- Transparency
- Engagement
- Integrability

- Cost
- Accuracy
- Feature set

- Usability
- Accuracy
- Feature set

- Integrability
- Performance
- Proactiveness

- Engagement
- Proactiveness
- Analytics support

Figure 1: Adoption of an automated conformance monitor-
ing solution: process phases and influencing decision factors.

5.1 Endorsement
Introducing a new technical solution within a company

requires support from a competent and motivated person
that understands the value of the proposed tool and the im-
plications that this has on a chosen project. We typically
approached this phase by setting up a introductory meeting
with our contacts during which we presented the main fea-
tures of our solution. The presentation also included some
exemplifying rules, and an outlook over possible integration
options with currently employed monitoring solutions.

In our experience we tried to approach different kind of
users: developers and architects. In C1, our first case study,
we interacted with a special interest group (SIG) consisting
of 18 members founded to discuss architecturally relevant
refactorings. This community was clearly aware of the ben-
efits that can be derived from extra-functional maintenance
activities. They have a distinctively proactive mindset, as
their group has set the goal to propose new tasks aimed at
improving the overall quality of the system. In this context
we could easily convince them of the advantages of our pro-
totype. Most of the discussion that followed concerned the
possible political implication that the introduction of a new
tool would have had on the organization.

In C2 we also interacted with a quality-aware proactive
senior developer who believed in the benefits of quality as-
surance tools. He recognized the limits of the current moni-
toring environment and was willing to experiment with other
solutions. In this case, the major concern was regarding the
capabilities and the accuracy of the proposed solution. As a
developer, he was very interested in uncovering new existing
flaws and inconsistencies. Since his role did not entitle him
to take any organizational decision, we had to follow a long
procedure to define a pilot project. During this procedure,
we had to negotiate the terms of our collaboration with the
legal department of the company and subsequently discussed
the project with the leader of the team our contact person
was part of.

In C3 we interacted with the heads of a team responsible
for a smaller, yet very strategical, project run within a larger
organization. These 4 people maintained a framework that
was used as a foundation by most of the 200 projects devel-
oped in the same company. Unfortunately, they were less
inclined to consider the adoption of a new quality monitor-
ing solution. We analyzed their code base and showed them
new violations that they were not capable of finding with
their current toolset. Despite that, they dismissed the idea
of refactoring the uncovered flaws and preferred to maintain
their code base in its current state. Their attitude towards
code quality was more reactive. If somebody reported a
major architectural violation, they would have looked into
the problem and discussed a solution. Introducing an au-
tomated tool that supported this task was in contradiction
with their approach. The effort invested in preventive main-
tenance had to be kept to the minimum.

In C4, we had the chance to discuss the adoption of the
solution with two company-wide branch managers respon-
sible for all major architectural decisions. Having the op-
portunity to discuss the subject with technically competent
decision makers clearly facilitated our task. We could easily
convince them of the utility of our prototype and we could
quickly define a pilot project for testing it out. Getting in
touch with these persons was less complicated because of
the limited size of the company (100-150 employees). The
advantage of encountering less resistance during the first en-
counter was lessened by the fact that both stakeholders were
often very busy and tended to schedule subsequent meetings
at longer time intervals (compared to the other case studies).

Relevant Decisional Factors
Cost: One of the primary concerns when discussing the
adoption of the new technical solution was its cost. In our
experience, especially when dealing with people having little
or no decision power, we encountered appreciation for our
choice of relying on open-source analyzers. On the other
hand, the interest seemed to decrease when discussing analy-
sis features that were offered by equivalent commercial tools
already in use in the company. In C3, the architects were
already using a rather expensive tool for checking depen-
dency constraints. The possibility of integrating the results
produced by the existing solution with the information pro-
duced by our tool seemed to be less appealing since money
had already been invested in the competing solution. Also
in C2 developers were using a commercial solution for check-
ing dependencies. In that case, the person responsible for
maintaining and operating the tool clearly admitted that
the costs related to the use of that solution (i.e., licensing,
training) were clearly not proportional to the benefits of-
fered. Given the tight budget typically allocated for quality
analysis related tasks, it is important to define a price which
is reasonably contained and proportional to the amount of
distinguishing features offered.

Accuracy: The results produced by an automated qual-
ity monitoring solution should be sufficiently precise in order
to be considered useful. In C2 and C3 we discovered that our
tool found between 400% to 500% more violations than the
competing tool currently in use within the project (C2: our
tool found 7 illegal logical dependencies, SonarGraph only 2;
C3: our tool found 18 dependency cycles, SonarQube only
3). This difference in accuracy is due to different analysis

strategies employed by the different tools. In C2, accuracy
played a significant role in deciding on the utility of the pro-
posed solution. In C3, accuracy was overshadowed by the
cost of setting up and integrating a new tool, justifying its
existence to management and investing effort into dealing
with the detected violations.

Feature Set: One of the differentiation factors that dis-
tinguishes our prototypical solution from competing alterna-
tives is the support for a wider variety of constraint types.
The possibility of specifying rules concerning multiple design
facets in the same specification was a key deciding factor
in C1. During the first meeting, participants immediately
started to think about the type of invariants that could be
useful to check in their project. Several people even pro-
posed new types of rules that were not described in the ini-
tial presentation. Learning about the extensibility of our
approach and the option of designing new custom analyses
with a relatively modest effort was clearly one of the main
arguments that convinced them to invest in the solution. In
C5, one of the software architects participating in the initial
meeting asked about the possibility of defining and check-
ing cross-project invariants. Also in this case we can see
how functionality is an important factor when discussing
the high-level characteristics of a conformance monitoring
solution.

5.2 Process Definition
If an organization agrees on supporting the introduction

of the proposed solution, one must define how this can be
done in concrete terms. In our case studies, we typically
discussed various aspects. We analyzed how the solution was
supposed to be integrated with the current infrastructure as
well as the way future stakeholder would have to interact
with it. Technical aspects are easily outlined and should be
quickly sorted out by the service provider. Changes to the
process require more careful analysis, since they may have a
deeper impact on the performance of the organization. If a
tool heavily interacts with current procedures and does not
provide obvious advantages to its users, this tool will soon
be neglected. Our solution provides contextual information
that exposes anomalies in the developed code. By delivering
our information through an existing information medium,
we reduce the chance of altering established procedures and
minimize the training costs.

In C2, we were asked to implement rules for expressing
constraints described in an internal documental repository
(i.e., wiki website). All developers were asked at one point
in time to read them, but few of them managed to keep
them in mind and to periodically check whether they were
updated. To reduce the overhead caused by a potentially
useless activity, we decided to combine the existing docu-
mentation with executable rules that could be used to check
the consistency of the developed system. This would have
required them to delegate the task of defining new rules to
the author of the guidelines. Rules written by this person
would have, where necessary, required the intervention of
a technical facilitator trained to integrate third party an-
alyzers to support the checking of the defined rules. This
technical facilitator would have initially been assisted by the
original author of the tool. At the end of an initial training
phase, the facilitator should have been capable of dealing
with common integration scenarios. More complex cases,
requiring deeper changes in the evaluation process, would

have still required the knowledge of the original developers.
The users ultimately inspecting the violations resulting from
the validation of the rules, were expected to autonomously
understand and react to the reported anomalies. Results
were expected to be displayed through a pre-existing dash-
board and handled through an integrated ticket system (See
Section 5.3).

In C1, we discussed the target process together with the
participants of the refactoring SIG. These people warned
us of the risk of developing a solution that could not be
fully accepted inside the community. In the past, another
user deployed a continuous integration server that period-
ically built the core module of the project. This service
was largely ignored because it was badly advertised to the
community. Our solution had the potential of supporting
vital quality assurance tasks but needed to be promoted in
a convincing way. The tool had thus to be silently deployed
and revealed as a complementary feature of a new, yet to
be set up, continuous integration server. The plan consisted
in assigning the responsibility of deciding on new rules to
the SIG. New rules would have been announced during a bi-
weekly physical meeting that involved representatives of the
major vendors involved in the community. People partici-
pating in this meeting should be gradually sensitized towards
non-functional issues and should have the right to veto the
proposed rules. The discussion of rules should not require
too much time, as the meeting is mostly designed to pro-
pose and discuss over functional requirements. Users should
eventually be encouraged to look into the current violations
by reporting the results produced by our tool. The details
of each violation can be found in the continuous integration
web front-end.

Relevant Decisional Factors
Transparency: In C1, users were positively inclined to-
wards policies that supported and encouraged transparency.
The fact of being part of an open community with a flat hier-
archy made them more prone to engage in public assessment
activities. Despite this, we decided to report on the intro-
duction of new violations upon commit sending only private
emails to the developers responsible for their introduction.
During the bi-weekly meeting it was also expected that only
the positive interventions (i.e., violation removal) were men-
tioned publicly. Transparency is a good principle if counter-
balanced by respect for the dignity of the involved people. In
C2, developers were divided in 2 categories: internal (i.e.,
developers contracted by the company) and external (i.e.,
consultants hired through a third-party company). Exter-
nal developers can be easily dismissed and care more about
maintaining their reputation. Exposing flaws that could be
associated to them was immediately considered as a threat
to their position. Based on this consideration, we decided
to first test our solution within a smaller group of users
exclusively composed of developers. This strategy would
have helped to avoid unnecessary tensions and to gradually
change the attitude of the team towards quality related is-
sues.

Participation: In C2, we had the chance to interact with
the developer responsible for maintaining a previously estab-
lished dependency checking tool. This person emphasized
that providing prompt feedback to the users is a key feature
of any quality assessment tool. This must be true for users

interested in the results of the analysis as much as for users
interested in maintaining the rules checked by the used tool.
In our case we aimed at integrating our tool with a dash-
board system that was regularly refreshed after each build
of the project. Rules defined for our tool would be defined
though a dedicated web editor that supported the ability
to interactively check their applicability to the target sys-
tem. New tickets and email notifications would be created
after the introduction of new violations. Pre-configurable
ticket prioritization may also be used to direct the attention
of the user. In C1, participation was seen as a key ingre-
dient of a successful service. To reach a sufficient number
of developers, we aimed at maximizing transparency and
introducing new incentives for rewarding active developers.
Users would be automatically listed in a leaderboard where
the most contributors are ranked based on the number of
violations they have removed. Another strategy to promote
the involvement of developers consisted in presenting only
the latest introduced violations while consulting the online
report displayed within the continuous integration service.
This reduces the chance that the user may feel overwhelmed
and makes the effort required to eliminate the violations
more easy to estimate. Remaining violations can still be
browsed by expanding the view.

Integrability: Quality assessment tools are typically ex-
pected to be naturally streamlined into the process. In C2,
the previously adopted dependency checking tool offered
support for integrating the results into SonarQube. This
feature was fundamental for making the violations visible
to the developers. Separately produced reports cannot be
regularly inspected without a clear incentive. SonarQube
not only provides current measurements of the system but
is also used to manage change tasks. This last feature makes
it an essential platform of communication, that happens to
be visited frequently by all the users involved in the develop-
ment process. Our choice of creating new tickets for newly
introduced violations reduces even more the distance of our
solution from the center of attention of our target users. In
C1, we chose to integrate our results inside TeamCity. This
service already reports failed unit tests. By adding an ad-
ditional view that shows the results produced by our tool,
we emphasize the duality of a software system by displaying
non-functional violations side-by-side with functional fail-
ures. Also in this case, having all information seamlessly
integrated behind one coherent interface is likely to reduce
resistance to adoption and increases productivity. The pos-
sibility to also link violations to impacted code elements also
increases the convenience of the solution.

5.3 Rules Elicitation
Architects and developers have a very personal under-

standing of what constraints regulate the architecture of
their system. This interpretation is typically vague and
might not always fit the framework proposed by quality as-
sessment tools. To bridge the gap that separates tools from
design ideas, we first started by designing a language that
could be used to replicate actually observed specification
patterns. Putting language before functionality increased
our chances of acceptance and played an important role in
reducing the barriers to usage of our prototype.

The language that we used in our case studies, Dictō [5],
is based on a simple model (Figure 2). Dictō can be used to
describe properties and relations on and between entities de-

fined in a system. Rules can be expressed in different modes
(e.g., TestMethods must have annotation ‘@Test’ or only
TestMethods can have annotation ‘@Test’). The DSL re-
sulting from this model proved to be effective in eliminating
any distraction related to unimportant technicalities linked
to the the tools used for the analysis. The language was
generic and abstract enough to accommodate a large vari-
ety of concrete rules. This encouraged our collaborators to
explore very different requirements and led us to iteratively
adapt and refine the language to meet their requests.

mode: {must, cannot, ..}
argumentConnective : {∨,∧}

Rule

RelationRule
PropertyRule

Entity

argu
men

t

subject

arguments: String[]

*

*

Figure 2: Language meta-model

In both case studies, rules were initially defined based on
examples provided for illustration purposes. This helped us
to gain familiarity with the general concepts governing our
language. Later on we encouraged them to engage in the def-
inition of more experimental rules. We suggested to examine
current developer guidelines and to formalize rules that were
(or that could have been) specified in such a context.

In C2, the user formalized a set of dependency constraints
that were currently checked on his project through another
tool (i.e., SonarGraph). The specification of these con-
straints was previously regarded as technically demanding
and was managed by one single developer, trained for the
task. In its new translated form, the rules were finally un-
der the control of our collaborator. This helped him to get a
better understanding of the current architecture and to ex-
tend the current set of invariants with new rules concerning
the module he was working on.

To enable the analysis of otherwise documented guidelines
and constraints, we were required to extend our tool. As our
collaborators realized that unsupported requirements could
be easily integrated in the solution, they started to discuss
additional ideas and to propose constraints that diverged
more and more from the initially supported feature set. The
proposal of unusual and unpractical rules represented a clear
achievement, as it meant that our users could fully concen-
trate on what they wanted to check without considering how
this could be done. Relying on a declarative language that
can be easily understood by humans as well as tools, reduces
the cost of formalizing and communicating knowledge and
favors discussion.

In C1, other stakeholders started to propose rules related
to their area of expertise or to recent tasks. Some managed
to formulate syntactically correct rules by observing previ-
ous specifications. Others provided more prosaic descrip-
tions. But eventually everybody could understand the rules
written by others without any particular assistance. One
of the points that contributed in making this possible was
the introduction of inline Javadoc-like documentation in rule
specifications. Thanks to this beneficial outcome, the refac-
toring SIG started to discuss new refactoring ideas together
with enforcement policies. New rules were presented to su-
perior decision organs and could be fully discussed without

any previous instruction.
In both case studies we established short feedback loops

during which we iteratively defined, analyzed and corrected
each respective project ruleset. In each iteration we put care
into manually validating the violations reported as a result
of our rule analysis. By doing so, in C2, we discovered sev-
eral infractions that were acknowledged as concrete issues
and were ignored by other tools currently employed by the
team (e.g., SonarQube, SonarGraph). This increased the
trust in our tool and reduced the distance between our solu-
tion and other comparable commercial products. In C1, the
analysis of some reported violations brought the discovery of
a previously unknown design anti-pattern (known as courier
anti-pattern4). This in turn led to a new refactoring initia-
tive and consequent rules that guarantee its implementation.
In this case we observed how our solution could actually con-
cretely support a feedback loop model for continuous quality
improvement.

Relevant Decisional Factors
Usability: This was clearly one of the most deciding fac-
tors. In C1, stakeholders indirectly involved in the experi-
ment were able to autonomously define new rules (e.g., Il-
iasCodebase cannot depend on eval ; IliasCodebase cannot
depend on SuppressErrors). The addition of documenta-
tion comments in the specification (used for describing the
semantics of rules) reduced the gap between ordinary in-
formal documentation and the more formal syntax of our
language. Rules could be easily discussed without the pres-
ence of the original author. The overall friendliness of the
language was partially undermined by the absence of com-
prehensive documentation and a proper rule evaluation envi-
ronment (i.e., sandbox environment). In C2, team members
carefully avoided maintaining the rules specified for Sonar-
Graph because of the poor usability of its configuration lan-
guage. This shortcoming limited participation to a much
smaller and less representative group of stakeholders.

Feature set: The capabilities of our prototype were soon
questioned when users started to carefully consider their re-
quirements. Questions like“is it possible to define..” or“how
can I check if..” started to appear in C1 during physical and
virtual discussions as soon as more users were involved in
the process. Other users suggested rules (e.g., “IliasCode-
Base must be compatible with PHP5.3”) that were syntac-
tically correct but could hardly be checked using any kind
of tool currently available on the market. Negotiating the
scope of the offered service is a clear responsibility of the so-
lution provider and will help him to focus the requirements
elicitation process.

Accuracy: In C2 and C3, we defined rules concerning the
presence of cycles and dependencies in the project. In both
cases, our analysis reported violations that were completely
ignored by popular commercial tools used by the organiza-
tion (e.g., SonarQube, SonarGraph). These tools have a
good reputation and a solid user base but, without a means
to establish the accuracy of their evaluation, it is hard to
question the value of their application. Offering some ref-
erence measurements and generally assessing the accuracy
of the produced results will increase trust in the proposed
solution.

4https://r.je/oop-courier-anti-pattern.html

https://r.je/oop-courier-anti-pattern.html

5.4 Deployment
Once defined, rules need to be verified automatically on a

regular basis. To enable this behavior, we have to integrate
our solution with an existing quality control system (e.g.,
continuous integration server, dashboard). The challenges
posed by this process may vary depending on the techni-
cal environment, the current development process and the
general attitude of the team towards automated feedback
mechanisms. In our case studies we opted for a simple setup
(see Figure 3).

Rules Checker

Source Code

Report

Figure 3: Automated conformance checking solution

In short, we analyze the rules defined during the previous
phase through a set of pre-adapted off-the-shelf analyzers.
The results are then integrated into a visual reporting sys-
tem (e.g., dashboard).

In C1, our collaborators decided to display the results as
a custom view within TeamCity5, a continuous integration
system. Through this approach they succeed in address-
ing both functional (i.e., unit test) and non-functional (i.e.,
architecture conformance rules) aspects within a single in-
terface. This allowed also for skeptical users, who should
at least care about functional tests, to be exposed to archi-
tectural issues. In our implementation, we put care in not
overwhelming the user by only showing the violations in-
troduced in the latest build. All violations, including those
introduced in the past, are still available for inspection by
switching to a secondary view. This choice was mostly due
to the fact that developers may be more interested in fix-
ing issues introduced by recently contributed changes. Users
might also be more motivated to address the issues if they
see a smaller number of work items. An additional summary
report was produced every two weeks and served as basis for
discussion during the periodic physical meetings organized
by all the organizations participating to the community.

In C2, the team used SonarQube as main issue tracker.
We initially aimed at extending the current installation by
automatically adding our violations as new issues. This
strategy would have allowed for a very smooth transition
with no changes in the workflow and full integration of our
analysis. Unfortunately all SonarQube installations avail-
able in the organization stem from the same customized im-
plementation. This made it almost impossible, given the
size of the company and the intricacies of their governance,
to extend the reach of our experiment to all the members of
the team involved in the case study. As an alternative we
decided to deploy our solution locally on one of the work-
stations used in the project. As a result we could simulate
the productive environment and observe how our solution
would have been used in the originally planned scenario.

Relevant Decisional Factors
Process Integration: One of the developers working in C2
and assigned to the maintenance of SonarGraph said that

5https://www.jetbrains.com/teamcity/

“integration is key”. He himself had to integrate the results
produced by his tool into SonarQube before and recognized
that without that step nobody would have cared about the
violations it reported. Extending a familiar and consistently
used reporting instrument is essential to reach out to the
end-user instead of requiring him to change his practice. In
C1, we introduced our results by enhancing a long needed
continuous integration application. The appeal of this new
application granted sufficient support for our solution.

Performance: The time needed to complete our analysis
played an important role during the deployment phase. In
C1, we spent considerable effort to bring the time needed to
check our rules from hours to minutes. To make this possible
we had to optimize our prototype and improve some analysis
techniques. Without this engineering effort, the solution
would have been useless since developers expect feedback
shortly after they commit. Also in C2, we had to deal with
a large code base. This meant that multiple iterations were
just dedicated to reduce analysis time. In both cases we had
to make compromises over the precision of the analysis. This
meant discussing with our collaborators over the minimum
amount of information needed to describe violations in such
a way that they could lead to a concrete action plan.

Proactivness: A developer in C1 emphasized that that
“immediate feedback is important”. There is evidence [7]
that providing timely feedback on potentially degrading qual-
ity issues can significantly contribute to preventing architec-
tural decay. In C2 we send email to contributors after each
commit to expose violations that she introduced in her last
change. Once again we try to reduce the burden on the user
by reaching out to her.

5.5 Promotion
One of the main focuses of our solution, as stated by our

collaborators, should be to actively contribute to improv-
ing code quality and to communicate the value of the im-
plied effort to management. In C1 the reactions towards
our tool were initially rather conservative, since the tool had
no commercial history and was not believed to be reliable.
By involving our collaborators in all the phases of the study
and openly discussing possible improvements and limitations
we slowly gained their trust. We gladly observed that the
representatives of the various sub-communities could be in-
volved in the process of discussing new rules. In fact, our
tool-agnostic specification could be used to provide a con-
crete insight into the activities of the SIG as well as enabling
management to take decisions on the concrete aspects that
defined them. Our DSL became an effective tool for nego-
tiating work items, expressing new concerns and assessing
completed tasks. The support so far provided by manage-
ment, was essential to establish a wide and legitimated di-
alogue. The fact that this assembly usually prioritizes the
discussion over functional features and typically finds place
under tight time constraints, does not guarantee that the
discussion will continue to be kept at regular intervals. We
assume that backing from a motivated sub-community (i.e.,
SIG) needs to continue to be provided.

After observing the beneficial contribution of our solution,
other members of the community volunteered to deploy our
solution in their own environment. In fact, beside the main
branch, accessed by the whole community, there were other
client specific customizations maintained by single vendors.
One of those vendors is currently working towards integrat-

https://www.jetbrains.com/teamcity/

ing our solution in his own continuous integration server
(i.e., Jenkins6).

Relevant Decisional Factors
Engagement: In C1, we carried out a survey and found
that developers were positively impressed by our solution.
They observed that “it definitely leverages the discussion
about architecture and separation of concerns”. They com-
mented that rules were readable and meaningful for the
project. To further incentivize them, we also decided to cre-
ate a leaderboard7 that tracks who removed the most viola-
tions from the code base. This simple expedient, already ex-
ploited in other communities (e.g., StackOverflow8), helped
us increasing curiosity towards our analysis. One contribu-
tor said: “I searched very deliberately for violations within
our modules and fixed them, on one hand to get our mod-
ules violation-free and on the other hand the leader board
influenced me”.

Proactiveness: In C1, every developer that we managed
to contact through meetings or surveys stated that he is
strongly in favor of architectural checks. Yet, when it comes
to proactive actions, most people do not seem to have the
time to work on quality related issues. This led us to fo-
cus on the proactive elements of our integration with the
continuous integration server. We paid attention to setting
up passive mechanisms that required minimal or no effort
from the user. Analysis results are generated and commu-
nicated automatically and results are easily reachable in a
context where the user would already be looking if she is
interested in reports related to quality. Also the rule def-
inition process should support proactive thinking. In C1,
rules are defined to guarantee the correct implementation of
new design ideas. By continuously inspecting and discussing
the violations resulting from the analysis of those rules, de-
velopers grew their understanding of the system and even
discovered new architectural anomalies that needed to be
addressed. This unexpected virtuous circle once again con-
firmed the role of a well engineered conformance solution in
high-level design related discussions.

Analytics Support: As previously mentioned, reports
produced by our tool were also used to show progress over
ongoing development tasks. Violations could show how far
the current implementation was compared to a specific tar-
get architectural design resolution. This helped at the same
time to strengthen the sense of control over non-functional
aspects of the system as well as increasing the transparency
of the development process.

6. DISCUSSION
Our case studies help to gain a practical insight into how

an architectural conformance solution can be introduced in
an industrial context. We ran several case studies and re-
port on the strategies employed to gain full adoption of our
tool. Despite our best efforts, we did not manage to cover all
the phases outlined in our model (section 5) for every case
study. We recognize that our study required a significant
commitment by both involved parties and that most indus-
trial organizations are skeptical towards innovative ideas.

6https://jenkins-ci.org
7http://ci.ilias.de/DictoStats
8http://stackoverflow.com

This explains why most case studies ended during the first
phase. At the beginning it is important to gain the sup-
port of an active community or a relevant decision maker,
and this did not happen in some of those cases. In general,
we observed that political tensions that pre-existed within
the organization had the biggest influence over the success
of our project. Different social aspects (like fear of being
discredited, of exposing inconvenient truths, of contradict-
ing a superior or losing credibility in front of the colleagues)
played an important role over the decisions that have been
taken along the way.

Despite the partial completeness of some case studies, we
still believe that our experience helped us gain a deeper un-
derstanding into the process undergone while introducing a
generic architecture conformance monitoring solution. Our
case studies show that the users involved in the adoption
process might have different priorities but normally share
the same concerns. The decision factors described in sec-
tion 4 were partially identified before the beginning of the
study and proved to be important points in our decision
making process. Some of the decisions we took had observ-
able effects which could be later on evaluated and discussed.
The usability of our prototypical language, for example, ap-
peared to be a relevant discussion point during the elicita-
tion phase and showed its beneficial effects towards the end
of the study, when more users started to participate to the
definition of rules. Similarly, the integration of our solution
within the existing infrastructure was considered relevant
as we had to define the overall process required to sustain
the solution and appeared to be a crucial aspect in later
phases of the study (according to surveys and usage statis-
tics). The decision factors that we analyzed in this paper
should be considered for general guidance when defining a
plausible adoption strategy. The analyzed criteria described
in our work won’t necessarily help in reaching a successful
outcome but should contribute in reinforcing the assump-
tions that one might have towards the general process.

The phases described in section 5 and elaborated more in
detail in the following sections have been inferred directly
from our experience. We compared the different case stud-
ies and tried to factor our common activities and processes.
As an outcome we obtained a sequence of replicable phases
that can be used to break down our case studies. The result-
ing process model should be sufficiently general to be rec-
ognized in almost any context that entails the introduction
of a new system for technical support. The main purpose
of the model is to create a link between easily observable
phases and the deciding factors identified to answer RQ1.
The fact that those phases could be used to describe the
case studies encountered in our experience provides empir-
ical evidence that those phases can be used to establish a
successful quality monitoring solution within an industrial
organization.

7. RELATED WORK
Several authors report on the application of tools for check-

ing architecture conformance in an industrial context.
Rosik et al. [8] describes an industrial application of a

technique based on reflexion models [9]. The authors con-
clude that developers value their solution positively but vi-
olations are not fixed in a timely manner. Our studies were
considerably more complex (i.e., more developers, legacy
code, more type of rules) and partially confirmed the obser-

https://jenkins-ci.org
http: //ci.ilias.de/DictoStats
http://stackoverflow.com

vations reported by Rosik et al.. We observed that violations
are typically resolved as long that the effort involved is con-
tained and adequate incentives are provided. Herold et al.
[10] elaborate on the technical details of a rule-based ar-
chitecture conformance checking tool used in an industrial
case study. The approach is conceptually similar to ours
but restricted to a particular type of rule (i.e., dependency
constraints). The studies show the importance of process in-
tegration and the use of a simple and user-friendly formalism
to increase maintainability. Ganea et al. [11] evaluate their
quality assurance tool by defining a non-comparative exper-
iment involving industrial users. The authors recognize the
importance of reducing the number of false positives, seam-
less integration, unobtrusive feedback, performance and user
feedback. All conclusions are drawn from a controlled ex-
periment, but still provide a comprehensive picture of what
factors may influence the acceptance of a quality assessment
tool. In general all mentioned authors tend to focus mostly
on describing their solution instead of analyzing the process
followed to introduce it within a specific organization.

Other studies explicitly analyze the impact of introducing
a quality assurance tool in an industrial context. Sadowski
et al. [12] describe a program analysis platform that inte-
grates multiple lint tools and exports all detected issues to
a review system. The authors emphasize the importance
of actionable results and workflow integrability. Users are
particularly sensitive to false positives and value the abil-
ity to share their configuration with the other members of
their team. Despite the slightly different nature of the tools
discussed in their study, Sadowski et al. reach similar con-
clusions as those reported in this paper. Johnson et al. [13]
interview 20 practitioners that use static analysis tools on
a regular basis. The conclusions drawn from this study are
similar to those reported by Sadowski et al.. Participants
criticize the poor usability of the tools (e.g., result navi-
gation, result understandability, settings sharing, customiz-
ability) and stress the importance of quick feedback.

8. CONCLUSION
In this paper we describe how an automated conformance

monitoring solution can be adopted in the context of an
industrial project. We describe this process in terms of its
composing phases and the deciding factors that influence its
course. Our aim is to offer a comprehensive overview of the
forces involved in such a delicate course of events.

Our experience shows that a quality assurance solution
should be above all customizable and usable. Developers are
typically not encouraged to react to quality-related issues
and need to be properly informed and motivated. This can
be achieved through continuous automated analysis, non-
overwhelming reporting and various types of incentives (e.g.,
reputation points). Architectural inconsistencies need to be
communicated as small and easily manageable tasks. Re-
sistance to change can be overcome by integrating the new
solution with a pre-established quality control system.

Through our experience we hope to provide guidance to
professionals and academics that intend to introduce a sim-
ilar solution in a company.

Acknowledgment
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software

Assessment” (SNSF project Np. 200020-144126/1, Jan 1,
2013 - Dec. 30, 2015).

9. REFERENCES
[1] D. E. Perry and A. L. Wolf, “Foundations for the

study of software architecture,” ACM SIGSOFT
Software Engineering Notes, vol. 17, pp. 40–52, Oct.
1992.

[2] A. Caracciolo, M. Lungu, and O. Nierstrasz, “How do
software architects specify and validate quality
requirements?,” in European Conference on Software
Architecture (ECSA), vol. 8627 of Lecture Notes in
Computer Science, pp. 374–389, Springer Berlin
Heidelberg, Aug. 2014.

[3] B. Boehm, H. D. Rombach, and M. V. Zelkowitz, eds.,
Foundations of Empirical Software Engineering.
Berlin, Germany: Springer-Verlag, 2005.

[4] M. B. Miles and M. Huberman, Qualitative Data
Analysis: An Expanded Sourcebook(2nd Edition). Sage
Publications, Inc, 2nd ed., 1994.

[5] A. Caracciolo, M. Lungu, and O. Nierstrasz, “A
unified approach to architecture conformance
checking,” in Proceedings of the 12th Working
IEEE/IFIP Conference on Software Architecture
(WICSA), pp. 41–50, ACM Press, May 2015.

[6] “ISO/IEC 9126-1:2001 Software engineering – Product
quality,” 2001.

[7] J. Knodel, D. Muthig, and D. Rost, “Constructive
architecture compliance checking – an experiment on
support by live feedback,” in Proceedings of the 24th
IEEE International Conference on Software
Maintenance (ICSM 2008), pp. 287–296, 2008.

[8] J. Rosik, A. Le Gear, J. Buckley, and M. Ali Babar,
“An industrial case study of architecture
conformance,” in Proceedings of the Second
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’08,
(New York, NY, USA), pp. 80–89, ACM, 2008.

[9] G. Murphy, D. Notkin, and K. Sullivan, “Software
reflexion models: Bridging the gap between source and
high-level models,” in Proceedings of SIGSOFT ’95,
Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 18–28, ACM Press, 1995.

[10] S. Herold, M. Mair, A. Rausch, and I. Schindler,
“Checking conformance with reference architectures:
A case study,” in Enterprise Distributed Object
Computing Conference (EDOC), 2013 17th IEEE
International, pp. 71–80, Sept. 2013.

[11] G. Ganea, I. Verebi, and R. Marinescu, “Continuous
quality assessment with incode,” Science of Computer
Programming, 2015.

[12] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg,
and C. Winter, “Tricorder: Building a program
analysis ecosystem,” in Proceedings of the 37th
International Conference on Software Engineering -
Volume 1, ICSE ’15, (Piscataway, NJ, USA),
pp. 598–608, IEEE Press, 2015.

[13] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge, “Why don’t software developers use
static analysis tools to find bugs?,” in Proceedings of
the 2013 International Conference on Software
Engineering, ICSE ’13, pp. 672–681, IEEE Press, 2013.

