
Towards Object-Aware Development Tools
(Preprint ∗)

Andrei Chiş
University of Bern
andreichis.com

Abstract
Reasoning about object-oriented applications requires devel-
opers to answer contextual questions about their domain ob-
jects. Tailored development tools can support developers in
this activity by providing relevant domain-specific informa-
tion. Nonetheless, a high effort for extending development
tools to handle domain-specific objects, together with diverg-
ing mechanisms for creating, sharing and discovering exten-
sions, discourage developers to adapt their tools. To address
this, we propose to enable contextual behavior in develop-
ment tools by allowing domain objects to decide how they
are handled in development tools. We show that combining
this idea with mechanisms for specifying extensions using
internal DSLs can significantly reduce the cost of tailoring
development tools to specific domains.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—integrated environ-
ments, interactive environments

Keywords Customization, Object-oriented Programming

1. Research Problem and Motivation
To take advantage of domain concepts during their day-
to-day activities, developers need to navigate effectively
between domain concepts and the code that implements those
concepts [8]. Consider a graphical library for working with
various graphical widgets modeled as objects. The graphical
representation of a widget, the structure of graphical widgets
within a composite widget, and the layout mechanism are
several concepts that play an important role in working

∗ In Companion Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Systems, Programming, Languages and Applications: Software
for Humanity, October 30 – November 4, 2016, Amsterdam, Netherlands.
DOI: 10.1145/2984043.2998546

[Copyright notice will appear here once ’preprint’ option is removed.]

with a graphical library. Nonetheless, development tools
like debuggers, code editors or object inspectors, the tools
developers often use to interact with software systems, focus
mainly on generic object-oriented idioms. This focus on
generic idioms in development tools ignores the fact that
developers use objects to capture high-level abstractions
from their application domains, and would benefit from
development tools aware of those application domains [6].
For example, an object inspector can incorporate a graphical
representation of a widget and a search tool an extension for
searching through a widget’s structure of subwidgets.

A solution for making development tools domain-aware
is to enable developers to adapt development tools to their
own tasks and domains. To support this activity we propose
an extension mechanism that attaches extensions to domain
objects, supports inexpensive creation of domain-specific ex-
tensions through internal DSLs, and automatically selects
extensions based on the domain model and the developer’s
interaction with the domain model (i.e., development con-
text). We designed three development tools incorporating
this extension mechanism and integrated them into the Pharo
IDE (http://pharo.org). Currently we created together
with the developers of several frameworks and libraries sev-
eral hundred extensions, and are studying the cost in terms
of time and lines of code incurred by an extension.

2. Background
When interacting with objects, tools need to decide how to
handle objects modeling different domain entities. Develop-
ment tools employ a wide range of extension mechanisms
to support this desideratum. For example, IDEs like Eclipse1

and IntelliJ2 are based on plug-in architectures that rely on
extension points [10]. Live environments like Self model
development tools as run-time objects that developers can
directly edit [9]. JGrasp uses pattern matching to associate
graphical views with objects based on their structure [5] (e.g.,
an object having a tree-like structure is displayed using a tree
view). These solutions support extension mechanisms that
separate the business logic of domain objects from the logic

1 http://www.eclipse.org
2 http://www.jetbrains.com/idea

1 2016/9/23

http://www.andreichis.com
http://dx.doi.org/10.1145/2984043.2998546
http://pharo.org
http://www.eclipse.org
http://www.jetbrains.com/idea


used to handle those objects in development tools. This sep-
aration, however, does not favor co-evolution of objects and
tools: it increases the distance between objects and exten-
sions, making it difficult for developers editing an object to
be aware that an extension for that objects is present in a tool.

The alternative consists in making objects responsible for
deciding how they are handled in development tools. This fol-
lows the idea of Pawson, which in the context of business sys-
tems, observed that many domain objects are behaviorally-
weak (i.e., their functionality is spread through out other ‘con-
troller’ objects) and proposed naked objects [7] as a way to
move towards behaviorally-complete objects where all user
actions are contained within the object. This approach is
commonly used to visualize objects by making objects re-
sponsible to represent themselves in a textual way through
dedicated methods (e.g., toString in Java, str and repr
in Python). Nevertheless, this approach of customizing devel-
opment tools is only leveraged in a small number of tools.

3. Approach and Current Results
To create development tools that adapt to contextual situa-
tions, we propose to move towards behaviorally-complete
objects that can decide how to be handled by development
tools. Through our work on moldable tools [2] we support
this idea by attaching extensions to domain-objects and al-
lowing extension creators to specify together with their ex-
tensions an activation predicate capturing the development
context in which those extensions are applicable. A mold-
able tool supports inexpensive extensions, maintains a devel-
opment context and automatically selects at run-time object
extensions applicable in the current development context.

We applied the moldable tools idea to improve the way
developers visualize objects through the Moldable Inspec-
tor [3], an inspector that allows each object to represent itself
in multiple ways. This inspector works by enabling develop-
ers to attach to each object multiple custom views and select-
ing at run time appropriate views. Views are attached to an
object by defining in its class methods having a predefined
annotation with a parameter used to order views (line 2).

1 Morph>>#submorphsIn: aCanvas inContext: aContext
2 <gtInspectorPresentationOrder: 80>
3 aCanvas tree
4 title: #Submorphs;
5 display: [ self ];
6 format: #printString;
7 icon: #scaledIcon;
8 children: #submorphs;
9 when: [:aMorph | aMorp hasSubmorphs ]

These methods construct views using an internal DSL that
optimizes for the creation of several types of common views
(e.g., tree, list, text, code, graph). Lines 3–9 show the code
for creating a tree view for a widget. Line 9 specifies the acti-
vation predicate that indicates that the extension is available
only when the widget contains other widgets. An activation
predicate can further access previously inspected objects

using the parameter aContext. The Moldable Inspector im-
plementations (http://gtoolkit.org) is part of the Pharo
IDE that currently contains 165 inspector extensions for 105
types of objects, requiring on average 9 lines of code for
an extension. We applied a similar approach to creating a
moldable search interface with similar results, and further
observed that creating their very first extension took six de-
velopers, on average, 16 minutes and 9 lines of code [4].

Through the Moldable Debugger [1] we further inves-
tigated how to apply the moldable tools idea to support
domain-specific debugging. Towards this goal the Moldable
Debugger models the run-time stack of a process as an object,
and attaches domain-specific debuggers to stack objects. Ac-
tivation predicates now check the stack object to determine
if a domain-specific debugger is applicable. For example, a
domain-specific debugger for a graphical library is only ap-
plicable if the run-time stack contains an invocation of that
library. In this case, too, by using a DSL, we could create
custom debuggers in under 500 lines of code

To make development tools domain-aware we propose
an extension mechanism that attaches extensions to domain-
objects and automatically selects appropriate extensions us-
ing activation predicates. To reduce the cost of creating exten-
sions we investigate the design of dedicated internal DSLs.
We validated the extension mechanism and the proposed
DSLs by applying them to three development tools. Cur-
rently we are performing a larger user study to investigate
the process of how developers extend moldable tools. Fur-
ther work is needed to fully apply this idea to other types of
development tools and to better understand how developers
use domain-specific extensions during their activities.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Analysis” (SNSF project No. 200020-162352, Jan 1, 2016 -
Dec. 30, 2018).

References
[1] A. Chiş, M. Denker, T. Gı̂rba, and O. Nierstrasz. Practical domain-

specific debuggers using the Moldable Debugger framework. Com-
puter Languages, Systems & Structures, 44, Part A:89–113, 2015.

[2] A. Chiş, T. Gı̂rba, and O. Nierstrasz. Towards moldable development
tools. In PLATEAU ’15, pages 25–26, 2015.

[3] A. Chiş, T. Gı̂rba, O. Nierstrasz, and A. Syrel. The Moldable Inspector.
In Onward! 2015, pages 44–60, 2015.

[4] A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel.
Moldable, context-aware searching with Spotter. In Onward!, 2016.

[5] J. H. Cross, II, T. D. Hendrix, D. A. Umphress, L. A. Barowski, J. Jain,
and L. N. Montgomery. Robust generation of dynamic data structure
visualizations with multiple interaction approaches. Trans. Comput.
Educ., 9(2):13:1–13:32, June 2009.

[6] O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening Traits. Journal
of Object Technology, 5(4):129–148, May 2006.

[7] R. Pawson. Naked Objects. Ph.D. thesis, Trinity College, 2004.

2 2016/9/23

http://gtoolkit.org


[8] V. Rajlich and N. Wilde. The role of concepts in program comprehen-
sion. In IWPC ’02, pages 271–278

[9] R. B. Smith, J. Maloney, and D. Ungar. The Self-4.0 user interface:
manifesting a system-wide vision of concreteness, uniformity, and
flexibility. SIGPLAN Not., 30(10):47–60, Oct. 1995.

[10] Z. Yang and M. Jiang. Using Eclipse as a tool-integration platform for
software development. IEEE Software, 24(2):87–89, Mar. 2007.

3 2016/9/23


	Research Problem and Motivation
	Background
	Approach and Current Results

