
Towards a Moldable Debugger

Andrei Chiş
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch//staff/

andreichis

Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch/oscar

Tudor Gîrba
CompuGroup Medical

Schweiz AG
http://www.tudorgirba.com/

ABSTRACT
The debugger is an essential tool in any programming en-
vironment, as it helps developers understand the dynamic
behaviour of software systems. However, traditional debug-
gers fail in answering domain-specific questions, as the se-
mantics of what they show and do are fixed. In this paper
we introduce our work towards a moldable debugger which,
unlike traditional debuggers, both adapts itself and can be
adapted to a particular debugging context. Thus, it allows
developers to answer their questions by using concepts from
their own application domains.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; D.2.6 [Software Engineering]: Program-
ming Environments—integrated environments, interactive en-
vironments

General Terms
Languages, Design

Keywords
Debugging, Customization, Domain-specific tools, Smalltalk

1. INTRODUCTION
Answering questions about the runtime behavior of soft-

ware is a prerequisite for maintaining and evolving software
systems. Most of the time this is done by using the debug-
ger, as it allows one to interact with a running system and
inspect its state. This makes the debugger an essential tool
in any programming environment.

Nevertheless, there is a mismatch between the way in
which developers reason about their applications and the
way in which they debug them. Developers encounter con-
textual problems and express them in terms specific to the
domain models of their applications. On the other hand,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Dyla ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2041-2 ...$15.00.

when they use the debugger to solve these problems, they
have to reason using a standard set of features. This happens
as it is difficult to anticipate all types of problems developers
will attempt to solve using the debugger.

In order to solve these contextual problems, one approach
is to allow developers to adapt and customise their tools.
For example, this idea is leveraged in query-based debug-
ging [5, 4, 6] where instead of having a general-purpose tool
showing a predefined set of information, developers write
queries to extract exactly the information they need. In this
paper we apply the same idea to the debugger. We envi-
sion a moldable debugger which, unlike a general-purpose
debugger, both adapts itself and can be adapted to a de-
bugging context. Thus, we delegate the customisation of
the debugger to developers, as they are the ones that know
the problem.

Another similar solution is the Debugger Canvas [3] which
allows users to inspect long or complex control paths and
control structures using the Code Bubbles [1] paradigm: in-
stead of providing a predefined UI, users create “bubbles”
containing only the information they are interested in (e.g.,
call paths, variable values). In our approach users can create
their own custom debugging actions.

In the remainder of this paper we present our vision of
a moldable debugger. In Section 2 we investigate prob-
lems faced by developers when debugging the announce-
ments framework from the Pharo system and show how a
custom debugger can improve this process. In Section 3 we
present our current work towards an infrastructure for sup-
porting a moldable debugger. In Section 4 we discuss the
implications of having a moldable debugger and we conclude
in Section 5.

2. DEBUGGING ANNOUNCEMENTS
To motivate our work on custom debuggers, we consider

the application domain of announcements. Since the control
flow for announcements is event-based, it does not match
well the stack-based paradigm follows by conventional de-
buggers.

The announcements framework from the Pharo1 system
is a framework providing a notification mechanism between
objects based on a registration mechanism and first class an-
nouncements. It is the basis for implementing the Observer
design pattern. Figure 1 presents an overview containing its
structure and its usage.

The main component is the announcer, which allows ob-
jects to register interest in events and signals events. Objects

1http://www.pharo-project.org

http://scg.unibe.ch//staff/andreichis
http://scg.unibe.ch//staff/andreichis
http://scg.unibe.ch/oscar
http://www.tudorgirba.com/
http://www.pharo-project.org

anAnnouncer

aSubscriber

aSubscriber announcer
 on: Announcement
 send: #doAction
 to: aSubscriber

Register for announcements:1

anEmitter

Emit an announcement:
announcer
 announce: Announcement

2

Deliver the
announcement3

Figure 1: Basic usage of the announcements framework

register with an announcer by specifying the event types of
interest and an action to perform when events of those types
are signalled. The occurrence of an event is encapsulated in
an announcement, i.e., an object storing all information re-
lated to a particular occurrence of an event.

Debugging problems with announcements using the stan-
dard debugger from Pharo Smalltalk is not a straightfor-
ward process. We will exemplify this using two examples:
Glamour [2], an engine for scripting browsers and Syste-
mAnnouncer, the class that plays the role of announcer for
events raised by the Pharo system.

2.1 Difficulties in debugging announcements
Glamour. In Glamour users specify a browser in terms of
components and connectors with the help of an embedded
domain specific language. The created model is platform-
independent and can be displayed with various renderers.
Announcements are used to synchronize the model and the
UI.

Next, we will look at an example where due to a user
action the model of the browser is changed. This raises an
announcement delivered to the UI in order to update itself.
To start we put a breakpoint in the UI method called when
the announcement is delivered.

First, the standard debugger focuses on the stack as its key
abstraction. This is natural since debuggers are intended to
give developers to possibility to explore the run-time state,
i.e., the stack and the heap. However the stack is not nec-
essarily an appropriate way to understand the application
domain at run time. In the case of announcements, the
stack is not useful for identifying the sender of an announce-
ment. We can see this in Figure 2a: to locate the model
component that raised the announcement we have to man-
ually go through the stack. Second, the structure of the
debugger only allows for one stack frame to be inspected at
a time. When dealing with an announcement it is helpful to
see both its sender and its receiver at the same time, instead

of permanently switching between the two.

SystemAnnouncer. To highlight other types of problems
that arise when debugging announcements we will look at
the class SystemAnnouncer. This class is an announcer re-
sponsible for propagating all events raised by the Pharo sys-
tem, like: MethodModified, ClassAdded, ClassCommented,
CategoryRemoved, etc. As these events are only generated
in well-defined conditions we are not interested in reason-
ing about their senders. The focus lies in understanding
how they are propagated through the system: what are the
objects being notified.

However, there is no straightforward way to determine
all the objects that will receive an announcement using the
standard debugger. To see this first we have to set a break-
point in a method that is called when an announcement it
is delivered to an object. We will put a breakpoint in the
method AbstractNautilusUI>>classAdded: that is called ev-
ery time an announcement of type ClassAdded is delivered
to an instance of class NautilusUI. Figure 2b shows how we
can then extract the required information: a certain stack
frame has to be located and then the variable interestedSub-
scriptions has to be inspected.

We further notice there is a large number of subscrip-
tions interested in this event. If from the debugger we want
to know which have already been executed and which are
awaiting execution we have to write a script that finds the
position of the current subscription and then splits the array
of subscriptions accordingly. The debugger does not offer di-
rect support for obtaining these data.

Once we understand the current subscription the next step
is to move to the next object that receives the announce-
ment. This is not a trivial action. As the standard debug-
ger only provides a predefined set of general-purpose stack-
oriented actions, it involves manually stepping into and step-
ping over a high number of instructions

2.2 An Announcer-Centric Debugger
In the previous paragraphs we showed that using the stan-

dard debugger to work with the announcements framework
raises a series of difficulties. To address them we propose a
custom debugger molded for the announcements framework,
i.e., an announcer-centric debugger, illustrated in Figure 3
and 5.

The debugger has a UI that only displays information rel-
evant when dealing with announcements: the sender of the
announcement, the receiver and the other subscriptions of
the announcer. This can be seen in Figure 3 showing the
same debugging situation involving Glamour as before, us-
ing the new debugger. We can easily spot both the model
component that raised the announcement and the UI ele-
ment that received it. Thus, the first two aforementioned
problems are solved, as developers do not have to search the
stack for the necessary information. We choose to also dis-
play the stack as it useful to know how the program reached
its current state.

Apart from a different UI, this debugger also provides two
categories of debugging actions for working with announce-
ments: announcer-centric stack-based actions and announcer-
centric breakpoints. An announcer-centric stack-based ac-
tion steps through the execution of the program until the
current stack frame satisfies a certain condition, after which
it updates the current debugger. We have implemented two

(a) Debugging announcements in Glamour (b) Locating subscriptions interested in the event ClassAdded.

Figure 2: Debugging announcements using the standard debugger from Pharo.

such actions:

• stepToNextSubscription

• stepToSubscription: aSubscription

The first steps through the execution until the announcer
delivers the current announcement to the next subscription,
while the second only stops when a certain subscription is
reached. Using them we can navigate through the subscrip-
tions registered with the SystemAnnouncer class, without
having to perform multiple basic actions.

Announcer-centric breakpoints on the other hand, allow
us to sets breakpoints when objects interact with announce-
ments. This can be done while the software system is run-
ning without having to modify the source code. Unlike the
previous type of actions, they close the debugger and resume
the execution of the program. They are based on the concept
of object-centric debugging [7] that allows one to perform op-
erations directly on the objects involved in a computation.
We added the following breakpoints:

• halt when object receives announcement

• halt when object sends announcement

• halt when announcer delivers announcement

• halt when announcer receives announcement

The first two can be applied on any object while that last
two can only be applied on announcers. This way one can
open a debugger when announcements are involved without
having to search through the source code for locations that
use announcements. For example, when debugging Glam-
our, we can set a breakpoint when the same UI element
receives an update request.

Looking back at the aforementioned examples, using the
new debugger simplifies the process of working with an-
nouncements: we do not have to search the stack to see
from what code location announcements were raised. Also,

Default
debugger

Default
Model Extension

«extends»

*

+
GUI

Adapted
debugger

+
GUI

Figure 4: Adapting debuggers

we do not need any knowledge about the internals of the
announcements framework in order to determine what other
subscriptions are executed. If we want to set a breakpoint
when an object receives or sends announcements, we can do
it from the debugger. We do not have to modify the source
code and restart the debugger. Thus, using an announcer-
centric debugger improves the way in which the announce-
ments framework is debugged.

3. TOWARDS A MOLDABLE DEBUGGER
In the previous section we saw that using the standard

debugger to work with the announcements framework is dif-
ficult, and that by using a custom debugger it becomes eas-
ier. This also applies to other situations in which there is a
gap between the semantics of the application one is working
with, and the semantics offered by the standard debugger.

Stack

Subscriptions

Announcement
receiver

Announcement
source

Figure 3: Debugging Glamour using the announcer-centric debugger.

A solution in these situations is to customise the debugger
in order to debug using terms and concepts from the ap-
plication domain, instead of working with generic features.
However, when faced with the choice of either using the
available debugger or adapting it to their needs, developers
choose to keep using the one that is already available.

Developers choose not to invest effort in customising de-
buggers as they perceive this as a time-consuming and com-
plicated activity. If we start from a monolithic debugger that
is difficult to extend, this is indeed the case. However, if we
start from a moldable debugger that can be easily adapted to
a specific domain, the effort required to build new debuggers
decreases significantly.

Furthermore, if this becomes feasible then a developer
may adapt the debugger to fit multiple domains or scenarios.
During a debugging session, a moldable debugger could at
each step also adapt itself to the current debugging context.
For example, we could start with a default debugger and
reach a point where the announcer-centric debugger would
be more useful. A moldable debugger would realise this and
offer us the chance to continue using the announcer-centric
debugger. Thus, the debugger molds to the debugging con-
text.

In order to support this vision of a moldable debugger
we identified three key features that an infrastructure must
provide:

• mold debuggers to a domain/scenario;

• integrate the molded debuggers into the programming
environment;

• switch between molded debuggers at runtime.

3.1 Molding debuggers
A moldable debugger must offer a way for developers to

adapt it to new domains and scenarios. To support this we
split a debugger into two components: (i) a model and (ii) a
user interface. The model is the main component as it pro-
vides the debugging actions. The user interface integrates
those actions and augments them with relevant information.

As a starting point for building new debuggers we provide
a default model and a user interface. The default model
encapsulates the logic of working with processes and stack
frames and provides the basic stack-based debugging ac-
tions, like step into instruction, step over instruction, re-
sume process, restart execution, etc. We aim to leverage this
common base behavior for constructing new, custom debug-
ging actions.

New debuggers can be created by adapting the default
debugger. This is done by providing a new model and a
new user interface relevant for the new model (Figure 4).
New models are create by extending the class DebugSession,
representing the default model.

To create the announcer-centric debugger we followed the
process presented above. We extended the default model,
implemented the new debugging actions and a new user in-
terface. The new stack-based debugging actions were imple-
mented by combing the available ones. As an example the
stepToNextSubscription has the following implementation:

stepToNextSubscription
| subscription|

self stepOver: announcerModel loopContext.
self stepIntoWhileTrue: [

(self context selector ∼= #deliver: or: [
self context closure isNil]) and: [

self context selector ∼= #deliver:to:]].
(self context selector = #deliver:to:)

ifTrue: [↑self].
subscription := self context receiver.
self stepIntoWhileFalse: [

self context receiver = subscription subscriber
and: [self context method selector =

subscription action selector]].

First it does a step over action that skips the current
subscription, followed by a set of step into actions to reach
the delivery of the next subscription. It ends with skipping
the internal details of actually delivery.

3.2 Integration of Molded Debuggers
As developers adapt the default debugger to fit their needs,

several molded debuggers will eventually be present in the
environment. Thus the following problem arises: when should
a molded debugger be used? For example, the debugger for
announcements is only relevant when an object receives an
announcement. To address this concern we split it into two
parts: (i) when do we need a molded debugger, (ii) which
molded debugger should we use.

To address (i) we will use triggers. A trigger encapsulates
a context in which a debugger should be opened. The sim-
plest kind of trigger is a breakpoint that opens a debugger
when the execution flow reaches a certain code location. By
using a breakpoint a developer only indicates that he would
like to open a debugger. He does not indicate which debug-
ger he wants. We also support triggers based on the idea
of object-centric debugging. This way, a debugger can be
opened on an already running system when several objects
interact in a given way. Again, only the fact that a debug-
ger should be opened is captured. The four aforementioned
announcer-centric breakpoints are implemented as triggers
using this approach.

Triggers only indicate when a debugger should be opened.
They do not have to know which debugger to open. To
solve (ii) we need to determine which debugger to open in
a given situation. This is done by using a dispatcher that
asks all available debuggers, by sending them the message
handlesContext:, if they want to handle the current debug-
ging context. The announcer-centric debugger, for example,
will only want to handle debugging context where the stack-
frame represents the delivery of an announcement:

handlesContext: aContext
↑(self stackFilterFor: aContext sender)

locateAnnouncerEntryContext notNil

For this to be possible, when a molded debugger is added
to the environment, it registers with the dispatcher. To solve
situations where multiple debuggers might be appropriate,
when a molded debugger registers with the dispatcher it also
specifies a rank. A low rank indicates a general debugger
while a high rank indicates a specific debugger. If more than
one debugger is available the one with the highest rank is
selected.

3.3 Runtime Adaptation of Molded Debuggers
In Section 3.2 we saw how to decide what debugger to

open. However, even if we start with the right molded de-
bugger, during a debugging session we might reach a point
where a different molded debugger might be more suitable.
To support this feature, at each step during debugging we
can move to another molded debugger, if it can handle the
current debugging context. This is determined as before
by using the dispatcher. Thus, the debugger molds to the
debugging context.

Therefore, if we are using the default debugger and reach
a point where announcements are involved we can switch
to the announcer-centric debugger. The reverse situation
is also possible: while working with the announcer-centric
debugger we can reach code that has nothing to do with an-
nouncements. As this debugger also supports all the stan-
dard debugging actions we can continue using it, even if
switching to the default debugger would be more useful. In
some other situation we might be forced to switch to an-
other debugger when the current one is no longer suitable.
For example, we can see in Figure 3 that from the current
debugger the user can switch to two other debuggers.

4. DISCUSSION
We have implemented two debuggers using our infrastruc-

ture: (i) the classic debugger (the default debugger that is
adapted), and (ii) the announcer-centric debugger. As an in-
dicator of the cost associated with building these debuggers
we use the number of lines of code (see Table 1).

Debugger Model (LOC) UI (LOC) Total
Default 424 346 770
Announcement 380 666 1046

Table 1: Size of molded debuggers

The small size required for the implementation makes
the cost affordable. The availability of such an infrastruc-
ture opens new possibilities: the developers of a library or
framework can ship a dedicated debugger together with the
code. For example, we can envisage the developers of the
announcement framework to have built the announcement
debugger themselves and ship it together with the frame-
work.

We plan to explore more ideas to reduce the time and
the effort needed to create a new debugger, like: offering a
better mechanism for creating domain-specific actions, pre-
defined widgets for displaying certain types of data (e.g.,
the stack), a domain specific language for specifying trig-
gers, better matches to propose the appropriate debugger
etc.

5. CONCLUSIONS
Debuggers are an essential tool in any programming envi-

ronment as they allow developers to interact with a running
system. Despite their importance the semantics of what they
show and do are fixed. This makes solving domain-specific
problems difficult, as one has to reason using a standard set
of features.

In this paper we presented our current work towards a
moldable debugger which, unlike a general-purpose debug-

Figure 5: Debugging the SystemAnnouncer class using the announcer-centric debugger.

ger, it both adapts and can be adapted to a debugging con-
text. Thus, it allows developers to solve their problems using
a debugger that is closer to their domain. We plan to further
investigate what a general framework for moldable debug-
gers could look like and how it can improve the debugging
process.

Acknowledgments
We would like to thank the anonymous reviewers for their
suggestions in improving this paper. We gratefully acknowl-
edge the financial support of the Swiss National Science
Foundation for the project“Agile Software Assessment”(SNSF
project Np. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015).
We also thank CHOOSE, the special interest group for Object-
Oriented Systems and Environments of the Swiss Informat-
ics Society, for its financial contribution to the presentation
of this paper.

6. REFERENCES
[1] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri,

W. Cheung, J. Kaplan, C. Coleman, F. Adeputra, and
J. J. LaViola, Jr. Code bubbles: a working set-based
interface for code understanding and maintenance. In
CHI ’10: Proceedings of the 28th international
conference on Human factors in computing systems,
pages 2503–2512, New York, NY, USA, 2010. ACM.

[2] P. Bunge. Scripting browsers with Glamour. Master’s
thesis, University of Bern, Apr. 2009.

[3] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and
S. P. Reiss. Debugger canvas: industrial experience

with the code bubbles paradigm. In Proceedings of the
2012 International Conference on Software
Engineering, ICSE 2012, pages 1064–1073, Piscataway,
NJ, USA, 2012. IEEE Press.

[4] R. Lencevicius, U. Hölzle, and A. K. Singh.
Query-based debugging of object-oriented programs. In
Proceedings of the 12th ACM SIGPLAN conference on
Object-oriented programming (OOPSLA’97), pages
304–317, New York, NY, USA, 1997. ACM.

[5] M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using pql: a
program query language. In Proceedings of
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’05), pages 363–385, New
York, NY, USA, 2005. ACM Press.

[6] A. Potanin, J. Noble, and R. Biddle. Snapshot
query-based debugging. In Proceedings of the 2004
Australian Software Engineering Conference
(ASWEC’04), page 251, Washington, DC, USA, 2004.
IEEE Computer Society.

[7] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric
debugging. In Proceeding of the 34rd international
conference on Software engineering, ICSE ’12, 2012.

	Introduction
	Debugging announcements
	Difficulties in debugging announcements
	An Announcer-Centric Debugger

	Towards a Moldable Debugger
	Molding debuggers
	Integration of Molded Debuggers
	Runtime Adaptation of Molded Debuggers

	Discussion
	Conclusions
	References

