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Abstract. Debuggers are crucial tools for developing object-oriented
software systems as they give developers direct access to the running
systems. Nevertheless, traditional debuggers rely on generic mechanisms
to explore and exhibit the execution stack and system state, while devel-
opers reason about and formulate domain-specific questions using con-
cepts and abstractions from their application domains. This creates an
abstraction gap between the debugging needs and the debugging support
leading to an inefficient and error-prone debugging effort. To reduce this
gap, we propose a framework for developing domain-specific debuggers
called the Moldable Debugger. The Moldable Debugger is adapted to a
domain by creating and combining domain-specific debugging operations
with domain-specific debugging views, and adapts itself to a domain by
selecting, at run time, appropriate debugging operations and views. We
motivate the need for domain-specific debugging, identify a set of key re-
quirements and show how our approach improves debugging by adapting
the debugger to several domains.

1 Introduction

Debugging is a prerequisite for maintaining and evolving object-oriented software
systems. Despite its importance it is a complex and time-consuming activity.
Together with testing it can take a significant part of the effort required to build
a software system [1]. Using inadequate infrastructures for performing these
activities can further increase this effort [2].

Debugging is typically performed by using a debugger that allows developers
to interact with a running software system and explore its state. This makes the
debugger a crucial tool in any programming environment. Nevertheless, there is
an abstraction gap between the way in which developers reason about object-
oriented applications, and the way in which they debug them.

On the one hand, object-oriented applications use objects to capture and ex-
press a model of the application domain. Developers reason about and formulate
questions using concepts and abstractions from that domain model. This fosters
program comprehension as domain concepts play an important role in software
development [3,4]. Furthermore, non-trivial object-oriented applications contain
rich object models [5]. A common approach to improve the development and
evolution of these object models is to take advantage of internal DSLs that, by
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making use of APIs and of the syntax of the host language, can directly express
domain abstractions [6].

On the other hand, classical debuggers focusing on generic stack-based op-
erations, line breakpoints, and generic user interfaces do not allow developers
to rely on domain concepts. Approaches that address this problem by offering
object-oriented debugging idioms [7] still solve only part of the problem, as they
do not capture domain concepts constructed on top of object-oriented program-
ming idioms.

Generic solutions that do not offer a one-to-one mapping between developer
questions and debugging support force developers to refine their high-level ques-
tions into low-level ones and mentally piece together information from various
sources. For example, when developing a parser, we might need to step through
the execution until we reach a certain position in the input stream. However,
as it has no knowledge of parsing and stream manipulation, a generic debugger
requires us to manipulate low-level concepts like sending a message or looking up
variables. This abstraction gap leads to an ineffective and error-prone effort [8].

While the debugger of a host language can be used to debug internal DSLs,
it still suffers from the aforementioned limitations. When dealing with external
DSLs those limitations can be addressed by automatically generating, from the
grammar of the DSL, domain-specific debuggers that work at the right level
of abstraction [9]. However, this solution does not apply to object-oriented ap-
plications if there is no grammar or formal specification capturing the domain
model.

There exist two main approaches to address, at the application level, the gap
between the debugging needs and debugging support:

— supporting domain-specific debugging operations for stepping through the
execution, setting breakpoints, checking invariants [10,11,12] and querying
stack-related information [13,14,15].

— providing debuggers with domain-specific user interfaces that do not neces-
sarily have a predefined content or a fixed layout [16].

Each of these directions addresses individual debugging problems, however
until now there does not exist one comprehensive approach to tackle the over-
all debugging puzzle. We propose an approach that incorporates both of these
directions in one coherent model. We start from the realization that the most
basic feature of a debugger model is to enable the customization of all aspects,
and we design a debugging model around this principle. We call our approach
the Moldable Debugger.

The Moldable Debugger decomposes a domain-specific debugger into a domain-
specific extension and an activation predicate. The domain-specific extension
customizes the user interface and the operations of the debugger, while the
activation predicate captures the state of the running program in which that
domain-specific extension is applicable. In a nutshell, the Moldable Debugger
model allows developers to mold the functionality of the debugger to their own
domains by creating domain-specific extensions. Then, at run time, the Moldable



Debugger adapts to the current domain by using activation predicates to select
appropriate extensions.

A domain-specific extension consists of (i) a set of domain-specific debugging
operations and (i) a domain-specific debugging view, both built on top of (iii)
a debugging session. The debugging session abstracts the low-level details of a
domain. Domain-specific operations reify debugging operations as objects that
control the execution of a program by creating and combining debugging events.
We model debugging events as objects that encapsulate a predicate over the state
of the running program (e.g., method call, attribute mutation) [17]. A domain-
specific debugging view consists of a set of graphical widgets that offer debugging
information. Each widget locates and loads, at run-time, relevant domain-specific
operations using an annotation-based approach.

To validate our model, we implemented it in Pharo®, a modern Smalltalk
environment. The Moldable Debugger implementation is written in less than
2000 lines of code. We have instantiated it for several distinct domains and each
time the implementation required between 200-600 lines of code. We consider
that its small size makes it easy to understand, and makes the adaptation of the
debugger to specific domains an affordable activity.

The contributions of this paper are as follows:

— Identifying and discussing four requirements that an infrastructure for de-
veloping domain-specific debuggers should support;

— Presenting the Moldable Debugger, a model for creating and working with
domain-specific debuggers that integrates domain-specific debugging opera-
tions with domain-specific user interfaces;

— Examples illustrating the advantages of the Moldable Debugger model over
generic debuggers;

— A prototype implementation of the Moldable Debugger model.

2 DMotivation

Debuggers are comprehension tools. They are often used by developers to under-
stand the run-time behavior of software and elicit run-time information [18,19].
In test-driven development the debugger is used as a development tool given
that it provides direct access to the running system [20].

Despite their importance, most debuggers only provide low-level operations
that do not capture user intent and standard user interfaces that only display
generic information. These issues can be addressed if developers are able to create
domain-specific debuggers adapted to their problems and domains. Domain-
specific debuggers can provide features at a higher level of abstraction that
(i) match the domain model of software applications and (ii) group contextual
information from various sources.

3 http://pharo.org
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In this section we establish and motivate four requirements that an infrastruc-
ture for developing domain-specific debuggers should support, namely: domain-
specific user interfaces, domain-specific debugging operations, automatic discov-
ery and dynamic switching.

2.1 Domain-specific user interfaces

User interfaces of software development tools tend to provide large quantities of
information, especially as the size of systems increases. This in turn, increases
the navigation effort of identifying the information relevant for a given task.
While some of this effort is unavoidable, part of it is simply overhead caused by
how information is organized on screen [21].

Consider a unit test with a failing equality assertion. In this case, the only
information required by the developer is the difference between the expected and
the actual value. However, finding the exact difference in non-trivial values can
be daunting and can require multiple interactions such as finding the place in the
stack where both variables are accessible, and opening separate inspectors for
each values. A better approach is to show a diff view on the two values directly
in the debugger when such an assertion exception occurs, without requiring any
further action.

This shows that user interfaces that extract and highlight domain-specific in-
formation have the power to reduce the overall effort of code understanding [22].
However, today’s debuggers tend to provide generic user interfaces that cannot
emphasize what is important in application domains. To address this concern an
infrastructure for developing domain-specific debuggers should:

— allow domain-specific debuggers to have domain-specific user interfaces dis-
playing information relevant for their particular domains;
— support the fast prototyping of domain-specific user interfaces for debugging.

While other approaches, like deet [23] and Debugger Canvas [16], support domain-
specific user interfaces for different domains, they do not offer an easy and rapid
way to develop such domain-specific user interfaces.

2.2 Domain-specific debugging operations

Debugging is viewed as a laborious activity requiring much manual and repet-
itive work. On the one hand, debuggers support language-level operations. As
a consequence, developers need to mentally construct high-level abstractions on
top of them, which can be time-consuming. On the other hand, debuggers rarely
provide support for identifying and navigating through those high-level abstrac-
tions. This leads to repetitive tasks that increase debugging time.

Consider a framework for synchronous message passing. One common use
case in applications using it is the delivery of a message to a list of subscribers.
When debugging this use case, a developer might need to step to when the
current message is delivered to the next subscriber. One solution is to manually



step through the execution until the desired code location is reached. Another
consists in identifying the code location beforehand, setting a breakpoint there
and resuming execution. In both cases developers have to manually perform a
series of actions each time they want to execute this high-level operation.

A predefined set of debugging operations cannot anticipate and capture all
relevant situations. Furthermore, depending on the domain different debugging
operations are of interest. Thus, an infrastructure for developing domain-specific
debuggers should:

— support the creation of domain-specific debugging operations that allow de-
velopers to express and automate high-level abstractions from application
domains (e.g., creating domain-specific breakpoints, building and checking
invariants, altering the state of the running system). Since developers view
debugging as an event-oriented process, the underlying mechanism should al-
low developers to treat the running program as a generator of events, where
an event corresponds to the occurrence of a particular action during the
program’s execution, like: method entry, attribute access, attribute write,
memory access, etc.

— group together those debugging operations that are relevant for a domain and
only make them available to developers when they encounter that domain.

This idea of having customizable or programmable debugging operations that
view debugging as an event-oriented activity has been supported in related
works [10,11,12,23]. Mainstream debuggers like GDB have, to some extent, also
incorporated it. We also consider that debugging operations should be grouped
based on the domain and only usable when working with that domain.

2.3 Automatic discovery

Based on an observational study of 28 professional developers Roehm et al. report
that none of them used a dedicated program comprehension tool; some were not
aware of standard features provided by their IDE [18]. Another study revealed
that despite their usefulness and long lasting presence in IDEs, refactoring tools
are heavily underused [24].

In the same way, developers need help to discover domain-specific debuggers
during debugging. For example, if while stepping through the execution of a
program a developer reaches a parser, the developer should be informed that a
domain-specific debugger exists that can be used in that context; if later the ex-
ecution of the parser completes and the program continues with the propagation
of an event, the developer should be informed that the current domain-specific
debugger is no longer useful and that a better one exists. This way, the burden
of finding appropriate domain-specific debuggers and determining when they are
applicable does not fall on developers.

Recommender systems typically address the problem of locating useful soft-
ware tools/commands by recording and mining usage histories of software tools
[25] (i.e., what tools developers used as well as how they used them). This



requires, at least, some usage history information. To eliminate this need an in-
frastructure for developing domain-specific debugger should allow each domain-
specific debugger to encapsulate the situations/domains in which it is applicable.

2.4 Dynamic switching

Even with just two different types of debuggers, DeLine et al. noticed that users
needed to switch between them at run time [16]. This happened as users did
not know in advance in what situation they would find themselves in during
debugging. Thus, they often did not start with the appropriate one.
Furthermore, even if one starts with the right domain-specific debugger, dur-
ing debugging situations can arise requiring a different one. For example, the
following scenario can occur: (i) while investigating how an event is propagated
through the application (i) a developer discovers that it is used to trigger a
script constructing a GUI, and later learns that (%ii) the script uses a parser to
read the content of a file and populate the GUI. At each step a different domain-
specific debugger can be used. For this to be feasible, domain-specific debuggers
should be switchable at debug time without having to restart the application.

2.5 Summary

Generic debuggers focusing on low-level programming constructs, while uni-
versally applicable, cannot efficiently answer domain-specific questions, as they
make it difficult for developers to take advantage of domain concepts. Domain-
specific debuggers aware of the application domain can provide direct answers.
We advocate that a debugging infrastructures for developing domain-specific de-
buggers should support the four aforementioned requirements (domain-specific
user interfaces, domain-specific debugging operations, automatic discovery and
dynamic switching).

3 Introducing the “Moldable Debugger” model

Conventional debuggers force developers to use generic constructs to address
domain-specific problems. The Moldable Debugger, on the other hand, explic-
itly supports domain-specific debuggers that can express and answer questions
at the application level. A domain-specific debugger consists of a domain-specific
extension encapsulating the functionality and an activation predicate encapsu-
lating the situations in which the extension is applicable. This model makes it
possible for multiple domain-specific debuggers to coexist at the same time.

To exemplify the ideas behind the proposed solution we will instantiate a
domain-specific debugger for working with synchronous events*. Event-based
programming poses debugging challenges as it favors a control flow based on
events not supported well by conventional stack-based debuggers.

4 This section briefly describes this debugger. More details are given in Section 4.2.
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Fig. 1: The structure of a domain-specific extension.
3.1 Modeling domain-specific extensions

A domain-specific extension defines the functionality of a domain-specific debug-
ger using multiple debugging operations and a debugging view. Debugging oper-
ations rely on debugging predicates to implement high-level abstractions (e.g.,
domain-specific breakpoints); the debugging view highlights contextual informa-
tion. To decouple these components from the low-level details of a domain they
are built on top of a debugging session.

A debugging session encapsulates the logic for working with processes and
execution contexts (i.e., stack frames). It further implements common stack-
based operations like: step into, step over, resume/restart process, etc. Domain-
specific debuggers can extend the debugging session to extract and store custom
information from the runtime, or provide fine-grained debugging operations. For
example, our event-based debugger extends the debugging session to extract and
store the current event together with the sender and the receiver of that event.

Debugging predicates detect run-time events. Basic run-time events (e.g.,
method call, attribute access) are detected using a set of primitive predicates,
detailed in Table 1. More complex run-time events are detected using high-level
predicates that combine both primitive predicates and other high-level predicates
(Figure 1). Both these types of debugging predicates are encapsulated as objects
whose state does not change after creation.

Consider our event-based debugger. This debugger can provide high-level
predicates to detect when a sender initiates the delivery of an event, or when
the middleware delivers the event to a receiver.

Attribute read |detects when a field of any object of a certain type is accessed
Attribute write |detects when a field of any object of a certain type is mutated

Method call detects when a given method is called on any object of a certain type
Message send |detects when a specified method is invoked from a given method
State check checks a generic condition on the state of the running program (e.g.,

the identity of an object).

Table 1: Primitive debugging predicates capturing basic events.

Debugging operations can execute the program until a debugging predicate is
matched or can perform an action every time a debugging predicate is matched.
They are modeled as objects that can accumulate state. They can implement
breakpoints, log data, watch fields, change the program’s state, detect violations
of invariants, etc. In the previous example a debugging operation can be used to
stop the execution when an event is delivered to a receiver. Another debugging



operation can log all events delivered to a particular receiver without stopping
the execution. At each point during the execution of a program only a single
debugging operation can be active. Thus, debugging operations have to be run
sequentially. This design decision simplifies the implementation of the model,
given that two conflicting operations cannot run at the same time.

The Moldable Debugger models a debugging view as a collection of graphical
widgets (e.g., stack, code editor, object inspector) arranged using a particular
layout. At run time, each widget loads a subset of debugging operations. De-
termining what operations are loaded by which widgets is done at run time via
a lookup mechanism of operation declarations (implemented in practice using
annotations). This way, widgets do not depend upon debugging operations, and
are able to reload debugging operations dynamically during execution.

Our event-based debugger provides dedicated widgets that display an event
together with the sender and the receiver of that event. These widgets load
and display the debugging operations for working with synchronous events, like
logging all events or placing a breakpoint when an event is delivered to a receiver.

Developers can create domain-specific extensions by:

(i) extending the debugging session with additional functionality;
(ii) creating domain-specific debugging predicates and operations;
(iii) specifying a domain-specific debugging view;

(iv) linking debugging operations to graphical widgets;

3.2 Dynamic Integration

The Moldable Debugger model enables each domain-specific debugger to decide
if it can handle or not a debugging situation by defining an activation predi-
cate. Activation predicates capture the state of the running program in which a
domain-specific debugger is applicable. While debugging predicates are applied
on an execution context, activation predicates are applied on the entire execu-
tion stack. For example, the activation predicate of our event-based debugger will
check if the execution stack contains an execution context involving an event.

This way, developers do not have to be aware of applicable debuggers a priori.
At each point during debugging they can see what domain-specific debuggers
are applicable (i.e., their activation predicate matches the current debugging
context) and can switch to any of them.

When a domain-specific debugger is no longer appropriate we do not auto-
matically switch to another one. Instead, all domain-specific widgets and opera-
tions are disabled. This avoids confronting users with unexpected changes in the
user interface if the new debugging view has a radically different layout/content.

To further improve working with multiple domain-specific debuggers we pro-
vide two additional concepts:

(i) A debugger-oriented breakpoint is a breakpoint that when reached opens
the domain-specific debugger best suited for the current situation. If more
than one view is available the developer is asked to choose one.



(ii) Debugger-oriented steps are debugging operations that resume execution
until a given domain-specific debugger is applicable. They are useful when
a developer knows a domain-specific debugger will be used at some point
in the future, but is not sure when or where.

4 Addressing domain-specific debugging problems

To demonstrate that the Moldable Debugger addresses the requirements iden-
tified in Section 2 we have instantiated it for four applications belonging to
different domains: testing, synchronous events, parsing and internal DSLs. In
this section we detail these instantiations.

4.1 Testing with SUnit

SUnit is a framework for creating unit tests [26]. The framework provides an
assertion to check if a computation results in an expected value. If the assertion
fails the developer is presented with a debugger that can be used to compare the
obtained value with the expected one. If these values are complex, identifying the
difference may be time consuming. A solution is needed to facilitate comparison.

To address this, we developed a domain-specific debugger having the follow-
ing components:

Session: extracts the expected and the obtained value from the runtime;

View: displays a diff between the textual representation of the two values. The
diff view depends on the domain of the data being compared.

Activation predicate: verifies if the execution stack contains a failing equality
assertion.

4.2 An Announcement-Centric debugger

The Announcements framework from Pharo provides a synchronous notification
mechanism between objects based on a registration mechanism and first class
announcements (i.e., objects storing all information relevant to particular oc-
currences of events). Since the control flow for announcements is event-based,
it does not match well the stack-based paradigm used by conventional debug-
gers. For example, Section 2.2 describes a high-level action for delivering an
announcement to a list of subscribers. Furthermore, when debugging announce-
ments it is useful to see at the same time both the sender and the receiver of an
announcement; most debuggers only show the receiver.

To address these problems we have created a domain-specific debugger, shown
in Figure 2. A previous work discusses in more details the need for such a debug-
ger and looks more closely at the runtime support needed to make the debugger
possible [27]. This debugger is instantiated as follows:

Session: extracts from the runtime the announcement, the sender, the receiver
and all the other subscriptions triggered by the current announcement;
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Fig.2: A domain-specific debugger for announcements: (1)(3) the receiver and the
sender of an announcement; (2) subscriptions triggered by the current announcement.

Predicates: (1) detect when the framework initiates the delivery of a subscrip-
tion; (ii) detect when the framework delivers a subscription to an object;
Operations: (1) step to the delivery of the next subscription; (ii) step to the
delivery of a selected subscription;

View: shows both the sender and the receiver of an announcement, together
with all subscriptions served as a result of that announcement;

Activation predicate: verifies if the execution stack contains an execution con-
text involving an announcement.

4.3 A debugger for PetitParser

PetitParser is a framework for creating parsers, written in Pharo, that makes
it easy to dynamically reuse, compose, transform and extend grammars [28]. A
parser is created by specifying a set of grammar productions in one or more
dedicated classes. When a parser is instantiated the grammar productions are
used to create a tree of primitive parsers (e.g., choice, sequence, negation, etc.);
this tree is then used to parse the input.

Whereas most parser generators instantiate a parser by generating code,
PetitParser generates a dynamic graph of objects. Nevertheless, the same issues
arise as with conventional parser generators: generic debuggers do not provide
debugging operations at the level of the input (e.g., set a breakpoint when a
certain part of the input is parsed) and of the grammar (e.g., set a breakpoint
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when a grammar production is exercised). Generic debuggers also do not display
the source code of grammar productions nor do they provide easy access to the
input being parsed.

We have developed a domain-specific debugger for PetitParser by configuring
the Moldable Debugger as follows:

Session: extracts from the runtime the parser and the input being parsed;

Predicates: (i) detect the usage of a primitive parser; (ii) detect the usage of a
production; (iii) detect when a parser fails to match the input; (iv) detect
when the position of the input stream changes to a given value;

Operations: Navigating through the execution at a higher level of abstraction
is supported through the following debugging operations:

— Next parser: step until a primitive parser of any type is reached

Next production: step until a production is reached

— Production(aProduction): step until the given production is reached

— Next failure: step until a parser fails to match the input

Stream position change: step until the stream position changes (it either

increases, if a character was parsed, or decrease if the parser backtracks)

— Stream position(anlnteger): step until the stream reaches a given position

View: The debugging view of the resulting debugger is shown in Figure 3. We
can see that now the input being parsed is incorporated into the user inter-
face; to know how much parsing has advanced, the portion that has already
been parsed is highlighted. Tabs are used to group six widgets showing differ-
ent types of data about the current production, like: source code, structure,
position in the whole graph of parsers, an example that can be parsed with
the production, etc. The execution stack further highlights those execution
contexts that represent a grammar production;

Activation predicate: verifies if the execution stack contains an execution con-
text created when using a parser.

4.4 A debugger for Glamour

Glamour is an engine for scripting browsers based on a components and connec-
tors architecture [29]. New browsers are created by using an internal domain-
specific language (DSL) to specify a set of presentations (graphical widgets)
along with a set of transmissions between those presentations, encoding the in-
formation flow. Users can attach various conditions to transmissions and alter
the information that they propagate. Presentations and transmissions form a
model that is then used to generate the actual browser.

The Moldable Debugger relies on Glamour for creating domain-specific views.
Thus, during the development of the framework we created a domain-specific
debugger to help us understand the creation of a browser:

Session: extracts from the runtime the model of the browser;

11
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Fig. 3: A domain-specific debugger for PetitParser. The debugging view displays rel-
evant information for debugging parsers ((4) Input, (5) Production structure). Each
widget loads relevant debugging operations (1.1, 1.2, 2.1, 4.1).
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Fig.4: A domain-specific debugger for Glamour: (1) visualization showing the model
of the browser currently constructed.
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Predicates: (1) detect the creation of a presentation; (ii) detect when a trans-
mission alters the value that it propagates; (iii) detect when the condition
of a transmission is checked;

Operations: (i) step to presentation creation; (ii) step to transmission transfor-
mation; (iii) step to transmission condition;

View: displays the structure of the model in an interactive visualization that is
updated as the construction of the model advances (Figure 4);

Activation predicate: verifies if the execution stack contains an execution con-
text that triggers the construction of a browser.

4.5 Summary

PetitParser, Glamour, SUnit and the Announcements framework cover four dis-
tinct domains. For each one we were able to instantiate a domain-specific debug-
ger having a contextual debugging view and/or a set of debugging operations
capturing high-level abstractions from that domain. This shows the Moldable
Debugger framework addresses the first two requirements.

The two remaining requirements, automatic discovery and dynamic switch-
ing, are also addressed. At each point during debugging developers can obtain
a list of all domain-specific debuggers applicable to their current context. This
does not require them either to know in advance all available debuggers, or to
know when those debuggers are applicable. Once the right debugger was found
developers can switch to it and continue debugging without having to restart the
application. For example, one can perform the scenario presented in Section 2.4.
The cost of creating these debuggers is discussed in Section 6.1.

5 Implementation

The current prototype of the Moldable Debugger® is implemented in Pharo, an
open-source Smalltalk inspired environment. In this section we discuss several
aspects regarding its implementation.

5.1 Controlling the execution

In the current version the target program is controlled based on debugging pred-
icates that are checked in a step-by-step manner after executing each instruc-
tion [30,31]. To do this we transform each debugging predicate into a boolean
condition that is applied on the execution context. For example, the debugging
predicate for detecting if a parser has failed forms a boolean condition that
checks if an execution context was created as a result of sending the message
initializeMessageAt to an instance of the class PPFailure.

5 More details including demos and installation instructions can be found at:
http://scg.unibe.ch/research/moldabledebugger
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The main advantage of this method is that it is simple to understand and it
does not alter the source of the target program. However, it can slow down the
target program considerably. To address this concern, debugging operations do
not have to be aware that predicates are used to control the target program in
a step-by-step manner. Thus, a backend based on a different approach, like code
instrumentation, could be used. We are currently looking at how to instrument
code based on predicates. For example, the previous predicate could be used to
instrument the method initializeMessageAt of the class PPFailure.

These two views of either using boolean conditions or code instrumentation to
implement debugging operations match the step and break constructs proposed
by Crawford et al. [30]. As they discuss, their combination can lead to semantic
issues. To avoid those issues only a debugging operation can be active at a time,
and debugging operations should not combine instrumentation with step-by-step
execution.

5.2 The Moldable Debugger in other languages

The current prototype of the Moldable Debugger is implemented in Pharo. It can
be ported to other languages as long as they provide a good infrastructure for
controlling the execution of a target program and there exists a way to rapidly
construct user interfaces for debuggers.

For example, one could implement the framework in Java. Domain-specific
debugging operations can be implemented on top of the Java Debugging Inter-
face (JDI) or by using aspects. JDI is a good candidate as it provides explicit
control over the execution of a virtual machine and introspective access to its
state. Aspect-Oriented Programming [32] can implement debugging actions by
instrumenting only the code locations of interest. Dynamic aspects (e.g., As-
pectWerkz [33]) can further scope code instrumentation at the debugger level.
Last but not least, domain-specific views can be obtained by leveraging the
functionality of IDEs, like perspectives in the Eclipse IDE.

6 Discussion

6.1 The cost of creating new debuggers

The four presented domain-specific debuggers were created starting from a model
consisting of 1500 lines of code. Table 2 shows, for each debugger, how many
lines of code were needed for the debugging view, the debugging actions, and
the debugging session.

Even if, in general, lines of code (LOC) must be considered with caution when
measuring complexity and development effort, as the metric does not indicate
the time needed to write those lines, it gives a good indication of the small size
of these domain-specific debuggers. This small size makes the construction cost
affordable. Similar conclusions can be derived from the work of Kosar et al.
that shows that with the right setup its possible to construct a domain-specific
debugger for a modelling language with relatively low costs [34].
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Session|Operations|View|Total
Base model 800 700 - 1500
Default Debugger| - 100 400 | 500
Announcements 200 50 200 | 450
Petit Parser 100 300 200 | 600
Glamour 150 100 50 | 300
SUnit 100 - 50 | 150

Table 2: Size of extensions in lines of code (LOC).

The availability of such an infrastructure opens new possibilities:

(i) the developers of a library or framework can create and ship a dedicated
debugger together with the code, to help users debug that framework or
library. For example, we can envisage the developers of PetitParser and
Glamour to have built the custom debuggers themselves and ship them
together with the frameworks;

(ii) developers can extend the debugger for their own applications, during the
development process, to help them solve bugs or better understand the
application.

6.2 IDE Integration

Studies of software developers revealed that they use standalone tools alongside
an IDE, even when their IDE has the required features [18]. Furthermore, de-
velopers also complain about loose integration of tools that forces them to look
for relevant information in multiple places [35]. To avoid these problems the
Moldable Debugger framework is integrated into the Pharo IDE and essentially
replaces the existing debugger.

The Moldable Debugger along with the domain-specific debuggers presented
in Section 4 are also integrated into Moose®, a platform for data and software
analysis [36]. Despite the fact that the performance of the current implementa-
tion can be significantly improved, these domain-specific debuggers are usable
and reduce debugging time. For example, we are using the domain-specific de-
bugger for PetitParser on a daily basis.

6.3 Open questions

As software systems evolve domain-specific debuggers written for those systems
must also evolve. This raises further research questions like: “What changes in
the application will lead to changes in the debugger?” or “How can the debugger
be kept in sync with the application?”. For example, introducing code instru-
mentation or destructive data reading (as in a stream) can lead to significant
changes in an existent debugger.

S http://moosetechnology.org
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In this context, a more high-level question is “What makes an application
debuggable?”. By this we mean what characteristics of an application ease, or
exacerbate the creation of debuggers or, more generally, what characteristics af-
fect debugging. To draw an analogy, in the field of software testing high coupling
makes the creation of unit tests difficult (by increasing the number of dependen-
cies that need to be taken into account) and thus decreases the testability of a
software system.

7 Related Work

This work draws its ideas from programmable/scriptable debugging and debug-
ging infrastructures for language workbenches. For clarity we discuss related
work with respect to how other approaches support domain-specific debugging
operations and user-interfaces for debugging.

7.1 Specifying domain-specific operations

There is a wide body of research on allowing developers to automate debugging
tasks by creating high-level abstractions. MzTake [11] is a scriptable debugger
allowing developers to automate debugging tasks. It treats a running program
as a stream of events that can be analyzed using operators, like map and filter;
streams can also be combined to form new streams. The focus in MzTake is
on automating debugging actions using scripts. It does not provide support for
creating domain-specific views for debugging. Developers just have the possibility
of visually exploring data by using features from the host IDE, DrScheme.
Dalek [10] is a C debugger employing a dataflow approach for debugging
sequential programs: developers create high-level events by combining different
types of low-level events. Coca [37] is an automated debugger for C using Prolog
predicates to search for events of interest over program state. Acid [38] makes it
possible to write debugging operations, like breakpoints and step instructions,
in a language designed for debugging that reifies program state as variables.
Duel [39] is a high-level language on top of GDB for writing state exploration
queries. Ezpositor [12] is a scriptable time-travel debugger that can check tem-
poral properties of an execution: it views program traces as immutable lists of
time-annotated program state snapshots and uses an efficient data structure to
manage them. These approaches focus on improving debugging by allowing de-
velopers to create different types of commands, breakpoints or queries at a higher
level of abstraction. However, they have the same drawbacks as MzTuake: by fo-
cusing only on operations they neglect the user interface of debuggers. They also
do not provide support for selecting features based on the debugging context.
Object-centric debugging [7] proposes a new way to perform debugging oper-
ations by focusing on objects instead of the execution stack. Reverse watchpoints
use the concept of position to automatically find the last time a target variable
was written and move control flow to that point [40]. Whyline is a debugging
tool that allows developer to ask and answer Why and Why Not questions about
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program behavior [41]. Query-based debugging facilitates the creation of queries
over program execution and state using high-level languages [13,14,15]. These
approaches are complementary to our approach as they can be used to create
other types of debugging operations.

Language workbenches for domain-specific languages (DSL) address debug-
ging by offering debugging abstractions at the level of the DSL [9,42,43]. This
solves the debugging problem both at the language and application level only
if domain concepts are incorporated directly into the DSL. However, if domain
concepts are build on top of a DSL, then DSL debuggers suffer from the same
limitations as generic debuggers. Our approach supports, in all cases, debuggers
aware of application domains.

7.2 User interfaces for debugging

Debugger Canvas [16] proposes a novel type of user interface for debuggers based
on the Code Bubbles [44] paradigm. Rather then starting from a user interface
having a predefined structure, developers start from an empty one on which dif-
ferent bubbles are added, as they step through the execution of the program. Our
approach allows developers to create custom user interfaces (views) beforehand
and select appropriate interfaces at debug time. Debugger Canvas focuses only
on the user interface, and does not provide support for adding custom debugging
operations. Our approach addresses both aspects.

The Data Display Debugger (DDD) [45] is a graphical user interface for GDB
providing a graphical display for representing complex data structures as graphs
that can be explored incrementally and interactively. However, if focuses just on
providing a default front-end for GDB; it does not offer support for customiza-
tion, nor other debugging operations then the ones provided by GDB.

jGRASP supports the visualization of various data structure by means of
dynamic viewers and a structure identifier that automatically select suitable
views for data structures [46]. zDIVA is a 3-D debugging visualization system
where complex visualization metaphors are assembled from individual ones, each
of which is independently replaceable [47]. While these approaches allow users
to create visualizations specific to their domains they are meant to be embedded
within existent debuggers, and thus do not offer debugging operations.

7.3 Unifying approaches

deet [23] is a debugger for ANSI C that, like our approach, promotes simple de-
buggers having few lines of code. It further allows developers to extend the user
interface and add new commands by writing code in a high-level language. TIDE
is a debugging framework focusing on the instantiation of debuggers for formal
languages (ASF+SDF, in particular) [48]; developers can implement high-level
debugging actions like, breakpoints and watchpoints, extend the user interface
be modifying the Java implementation of TIDE, and use debugging rules to state
which debugging actions are available at which logical breakpoints. Unlike these
approaches, we propose modeling the customization of debugger through explicit
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domain-specific extensions and provide support for automatically detecting ap-
propriate extensions at run time.

LISA is a grammar-based compiler generator that can automatically gener-
ate debuggers, inspectors and visualizers for DSLs that have a formal language
specification [49]. Our approach targets object-oriented systems where such a
formal specification is missing.

8 Conclusions

Developers encounter domain-specific questions. Traditional debuggers support-
ing debugging by means of generic mechanisms, while universally applicable,
are less suitable to handle domain-specific questions. The Moldable Debugger
addresses this contradiction by allowing developers to created domain-specific
debuggers having both custom debugging actions and user interfaces, with a
low effort. As a validation, we implemented the Moldable Debugger model and
created four different debuggers in less than 600 lines of code each. The Mold-
able Debugger reduces the abstraction gap between the debugging needs and
debugging support leading to a more efficient and less error-prone debugging
effort.

Given the large costs associated with debugging activities, improving the
workflow and reducing the cognitive load of debugging can have a significant
practical impact. With our approach developers can create their own debuggers
to address recurring custom problems. This can make considerable economical
sense when working on a long lived system. Furthermore, library developers
can ship library-specific debuggers together with their product. This can have a
practical impact due to the reuse of the library in many applications.
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