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Abstract—Dependency cycles are commonly recognized as one
of the most critical quality anti-patterns. Cycles compromise the
modularity of a system, prevent proper reuse and increase the cost
of maintenance and testing. Many tools are capable of detecting
and visualizing package cycles existing within software projects.
Unfortunately, detecting cycles is only half of the work. Once
detected, cycles need to be removed and this typically results in
a complex process that is only partially supported by current
tools. We propose a tool that offers an intelligent guidance
mechanism to support developers in removing package cycles.
Our tool, Marea, simulates different refactoring strategies and
suggests the most cost-effective sequence of refactoring operations
that will break the cycle. The optimal refactoring strategy is
determined based on a custom profit function. Our approach has
been validated on multiple projects and executes in linear time.

I. INTRODUCTION

Dependency cycles are a typical symptom of bad design
[1], [2], [3] and are often linked to architectural erosion
[4] and defect-proneness [5]. Empirical studies show that
cycles can be found in almost any medium to large object-
oriented software system [6], [7]. Dependency cycles introduce
deployment constraints, forcing developers to bundle packages
that are logically uncoupled, and generally increase mainte-
nance costs. Excessive coupling amongst packages reduces the
overall modularity of the project, precluding the possibility to
homogeneously distribute the development effort between the
members of the team. Scarce modularity has also a negative
impact on testability, since isolating the functionality of low
granularity units becomes more complicated. Martin defines
the Acyclic Design Principle [2] as one of the rules that govern
the structure of object-oriented software systems.

Given the proven importance of this architectural anti-
pattern, many tools have been developed to detect dependency
cycles. Most of them are commercial tools (e.g., Structure1011,
Lattix LDM2, SonarGraph3) and are commonly used by in-
dustrial practitioners. The main functionality offered by most
of these tools consists in presenting a rich visualization of the
package cycles existing within a given project. Other tools (i.e.,
JooJ [8]), prevent the introduction of new cycles by monitoring
the development environment and offering real-time warnings.

One fundamental limitation of all the existing techniques is
the absence of a convenient support for removing the detected
cycles. Automatic fixes and refactoring suggestions are highly

1https://structure101.com
2http://lattix.com
3https://www.hello2morrow.com/products/sonargraph

appreciated by developers [9], [10]. Based on our interaction
with practitioners, we found that developers are often forced
to undergo multiple stages in order to eliminate a cycle.
Refactoring actions are repeatedly interleaved with reverse
engineering steps, during which the user checks the impact of
the applied modification. This can lead to a highly ineffective
non-linear process that contributes to frustration and higher
maintenance costs.

Some tools (e.g., Pasta [11]) have tried to cope with
this limitation by introducing support for simulating basic
refactoring operations over a reverse engineered model of the
analyzed project. Users can drag and drop code elements (i.e.,
classes, methods) from one container (i.e., package, class) to
another and immediately see how this impacts package-level
dependencies. Unfortunately, this kind of process is only a
slight improvement over the previously described one. In fact,
the user still needs to perform subjective choices with little
guarantee that the outcome of his action will eventually lead
to the complete removal of the cycle. In addition to that, the
refactoring operations supported by these tools are very ele-
mentary. Other more sophisticated techniques (i.e., dependency
injection) often used in practice are simply ignored.

In this paper, we propose a decision support system for
removing package dependencies. Our tool, Marea, computes
multiple refactoring sequences and suggests the strategy that
offers the best results (i.e., low number of dependency cycles
and high structural quality) at lowest cost (i.e., low number of
required refactoring steps).

In our current implementation, we support 4 types of
refactoring (see subsection II-B). These refactoring strategies
are applied to create mutations of a model originally extracted
from the system’s source code. By simulating these operations,
we create a decision tree where each node (i.e., refactoring
step) has a weight calculated through a custom profit function.
Our approach also offers a more complete and automated
solution to cycle removal. The presented technique has been
evaluated on two open source projects and exhibits linear
scalability. It could be integrated into any existing cycle
detection tool and would improve them by extending their
diagnostic features with a more complete set of reactive quality
improvement capabilities.

The paper is structured as follows: In section II, we define
a common terminology and describe the refactoring operations
that are used in our approach. We then introduce our approach
(III), report on its evaluation (IV), and discuss its applicability
(V). Finally, we conclude (sections VI-VII).

https://structure101.com
http://lattix.com
https://www.hello2morrow.com/products/sonargraph


II. BASIC CONCEPTS

In this section we briefly introduce the main concepts
characterizing the domain of application of Marea. In order
to make the description as concrete as possible, we choose to
restrict the scope of the discussion to systems developed in
Java.

A. Terminology

Marea has been designed with the purpose of detecting
and removing package-level dependency cycles. This form of
cycle is detected by representing a system as a graph where
the nodes are packages and the edges are the dependencies
between them. Such a graph might contain strongly connected
components (SCCs) that are composed by one or more cycles.
A cycle is a closed walk with no repetitions of vertices and
edges allowed.

If an entity x depends on another entity y, we write x ⇀ y.
We categorize the dependencies in a system as follows:

• Class Dependency (CD): concrete dependency relating
a class to another. A ⇀ B, if the class A contains a
reference to the class B.

• Package Dependency (PD): conceptual dependency
between packages resulting from the aggregation of
one or more CDs. In more concrete terms, suppose
class A in package PA depends on class B in package
PB . Then PA depends on PB , and the CD A ⇀ B is
contained in the PD PA ⇀ PB .

• Shared Package Dependency (SPD): package depen-
dency that is present in more than one cycle.

Class dependencies are further classified into:

• Inheritance Dependency: A ⇀ B, if A is a direct
subclass of B or A implements B (in case B is an
interface).

• Reference Dependency: A ⇀ B, if
- a class field of A is of type B (Class Field).
- a class field of A is initialized with an object of type

B (Initialized Class Field).
- a variable defined in a method in A is of type B

(Local Variable).
- a variable defined in a method in A is initialized with

an object of type B (Initialized Local Variable).
- a parameter of a method in A is of type B (Param-

eter).
- the return type of a method in A is of type B (Return

Type).
• Invocation Dependency: A ⇀ B, if a method in A

invokes a method in B.

B. Refactoring Strategies

In our approach we use 4 distinct refactoring strategies.
In the remainder of this section we describe the different
strategies and their applicability constraints.
Move Class (MC)

This refactoring strategy moves a class from one package
to another. This refactoring strategy has previously been used
by Shah et al. [12] to untangle dependency cycles.

In Figure 1 (Before), the package components ⇀ control
(we will ignore the specifics of this dependency in the interest
of simplicity) and the class Button ⇀ Light, which induces
the reverse dependency control ⇀ components. This cycle
could be broken by simply moving Button to the package
components. This refactoring strategy is very simple but may
not be semantically consistent with the overall design of the
system. In fact, in this case, the class Button should not be
moved to components.

We will use the notation “MC: A to P ” to describe the
operation where class A is moved to package P .
Move Method (MM)

This refactoring is similar to Move Class. It has been
previously investigated by Tsantalis et al. [13] as a means to
remove Feature Envy bad smells.

Let’s assume that the method Button.press() depends on the
class Light (in Figure 1 (Before)). This invocation dependency
could be removed by moving the method from its original class
(Button) to the target of the dependency (Light).

We will use the notation “MM: M to A” to describe the
operation where method M is moved to class A.
Abstract Server Pattern (ASP)

This refactoring, described by Martin [14], is inspired by
the following principle: “Depend upon Abstractions. Do not
depend upon concretions”.
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Button
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Light
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Button
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Fig. 1. The ‘Abstract Server Pattern’ refactoring strategy

The refactoring can be used to invert the direction of a
dependency in case its target is a concrete class. In Figure 1,
Button has a field of type Light. This dependency can be
inverted by creating a new interface, Switchable, in the package
containing the class from which the dependency is originated.
This interface will then be implemented by the class on
the other end of the dependency (Light). By applying this
simple operation we inverted the dependency from control to
components, and we eliminated the cycle.

We use the notation “ASP: SourceElement for type Tar-
getClass” to describe an instance of this refactoring (in our
example, we would use: ASP: control.Button.light for type



components.Light).
Abstract Server Pattern + Dependency Injection (ASP+DI)
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Fig. 2. The ‘Abstract Server Pattern + Dependency Injection’ refactoring
strategy

This refactoring4 is an extension of the previously in-
troduced ASP refactoring. We use dependency injection to
eliminate initialization code responsible for dependencies. In
our example (Figure 2), we first apply the ASP refactoring.
Since Button.light is originally initialized using the default
constructor of Light, we remove the assignment in the field
declaration (Light light = new Light()) and declare a new
method (setLight()). This method will eventually be invoked
by an Inversion of Control (IoC) container (e.g., Spring5) when
the object is created. The actual value used for the initialization
could be defined in a configuration file and the field might be
annotated with a framework-specific annotation.

Using this technique has a positive impact on maintain-
ability, as dependencies can be easily changed to adapt to new
requirements or a different runtime environment. On the other
side, the code will contain implicit references and will require
some sort of configuration logic in order to function properly.
Fortunately, many applications (e.g., J2EE, Spring) already rely
on a dependency injection framework and therefore would not
be required to introduce drastic architectural changes in their
system.

Since ASP+DI is essentially a more refined version of
ASP, this refactoring can be used to handle all the cases
that are handled by its simpler counterpart. Nevertheless,
every refactoring technique presented in this section has a
different cost (i.e., implementation time) and semantic validity
associated to them. The choice between one refactoring or
another cannot be automatically determined and must be taken
by the user. In our approach we simply test the applicability
of each refactoring in the context of the analyzed system.

We will use the notation “ASP+DI: SourceElement for type
Class” to denote an instance of this refactoring.

4http://www.martinfowler.com/articles/injection.html
5http://docs.spring.io/spring/docs/current/spring-framework-reference/

html/beans.html

C. Strategy Applicability

Each refactoring strategy can be applied to break a vari-
able number of class dependencies. We provide a exhaustive
overview showing the applicability of the various strategies for
each type of dependency (See Table I).

dependency type MC MM ASP ASP + DI
Inheritance 3 7 7 7
Class Field 3 7 3 3
Init. Class Field 3 7 7 3
Local Variable 3 3(*) 3 3
Init. Local Variable 3 3(*) 7 3
Parameter 3 3(*) 3 3
Return Type 3 3(*) 3 3
Invocation 3 3(*) 7 3(*)

TABLE I. APPLICABILITY OF THE REFACTORING STRATEGIES
(ASTERISK STANDS FOR LIMITED APPLICABILITY)

The MM refactoring strategy is not applicable in case
the dependency is caused by an inheritance relationship (e.g.,
Button extends Light) or a class field dependency (e.g., But-
ton.light is of type Light). In those cases the refactoring cannot
be applied as no method is involved in the dependency.

The ASP refactoring strategy cannot be used in case the
dependency is caused by an initialized class or local variable
(e.g., Button.light is initialized to a concrete instance of Light).
In those cases, one should opt for the ASP+DI refactoring.

The ASP+DI refactoring cannot be used in presence of an
inheritance dependency (e.g., if Button is a subclass of Light).
In this case, the refactoring operation would break desired
properties deriving from the dependency (e.g., behavior reuse).

Special conditions apply in the circumstances marked with
an asterisk (Table I). MM cannot be applied to remove the
indicated dependencies if the method presents one of the
following properties:

• The method is a constructor.
• The method returns this.
• The method accesses a variable with class-scope.
• The method has an invocation to a static method

defined in the same class.

Furthermore, ASP+DI cannot be used if the dependency is
caused by an invocation and the invoked method is static, a
constructor, or super(), as none of these can be defined in an
interface.

III. OUR SOLUTION

Marea executes in three phases (see Figure 3): (A) Initially
it analyzes the input system to detect cycles; (B) then it
explores all possible refactoring sequences; (C) and finally it
suggest the most cost-effective refactoring sequence to the user.
In the remainder of this section we describe each phase in more
detail. The prototype is available for download on the web6.

A. Analyze cycles

Detect cycles – In order to start the process we have to
identify the dependencies in the target system. We do so by

6http://smalltalkhub.com/#!/∼caracciolo/Marea/

http://www.martinfowler.com/articles/injection.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
http://smalltalkhub.com/#!/~caracciolo/Marea/


running a fact extractor7 based on Eclipse JDT8. The extractor
visits all the nodes of the AST reconstructed by the underlying
Eclipse platform and uses that information to build a FAMIX
[15] model. This model will later be imported in Moose [16],
an analysis platform designed to simplify the task of querying
and manipulating FAMIX models. Once imported, the model
is ready to be analyzed. To detect the cycles, we define a
graph G = (V,E), where V are all the classes contained in the
obtained model and E are the package dependencies (as defined
in subsection II-A) existing among them. We use Tarjan’s
algorithm [17] to detect the strongly connected components
(SCC) in the graph. Each SCC is subsequently untangled into
individual cycles.

Analyze
Cycles

Compute 
Refactoring Paths

Accept 
Refactoring Step

select 
cycle

source 
code

select 
ref. path         

Marea

source 
code

A

B

C

Fig. 3. The three main process phases of our solution

This phase can be executed in linear time (i.e., the compu-
tational complexity of Tarjan’s algorithm is O(|V |+ |E|)).

Rank cycles – A typical project may contain a high number
of cycles. To help the user to optimize the refactoring effort,
we rank the cycles based on their overlapping degree and their
size. This means that smaller cycles containing dependencies
that are shared among more cycles will be presented before
larger ones with fewer shared dependencies. To define our
ranking, we sort all the cycles contained in the system (in
descending order) based on the following formula:

rank(cycle) =
|SPDcycle|

|CDcycle| ∗ |PDcycle|
(1)

where CDcycle, PDcycle, SPDcycle are the sets of all the
CDs, PDs and SPDs contained in cycle.

1 32

654

c1= {1,2,5,4}    
rank(c1) = 2 / (17*4) = 0.03 

c2= {2,5,4}
rank(c2) = 2 / (15*3) = 0.04

c3= {2,5,6,3}
rank(c3) = 1 / (13*4) = 0.02

2 2

88

CD

SPD

Package

4

1

6

1

PD

Fig. 4. Example: ranking of 3 cycles

7https://gforge.inria.fr/projects/verveinej/
8http://www.eclipse.org/jdt/

In the example illustrated in Figure 4, we have three cycles.
Cycle 2 ranks best because it has two SPDs and a relatively
low number of PDs and CDs.

Rank package dependencies – Cycles are formed by at
least two package dependencies (PD). PDs are aggregations
of multiple class dependencies and can be sorted based on the
following function:

rank(pd) =
| {cycle | pd ∈ SPDcycle} |

|CDpd|
(2)

where CDpd is the set of all the CDs contained in the package
dependency pd and SPDcycle are the sets of all the SPDs
contained a cycle.

This ranking function favors package dependencies that
are shared among many cycles and are composed by a low
number of class dependencies. These dependencies have the
highest probability to break multiple cycles at the lowest cost
(i.e., refactoring steps are usually proportional to the number
of CDs). An alternative method for ranking package cycles
is discussed in a recent work by Falleri et al. [18]. In their
approach, they assigning a higher rank to cycles that involve
packages that are more distant in the package containment
tree (e.g., rank({x, x.y.z}) > rank({x.y, x.y.z}); where x, x.y,
x.y.z are the packages forming the ranked cycles). They also
assume that cycles with PDs with a lower number of CDs are
more likely to have been introduced accidentally and therefore
should be ranked higher. The last assumption is also reflected
in our function.

B. Compute Refactoring Paths

User Action: Select cycle – When the analysis of the target
system is complete, the user is asked to select the cycle she
wants to remove. Her choice may be strongly influenced by her
expertise, past experience and priorities. For example, a cycle
that involves a core module is most probably more important
than one between utility packages.

Simulate refactoring paths – To find the best refactoring
sequence, we build a decision tree where each node represents
a mutation of the model originally extracted from the system
(Phase A). Each model variation is actually computed by
cloning an existing model and applying the modifications
prescribed by one of the supported refactoring strategies. The
memory footprint of every new model is limited by the fact
that only the changes are saved (and not a full new model).

Original

v1

v1.1

v2 v3 v4

v.1.2

MC MM ASP ASP+DI

ASP+DIASP+DI

2.7

3.1 2.3
MC

Fig. 5. Decision tree representing possible refactoring sequences

The example in Figure 5 illustrates a situation in which
the user selected a cycle in which the top ranked package

https://gforge.inria.fr/projects/verveinej/
http://www.eclipse.org/jdt/


dependency contains a class dependency that can be broken
using all four refactoring strategies9. Since all refactorings
are applicable, we create 4 variations of the original model
(v1-4). For each new model we search again for cycles and
recompute the dependencies that still need to be removed in
order to eliminate the cycle. In the model v1, we might have
to remove a dependency of type initialized class field. Since
this dependency can only be removed using MC or ASP+DI,
we obtain 2 new variations of v1 (v1.1-2).

The depth of the tree will grow depending on the level
of accuracy that needs to be reached. Sometimes class de-
pendencies might be impossible to break (e.g., the suggested
refactorings are semantically inconsistent with architectural
design choices). In this case more elaborated design changes
are required. In other cases, the removal of a class dependency
may introduce new cycles in the system, causing an overall
negative effect on the quality of the system. If this happens, the
resulting refactoring sequence should be applied with caution
or avoided.

The construction of a tree terminates when the cycle at
hand has been completely removed. This means that every path
connecting the root node to any leaf represents a complete
refactoring sequence that leads to the elimination of the
given cycle. The termination of the tree construction process
is guaranteed to terminate, because at least one refactoring
strategy (i.e., MC) can always be applied. The process can be
prematurely terminated for performance reasons by defining a
maximal tree depth.

Suggest optimal path – To distinguish between effective
and potentially harmful refactoring operations, we define a
profit function that summarizes the gain obtained by applying
that operation. The function should favor measurable quality
improvements and should penalize high-effort refactoring op-
erations. The function is defined as follows :

P =
w0

cycles+ 1
+

w1

depth
+ w2

(1− Ifrom) + (1− Ito)

2

+ w3
Afrom +Ato

2

(3)

where:

• cycles is the total number of cycles in the system.
• depth is the depth of the node within the decision tree.
• Ifrom/to quantifies the instability [14] of the package

from/to which the dependency is directed. This metric
is an indicator of the package’s resilience to change.
The value can range from 0 to 1, where 0 indicates a
completely stable package.

• Afrom/to quantifies the abstractness [14] of the pack-
age from/to which the dependency is directed. This
metric indicates the percentage of abstract classes
contained in the given package. The range for this
metric is 0 to 1, with 1 indicating a completely abstract
package. According to the Stable Abstractions Princi-
ple10, “packages that are maximally stable should be
maximally abstract”.

9This might be the case when the class dependency is of the type: local
variable; parameter; return type; or invocation. See Table I

10http://www.objectmentor.com/resources/articles/stability.pdf

• wi are constants that can be tuned to assign less or
more weight to the single components of the equation.
In our experiments, we chose to have all weights set
to 1.

The profit function was designed to guide the user towards
the best result (i.e., low number of dependency cycles and
high structural quality) by minimizing operational costs (i.e.,
low number of required refactoring steps). The profit value of
a refactoring sequence is inversely proportional to the number
of cycles existing in the system and the number of operations
composing the given sequence. Improvements in structural
quality (decrease of instability or increase in abstractness)
contribute to increase the profit. Weights (i.e., wi) have been
introduced to accommodate project/organization specific cus-
tomization. These parameters could be tuned manually or
automatically (based on previous interaction sessions).

This profit function is used in our approach to calculate
the utility value of the single nodes composing our decision
tree. As the tree is completely constructed, we will review all
the leaf nodes and select the one with maximum profit. The
refactoring sequence corresponding to the path connecting the
root of the tree to this node is the sequence that will (according
to our profit function) remove the cycle at the lowest cost.
In our example (Figure 5), the best refactoring sequence is
Original → v1 → v1.1. This refactoring sequence has a profit
value of 3.1. In this example we assume that all the sub-trees
below v2-4 lead to lower profit leaf nodes.

C. Accept Refactoring Path

User Action: Select refactoring path – The optimal
refactoring sequence might be composed by a large number
of refactoring steps. Some of these steps might be applicable
to the system under analysis while others might be semanti-
cally inconsistent with the overall design of the project. To
opportunely guide the user in the process, we present her only
with the refactoring actions that compose the optimal path.
Other sub-optimal refactoring sequences can be examined on
request.

Update dependency graph – Once the user has chosen to
apply a specific refactoring sequence, the process updates its
internal model and starts again from the beginning (i.e., phase
A). All the selected refactoring operations are only simulated
and not applied to the code. Refactoring sequences could be
exported in a textual format and serve as an input for another
tool that will perform the actual modifications to the source
code.

IV. EVALUATION

To test the applicability of our approach, we used our proof-
of-concept prototype to analyze two projects (one open-source
and the other commercial). In this section we describe the
outcome of our experiments.

A. JHotDraw

JHotDraw11 is an open-source project developed by
Gamma et al., often chosen as a reference object-oriented
system for its sound design and rich use of design patterns. We
analyzed version 6.0 beta 1, consisting of 485 Java files and a

11http://www.jhotdraw.org
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total of 28,000 non-comment lines of code. During our analysis
we detected 44 package cycles. Six of them could probably be
considering irrelevant, as they only involve packages belonging
to the test modules (i.e., org.jhotdraw.test.**). The remaining
ones are more likely to be considered harmful and often
involve packages (i.e., org.jhotdraw.contrib, org.jhotdraw.util)
that, at first sight, should not belong to cycles. A subset of
cycles encountered in our analysis is presented in Table II.

To test our prototype we followed the steps described
in section III. Since we could not find an expert user who
could help us discarding sub-optimal refactoring options, we
blindly followed the suggestions offered by the tool without
considering the semantic implications that this could have on
the overall design of the system. As a result, we managed to
discover a refactoring that allowed us to break all 44 cycles
in 7 refactoring steps. This result was achieved through the
following steps (described in detail in Table II):

Cycle #1 ({contrib, samples.javadraw, contrib.zoom}12):
This cycle was removed by inverting the dependency contrib
→ samples.jhotdraw. This dependency has been selected as
best candidate for removal because of its relatively smaller
number of comprising class dependencies (2 compared to the
18 dependencies existing in the opposite direction) and its
high number of dependency sharing (14 other cycles share
the same dependency). The cycle was removed by moving the
class SVGDrawApp from contrib to samples.jhotdraw. This
was not only the optimal refactoring solution, but also the
only one applicable. In fact, the class SVGDrawApp inherits
from org.jhotdraw.samples.javadraw.JavaDrawApp. Therefore
the only applicable refactoring strategy is Move Class (see
Table I). Moving the class to samples.jhotdraw automatically
removes the second dependency, consisting of an invocation
to the parent constructor (using the super construct). After this
step, the system still contained 26 unresolved cycles.

cycle #2-5 (2: {contrib, contrib.zoom}, 3: {test,
test.samples.pert}, 4: {standard, contrib, samples.javadraw,
framework}, 5: {standard, contrib.dnd}): As the analysis
continues, more complex cycles are analyzed. Cycles 2,
3, 5 offer two refactoring options while cycle 4 offers
only one. In all four cases, the MC refactoring appears
to be the more convenient option (according to our profit
function Equation 3). Proposed alternatives feature a
profit score that is very similar to the chosen optimal
counterpart. This means that, according to our profit
function, all non-chosen refactorings would have been good
candidates for the refactoring. In cycle #2, the second best
refactoring option suggested by our tool was ASP+DI on
contrib.CustomSelectionTool.showPopupMenu([..]) for type
contrib.zoom.ZoomDrawingView. This option scored 1.35
profit points, compared to the 1.36 of the chosen refactoring
strategy. Also in cycle #3, the alternative solution (i.e., MM
test.AllTests.suite() to test.samples.pert.AllTests) had a similar
score compared to the optimal solution (1.44 compared to
1.52). After this step, the system still contained 3 unresolved
cycles.

cycle #6 ({framework, util}): The weaker package depen-

12A dependency cycle is described as a set of packages, where the
element in position N depends on N+1 and the last depends on the first. The
common package name prefix “org.jhotdraw” has been removed for readability
purposes.

Cycle Refactoring Sequence
1 MC: contrib.SVGDrawApp to samples.javadraw
2 MC: contrib.CustomSelectionTool to contrib.zoom
3 MC: test.AllTests to test.samples.pert
4 MC: standard.StandardDrawingView to contrib
5 MC: contrib.dnd.DragNDropTool to standard

6

MC: framework.Handle to util;
MC: framework.DrawingView to util;
ASP: framework.HandleEnumeration.nextHandle() for type util.Handle;
ASP: framework.DrawingEditor.getUndoManager() for type UndoManager;
MC: framework.Tool to util;
MC: framework.DrawingEditor to util;
MC: framework.Locator to util;
MC: framework.Figure to util;
MC: framework.Connector to util;
MC: framework.ConnectionFigure to util;
MC: framework.Drawing.findFigureInsideWithout (int,int,Figure) to util;
MC: framework.DrawingChangeEvent.Drawing
ChangeEvent(Drawing,Rectangle) to util;
ASP: framework.DrawingChangeListener.drawingInvalidated([...]).e
for type framework.DrawingChangeEvent
ASP: framework.DrawingChangeListener.drawingTitleChanged([...]).e
for type framework.DrawingChangeEvent
ASP: framework.DrawingChangeListener.drawingRequestUpdate([...]).e
for type framework.DrawingChangeEvent
MC: framework.Locator to util;

7

MC: util.UndoableCommand to standard
MC: util.UndoableTool to standard
MC: util.Figure to standard
MM: util.ConnectionFigure.startFigure() to util.Figure
MM: util.ConnectionFigure.endFigure() to util.Figure
ASP: util.GraphNode.node for type standard.Figure
MC: util.GraphLayout to standard
MC: util.ConnectionFigure to standard
MC: standard.RedoCommand to standard
MC: standard.UndoCommand to standard
MC: util.JDOStorageFormat to standard
MC: util.UndoableHandle to standard

TABLE II. JHOTDRAW: DETECTED CYCLES AND REFACTORING
SEQUENCES APPLIED TO REMOVE THEM.

dency in this cycle consists of nine class dependencies. For
performance reasons, we decided to limit the depth of the sim-
ulation tree to a maximum of three. The suggested refactoring
reported in Table II was obtained by combining the optimal
paths computed during three subsequent simulation phases.
During each simulation step, the tool evaluated an average
of almost 30 different scenarios. The whole process had to be
split into three phases because of the considerable memory
requirements required to compute the individual simulation
trees.

The refactoring steps reported in Table II show that
our tool tried to break the dependency from framework to
util by applying the MC and ASP refactorings in a pre-
cise sequence. The first operation consists in moving the
class framework.Handle to util. This operation introduces
a new dependency between the two packages framework
and util, since framework.HandleEnumeration.nextHandle()
has a return type Handle, and Handle is now in package
util. To address this issue, the tool proposes to apply ASP
on framework.HandleEnumeration.nextHandle() (operation 3).
The subsequent operations contribute further in reducing the
number of dependencies. Only the 8th operation (i.e., MC:
framework.Figure to util) appears to be problematic. In fact,
by moving Figure into its new package, we introduce new
dependencies. This happens because another class contained in
framework is heavily coupled with Figure (i.e., many methods
return Figure or require arguments of type Figure) and moving
Figure to util, we automatically add 23 new dependencies from
framework to util. This contributes in increasing the effort
required to remove the cycle. The new dependencies are slowly
removed by further applying the MC and ASP refactorings.



After this step, the system still contained 1 unresolved cycle.
cycle #7 ({framework, util}): This last iteration also had

to be split into multiple phases. The number of steps within
the optimal refactoring sequence is relatively contained (11
refactoring operations), but the memory resources required to
compute all the possible alternative paths was considerable.
Also in this case the tool preferred to resort to MC in most of
the steps. However, in few cases, it also suggested to use the
MM and ASP refactoring. MM could be seen as a variant of
MC with a lower impact on the design of the system (since a
smaller part of functionality is moved across packages). The
reason why MC is often preferred over MM is that it provides
a means to remove dependencies in a smaller number of steps.
If no other class depends on the moved class, then no negative
side effect will result from the refactoring.

B. Industrial Project

To further evaluate our tool, we approached a team working
in one of the largest IT companies in Switzerland. The team,
composed of four people, was actively developing a module
that was part of a larger project. The version that we could
analyze consisted of 865 Java files distributed across 159
packages for a total of 50.000 non-comment lines of code.

Our contact person explained to us that the team prided
itself for dedicating special care to good object-oriented design
practices. The quality of their software was, according to them,
superior to that of other modules developed within the same
project. The team also regularly used SonarQube13, a quality
assessment tool that, among other things, offers a report of all
the cycles contained in a project.

[..].scout.client [..].scout.server.services.process.stubs

..
registerStubbedServices()
execLoadSession()

[..]ClientSession getStubbedServices()
StubbedServiceRegistry

..
retriggerPostLoginActions()
updateSharedContextVariableMap(Shar
edVariableMap)

[..]MiscellaneousProcessServiceStub
C3

C2
C1

P1 P2

private void registerStubbedServices() [..] {
    Object[] stubbedServices = StubbedServiceRegistry.getStubbedServices();
    registerServices(getBundle(), 500, stubbedServices);
    stubPostLoginActions();
    setServiceTunnel(new StubbedServiceTunnel());
    setDesktop(new Desktop());   }

3

1

Fig. 6. One of the cycles found in the industrial project

During our analysis, Marea found 25 cycles formed across
22 packages. We asked our collaborator (a member of the
development team) to select the most relevant cycles. From
those, we chose to analyze the cycle represented in Figure 6.
This cycle involves two packages (i.e., [..].scout.client and
[..].scout.server.services.process.stubs) and is caused by a total
of four dependencies involving three classes. Any detail that
may reveal the identity of the company has been omitted as
explicitly requested. Packages and classes have been labeled
for convenience.

13http://www.sonarqube.org
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C1.registerStubbedServices()
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C1 to P2

C1.execLoadSession() 
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0.6
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0.7 0.7

Fig. 7. Simulation tree for the cycle found in the industrial project

To break this cycle, Marea ranks the package dependencies
based on Equation 2. Since the dependency between C1 and
C2 is caused by one single invocation, the tool proceeds
with the computation of all refactoring paths that may lead
to its removal. The result of the simulation phase is shown
in Figure 7. As we can see, Marea evaluates 4 alternative
refactoring sequences. The first one consists in moving the
class C1 to the package P2. This simple refactoring not only
eliminates the dependency from P1 to P2, but also the one
from P2 to P1. In fact, at the end of the refactoring, all the
classes involved in the cycle will be in one single package.
This solution obtains a profit score of 1.1, which makes it
the best refactoring sequence. An alternative solution, would
have been to move the method C1.registerStubbedServices()
to C2. This operation is similar to the previously described
move class, with the difference that only the method involved
in the dependency needs to be moved. Unfortunately, another
method in C1 (i.e., execLoadSession()) depends on the moved
method. Because of that, the dependency from P1 to P2 is still
not broken and further steps must be taken. The tool evaluates
3 options: MC of C1 to P2; MM of C1.execLoadSession() to
C2; ASP+DI of C1.execLoadSession() for type C2. The first
refactoring simply replicates the approach taken in the optimal
solution. The second one moves the method that is now causing
the dependency between the two packages to its target class.
This solution breaks the cycle since C1.execLoadSession() has
no incoming dependencies. The last refactoring inverts the de-
pendency between the two packages by removing the explicit
reference to C2 in C1.execLoadSession() using ASP+DI.

To test the full applicability of the obtained solutions,
we performed all the proposed refactoring operations us-
ing a common IDE. We initially opted for Eclipse14, but
eventually had to find for an alternative. In fact, Eclipse
supports all the required refactoring operations but failed in
performing MM of C1.registerStubbedServices() to C2. The
reason is that the move method refactoring “cannot be used
to move potentially recursive methods”. Despite the fact that
C1.registerStubbedServices() is by no means recursive, we
could only complete the operation manually. In a second
attempt, we chose to use IntelliJ IDEA15. This IDE correctly
performed the MM refactoring by first adding a static modifier
to C1.registerStubbedServices() and then moving it to its target
class. All subsequent refactoring operations were also correctly
applied. In the end we verified that all proposed solutions are

14https://www.eclipse.org
15https://www.jetbrains.com/idea/

http://www.sonarqube.org
https://www.eclipse.org
https://www.jetbrains.com/idea/


sound and lead to the complete removal of the cycle.
We asked one of the developers to comment on the

proposed solutions. After an attentive analysis of the code,
he explained that:

• Solution 1 (MC), is simple and might be applicable if
there were no restriction on how the two packages are
deployed. Unfortunately client and server are deployed
separately. Moving the class C1 to the package P2
would require to include client libraries into the server
bundle.

• Solution 2 (MM + MC), is meaningless since it
reaches the same result as in Solution 1 but in two
steps instead of one.

• Solution 3 (MM + MM), is not a complete so-
lution since the moved method (execLoadSession())
overrides a method of its superclass. The method
also calls itself using the super keyword (i.e., su-
per.execLoadSession()). Moving the method to another
class would break the functionality of the method.

• Solution 4 (MM + ASP/DI), is the solution of choice
of our subject. This refactoring is more time con-
suming and complex compared to all other ones, but
cleanly separates the concepts contained in the two
packages. The functionality remains where it has been
originally placed and a newly introduced interface
serves as a contract between the two classes causing
the dependency.

One additional solution, that might apply only in this
particular case, suggested by our user was to move P2 under
P1. In fact, P2 only contains lightweight classes with few
dependencies and no business logic. These classes have been
created for testing purposes and do not necessarily need
to be deployed with any of the two packages. Making P2
into a sub-package of P1 would quickly remove the cycle
and only introduce a minor semantic inconsistency. On one
hand, the classes contained in P2 should logically belong
to the scout.server package hierarchy, as they relate to the
server domain. On the other hand, moving them to P1 would
be acceptable because they are exclusively used for testing
purposes. This solution would not completely remove the
cycle, but, for our user, cycles contained inside architectural
components (i.e., scout.server, scout.client) are considered to
be of secondary importance.

Solution 4 has been chosen as best refactoring strategy
because it reflects a standard refactoring adopted by the team
to remove dependencies. In fact, many classes deployed sepa-
rately on client and server, share common interfaces. Concrete
dependencies are resolved through a dependency injection
mechanism based on AOP and the exchange of serialized
classes over HTTP. The preference expressed by the user
for this refactoring strategy could be explicitly factored into
the profit function (i.e., in Equation 3, add another term:
w4×number of ASPDI).

Solution 2 showed that the algorithm might lead to a mean-
ingless solution when the proposed refactoring path reaches
a previously explored subgraph. This point can be used to
optimize the construction of the decision tree.

Solution 3 brought up another corner case that needs to

be treated with special care. This case will be addressed by
implementing a dedicated guard in the algorithm responsible
for building the decision tree.

V. DISCUSSION

A. The Package Blending Problem

Our approach is always guaranteed to reach a solution, as
long as enough time and memory are provided. In fact the
MC refactoring can be applied in any circumstance, and will
therefore always be used to approach an optimal solution. The
problem is that the MC refactoring might often not represent
the most desirable type of refactoring from a semantic point of
view. The change implied by this refactoring is only justifiable
if the behavior described in the moved class is consistent with
the category described by the target package. If we ignore
this reasoning and blindly move classes from one package to
another (as we intentionally did in subsection IV-A), we will
end up gradually dismantling the modularity of the system.
This behavior may possibly lead, in the extreme case, to the
complete blending of one package into another. If that happens
we will have eliminated a package dependency causing a cycle
but we would have significantly altered the high-level structure
of the project. This contrasts with the separation of concerns
design principle, which advocates the isolation of cohesive
functionality.

This general tendency towards the unification of packages
should primarily be prevented by the user. The profit function
often suggests MC as an optimal refactoring strategy (See
Table II), as it offers a fast and uncomplicated way to get rid
of a dependency. Another approach to control the abuse of the
MC refactoring strategy, could consist of extending the profit
function (Equation 3) with an additional metric that measures
package cohesion. One such metric could be an opportunely
adapted variation of LCOM [19], a metric that quantifies the
number of responsibilities of a given functional unit, or CRSS
[20], a metric for good package design.

A further option to control the execution of the simulation
algorithm could be to support the specification of structural
invariants that define the boundaries of allowed refactor-
ings. These invariants could explicitly forbid the relocation
of classes contained in specific modules or the separation
of entities sharing some semantically relevant property. The
specification of the architectural components (in terms of sets
of packages) would already be sufficient to prevent design
breaking changes (e.g., moving classes between a client and a
server component).

B. Prototype Limitations and Tradeoffs

Simulating multiple refactoring scenarios, as we have seen
in section IV, has its cost. One of the main issues encoun-
tered during our experimentation is related to the amount of
memory required to store each evaluated simulation step. In
our prototype we tried to optimize memory consumption by
using in-memory object models that can be evolved by only
saving the incremental changes that separate one version of
the model from another. This was possible thanks to a third-
party framework called Orion [21]. Despite the advantage
of incremental change memorization, we still encountered
several cases in which the simulation exhausted the available
memory resources. This issue could probably be addressed by



improving the Orion framework or opting for a more scalable
data management approach for storing our models (e.g., a
graph database). Another viable solution consists in optimiz-
ing the simulation process by enhancing the profit function
(subsection V-D) or by taking into account complementary
information (e.g., architectural rules, build configuration files)
that leads to the definition of structural constraints.

During our experiment we decided to cope with the above
mentioned limitation by pruning the simulation tree at a pre-
fixed depth. This choice might have a negative impact on
the accuracy of our technique. In fact, a partial sub-optimal
refactoring sequence could theoretically develop into an op-
timal solution in further steps of the simulation. By varying
the maximum length of a simulation path, we can vary the
tradeoff between the overall cost of the analysis and its level
of precision.

Another significant aspect that needs to be considered
when implementing our approach is the level of correctness
of the simulated refactoring operations. In our prototype, as
mentioned, we delegated the versioning of our simulation
models to a dedicated framework. This framework allows
us to evolve existing models by applying predefined ba-
sic change operations (e.g., create/delete class, create/delete
method). The refactoring strategies discussed in this paper
(subsection II-B) had to be implemented by combining several
of those change operations. This implies investigating and
managing all possible edge cases, updating references and
maintaining the system in a generally consistent state. This
whole spectrum of complexity is well managed in commercial
refactoring engines, but requires considerable effort to be
implemented from scratch. In our prototype, we did our best
to address all encountered issues and to handle the most
recurring cases. Despite our effort, we recognize the fact that
implementing a fully correct refactoring operation requires a
considerable engineering effort. Furthermore, the completeness
of the implementation also depends on the level of detail of
the meta-model used to represent the system under analysis.
If certain details of the system are only partially captured
in the model, then those details are not guaranteed to be
correctly updated to reflect the applied refactoring. We plan
to address the above mentioned limitations by engaging in
further experimentation and performing comparative studies
with current implementations of refactoring algorithms (e.g.,
Eclipse JDT refactoring engine16).

C. Refactoring application

As explained in subsection IV-B, applying the refactoring
operations suggested by Marea is not always easy. Our ap-
proach simulates the refactoring operations on models that are
only partially as complex as the reality they represent. This
means that all the details necessarily omitted in our models
may play a role in the actual applicability of the suggested
operations. We try to prevent complex situations by analyzing
the properties of the involved code elements (e.g., MM cannot
be applied on methods that contain invocations to other static
methods defined in the same class). Our approach can be
considered safe and unobtrusive. A possible evolution of our
approach could be based on the speculative application of
refactoring step in a code sandbox. This approach would be

16http://www.eclipse.org/jdt/

more pragmatic but might possibly require more computation
time, as the analysis model (on which decisions are taken)
needs to be reverse engineered after each iteration.

D. Profit function

The profit function used in our approach and described
in Equation 3, is a simple attempt at quantifying the effect
of a refactoring strategy over a project. It was designed to
guide the user in choosing a better solution based on objective
measurements. Given that the optimal solution can only be
decided by the user, we assume that this function should
only be used as a general heuristic for comparing competing
alternative solutions. The metrics employed in the calculation
are well known indicators of the structural stability of software
packages. The function could be improved by adding further
metrics and changing their relative impact by modifying their
weight coefficients. A more adequate combination of weights
could be inferred by performing empirical studies and record-
ing the paths typically chosen by the majority of the users.

VI. RELATED WORK

Providing automatic support for the removal of dependency
cycles is a complex problem. We here report on the main
research directions that have developed around this topic.

A. Refactoring Candidate Identification Heuristics

Some approaches are specialized in detecting the most
critical elements in a dependency cycle. These approaches do
not advise explicitly on how to remove a cycle, but rather
provide hints on where to look in order to devise a proper
refactoring strategy.

Melton et al. present Jepends [6], a tool that identifies the
classes that should be refactored in order to remove a cycle.
Each class in the system is analyzed and ranked based on its
number of incoming/outgoing dependencies and on the number
of cycles it is involved into. Classes that most contribute to
cycles and with higher coupling are considered to be the best
starting point for further inspection and consequent refactoring.

Jooj [8] is another tool by Melton et al. that warns the
user about the existence of cycles as soon as they appear. The
warnings are displayed within the IDE and further instructions
may be provided to remove critical dependencies. The main
assumption behind this solution is that, as long as the user
is aware of the impact of his actions, new cycles will not
be introduced. The authors declare their intent to implement
refactoring suggestions based on patterns described by Lakos
[22] (e.g., escalation, demotion, dumb data, manager class).
No further information is provided regarding the challenges
involved in adding this specific feature.

Laval et al. introduce CycleTable [23], a visualization
technique that should guide the user in the identification of
critical code elements involved in cycles. CycleTable does not
focus on a single solution to break cyclic dependencies. It
rather groups classes based on their coupling profile. This
approach could be compared to the one used in Jepends [6], as
both aim at classifying code units based on structural metrics.

Laval et al. also present another tool, Ozone [24]. Orion
suggests which dependencies should be removed in order to
obtain a layered package structure. The target architecture is
inferred automatically based on the analysis of the source

http://www.eclipse.org/jdt/


code and a set of optional user-defined dependency constraints.
The refactoring steps required to concretely obtain the target
architecture are left to the user to investigate.

All the mentioned approaches only provide small hints
regarding what concretely needs to be done to break a de-
pendency cycle. In fact, presenting a list of candidates for
refactoring without further instructions on how to perform the
actual refactoring task only partially contributes to solving the
problem of cycle removal.

Oyetoyan et al. [25] propose a new heuristic metric that
can be used to guide the removal of intra-class cycles. Their
algorithm identifies an optimal refactoring strategy that maxi-
mizes a set of structural metrics (e.g., coupling) and promotes
specific implementation choices (e.g., class attribute static
modifier). The resulting refactoring is then applied to update an
annotated graph model representing the system. The algorithm
can be applied multiple times until all class cycles have been
removed. The main difference between this approach and
Marea is the fact that Marea explores multiple refactoring
options and evaluates combinations of multiple refactoring
strategies during each analysis step. Instead of simply applying
a pre-configured default refactoring, Marea simulates complete
refactoring scenarios and is therefore capable of measuring the
impact of the overall refactoring instead of just focusing on
devising a solution based on step-wise optimization. Marea
also focuses on package cycles, instead of class cycles.

B. Refactoring Simulation

Many commercial tools provide support for removing
cyclic dependencies through the simulation of refactoring
operations.

In Structure10117, the user can move classes, methods,
fields and packages using drag-and-drop actions. No guidance
is provided during the process. Refactoring operations, such
as move method, seem to be always easily applicable without
considering the effects that such an operation would involve
when applied on the corresponding code elements. The depen-
dency graph of the analyzed system is hard to navigate and
cannot be reduced to isolate single cycles.

SonarGraph-Architect18 allows the user to identify the de-
pendencies that cause a cycle. These dependencies are ranked
and described at the granularity level of classes. No hints are
provided on how to remove the identified dependencies. the
user can move classes from one package to another and observe
the impact of the operation on the dependency structure of the
system.

Lattix LDM19 visualizes cyclic dependencies using a De-
pendency Structure Matrix [26]. Besides finding cycles, the
tool also supports basic structural editing features such as the
renaming, moving and deletion of packages. This limited set
of operations may help removing certain cycles, but will also
most probably encourage users to reduce the modularity of
their system.

Pasta [11] is a tool developed by Compuware. Pasta, like
Ozone [24], tries to derive the best layering configuration for
a given system and presents the user with all the dependencies

17https://structure101.com
18https://www.hello2morrow.com/products/sonargraph
19http://lattix.com

that need to be removed to implement that configuration.
Pasta also offers a graphical interface that supports the simula-
tion of several refactoring operations by drag-and-drop: move
package, move class. Simulated changes can eventually be
automatically applied to the code. The author claims that a
future version of the application will also support advanced
refactoring operations described by Martin [2].

All the presented tools deal with dependency cycles in the
same terms as one would approach a graph problem. Each
node composing the cycle can be moved around regardless
of the complexity of its underlying implementation. Little or
no guidance is provided on which operation may offer the
best compromise between effort and benefit. The user has the
responsibility to decide between many refactoring options that
can only often be performed only on larger granularity ele-
ments (packages, class). The gap between the simulated change
operations and the actual refactorings that might eventually be
applied on the corresponding code elements remains large.

If the editing features provided by the current commercial
solutions could be extended with more sophisticated refac-
toring operations and supported by an intelligent decision
support system, we might have a complete solution for dealing
effectively with cyclic dependencies.

VII. CONCLUSION

In this paper we introduce a novel approach to guide
developers in the task of removing cyclic dependencies among
packages. We propose a tool that simulates various refactoring
operations and identifies the optimal change sequence based
on a profit function. We also report on the challenges that we
encountered during the implementation and evaluation of the
tool.

We conclude that assisting a user during the removal of
cyclic dependency is possible and worthwhile. Our prototype
illustrates the basic phases that such a process should support.
In the future we plan to improve the scalability of the tool
by using an alternative framework for model versioning. We
also plan to improve the consistency and reliability of the
supported refactoring simulation operations. We believe that
by addressing these two aspects we could provide a solution
that effectively complements existing commercial solutions.
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