
Evaluating an Architecture Conformance
Monitoring Solution

Andrea Caracciolo∗, Mircea Lungu†, Oskar Truffer‡, Kirill Levitin§ and Oscar Nierstrasz∗
∗SCG, University of Bern, 3012 Bern, Switzerland, Website: http://scg.unibe.ch

†University of Groningen, 9747 Groningen, The Netherlands, Email: m.f.lungu@rug.nl
‡studer + raimann ag, 3097 Liebefeld, Switzerland, Email: ot@studer-raimann.ch

§bbv Software Services AG, 3000 Bern, Switzerland, Email: kirill.levitin@googlemail.com

Abstract—Architectural rules are often defined but rarely
tested. Current tools offer limited functionality and often require
significant effort to be configured, automated and integrated
within existing platforms. We propose a platform that is aimed
at reducing the overall cost of setting up and maintaining an
architectural conformance monitoring environment by decoupling
the conceptual representation of a user-defined rule from its tech-
nical specification prescribed by the underlying analysis tools. The
user is no longer expected to encode her constraints according
to the syntax of the chosen tool, but can use a simple high-level
DSL that is automatically compiled to an executable specification
through custom adapters developed to support the interaction
with existing off-the-shelf tools. In this paper we analyze three
case studies to show how this approach can be successfully
adopted to support truly diverse industrial projects. By discussing
qualitative aspects of the approach, we investigate limitations and
opportunities for improving general quality assessment solutions
in general and DSL-based conformance tools in particular.

I. INTRODUCTION

Software architecture tends to drift from its original design
over time [1]. To prevent this from happening, professionals
can (sometimes) use tools to check wether certain invariants
are actually met by the system at hand. These tools are quite
different from one another and the effort required for their
integration, configuration and maintenance is often consid-
erable. In a previous study [2], we investigated the type of
constraints that software architects are interested in checking
and discovered a wide range of requirements. Only a small
fraction of them is well supported by existing tools, and where
tools exist only a smaller part of the developer community is
aware of them. We also observed that developers have the
tendency to use divergent subsets of tools, which suggests
that the products available on the market are not noticeably
different.

Based on various interviews we discovered that attempts
at automating architectural conformance checking often ended
with failure, given that the resources invested in the task often
exceeded the allocated budget. Practitioners are open to adopt
quality assessment tools, but are not willing to pay the cost
of deployment and maintenance activities. To relieve them
from this additional cost, we developed a solution that allows
users to formulate architectural rules using a simple high-level
domain specific language (DSL) and automatically have them
checked by third-party analyzers [3] (See Figure 1). Using our
tools, users can express complex rules without directly dealing
with the peculiarities of the underlying checking tools. This
paves the way for a broader involvement of stakeholders in

describing the architecture of the system. In case a specific
kind of rule is not supported, technical users can be asked to
develop a new plugin (reusable across different projects) that
encodes the logic required to communicate with the off-the-
shelf tool chosen for that rule. This solution has the potential to
aggregate the functionality of most existing quality assessment
tools under the umbrella of a single uniform and readable
language.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus ut dui fermentum,
blandit ligula vel, hendrerit velit. Donec laoreet, urna et sodales pretium, lacus sapien
pharetra libero, nec sodales neque velit sit amet tortor. Phasellus vitae magna at leo
 sagittis tincidunt. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Praesent eu accumsan diam. Phasellus lectus enim,
elementum sed ultrices vitae, volutpat eget urna. Aliquam vitae sagittis urna,
in lobortis orci.

TestMethods = Class with annotation:"@Test"
Controllers = Package with name:”*controller*”, name!:
Core = {Controllers, Model} except {Tests, Utils}

Core cannot contain code clones
only Controllers can catch ValidationExceptions
WebAPI must have latency < "100 ms"
Tests must have method Setup, Teardown

only Controllers can catch InputExceptions
Tests must have method Setup, Teardown
XMLWeb must have child "servlet-mapping"

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus ut dui fermentum,
blandit ligula vel, hendrerit velit. Donec laoreet, urna et sodales pretium, lacus sapien
pharetra libero, nec sodales neque velit sit amet tortor. Phasellus vitae magna at leo
 sagittis tincidunt. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Praesent eu accumsan diam. Phasellus lectus enim,
elementum sed ultrices vitae, volutpat eget urna. Aliquam vitae sagittis urna,
in lobortis orci.

Analyzers

DSL
Evaluator

Fig. 1. Approach overview: rules are checked by third-party analyzers and
the results are integrated into a quality analytics platform.

To evaluate the effectiveness of our solution we applied our
tool suite in the context of three distinct industrial projects. In
this paper we describe and analyze the main results of our
study. The case studies show that our approach has the poten-
tial to engage stakeholders in discussions that would otherwise
probably never have taken place. Dictō, the DSL proposed as
part of our solution, becomes a powerful instrument for ex-
pressing and communicating architectural rules. Relying on a
highly extensible analysis platform allows developers to spec-
ify rules without taking directly into account the limitations of
a particular analysis tool or the challenge of maintaining rules
written in multiple definition languages for multiple analysis
tools. Instead, they can quickly prototype rules and benefit of
the reusability offered by adapters developed in other contexts.

Structure: We briefly describe our approach (section II),
introduce the case studies (III) and describe how we proceeded
with their evaluation (IV). Eventually we analyze the results
obtained at the end each case study (V) and discuss the
suitability of the whole approach (VI). Finally we conclude
(VII-VIII).

II. OUR APPROACH

Our goal is to streamline the process of validating archi-
tecturally relevant quality constraints. This is done by offering
Dictō – a common declarative specification language as the
main interface for the definition of rules and Probō – providing

a highly automated and extensible platform for the integration
of heterogeneous off-the-shelf analyzers. Dictō and Probō have
already been described at length in a previous publication [3].
In this section we briefly describe their key characteristics.

Dictō is a DSL whose design is based on requirements
collected in a previous empirical study [2]. It can be used to
define entities and rules as in the following example:

Test = Package with name:"org.*.test.**"
only Test can contain dead methods

In this example, we define a logical entity, named Test,
which is of type Package. Entities are described through
selection attributes which are declared for establishing a map-
ping with corresponding elements in the implementation. In
this case Test is mapped to all packages matching a specific
naming schema (“org.*.test.**”). Rules are characterized by
a modifier (i.e., must, must .. any, cannot, only .. can, can ..
only) and describe a constraint (i.e., contain dead methods)
that must be fulfilled by one or more of subject entities
defined at the beginning of the rule (i.e., Test). Constraints
may have arguments that might be entities (e.g., Tests must
have method JunitSetup) or primitive values (e.g., WebApi
must have latency < 1000 ms). A schematic representation
of the language grammar is presented in Figure 2. Further
documentation can be found on our website1.

name : String
value : String

Attribute

arguments

type = {Package, Class, ..}
name : String

Entity

subjects

String

name : String
Predicate

mode = {must, cannot, can..only,
only..can, must..some}

Rule

* *

*

*

1
Integer*

arguments

arguments

Fig. 2. Dicto grammar (instantiated on previously mentioned example).

Probō: User-defined rules are evaluated by Probō. The
application is based on a pipeline architecture that can be
described by the following sequential phases:

• Parsing: In this phase we analyze the provided source
code, extract all the necessary information and create
an in-memory model of the target system.

• Transformation: All user-defined entities and rules are
normalized and broken down into more manageable
predicates. Those are forwarded to the most appro-
priate adapter, which generates a specification for
the tool it supports. Adapters are lightweight data
transformers that are built by technically specialized
developers with deeper knowledge of the configuration
and operation of a given target tool.

• Analysis: External tools are launched using the gener-
ated specification. It is a tool’s responsibility to eval-
uate the given predicates and provide the information
necessary to identify the violations for the originally
defined rules.

1http://scg.unibe.ch/dicto/

• Reporting: The output generated by the external tool
needs to be interpreted and processed to separate fail-
ing rules from passing ones. A report file summarizing
the outcome is eventually generated.

To check the rule declared at the beginning of this section,
we need to verify that none of the packages contained in
the system (excluding “Test”) fulfills the stated invariant (i.e.,
“contain dead methods”). Assuming that the system consists of
5 packages (i.e., org.app.{model, view, controller, util, test}),
in the transformation phase we obtain predicates that logically
correspond to the following statements:

contain-dead-methods(org.app.model)

contain-dead-methods(org.app.view)

contain-dead-methods(org.app.controller)

contain-dead-methods(org.app.util)

In our example, the external analyzer supported through an
appropriate adapter would need to test whether each individual
predicate described above is true or not. The truth values
derived from the analysis are then integrated into Probō’s
model and used to determine the validity of the user-defined
rule. In our example, if any of the four predicates obtained
before happens to be true, then we can conclude that the
original rule (i.e., only Test can contain dead methods) is
violated. During the last phase of the process, Probō will finally
integrate all the obtained results into a single uniform report.

III. CASE STUDIES

We evaluate our architectural monitoring solution in case
studies with three development teams working on distinct
projects in two different companies (See Table I).

Organization
domain (n. employees)

Project
tech. - size

Team
size

C1 Transportation (1.000+) J2EE - 50 K 5
C2 Transportation (1.000+) J2EE - 0.5 M 30+
C3 e-Learning (12 vendors) PHP - 1 M 25

TABLE I. SUMMARY OF CASE STUDIES.

In the first case study (C1) we dealt with a group of
senior developers responsible for the development of a small,
but architecturally very relevant, project within a large swiss
transportation company. The project consisted in a framework
used by the majority of projects developed in the company.
The team was already using SonarQube2, a popular quality
monitoring tool for overseeing some general aspects of the
evolution of the system (e.g., common coding anti-patterns,
dependency cycles). They showed genuine interest in our
solution, but, after a first pilot project, they abandoned the idea
of actively supporting a full integration of our solution inside
their development process. The reason behind this choice is
mostly due to a general lack of trust and low disposition
towards change.

In C2 we worked together with another team within the
same company as C1. This time we had the chance to
interact with a person who championed our solution until full

2http://www.sonarqube.org

http://scg.unibe.ch/dicto/
http://www.sonarqube.org

deployment. During this second case study we had numerous
iterations in which we discussed rules and reviewed the result-
ing violations. In the end we deployed our tool on one of the
development workstations used in the project.

In C3 we collaborated with 18 developers working for
11 vendors of an open-source learning management system
called ILIAS3. Those developers were all members of a special
interest group (SIG) established to discuss reengineering op-
portunities for improving the system at the architectural level.
The underlying motivation for founding this group stemmed
from the fact that the system has evolved for over 18 years
without the guidance of a person responsible for defining
and enforcing a sustainable architectural policy. After multiple
iterations, we integrated our tool into Teamcity4, a continuous
integration server used to build the core module of the ILIAS
application.

Each case study was organized around the following
phases:

A) Endorsement seeking & Process definition: The first
step is getting in touch with a contact person from the
organization and persuading her of the value of the offered
solution. This is typically done by setting up an introduc-
tory meeting during which we present the main features of
Dictō, some sample rules currently checked by Probō, and
an outlook over possible integration options with currently
employed monitoring solutions. After gaining the support
of our contact person, we attempt to discuss a deployment
strategy for our solution. This step must be tailored to
the specific practices and needs of the organization. The
chances of success grow if the solution is introduced in an
unobtrusive, transparent and gradual way.

B) Rule elicitation & formalization: Stakeholders have typ-
ically different requirements regarding which kind of ar-
chitectural rules need to be defined. They typically vary
depending on the technologies adopted in the project and
the domain of the system. After outlining the requirements,
we define a set of rules that reflect all identified constraints.
Rules are directly specified by the user using Dictō and
are iteratively refined to maximize their readability and
reusability.

C) Feedback automation: All defined rules need to be
checked automatically on a regular basis.
To enable this behavior, we develop the necessary Probō
adapters (or reuse existing ones) and integrate our solution
into the existing quality control system (e.g., continuous
integration server, dashboard). To make the solution effec-
tive, we need to stimulate the interest of the developers
working in the organization. This can be done by raising
awareness (inviting users to acknowledge the current vi-
olations and warning developers upon the introduction of
new violations) and rewarding users performing corrective
maintenance.

In C2 and C3, we successfully deployed our solution
within the organization. In C1 we only reached phase 1. In
this case the team failed to obtain the support of management
to fully deploy the solution in the context of their project.

The total duration of the case studies C2 and C3 was almost

3http://www.ilias.de/
4https://www.jetbrains.com/teamcity/

1 year each. C1 ended prematurely after 1 month.

IV. EVALUATION

A. Endorsement Seeking & Process Definition

In all the three case studies, we initially interacted with
one person who later supported us in introducing the concept
of our solution to the rest of the organization.

In C1, we started a pilot project with the support of
our primary contact person. This person was a user of the
framework being developed in the project taken into con-
sideration. As a user, he knew which kind of constraints
needed to be enforced on the developed code. These constraints
were partially documented in an internal wiki and partially
derived from direct experience and orally shared knowledge.
The contact person was genuinely interested in the evaluation
the proposed solution and thought that the team working at
the project could well appreciate our effort. To guarantee a
successful introduction of the proposed solution in the context
of the project, we suggested to integrate the results produced
by our tool into the software quality monitoring dashboard
already in use within the team. As we presented our results
to the leaders of the team, the general idea was well-received.
Unfortunately the extent of the presented rule set (in Listing 1)
failed to convince them of the full utility of the solution.
The people attending the meeting commented that most rules
were, to some extent, already checked by other tools. Despite
the flaws described in section V, they preferred not to invest
any additional resources into improving their current quality
monitoring infrastructure. Their focus was also primarily on
structural aspects of the source code. They were skeptical
towards introducing rules that were not already tested (either
manually or using commercial tools). The rule set derived from
the pilot project (Listing 1) is ultimately representative of some
of the constraints that needed to be checked in the project.
Further cooperation could have led to a more exhaustive and
representative sample of rules.

1 SYSTEM cannot contain cycles
2 PersistencePackage cannot depend on ServicePackage
3 ImplClass must have annotation "@πService"

Listing 1. Pilot rules defined for case study C1 (π is the name of the project).

For anonymization purposes, we will use the symbol π as
a way to implicitly refer to the name of the projects analyzed
in C1 and C2.

Similarly, in C2, we started our collaboration through a
pilot project. Our contact person was a developer working
full time on the development of the project being examined.
He suggested to start by re-evaluating rules that were already
tested by another commercial tool currently employed within
the project (Sonargraph5). After assessing the effectiveness of
our tool, he started proposing new rules that were either defined
in documented guidelines or that he, based on his experience
in the project, suspected of being important for maintaining the
architecture of the system. His main interest was in revealing
existing architectural flaws and simplifying the tasks involved
in performing qualitative maintenance. The rule set presented
to the team consisted of 17 rules, mostly focused on code
dependencies (See Listing 3).

5https://www.hello2morrow.com/products/sonargraph

http://www.ilias.de/
https://www.jetbrains.com/teamcity/
https://www.hello2morrow.com/products/sonargraph

As we presented our results, we agreed that the definition
of the rules could be undertaken by any member of the
team, while the development or refinement of new or existing
adapters would initially require our intervention. The task
of maintaining adapters could eventually be transferred to a
selected member of the team following a personalized training
sessions.

In C3, we established contact with a person who had
interest in introducing a solid quality monitoring solution
within his organization. He is a co-founder of a special interest
group (SIG) established to promote and discuss project-wide
reengineering tasks that would improve the maintainability of
the project. In order to implement any new design specification,
the SIG needed a mechanism to control which aspects of the
new architecture were correctly implemented and which part
of the source code still needed to be refactored towards the
new design. Our solution offered the help needed to define
and check the actual realization of the prospective architecture.
The idea of adopting our solution required the approval of the
SIG, the head of development and some key members of the
community (i.e., mostly representatives of the various service
providers). The SIG was easily convinced of the utility of
the tool. They acknowledged the technical benefit but were
worried about the political implications of introducing and
maintaining such a solution. The issue was discussed with the
top management of the organization several months later, as
we eventually obtained permission to deploy the tool on a
global scale. During this last meeting, it was decided that new
rules, discussed within the SIG, would need to be approved
during the bi-weekly physical meeting moderated by the head
of development. Our contact person would be involved in
maintaining the necessary adapters and would share his duties
with other members of the development team as a means of
disseminating his expertise.

B. Rule Elicitation & Formalization

In each case study, we specified a set of rules that re-
flected some major architectural concerns identified within the
projects taken in consideration. Those rule sets were defined
in Dictō based on initially elicited requirements. In the interest
of space, we omit the definition of entities. The complete
specifications can be found on our website6.

In C2, we defined the rule set in Listing 2.

1 ClientScoutPackage can only depend on
SharedScoutPackage

2 ServerScoutPackage can only depend on
SharedScoutPackage, ServicePackage

3 ServicePackage can only depend on BusinessPackage
4 BusinessPackage can only depend on ServicePackage,

PersistencePackage
5 CoreProject cannot depend on StammdatenProject
6 BetriebProject can only depend on AngebotProject
7 πProject can only depend on AngebotProject,

BetriebProject
8 ServiceUiMethods, ServicePublicMethods must throw
9 πServiceException

10 ServiceImplClasses must have annotation "@π
RemoteService"

11 πBatch cannot depend on πUiImpl
12 πBatch cannot depend on πPublicImpl
13 Persistence cannot depend on Service

6http://scg.unibe.ch/dicto/case-studies.php

14 Batch cannot depend on Persistence
15 ScoutClient cannot depend on ScoutServer
16 Util, Model can only depend on Util, Model
17 πProject can only depend on πProject, CoreProject,

StammdatenProject, AngebotProject
18 ModelClasses, DTOClasses must implement "java.io.

Serializable"

Listing 2. Rules defined in case study C2 (π is the name of the project).

The rule set is largely based on documented guidelines
and previously checked constraints. The definition process
required multiple iterations that took place over a period of
about 6 months. Each iteration allowed us to identify erroneous
violations and discuss over the specification of new rules or
new language constructs.

In C3, we defined the rule set in Listing 3.

1 WholeIliasCodebase cannot invoke triggerError
2 WholeIliasCodebase cannot invoke exitOrDie
3 WholeIliasCodebase cannot invoke

SetErrorOrExceptionHandler
4 WholeIliasCodebase cannot invoke eval
5 WholeIliasCodebase cannot depend on SuppressErrors
6 ilExceptionsWithoutTopLevelException can only depend

on ilExceptions
7 GUIClasses cannot depend on ilDBClass
8 GUIClasses cannot depend on ilDBGlobal
9 only GUIClasses can depend on ilTabsClass

10 only GUIClasses can depend on ilTabsGlobal
11 only GUIClasses can depend on ilTemplateClass
12 only GUIClasses can depend on ilTemplateGlobal
13 IliasTemplateFile cannot contain text "on(blur|

change|click|dblclick|focus|keydown|keypress|
keyup|load|mousemove|mouseup|mousedown|
mouseenter|mouseleave|mouseout|mouseover|
mousewheel|resize|select|submit|unload|wheel|
scroll)"

14 IliasTemplateFile cannot contain text "<script*>"
15 WholeIliasCodebase cannot invoke raiseError
16 IliasTemplateFile cannot contain text "javascript*:"

Listing 3. Rules defined in case study C3.

In C3, the rules were initially specified by our contact per-
son. As soon as they were made public, other members of the
SIG started to propose their own rules. They suggested three
new rules (i.e., line 4, 5, 15 in Listing 3). Their suggestions
often consisted in syntactically valid specifications posted in
the community forum together with questions like: “Can this
be checked?”. All the rules were formulated based uniquely
on previously presented examples. No formal training was
required. The rules defined within the SIG were later discussed
in a physical meeting during which additional rules (i.e., 7-14,
15 in Listing 3) were proposed. In this case, all rules were
proposed by members of the community that have never been
in any way exposed to Dictō.

Some of the specified rules reflect general best practices
(e.g., avoid the invocation of disrupting functions – line 4)
while others define constraints related to new architectural
concepts that need to be implemented over time (e.g., new
exception handling policy – lines 1-3). The remaining rules
are mostly there to ensure a correct separation of concerns
(e.g., MVC pattern – lines 7-12).

All rule sets presented here are in their final form which
was reached after multiple refinement iterations. All major
changes applied during this process are discussed in section VI.

http://scg.unibe.ch/dicto/case-studies.php

C. Feedback automation

Our tool has been successfully integrated with pre-existing
monitoring and continuous integration solutions. In particular
we managed to integrate with the SonarQube dashboard in C2
and with TeamCity continuous integration server7 in C3.

To integrate with SonarQube, we developed a plugin that
evaluates user-defined rules in Probō and transforms all re-
ported violations into “issues”. SonarQube was already used
as an issue tracker within the team to define and assign de-
velopment tasks. By silently adding architectural violations as
issues, we were hoping to unobtrusively deliver our results to
the stakeholders involved in the trial evaluation. Unfortunately,
due to the company policy, we were not able to customize
the SonarQube installation used by the whole team. Instead
we installed our integrated solution (i.e., SonarQube with the
Probō plugin) on the workstation of a developer.

In C3, we integrated our tool suite with TeamCity, a
newly introduced continuous integration service that was made
accessible to the whole community. By developing a plugin,
we managed to expose analysis results in a separate view
inside the web dashboard. Users could view which violations
had been added or removed since the last build and obtain a
list of all those that were currently unresolved. If a developer
introduced or solved a violation she would receive an email
notification remaining her of the event. We also introduced
a leaderboard where all contributors are ranked according
to the number of fixed violations. This stimulated users to
contribute more and to pay attention to previously ignored
quality concerns.

V. RESULTS

At the end of our studies we measured how rule violations
were introduced or removed over time.

In C2 we detected a total of 270 violations. These viola-
tions were treated as follows: 27 (lines 8,9 and 17 in Listing 2)
were classified as critical and fixed immediately; 158 (lines 3,
7) were considered of secondary importance and listed in the
issue tracker; 85 (lines 1, 6, 14) were not fixed. Not addressed
violations were mainly ignored because of the high complexity
involved in the refactoring task. In fact, two rules (lines 1,
14) involved user interface dependencies, while another rule
(line 6) concerned a module which was no longer actively
maintained. Nine out of twenty-seven rules were correctly
observed in the implementation and did not lead to violations.

In C3 we monitored the violations introduced and removed
over an arc of two months. During this time the total number of
violations decreased from 606 to 600 (i.e., 10 violations were
introduced and 16 removed). Given the size and age of the
system (1M lines of code and 18 years of development), we
consider that to be a positive outcome. During this initial trial
period, we contacted several developers who either introduced
or removed a violation. Contributors responsible for intro-
ducing violations reported different reasons for their action,
such as intrinsic complexity of the context (i.e., making the
contribution violation-free would have required major changes)
or general lack of time. One user said that the feedback
“definitely leverages the discussion about architecture and
separation of concerns”. They also considered the rule that they

7https://www.jetbrains.com/teamcity/

violated to be reasonable and legitimate. Users who removed
violations were mostly concerned with enhancing the quality
level of a module they developed or to increase their score on
the leaderboard.

In C3, the analysis of some violations led to the discovery
of repeating anti-patterns. For the rule on line 29 (Listing 3),
for example, our collaborators observed that developers consis-
tently referenced a global variable defined for database access
in GUI classes. This was done to pass the reference down
the invocation chain to model classes. The identification of
this common practice led to internal discussions and to the
decision to evaluate alternative dependency injection strategies.
This case shows how our solution supports complete feedback
loops and enables dynamics that were previously unattainable.

During the evaluation we found several cases in which
quality assurance tools were already employed by the or-
ganization. In those cases we re-encoded the rules defined
for the pre-existing tool into Dictō and discovered several
divergences in the results. Sometimes we found false positives
(i.e., spurious violations reported by our tool). Those were
typically due to imprecisions in the specification and could be
quickly removed. More often we found false negatives (i.e.,
violations not reported by the reference tool). False negatives
can be symptomatic of a less precise analysis technique. Since
the specifications were equivalent, it could be that precision
is sacrificed for the sake of performance and scalability.
The analysis of the encountered false negatives helped us to
uncover some possible limitations of the previously adopted
tools.

In C1 we found that only three of the 18 package cycles
identified in our analysis were actually reported by the em-
ployed tool (SonarQube). All the 15 cycles ignored by the
preceding tool were manually validated and categorized as
actual violations.

Based on our analysis, SonarQube failed to detect cross-
module dependencies. This means that if two classes lo-
cated in two different projects reference each other, no cycle
will be detected. Our case study project is organized into
46 Maven modules. This configuration reduces versioning
conflicts and simplifies maintenance and deployment. In our
experiment, SonarQube ignored cycles like π.service.code
→ π.service.i18n → π.service.code (caused by dependencies
among classes belonging to the respective packages but con-
tained in different build modules).

SonarQube also seems to ignore indirect cycles (i.e., cy-
cles among more than two packages). In fact, a cycle like
π.service.code → π.service.i18n → π.service.i18n.code →
π.service.code, failed to be detected as a violation.

Our analysis is based on hypotheses drawn from an end-
user perspective. Many of the encountered false negatives
could not be linked to any of the above mentioned conditions.
To completely understand the reasons behind these errors, one
should have access to the full details of the analysis algorithm.

In C2, developers were using Sonargraph for monitoring
dependency constraints. In our analysis we discovered 5 false
negatives (Sonargraph reported 2 violations out of the 7
detected by Dictō). One possible explanation that could explain
this inconsistency is related to the strategy used to reconstruct
the dependency graph for the analyzed project. Based on our

https://www.jetbrains.com/teamcity/

analysis, we suspect that Sonargraph detects dependencies by
parsing the import statements contained at the beginning of
each source file. Our tool relies on a parser that extends
Eclipse RCP. This allows for a more sophisticated dependency
resolution strategy that traverses indirect references and locates
the true endpoints of a dependency.

In our case studies the technical leaders of the projects
did not suspect any incompleteness in the previously obtained
results. Both tools employed by our partners have a solid
reputation. SonarQube is the de-facto standard for lightweight
technical debt management and its large user-base is typically
seen as a proof of its reliability. Sonargraph is one of the
leading solutions for checking dependency violations and is
often seen as a primary choice for monitoring architectural
quality.

False negatives are particularly hard to discover. End-users
are typically not aware of them since the complete validation of
the analysis results is practically infeasible and would require
the inspection of the whole code base (not just the reported
violations). Discrepancies among results produced by different
tools could be detected by developing and running multiple
adapters for the same type of constraint and automatically
compare the violations reported by each analyzer. Providing
a mechanism that supports cross-checking of results produced
by different tools, greatly simplifies the task of comparing the
accuracy of competing quality assurance solutions.

VI. DISCUSSION

A. Expressiveness in Practice

The expressiveness of Dictō evolved throughout the course
of the case studies. Minor additions were made to the language
itself. Other changes had to be performed at the level of single
adapters, to support more precise specification mechanisms.
We here provide an non-exhaustive list of changes that were
discussed and implemented during the cases studies:

I. Rule type: In C3, one of the users involved in the
development of the system defined the following rule:

ilExceptions=PhpClass with name:"il*Exception*"
ilTopLevelException=PhpClass with name:"ilException"
ilExceptionsWithoutTopLevelException={ilExceptions}

except {ilTopLevelException}

ilExceptionWithoutTopLevelException must depend on
ilException

This rule requires all application-specific exception classes
(i.e., all classes named “il*Exception*” except “ilException”)
to depend on the classes described by the entity ilException.
This rule was semantically wrong, since any Exception class
not depending on all ilException classes resulted in a violation.
To fully express the user’s intentions, we introduced a new
kind of rule that only failed when the rule subject entity did
not depend on some of the elements described as the rule
argument. The rule could thus eventually be rewritten in the
following form:

ilExceptionWithoutTopLevelException must depend on
some ilException

II. Entity specifiers: At the beginning of our case studies,
package entities were described through selection attributes
including simple wildcards (i.e., “*”). In C2, we soon realized
that this specification approach was not precise enough. In fact,
a pattern like “org.*.x” was designed to greedily match any
package name starting with “org” and ending with “x”, while
our user wanted to have the option to either match a single
identifier (e.g., org.foo.x) or multiple ones (e.g., org.foo.bar.x).
To address this limitation we introduced a double wildcard
character “**” (the syntax was inspired by Apache Ant8). This
allowed us to properly describe entities in the following form:

BusinessPackage= Package with name:"π.*.business.**"

Similarly in C3, one of the users asked to define a rule that
required the definition of a more complex argument value as
a means to detect compliance to a specific naming convention
(line 13 in Listing 3). This request could be addressed by
specializing the adapter responsible for checking the rule and
adding support for regular expressions.

III. Entity selection attribute modifiers: At the begin-
ning of our evaluation, entities could only be defined by
specifying a set of inclusive filters that described expected
characteristics exhibited by the target elements. Soon enough,
we were asked to also include the possibility of defining an
exclusive filtering mechanism. This was done by introducing
a negation modifier for the assignment operator used to define
entity attributes. In C1, our user wanted to define a logical
entity mapping to all the packages matching the following
expression: “π.*.persistence.**”. After analyzing the results
we found out that many of the elements resolved for that entity
were correctly matching the expression but were irrelevant in
the context of the analysis. After introducing the new modifier
(i.e., “!:”), the rule could be rewritten as follows:

PersistencePackage = Package with name:
"π.*.persistence.**", name!:"π.*.service.**"

IV. Entity grouping construct: To further support the
definition of more complex entities, we also introduced a
new language construct that enabled the conjunction and
disjunction of sets derived from the combination of previously
defined entities. This feature became a valid complement to
the previously described selection attribute modifiers. Complex
entities, such as the above defined PersistencePackage, could
now be defined through the combination of other entities.
In C3, for example, the user could define a new entity by
combining other previously defined entities:

ilExceptionsWithoutTopLevelException = {ilExceptions
} except {ilTopLevelException}

WholeIliasCodebase = {ilClasses, assClasses}

V. Rule argument separators: In C3, we defined the
following rule:

SetErrorOrExceptionHandler = {SetExceptionHandler,
SetErrorHandler}

8http://ant.apache.org/manual/dirtasks.html#patterns

http://ant.apache.org/manual/dirtasks.html#patterns

WholeIliasCodebase cannot invoke
SetErrorOrExceptionHandler

This rule clearly states that the argument is a disjunction of
two different logical entities. The same pattern could be found
in C2, where the user needed to specify that a package could
not depend on multiple other packages:

ServerScoutPackage cannot depend on
SharedScoutPackage

ServerScoutPackage cannot depend on ServicePackage

To support a simpler definition of such rules, we intro-
duced a conjunctive (i.e., “,”) and a disjunctive (i.e., “/”) rule
argument separator. The rules could be rewritten as follows:

WholeIliasCodebase cannot invoke SetExceptionHandler
/ SetErrorHandler

ServerScoutPackage cannot depend on
SharedScoutPackage, ServicePackage

VI. Entity exclusion: As we analyzed the results obtained
in C2, we quickly discovered that many true positives (cor-
rectly reported violations) were not relevant. These violations
either referred to test classes or external libraries. Test classes
are typically not reviewed for quality and are simply regarded
as secondary artifacts with low maintenance priority. External
libraries, on the other hand, are obviously out of the scope
of the project and as such should not be checked against
architectural rules. To resolve this conflict, we initially thought
of introducing a pre-parsing step where the user can define
(through a script) which classes and libraries should be copied
or ignored before building a model of the system. This solution
was later on discarded because it reduced the overall accuracy
of the parsing process. We eventually decided to specify the
excluded artifacts in a project configuration file through the
following property:

IGNORE-ENTITY:”org.eclipse.**; **.zlr**; **Test”

This filter was effectively used to exclude all the entities
that were previously identified as noise in the results produced
by our analysis.

B. Expressiveness in Theory

To further test the expressiveness of Dictō, we performed a
literature survey and tried to encode architectural rules reported
in other papers using our DSL. We collected 44 rules by re-
viewing various sources [4], [5], [6]. The full list can be viewed
on our website9. All rules but three could be successfully
expressed in Dictō. The rules that could not be specified (listed
in Table II) presented some characteristics (e.g., conditional
constructs, interrelation between multiple entity groups) that
will be discussed in the following paragraph.

Dictō was successfully employed and evolved to accommo-
date the specification needs of the users participating in our
case studies. Despite our best efforts, several rules (reported
in Table II) could not be encoded without introducing major
changes to the language and to the underlying model. One type
of rule that is currently not supported by Dictō is the one which

9http://scg.unibe.ch/research/arch-constr/eval/Expressivness

Rule

U1 The classes implementing interface Tool must implement method activate if
method isUsable returns true.

U2 Calling method getLocator requires cloning the instance (calling method clone)
to avoid that the receiver of getLocator can change the internal behavior of a
LocatorHandle.

U3 The names of the attributes of class FigureAttributeConstant should be used
as suffixes of the attributes of class ContentProducer starting with the prefix
ENTITY.

TABLE II. LIST OF RULES DISCOVERED DURING LITERATURE SURVEY
THAT CANNOT CURRENTLY BE SPECIFIED USING DICTŌ

predicates an invariant that may apply only upon the fulfillment
of a condition (U1-2 in Table II). This kind of conditional
rule did not appear during our case studies, but seem to be
required in other contexts. To support such rules, we not only
would need to add a new construct to the language but would
also have to introduce the concept of conditional statement to
our model. This addition would imply the implementation of
a catalogue of parametrized conditional expressions for each
supported entity type.

To better understand the impact of such a change, let’s
suppose that we decide to support this feature by extending
our DSL in such a way that U1 could be written as follows:

ToolClasses = Class with superClass:"**.Tool"
isUsable = Method with name:"**.isUsable"
ToolClasses must have method "activate" (if

"isUsable" returns true)

Probō would recognize that the subject entity ToolClasses
is of type Class and would determine that the corresponding
code element fulfills the conditional expression defined be-
tween parentheses. This feature is not currently planned for
implementation, since we have no concrete evidence that it
might be of interest for our end-users. One of the challenges
of implementing such a construct would be to find a way to
specify the relationship existing between terms included in the
conditional block with entities mentioned in the rule. In fact, in
our example, “isUsable” is not explicitly related to the subject
element of the rule.

Another limiting factor, is the lack of support for express-
ing correlation between properties of the subject entity and
values used as rule arguments (See U3 in Table II). In C1, we
encountered the following rule:

All classes ending by "Impl" must implement an
interface that has the same name as the class,
but without the suffix "Impl".

This kind of rule could have been implemented in a very
ad-hoc fashion by defining a predicate that expresses exactly
the above mentioned constraint. We decided to avoid this
solution and tried to conceive a more flexible rule that could
express arbitrary naming patterns. Since at the time we could
not come up with an adequate solution, we decided to ignore
the rule.

Later on, after completing the case studies, we introduced
a new language feature that allows the user to specify capture
groups in entity selectors. The captured values can then be
symbolically referenced in the predicate argument of a rule as
shown in this example:

http://scg.unibe.ch/research/arch-constr/eval/Expressivness

ImplClass = Class with name:"**.(*)Impl"
ImplClass must have interface named "$1"

This additional feature allows us to create interrelations
between subject elements and predicate arguments. Given
its late introduction, we can not comment on its practical
applicability. In retrospective, we think it would have served
as an elegant way for expressing that particular type of rule.

C. Usability

In our case studies we tried to establish short iterations
in order to acquire as much feedback as possible. Our users
often asked for minor non-functional changes that could po-
tentially improve their specification from the point of view of
readability and learnability. During the evaluation period we
implemented the following requested features:

I. New entity types: In C3, we used a fact extractor called
PhpDependencyAnalysis10 in order to extract the information
needed for resolving user-defined entities and for testing the
required rules. This tool generates a two dimensional collection
representing all the binary dependency relationships existing in
the analyzed code base. After the first iteration we introduced a
new type of entity that we called “PhpDependency”. Entities
with this type correspond to nodes of the graph derived by
combining the relationships identified by our extractor. The
user could define entities such as:

eval = PhpDependency with name:"eval"
ilDBGlobal = PhpDependency with name:"ilDB"
ilExceptions = PhpDependency with name:"il*Exception

*"

After presenting these rules to other people involved in the
project, we decided to introduce other equivalent entity types
with more suggestive names. This addition was functionally
inconsequential but greatly improved the readability of the
rules. The same entities could be re-defined as follows:

eval = PhpFunction with name:"eval"
ilDBGlobal = PhpGlobal with name:"ilDB"
ilExceptions = PhpClass with name:"il*Exception*"

To implement this change, we had to add the introduced
types to our list of reserved language keywords. The resolution
algorithm implemented to retrieve the entities with the new
types was the same as the one used for “PhpDependency”.

II. Javadoc-like rule comments: In C3, we soon realized
that rules defined by a smaller group of users had poor
chances of being fully understood by the community at large
participating in the development of the project. Users reading
the results produced by the analysis questioned the rationale
hidden behind the rule, asked for examples of violations or
for a reference to a more detailed source of information. As
a consequence, we introduced a new language feature that
allowed users to provide documentation for single rules in the
form of comments. This feature was used to briefly summarize
the intent of the rules, suggest possible fixing strategies and
point users to more detailed reference pages hosted on the
project website.

10https://github.com/mamuz/PhpDependencyAnalysis

During our evaluation we were also asked to make results
actionable. In fact, in C1 and C2, we were able to detect cyclic
or otherwise unwanted dependencies between packages but we
neglected to provide useful information on how to remove
them. In a second iteration we extended our analyzer and
included a detailed description of all the concrete dependencies
(e.g., invocations, variable references) that actually caused the
violation. This made it possible to quickly validate the results
and to find the real source of the problem. To further improve
the usefulness of our report, we also added an additional error
message attribute to each single violation description. This new
attribute contained a free form error message as returned by
the employed analysis tool.

All this information improved the understanding of the
problem. To further support the user in the resolution of the
violation, we also introduced support for reporting optional
suggestions on how to actually proceed in the task. In a parallel
project, we developed a tool that not only detects cycles but
also computes all possible refactoring strategies that could be
adopted to break them. We integrated this tool in Probō and
successfully managed to provide detailed advice on how to
concretely eliminate the detected cycles.

To implement this change, we had to extend our model
representation and adapt the language parser.

D. Performance and Scalability

Our prototype has been designed to be highly scalable and
proved to perform adequately even when confronted with large
industrial projects.

To evaluate the performance of our tool, we measured the
time required to complete the phases described in section II
(“Transformation” and “Reporting” were combined as they
both have minimal impact over the overall performance of the
system). The results are presented in Table III. Execution times
for each phase where measured on a 2.6 GHz machine with
16 GB or memory and are expressed in seconds. The projects
taken in consideration are JHotDraw 6.0b1 (JHD) and the
projects from C1 and C2. The analyzed projects are ordered by
increasing size: JHotDraw has 28.000 NLOC; C1 has 55.000
NLOC; C2 has 460.000 NLOC.

Project /
n. rules

Parsing (sec /
% total)

Transf.+Reporting
(sec / %)

Analysis (sec
/ % total)

Total
(sec)

1 JHD / 2 10.8 (46%) 1.1 (5%) 11.4 (49%) 23.4
2 JHD / 3 0 0.2 (17%) 1.43 (83%) 1.6
3 JHD / 4 10.7 (93%) 0.7 (6%) 0.1 (1%) 11.5
4 JHD / 2 0 0.3 (60%) 0.2 (40%) 0.6
5 CS1 / 3 9.8 (35%) 1.4 (5%) 17.0 (60%) 28.3
6 CS2 / 2 38.1 (100%) 0.3 (0%) 0 (0%) 382.0
7 CS2 / 67 38.1 (97%) 0.2 (0%) 10.7 (3%) 392.6

TABLE III. PERFORMANCE MEASUREMENTS FOR DIFFERENT PHASES
OF EXECUTION WHILE ANALYZING 7 RULESETS ON 3 PROJECT.

The first phase, parsing, is typically the most costly one.
In some cases (i.e., cases 2 and 4) it is not needed, as the
entities specified by the user do not need to be resolved to
elements in the source code. This happens when the entities
refer to concepts that are not in the code (e.g., web resources)
or the analysis tool does not need to resolve them explicitly
(e.g., the entity refers to the whole code base). Parsing time is
strongly correlated with the size of the target system and its
complexity (e.g., coupling, depth of inheritance). This phase

https://github.com/mamuz/PhpDependencyAnalysis

typically takes between 35% and 100% of the total execution
time. The time required by this task also depends on the level
of detail expected from the resulting information. If a more
coarse-grained model is sufficient to support subsequent tasks,
times could be reduced considerably.

Transformation+Reporting typically takes less than 1 sec-
ond to be executed. The only exceptions are in cases 1 and
5. In both cases the excess in execution time is explained by
the increase in the amount of information that is written to the
report file (both rule sets contain a constraint on the presence
of package cycles). Based on these results, we can conclude
that the processing overhead of rules and results generated by
external tools is minimal and not necessarily correlated with
the number of user-specified rules.

Analysis is a phase that requires a highly variable amount
of time to be completed. It strongly depends on the precision
and inherent complexity of the task at hand. The choice of an
efficient analysis strategy and of an adequate level of granular-
ity in the result are crucial for making the tool usable. In C3,
the largest project we analyzed so far, we spent a large amount
of the time optimizing the analysis algorithm. We reduced
its execution time from more than one hour down to three
minutes. The optimization consisted mostly in introducing new
caches, replacing the PHP interpreter (HHVM11 instead of
Zend Engine12) and refactoring output printing statements.
This incredible improvement made the difference between a
unacceptably slow solution and one that could be periodically
run after each commit. Most of the applied optimizations are at
the platform level and can be reused in other analysis contexts.
The execution time of this phase is also correlated with the size
of the input system and the number of rules that need to be
checked. Its overall impact on the overall execution time varies
from 0% to 83% (in case n.2 the analyzer needed to measure
the latency of a remote web resource).

In general, we can conclude that our approach is reasonably
scalable and can be applied to large industrial applications. The
validation of a realistic rule set against a project with half a
million lines of code took 6.5 minutes (case n. 2). Smaller
systems can be analyzed under a minute (all remaining cases).

E. Portability and Reusability

The tool can be adapted to support other languages. This
can be done by adding a new parser for extracting the infor-
mation necessary to resolve user-defined entities in the code.
Analyzers are also typically language specific and therefore
need to be modified to support the chosen technology. In C3
we adapted our toolchain to support rules designed for PHP
applications. The effort to do so was relatively modest and,
due to the pipeline architecture, heavily localized. To fulfill
the needs of other organizations, we plan to provide support
for C and C++.

We also analyzed the reuse potential of the adapters
developed thus far. We observed that the choice of rules in
the three case studies is quite homogeneous (e.g., dependency
constraints are defined in all rule sets). Adapters developed to
check these rules could be reused across organizations as far as
the underlying technologies were the same (C3 required a new

11http://hhvm.com/
12http://php.net/

adapter for checking dependencies within its PHP project).

F. Extensibility

Our solution was designed to be easily extensible. Support
for new analysis tools can be added by developing relatively
simple adapters that act as data transformers between Probō
and the chosen external tool. This mechanism allowed us to
support most of the rules encountered in our case studies with
little effort.

During our evaluation we also encountered some rules that
could not be supported in a straightforward way. Some of
these rules were simply too ambitious and would have involved
the use of very specific and extensive analysis techniques that
were not available in common off-the-shelf tools. These rules
typically concerned behavioral aspects of the system, such
as inter-process communication (every test case must use the
local database for testing), execution time (test cases should
be executed within a given time interval) and application state
(test methods have to perform a rollback at the end of their
execution). All these rules would require some form of instru-
mentation and the definition of a clearly defined application-
specific testbed for exercising the properties of interest. This
would probably result in a more complex execution pipeline
and changes to the architecture of our tool. Upon discussion,
we decided to limit the scope of our tool to rules that can
be tested using non-invasive analysis techniques that do not
require any upfront preparation or modification of the target
system. We use static analysis to check rules that concern
source code properties and on-demand query-based tools for
evaluating other rules (e.g., latency, file structure).

Rule

X1 The method init should be called after creating or loading a CompositeFigure,
that is, after calling the method new or read.

X2 Calls to the method addInternalFrameListener should occur before calling the
method add when implementing or overriding the method addToDesktop in the
class MDIDesktopPane.

X3 The status line must be created (i.e. call to setStatusLine) before a tool is set
(i.e. call to setTool).

X4 After calling viewDestroying on an object you cannot do anything else on that
object (seen in class ViewChangeListener).

X5 If you call activate or deactivate from the class Tool you should call isActive
before (seen in class DrawApplication).

X6 If method mouseUp of class AbstractTool is overridden, the last statement
should be a super call.

X7 If method mouseDown of class AbstractTool is overridden, the first statement
should be a super call.

TABLE IV. LIST OF RULES DISCOVERED DURING LITERATURE
SURVEY WHICH CAN CURRENTLY NOT BE CHECKED BY PROBŌ

Also some of the rules found during our survey would
be hard to check using currently known analysis tools. For
example, the rules X1-5 in Table IV could theoretically be
checked by extending one of the tools supported by our
platform. Unfortunately this would require a more fine-grained
parsing analysis than the one adopted at the moment. The
parsing algorithm should take into account the order in which
invocations occur within methods. Implementing this feature
would require a major engineering effort, since it would impact
multiple components of the analysis tool. A similar limitation
was identified for rules that require details regarding the order
in which statements appear within a method body (i.e., X6-7).
To support such rules, one should again extend the analysis
tool to also analyze the single statements occurring in a source
code file. The current implementation only considers coarse

http://hhvm.com/

grained structural elements (such as classes, fields, methods)
and ignores anything beyond that.

VII. RELATED WORK

In this paper we discuss a series of case studies that show
how our approach (described in detail in a previous publication
[3]) can be applied in an industrial context.

Quality assurance tools: There exist various tools that can
be employed to evaluate architectural conformance. Murphy
et al. [7] introduced the idea of reflexion models, a verifiable
representation of the logical dependencies expected to exist in
a given target system. This technique has been widely exploited
to build a consistent number of academic [8] and commercial
tools (e.g., Sonargraph, Structure10113, Semmle14). Some of
these solutions offer additional complementary features. Some
allow the definition of rules through a textual DSL [9], [10].
Others contributed new visual representations that support the
reverse engineering of large systems [11].

All these techniques have been compared with respect to
their functional capabilities in multiple studies [6], [12], [13].
As a result, we know that existing tools offer complementary
features and none of them can be considered to subsume all
the others. Pruijt et al. [13] also identify a set of conformance
rules that are not supported by any of the analyzed tools (e.g.,
naming conventions, subclass inheritance). Such rules could
be checked using tools such as SOUL [14], uContracts [5],
LogEN [15] or SCL [16]. Unfortunately such solutions are
mostly proofs of concept and are rarely tested in a realis-
tic industrial environment. These solutions, despite offering
valuable support for the task they aim to support, suffer from
several flaws on aspects that range from the usability of the
specification to the scalability of the rule checking algorithm.
Some commercial counterparts, .QL[17] and CQLinq15, have
managed to address those aspects. Despite the availability of
these solutions, dealing with the singularities of multiple tools
is often considered as a significant inconvenience when dealing
with quality assurance solutions. We propose an approach that
hides the operational details of such tools behind a uniform
and readable high-level DSL called Dictō.

Empirical evaluation: Other researchers have focused on
the empirical foundations of existing techniques. Weinreich et
al. [4] presents a case study in which rules are tested on a
reverse engineered model of a banking system. Lozano et al.
[5] present a collection of rules encountered while analyzing
source code comments in JHotDraw. They also present a
survey of structural relationship rules specified in previous
literature. Passos et al. [6] validates existing static conformance
checking tools by comparing their ability to test a given
selection of rules. All the rule sets encountered in these studies
are typically used by the authors as a baseline for validating an
approach or a tool. In our work we tried to encode the reported
constraints in Dictō as a means to test the expressivity of our
language. The results are discussed in subsection VI-B.

Albuquerque et al. [18] evaluate the usability of their
DSL borrowing techniques coming from the human-computer
interaction domain. Their approach consists in comparing

13https://structure101.com
14https://semmle.com
15http://www.ndepend.com/docs/cqlinq-syntax

competing languages based on quantitative experiment. This
strategy works well in case one is interested in artificially
proving the superiority of one DSL towards another in terms
of language features, but does not answer the question whether
the language is capable of dealing with real world specification
requirements. Since our main interest is in evaluating the
capabilities of Dictō within an industrial context, we chose
to adopt a more empirical approach.

Ganea et al. [19] evaluate their quality assurance tool by
defining a non-comparative experiment involving industrial
users. The subjects were asked to perform analysis tasks with
and without the evaluated tool. The results show that tool-
assisted users are more efficient at solving quality related tasks.
In our work, we assume that this finding can be extended to
any tool that provides contextual information regarding specific
properties of a system.

VIII. CONCLUSION

In this paper we show the effectiveness of a previously
introduced solution for monitoring architectural quality [3]
through 3 case studies. Our results reveal that our approach
can be applied in an industrial context. It is sufficiently usable
to allow the definition of new rules even by untrained users.
Results can be conveniently integrated into existing monitor-
ing solutions (e.g., dashboard) enabling short feedback loops
that advance the understanding of the system and encourage
proactive behavior. Scalability can be ensured by limiting the
extent of the analysis required for checking rules. The language
we designed for supporting specification of rules (Dictō)
could be evolved to accommodate emerging requirements and
successfully managed to fulfill the needs of our users. The
limitations discovered during our study appear to be minor and
will be possibly addressed in future iterations. Since our goal
is to reduce the cost of architectural compliance checking, we
value simplicity over completeness. In conclusion, we claim
that the possibility of easily integrating the capabilities offered
by existing analysis tools, and of specifying rules without the
need of acquiring specific knowledge over the tool used for
checking it, are two deciding factors that may well contribute
to building an effective quality monitoring solution.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project Np. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015).

REFERENCES

[1] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17,
pp. 40–52, Oct. 1992.

[2] A. Caracciolo, M. Lungu, and O. Nierstrasz, “How do software
architects specify and validate quality requirements?,” in European
Conference on Software Architecture (ECSA), vol. 8627 of Lecture
Notes in Computer Science, pp. 374–389, Springer Berlin Heidelberg,
Aug. 2014.

[3] A. Caracciolo, M. Lungu, and O. Nierstrasz, “A unified approach to
architecture conformance checking,” in Proceedings of the 12th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pp. 41–50,
ACM Press, May 2015.

https://structure101.com
https://semmle.com
http://www.ndepend.com/docs/cqlinq-syntax

[4] R. Weinreich and G. Buchgeher, “Automatic reference architecture
conformance checking for soa-based software systems,” in Software
Architecture (WICSA), 2014 IEEE/IFIP Conference on, pp. 95–104,
Apr. 2014.

[5] A. Lozano, K. Mens, and A. Kellens, “Usage contracts: Offering
immediate feedback on violations of structural source-code regularities,”
Science of Computer Programming, vol. 105, pp. 73 – 91, 2015.

[6] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Mendonca, “Static
architecture-conformance checking: An illustrative overview,” Software,
IEEE, vol. 27, pp. 82–89, Sept. 2010.

[7] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
Bridging the gap between source and high-level models,” in Proceedings
of SIGSOFT ’95, Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 18–28, ACM Press, 1995.

[8] S. Duszynski, J. Knodel, and M. Lindvall, “Save: Software architecture
visualization and evaluation,” in Software Maintenance and Reengi-
neering, 2009. CSMR ’09. 13th European Conference on, pp. 323–324,
2009.

[9] R. Terra and M. T. Valente, “A dependency constraint language to
manage object-oriented software architectures,” Software: Practice and
Experience, vol. 39, pp. 1073–1094, Aug. 2009.

[10] A. Gurgel, I. Macia, A. Garcia, A. von Staa, M. Mezini, M. Eichberg,
and R. Mitschke, “Blending and reusing rules for architectural degrada-
tion prevention,” in Proceedings of the 13th International Conference
on Modularity, MODULARITY ’14, (New York, NY, USA), pp. 61–72,
ACM, 2014.

[11] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency
models to manage complex software architecture,” in Proceedings of
OOPSLA’05, pp. 167–176, 2005.

[12] J. Knodel and D. Popescu, “A comparison of static architecture com-
pliance checking approaches,” in Software Architecture, 2007. WICSA
’07. The Working IEEE/IFIP Conference on, p. 12, Jan. 2007.

[13] L. Pruijt, C. Koppe, and S. Brinkkemper, “Architecture compliance
checking of semantically rich modular architectures: A comparative
study of tool support,” in Software Maintenance (ICSM), 2013 29th
IEEE International Conference on, pp. 220–229, Sept. 2013.

[14] K. Mens, R. Wuyts, and T. D’Hondt, “Declaratively codifying software
architectures using virtual software classifications,” in Proceedings of
TOOLS-Europe 99, pp. 33–45, June 1999.

[15] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, “Defining and
continuous checking of structural program dependencies,” in Proceed-
ings of the 30th international conference on Software engineering, ICSE
’08, (New York, NY, USA), pp. 391–400, ACM, 2008.

[16] D. Hou and H. Hoover, “Using scl to specify and check design intent
in source code,” Software Engineering, IEEE Transactions on, vol. 32,
pp. 404–423, June 2006.

[17] O. de Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov,
T. Ekman, N. Ongkingco, and J. Tibble, “.ql: Object-oriented queries
made easy,” in Generative and Transformational Techniques in Software
Engineering II (R. Lammel, J. Visser, and J. Saraiva, eds.), vol. 5235
of Lecture Notes in Computer Science, pp. 78–133, Springer Berlin
Heidelberg, 2008.

[18] D. Albuquerque, B. Cafeo, A. Garcia, S. Barbosa, S. Abrahao, and
A. Ribeiro, “Quantifying usability of domain-specific languages: An
empirical study on software maintenance,” Journal of Systems and
Software, vol. 101, pp. 245 – 259, 2015.

[19] G. Ganea, I. Verebi, and R. Marinescu, “Continuous quality assessment
with incode,” Science of Computer Programming, 2015.

