

CORODS: A Coordination Programming

System for Open Distributed Systems

Juan Carlos Cruz

Institut für Informatik (IAM)
Universität Bern

Neubrückstrasse 10
3012 Berne, Switzerland
cruz@iam.unibe.ch

ABSTRACT. Open Distributed Systems are the dominating intellectual issue of the research in
distributed systems. Figuring out how to build and maintain those systems becomes a central
issue in distributed systems research today. Although CORBA seems to provide all the
necessary support to the construction of those systems, CORBA provides a very limited
support to the evolution of their requirements. The main problem is that the description of the
elements from which the systems are built, and the way in which they are composed are
mixed into the application code, making systems difficult to understand, modify and
customize. A possible solution to this problem goes through the introduction of the so-called
coordination models and languages into the CORBA model. We propose in this paper a
coordination programming system called CORODS which introduces the CoLaSD
coordination model and language into the CORBA model. CoLaSD is a coordination model
based on the notion of Coordination Groups, entities that specify, control and enforces the
coordination of groups of collaborating active objects.
RÉSUMÉ. La construction des systèmes reparties ouverts est aujourd'hui un sujet majeur de
recherche. Bienque CORBA semble offrir tout le support necessaire à la construction des tels
systèmes, CORBA offre très peu de support pour l'évolution des ces systèmes. Le principal
problème est que la description des éléments qui composent ces applications et la manière
dont ils sont composés se trouvent mélangés, rendant difficile sa compréhension,
modification et particularisation. Une possible solution passe par l'introduction de langages
et modèles de coordination dans le modèle CORBA. Nous proposons dans ce papier un
système de coordination appelé CORODS qui introduit un modèle et langage de coordination
CoLaSD dans le model CORBA.
KEY WORDS: Open Distributed Systems, Coordination, CORBA, CoLaS
MOTS-CLÉS :Systèmes reparties ouverts, Coordination, CORBA, CoLaS

2 CORODS

1. Introduction

Software development of distributed systems has changed significantly over the
last two decades. This change has been motivated by the goal of producing Open
Distributed Systems (ODS in the following) [CRO 96]. ODSs are systems made of
components that may be obtained from a number of different sources which together
work as a single distributed system. ODSs are basically ”open” in terms of their
topology, platform and evolution: they run on networks which are continuously
changing and expanding, they are built on top of a heterogeneous platform of
hardware and software pieces, and their requirements are continuously evolving.
Evolution is the most difficult requirement to meet, since no all the application
requirements can be known in advance. ODSs are the dominating intellectual issue
of the research in distributed systems. Figuring out how to build and to maintain
those systems becomes a central issue in distributed systems research today.

In 1988 the International Standards Organization (ISO) began a work on
preparing standards for Open Distributed Processing (ODP). These standards have
now been completed, and define the interfaces and protocols to be used in the
various components of an ODS. The ODP standards provide the framework within
which ODSs may be built and executed. One of the most popular (if not the most)
specifications for some parts of the ODP is the Common Object Request Broker
Architecture (CORBA) [OMG 95]. The CORBA middleware proposed by the
Object Management Group (OMG) provides a standard for interoperability between
independently developed components across networks of computers. Details such as
the language in which components are written or the operating system in which they
run is transparent to their clients. The OMG focused on distributed objects as a
vehicle for system integration. The key benefit of building distributed systems with
objects is encapsulation: data and state are only available through invocation of a set
of defined operations. Object encapsulation makes system integration and evolution
easier: differences in data representation are hidden inside objects, and new objects
can be introduced or replaced in a system without affecting other objects.

Although the CORBA middleware seems to provide all the necessary support for
building and executing ODSs, it only provides a very limited support to the
evolution of their requirements. The main problem is that the description of the
elements from which systems are built, and the way in which they are composed
remains still mixed into the application code. This problem makes those systems
difficult to understand, modify and customize. To our point of view a possible
solution to this problem goes through the introduction of the so-called coordination
models and languages into the CORBA model. The main goal of a coordination
model and language is to separate computational and coordinational aspects in a
distributed system. Separation of concerns facilitates abstraction, understanding and
evolution of concerns. We propose in this paper a coordination programming system
for ODS called CORODS. This programming system introduces the CoLaSD
coordination model into the CORBA framework under the form of a coordination
service. The CoLaSD model is an extension of the CoLaS coordination model
introduced in [CRU 99a] to the coordination of distributed active objects.

CORODS 3

2. The CORODS System

Figure 1. The CORODS System

CORODS is a coordination programming system for distributed active objects

based on the CoLaSD coordination model. The CoLaSD coordination model is
based on the notion of coordination Groups [CRU 99a]. A Coordination Group is an
entity that specifies and enforces cooperation protocols, multi-action
synchronizations, and proactive behavior within groups of collaborating distributed
active objects. A prototype of the CORODS system is being built on top of a
middleware framework called DST (Distributed Smalltalk)[CIN 00]. DST is a
CORBA 2.0[OMG 95] compliant framework for Smalltalk. From a coordination
point of view, the DST framework provides the basic facilities necessary to
implement the CoLaSD coordination model (i.e. remote object interaction, lifecycle
service, distributed naming service, distributed transactions). The CoLaSD model is
introduced in the DST framework as a basic coordination service. The CORODS
coordination service CoLaSDCoordService supports the creation, the reference, the
modification and the destruction of Coordination Groups across the network. In fig
1, we show the structure of the CORODS coordination programming system and the
elements that compose it. They are: a CORBA compliant middleware framework
(DST in this case), and a coordination service CoLaSDCoordServ based on the
CoLaSD model.

2.1. DST-A Middleware Framework

DST (Distributed Smalltalk) is a middleware framework that provides an
advanced object oriented environment for prototyping, development and
deployment of CORBA 2.0[OMG 95] compliant distributed applications. CORBA
is the standard interface of the central component of the OMA (Object Management
Architecture) architecture the Object Request Broker (ORB). The CORBA standard
defines common methods of communication between distributed objects on
heterogeneous platforms. The most important function of an ORB is to enable a

CoLaSDCoordServ CoLaSDCoordServ

 DST (CORBA) DST(CORBA)

Coordination Group

Active objects

network

CoLaSD

4 CORODS

client to invoke operations on a potentially remote object. To communicate with
remote objects, a client must identify the target object by means of an object
reference. The ORB is responsible for locating the object preparing it to receive the
request, and passing the data needed for the request to the object. If the operation
identified by the request implies some reply from the remote object the ORB is
responsible for communicating the reply back to the client. One of the most
important features of CORBA is its IDL (Interface Description Language) language.
The IDL language is used by the other components of the OMA to specify the
services they offer through the ORB. A set of common services have been defined
in the OMA architecture. These services represent generally useful services
independent of the application domain. They are called Common Object Services
(COS) and currently they are 15. DST provides six of them: naming, lifecycle, event
notification, transactions, persistence, and concurrency control.

The DST middleware provides additionally a facility called the Implicit
Invocation Interface (I3), and extension to the CORBA facilities that provides a
paradigm for developing distributed Smalltalk applications. Instead of explicitly
specify distributed classes interfaces using IDLs, Smalltalk developers using DST
can turn on the I3 message transmission mechanism and allows I3 to handle object
marshalling and unmarshalling between distributed Smalltalk objects. The I3 mech-
anism avoids developers to specify distributed classes interfaces in IDL. From a
coordination point of view DST provides the basic facilities required to implement
the CoLaSD model: remote object interaction facilities, a distributed naming service
(to locate distribute objects by names independently of the place where they find), a
lifecycle service (to control creation and destruction of distributed objects) a
concurrency control service (to mediate concurrent access to distributed objects),
and a transactions service (to control atomicity of distributed transactions).

2.2. The CoLaSD Coordination Model and Language

Coordination technology addresses the construction of open and flexible systems
from active and independent software entities in concurrent and distributed systems.
A coordination model and language specifies the glue that binds the independent
software entities in those systems [GEL 92]. CoLaSD is a coordination model and
language based on the notion of Coordination Groups. A Coordination Group is an
entity that specifies controls and enforces the coordination of a group of
collaborating distributed active objects. The CoLaSD model is based on the CoLaS
model introduced in [CRU 99a]. The CoLaSD model is built out of two kinds of
entities: the Coordination Groups and the Group Participants (Participants in the
following). The original CoLaS model is extended in CoLaSD to specify
coordination of distributed active objects. It takes into account the possibility of
failures in participants during the coordination. The CoLaSD model replaces the
CoLaS object communication model by the ACS (Apply, Call, and Send)
communication protocol [RAC 92]; a protocol designed to support reliable object
distributed applications. The ACS communication protocol merges the nested
actions model with the model of nested asynchronous invocations messages.
Services are enclosed inside atomic actions and the logical nesting of services
corresponds to the nesting of actions. Action trees representing logical nesting of

CORODS 5

invocations can be built, giving full control on the granularity of the atomicity. The
CoLaSD model includes some other important modifications like a new internal
object model for the participants, and new coordination elements within the
Coordination Groups. We will explain in details these modifications in the next
subsections.

2.2.1. The Participants

In CoLaSD the participants are atomic distributed concurrent active objects
(distributed objects in the following). They are concurrent because they can process
multiple methods invocations at the same time. They are active [PAP 95] because
they have control over the concurrent methods invocations. They are distributed
because physically they may run on different processors or machines. And, they are
atomic because they process invocations atomically.

In CoLaSD distributed objects control concurrent method invocations according
to a Readers and Writers synchronization policy. The Readers and Writers
synchronization policy specifies that invocation methods defined as writers are
processed mutually exclusively, and that invocations methods defined as readers are
processed concurrently between readers and mutually exclusively with writers
methods invocations. By default every method invocation is consider as writer,
however, it is possible to define which methods invocations must be consider as
readers. A method invocation that can not be processed because of the Readers and
Writers policy, is reified and stored into the object’s mailbox until the object is
ready to process it. There is not limit in the number of invocations that can be stored
in the mailbox, and no guarantee on the order on which stored invocations are
processed by the distributed object. The internal object model used in CoLaSD to
build the active objects is different to the internal model used in the CoLaS model.
In the CoLaS model the active objects were internally sequentials: only one
invocation method was processed at a time by an object. The CoLaSD active object
model allows multiple methods invocations to be processed at the same time
introducing potentially more parallelism to the applications.

Distributed objects in CoLaSD communicate by exchanging messages.
Messages represent requests for method invocations. In CoLaSD the messages are
exchanged asynchronously: distributed objects do not block while their invocations
are processed by other distributed objects. Each request to a method invocation on a
distributed object implicitly generates a Future. The Futures are used to reply results
to methods invocations. When an object needs to use the result of a method
invocation, it sends the message result to its future. If the result is not ready the
object blocks in the future, if the result is ready it receives the result and continues
working. Futures are also used to synchronize senders and receivers of invocations
(synchronous communication). When a distributed object wants to communicate in
a synchronous way with another object, it sends a method invocation to the other
object, and waits in its future until it receives a notification indicating that the
invocation was completely processed by the other object. The object that sent the
method invocation sends the message wait to the future to receive such notification.
If the invocation has not been completely processed the object blocks in its future.

Failures in the execution of the distributed objects and/or in the communication
system may modify and thus affect the overall consistency of a system. The

6 CORODS

consistency of a distributed object system depends on assertions done by the
distributed objects about the state of other distributed objects. Several solutions
have been proposed to tackle this problem [LIS 83][WAL 90](just to mention some
of them). Basically what they propose is to give to the object message passing
metaphor a powerful semantic for reliable distributed computing. The most
interesting work to our viewpoint is [RAC 92]. In this work a communication
protocol named ACS is introduced. This protocol merges the nested actions model
[MOS 81] with the model of nested asynchronous methods invocations. In the ACS
protocol, objects communicate through three different types of asynchronous
message passing: Apply, Call and Send. All three types of asynchronous messages
imply the execution of some subaction on another object. An Apply message sent by
an object to another object implies the abort of the sender action if a failure occurs
during the execution of the Apply subaction. A Call message behaves similarly to
an Apply message; it differs in that Call messages do not imply the abort of the
sender actions if a failure occurs. Different subactions are thus allowed to fail inde-
pendently of each other. The sender may know that the request has failed, and may
consequently choose to abort or to continue the execution of its action. A sender
may know that a request has failed by sending to its future the message failed. In
both Apply and Call messages, the sender may decide to abort its actions. All the
subactions are also aborted if this happens.

To provide a simple way to trigger a subaction not requiring atomicity, the ACS
protocol introduces a third kind of asynchronous message called Send. Senders of
Send messages, does not rely, neither expect any reply from the execution of the
subaction on the other object. CoLaSD replaces the basic asynchronous
communication model of CoLaS by the ACS communication protocol. Any message
send to another object must be preceded by a special message (protocol message)
indicating the type of the asynchronous message it precedes. There are three types
of protocol messages: apply, call and send in CoLaSD. By default a message
received without a precedent protocol message is consider as a send message. The
ACS protocol is built on top of the DST nested transactions service. Several
modifications were done to adapt this service to a model of active object. They
include for example, the introduction of multiple transaction contexts. Although this
is an interesting work, we do not present these modifications here; they will be out
of the main scope of the paper.

2.2.2. Coordination Groups

A Coordination Group (CG in the following) is an entity that specifies, control
and enforces the coordination of a group of distributed objects in the realization of a
common task. Each CG has associated a name. This name is used to identify
uniquely CGs across the network. The primary tasks of a coordination group are: (1)
to enforce cooperation actions between participants, (2) to synchronize the
occurrence of participant actions, and (3) to enforce proactive actions (in the
following proactions) on participants based on the state of the coordination.

CORODS 7

Figure 2. A Coordination Group

2.2.2.1. Coordination Specification.

A CG is composed of six elements: a Role Specification, a Coordination State, a
Cooperation Protocol, Coordination Interceptors, Multi-Action Synchronizations
and Proactions (fig. 2).

-The Role Specification: defines the roles that the participants may play in the

group. Distributed objects join groups in CoLaSD by enrolling to group roles. A
role identifies abstractly a set of entities sharing the same coordination behavior
within the group. Each role has an associated role interface. To play a role, an object
should posses at least the functionalities required by the role interface (interface
compatibility). Roles can be played by more than one distributed object, and
distributed objects can join more than one role. Nevertheless, to avoid semantic
problems during coordination, we avoid that distributed objects join multiple roles
having common coordination behavior.

-The Coordination State: defines general information needed for the
coordination of the group. It concerns information like whether a given action has
occurred or not in the system (i.e. historical information), or information about the
state of a participant (i.e. busy or free). The Coordination State is specified by
declaring variables within the CG. The variables are associated to the group or to
each participant playing a given role.

-The Cooperation Protocol: define implications between participants actions.
These implications have the form <Role> defineBehavior:<Message>
as:<Coordination Actions>. They represent actions that have to be done whenever a
participant playing a role <Role> receives an invocation request <Message>. The
<Coordination Actions> include actions that: manipulate the coordination state of

 Roles

Rules:
r1:--------
r2:--------
r3: -------

x:
y:

Coordination State

Active objects

8 CORODS

the group, that select specific participants or collections of participants playing
some role, and invocation requests sent to roles or to specific participants. The
cooperation protocol corresponds to behavior specifically related to the
coordination. This behavior must not be known in advance by the participants, they
”learn” it when they enroll to the roles, and remains part of the participant
knowledge as long as the participant stays playing the role. Behavior implications
are new to the CoLaS model. They are introduced in the CoLaSD model to provide
a clean separation of the coordination and computation behavior between
participants and coordination groups.

-Coordination Interceptors: the interceptors define actions that modify the
coordination state of a CG at different moments during the handling of an
invocation request by a participant. The interceptors have the form <Role>
<Message> <Entry Point> <State Actions>. There are three different types of
interceptors according to the moment (or <Entry Point>) at which the invocation
request is intercepted: InterceptAtArrival, InterceptBeforeExecution, and
InterceptAfterExecution. InterceptAtArrival specifies that the <State Actions>
have to be performed when the message <Message> arrives to some participant
playing the role <Role>. InterceptBeforeExecution and InterceptAfterExecution
specify that the state actions have to be executed before and after respectively of the
execution of the message <Message> by the participant. <State Actions> are actions
that affect exclusively the coordination state of the group.

-The Multi-Action Synchronizations: specifies synchronizations constraints over
message exchanged between participants. Multi-action synchronizations have the
form <Role> <Message> <Operator> <Synchronization Conditions>. They specify
conditions that constraint the execution of a message <Message> received by a
participant playing the role <Role>. Two types of operators can be specified: Ignore
and Disable. Depending on the operator, the message <Message> should be ignored
or delayed by the object. Because of the non-determinism in which participant
actions may occur in a system, multi-action synchronizations constraints are
necessary to ensure properties such as: (1) mutual exclusion, and (2) temporal
ordering of invocations. The synchronization conditions refer to information like:
the state of the group, the identity of the receiver or the sender of a message,
historical information on the coordination, etc. For a detailed description of the
kinds of synchronization conditions refer to [CRU 99a].

-The Proactions: Until now the coordination of the system has been purely
reactive. Coordination Actions are done in response to the reception invocation
requests; they cannot be initiated by their own by the CG. Proactive behavior [AND
96] is introduced in CoLaS to specify actions that must be enforced by the CG
independently of messages exchanged by participants (assuming that a certain
condition holds). Proactions have the form <Conditions> <ProOperator>
<Coordination Actions>. The <Conditions> are conditions referring the
coordination state of the CG. Only one kind of ProOperator can be specified:
validateAlways. The ValidateAlways proaction ensures that the proactive actions
are executed always that the conditions specified on the proactions are satisfied. The
evaluation of the conditions is done periodically by the CG in a non-deterministic
way.

CORODS 9

The last four elements of this model are specified using rules [AND 96][MIN
97]. The advantage of using rules is that they make the coordination explicit. They
avoid programmers to deal with low-level details on how the coordination occurs.

The coordination is specified in a CG independently of the internal
representation of their participants. Distributed objects can be used independently of
how they are coordinated, and coordination protocols may be used independently on
different groups of distributed objects. This independence allows for a clear
separation of computation and coordination concerns, as promoted by coordination
models and languages. It promotes abstraction, understanding and evolution of both
concerns. The CoLaSD model combines the advantages of using groups as an
organization abstraction and rules as explicit entities regulating the coordination
aspect. We consider nevertheless, that the main advantage of CoLaSD is that CGs
are highly dynamic entities that support evolution of the coordination. This is done
in three distinct axes: (1) CGs are created dynamically at any time, (2) objects join
and leave groups at any time, and (3) the behavior of a CG can be modified
dynamically to adapt to new coordination requirements. As we mentioned before
evolution is the most difficult requirement to meet, since not all the application
requirements can be known in advance.

2.3. The Coordination Service - CoLaSDCoordService

The CoLaSDCoordService coordination service supports the creation, the
reference, the modification and the destruction of CGs across the network. This
service was created using the basic lifecycle service of DST. The basic lifecycle
service of DST provides support for creating, deleting, copying and moving objects
both locally and remotely, facilities required for object population control and
object migration. All the CGs created across the network within CORODS are
created using the CoLaSDCoordService. The service uses a coordination group
factory object to create the CGs. In the Common Object Services (COS)
terminology of CORBA, factories are objects that create objects in response to
clients requests. In the DST framework a factory is any class that can be instantiated
and has interfaces registered for creating objects in the interface repository. Factory
objects are registered during the initialization factories phase of the ORB
initialization. For a class to be registered as a factory it must have an instance
method call abstractClassID (which returns the appropriate UUID-Universal
Unique Identifier of the class).

To locate the correct class which then create the new objects, the COS
specification of the lifecycle service introduces the notion of factories finders. A
factory finder is an object at a specific location that helps clients to locate factories
of a particular class. In order to create a remote object, clients need an object
reference to the factory where the remote object will be created. The
CoLaSDCoordService manages transparently all the interaction with the
coordination group factory object and the DST lifecycle service to control the
creation of CGs. A client of the CoLaSDCoordService must only know the interface
of the coordination service.

To create a CG, a client sends the message createCGNamed:<Group Name> to
the coordination service. Each CG created by the coordination service has a unique

10 CORODS

name associated with it. The name of a CG is used to identify and to obtain
references to CGs from the CoLaSDCoordService coordination service. If a request
for a CG reference is done to the coordination service, and the CG does not finds at
the same place (same machine) where the request was done, the coordination
services replies a remote reference (a proxy) to the remote CG. In other case the
service replies the reference of the requested CG. Requests for CGs references have
the form getReferenceToCGNamed: <Group Name>. For a user manipulating a
CG is transparent whether CG finds locally or remotely.

By using the CoLaSDCoordService all the CGs created are potentially
accessible and manipulable from whatever place across the network. The
CoLaSDCoordService itself is accessible to clients by means of the DST naming
service (the naming service is a COS service). Clients can receive references to the
CoLaSDCoordService by sending the message contextResolve:
'CoLaSDCoordService' asDSTName to the naming service. References to the
naming service are obtained via the initial references mechanism of the ORB. This
mechanism allows an application to know which objects have references available
in the ORB. A listInitialServices operation is provided which returns a sequence of
names. Each name represents an object which is available through this mechanism.
Currently there are four objects available in DST at initialization: the Interface
Repository, the Naming Service, and the Factory Finder. To obtain the object
reference to each one of these objects the operation resolveInitialsReferences:
<Object Name> must be used.

3. An Example- The Administrator Pattern [PAP 95]

We present in this section an example of the use of the CORODS programming
system. We define a CG around a classical pattern used in distributed systems ”The
Administrator”. The administrator is an object that uses a collection of ”workers”
objects to service requests. The administrator pattern defines three kinds of entities:
(1) the clients that issue requests to the administrator, (2) the administrator that
accept requests from multiple concurrent clients, distributes the requests to the
workers and forwards back the results to the clients, and (3) the workers that handle
the administrator requests and send back results to the administrator. The adminis-
trator may seek to maximize parallelism by load balancing or it may allocate jobs to
workers based on their individual capabilities. This example illustrates the following
coordination problems:

-Transfer of information between entities: client requests received by the
administrator must be forwarded to the workers. The administrator must decide
which request goes to which worker. Additionally, the administrator must control
the transfer of replies from workers to clients.

-Assignment of share resources: the administrator controls the assignment of
request to workers. The shared resource in this case is the workers processing time.
The administrator may apply different assignment policies. To simplify the problem
we decided that all the workers have the same capabilities and that we implement a
simple assignment police the ”first free” policy. In this policy the administrator
chooses in a non deterministic way one free worker between its workers.

CORODS 11

Additionally the administrator must prevent the assignment of multiple requests at
the same time to the same worker.

Dynamic Evolution of the coordination: The systems must be able to scale. New
workers may be added or removed from the system at any time. Additionally, the
system must accept the arrival of new clients. Assignment policies may also change
at runtime.

Site-Ziyal -
1.adminCG defineRoles:#(administrator workers).
2.adminCG defineInterface:#(do:) forRole:workers.
3.
4.adminCG defineParticipantVariable:free forRole:workers initialValue:true.
5.
6.
7.[1] administrator defineBehavior: 'do:args' as:
8. [|worker |
9. worker :=
10. workers selectAParticipantThat: "Select a free worker "
11. [:aParticipant|
12. group valueVariable:free ofParticipant:aParticipant].
13. group setVariable:free ofParticipant:worker value:false.
14. ^worker apply do:args]
15.
16.[2] administrator 'do:args' disable:
17. [workers notExistsAParticipant: "Validates if there is a free"
18. [:aParticipant | "worker."
19. group valueVariable:free ofParticipant:aParticipant]].
20.
21.[3] workers 'do:args' InterceptAfterExecution:
22. [group setVariable:free ofParticipant:receiver value:true]

Figure 3. The Administrator Pattern

3.1. Role Specification

In the administrator example fig. 3, participants play one of the two roles: the
administrator or the workers. These roles are defined in line 1. The minimal
interface that objects should support to play the role workers for example is
specified in line 2. The method do: specified in the interface corresponds to the
service that the administrator offers to its clients and that workers execute. Suppose
do: is an increment service that increases the value of received argument by ten.

3.2. Coordination State

12 CORODS

The coordination state of the group is specified by declaring variables. In the
administrator example we have only one, the variable free defined in line 4. This
variable is a participant variable. Each participant playing the role workers has one
variable free associated with it. This variable is used by the administrator to control
the assignment of request to workers. When the variable validates to true it indicates
that the worker is free to do some job, and when it validates to false it indicates that
the worker is busy.

3.3. Behavioral Specification

In the administrator example three rules are defined:

Rule 1 (line 7). A do: request received by the administrator triggers a do: request

on a free worker. The state of the worker is set to busy by changing to false the
value of its coordination variable free. In line 14, we can see how the administrator
forwards the request it receives from the client to the selected worker. Furthermore,
the administrator replies ”^” to its client with an implicit future that contains the
result sent back by the worker that executes the job. Each request to a method
invocation on a distributed object implicitly generates in CoLaSD a future. In this
particular example the administrator reply contains the future it receives from the
invocation of the method do: on the worker. When the client wants to verify if the
reply to its invocation request is ready, it sends the message result to the future. The
client blocks if the worker has not finish to process its request.

Rule 2 (line 16): Requests are delayed by the administrator when no worker is
free to handle the received request. To determine whether a worker is free or busy,
the rule uses the coordination variable free associated with each worker.

Rule 3 (line 21): Once a worker has finish to perform a request the state of the
worker is updated to free. We use an interceptAfterExecution coordination
interceptor to do this. This interceptor is applied after the execution of the behavior
do: on the worker. It modifies the coordination variable free of the worker that
processed the request to true.

3.4. Pseudo-Variables

There are three pseudo-variables that can be used within the CGs. They are:
group, receiver, and sender. The group variable refers to the CG on which the
variable appears (lines 12, 13, 19 and 22 in fig. 3). The sender variable refers to the
distributed object that sent the invocation request and the receiver variable the
distributed object handling the invocation request (line 22).

3.5. Failures

CORODS 13

In line 14 fig. 3, we see how the ACS is used in the example. The apply special
protocol message precedes the invocation of the do: request on the selected free
worker. This implies that in case that the invocation do: fails on the worker the
system will abort the do: action of the administrator. The client may ask to its future
is the request has failed by sending the message failed to its future, and modify the
rule to define a completely different strategy like retrying the execution of the
operation on another worker. In Fig. 4 line 9, the apply message has been replaced
by a call message and a validation to the ocurrence of a failure. If a failure is
detected during the execution of the do: operation on the worker, the operation is
retried on another worker

1.[1] administrator defineBehavior:'do:args' as:
2. [|worker result|
3.
4. worker :=
5. workers selectAParticipantThat:
6. [:aParticipant|
7. group valueVariable:free ofParticipant:aParticipant].
8. group setVariable:free ofParticipant:worker value:false.
9. (result := worker call do: args) failed "verifies failure"
10. ifTrue:
11. [worker :=
12. workers selectAParticipantThat:
13. [:aParticipant|
14. group valueVariable:free ofParticipant:aParticipant].
15. group setVariable:free ofParticipant:worker value:false.
16. result := worker call do: args]
17. ifFalse: ...
18.
19. ^result]

Figure 4. Managing Failures

3.6. Group Creation and Enrolment of Participants

To illustrate how active objects are created and then how they join the CGSs in a
distributed session we define a specific scenario in which we have an administrator,
and two workers. The administrator, the workers and the CG run on three different
machines (Ziyal, Albert, and Globi). The administrator participant and the
ADMINISTRATOR CG run on Ziyal. One worker Worker1 runs on Globi, and the
other worker Worker2 runs on Albert. The CORODS system is installed on each of
the three machines

In fig. 5 (Site 1 line 5) we can see how the 'ADMINISTRATOR' CG is created
using the CoLaSDCoordService coordination service. The CG becomes in this way

14 CORODS

potentially accessible to participants running on different machines. A distributed
object that wants to participate in a CG must contact the coordination service to
obtain a reference to the CG. In Site2 lines 4 and 5, we can see how a worker gets a
reference to the CG. In line 8 site 2, we can see how a worker active object uses this
reference to enrol into the CG in the role workers

The Administrator and Worker classes are subclasses of the class
COLASDDistributedObject. In CoLaSD every distributed object class must be a
subclass of COLASDDistributedObject . This special class introduced in CORODS
manages transparently all aspects related with the internal activity of objects and
their interaction with the CGs. Instances of distributed objects are create using a
creation method active (line 7 sites 1 and 2).

Site 1- Ziyal
1. namingService coorService adminCG administrator |
2.
3. namingService := ORBObject resolveInitialReferences:#NameService.
4. coordService := namingService contextResolve:'CoLaSDCoordService' asDSTName.
5. adminCG := coordService createCGWithName: 'ADMINISTRATOR'.
6.
7. administrator := Administrator active.
8. namingService contextBind: 'SERVER' asDSTName to: administrator.
9. adminCG addParticipant:administrator withRole:administrator.

Site 2- Globi
1. namingService coordService adminCG administrator worker1|
2.
3. namingService := ORBObject resolveInitialReferences: #NameService.
4. coordService := namingService contextResolve: 'CoLaSDCoordService' asDSTName.
5. adminCG := coordService getReferenceToCGNamed: 'ADMINISTRATOR'.
6.
7. worker1 := Worker active.
8. adminCG addParticipant: worker1 withRole: workers.

Figure 5. Group creation and enrolment of participants

3.7. Dynamic Properties

CoLaSD supports three types of dynamic coordination changes: (1) new
participants can join or leave the group at any time, (2) new groups can be created
and destroyed dynamically, and (3) the coordination behavior can be changed by
adding or removing rules to the CG. To introduce new participants a message
addParticipant: <newParticipant> forRole:<Role> must be sent to the CG (line 8
site 2 fig 5). To leave the CG a participant must send the message removePar-
ticipant: <Participant> fromRole:<Role> (or removeParticipant: to remove it
from all the roles it plays). To add new coordination rules a message

CORODS 15

addRule:<aRule> must be sent to the CG. The rule definition must correspond to
one of the four different types of rules specified in CoLaSD: cooperation rules,
multi-actions synchronization rules, coordination interceptors rules, or proactions
rules. To remove a rule a message removeRule: <aRule> must be sent to the CG. In
the administrator example it is possible to adapt dynamically the number of workers
in the system. The administrator may decide for example to add new workers to the
system whenever the number of pending requests is too high and to remove those
workers once that the number of pending requests becomes normal .

4. Related Work and Conclusions

Traditionally the coordination layer of Open Distributed Systems have been
managed using concurrent and distributed object oriented languages. These
languages provide only limited support for the specification an abstraction of the
coordination. As a result, the coordination founds mixed into the application code,
making it difficult to identify, to scale and to customize. The idea of separating
coordinational aspects of systems using coordination languages was introduced by
[GEL 92] in their language called Linda. The Linda model is a data driven model.
The main goal of the CoLaSD model is to support coordination of ODS. As
concurrent and distributed object oriented languages promote data encapsulation
and behavior over the data, we think that naturally the coordination in object
oriented systems must be control driven. CoLaSD is a control driven model because
CGs enforces and control actions occurring in the system not on data. Due to space
limitation we limit this related work to coordination languages specifically designed
for object oriented systems and to coordination languages which use the same
approach of message interception to realize the coordination (for a complete related
work refer to [CRU 99a]). The most important related works are Synchronizers
[FRO 93] and Moses [MIN 97]. Both specify coordination using rules as in
CoLaSD. The main differences with respect to CoLaSD are: (1) In synchronizers the
coordination is restricted to synchronization of messages, in CoLaSD and Moses
coordination actions can be enforced on participants too. Nevertheless, in Moses
those actions only affect the receiver of the message. In CoLaSD coordination
actions may affect any participant of a CG. (2) In Moses and Synchronizers the
coordination state refers only to local information of a participant. In CoLaSD the
coordination state may refer to the coordination state of any participant of a CG. (3)
Synchronizers are pure reactive entities; they react to the arrival of message
invocations. In both Moses and CoLaSD proactions may be initiated independently
of the arrival of some message. (4) Synchronizers, neither Moses support dynamic
evolution of the coordination as in CoLaSD. In CoLaSD the coordination can be
modified on the fly: new coordination rules can be added, new distributed objects
can join CGs, and new CGs can be create dynamically. Finally, (5) Synchronizers
neither Moses includes the possibility of failures into their models.57

Concerning related work on introducing the so-called coordination models and
languages into the CORBA model. Our work is very new; this idea was presented in
[CRU 99b]. To our knowledge the only work that could be consider as related in
this domain is [DRI 99]. This work proposes a cooperation service for CORBA
based on graph grammar techniques. The main differences with respect to our
approach are: (1) they coordinate sequential objects (2) coordination is specified as

16 CORODS

graphs transformations, and (3) they do not manage the evolution of the
coordination rules that applied over the coordination graphs,

We consider the CoLaSD coordination model a good candidate to the integration
with the CORBA model. This integration will provide the necessary support to build
and evolve ODS. It will provide separation of concerns between computation and
coordination in ODS simplifying the understanding, modification and
customization.

5. Bibliographie

[AND 96] J-M.ANDREOLI, S. FREEMAN and R.PRESCHI, The Coordination Language
Facility: Coordination of Distributed Objects, (TAPOS), vol.2, n. 2, 1996, pp. 635-667.

[CIN 00] CINCOM Inc., Distributed Smalltalk, 1998,http://www.cincom.com/

[CRO 96] J. CROWCROFT, Open Distributed Systems, UCL Press, 1996.

[CRU 99a] J.C.CRUZ and S. DUCASSE, A Group Based Approach for Coordinating Active
Objects, COORDINATION ‘99, LNCS 1594, Springer Verlag, pp. 355-370.

[CRU 99b] J.C.CRUZ and S. DUCASSE, Coordinating Open Distributed Systems, Future
Trends of Distributed Computing Systems, IEEE, pp. 125-130.

[DRI 99] K.DRIDRA, F, et all., A Cooperation service for CORBA objects, EuroPar’99
LNCS 1685.

[FRO 93] S.FROLUND et all., A Language Framework for Multi-Object Coordination,
ECOOP'93, LNCS 707, Springer Verlag, pp. 346-360.

[GEL 92] D. GELERNTER and N. CARRIERO, Coordination Languages and their
Significance, CACM vol. 35, n. 2, February 1992.

[LISK 83] B.LISKOV and R.SHEIFLER, Guardians and Actions: Linguistic Support for
Robust Distributed Programs, ACM TOPLAS, July 1983.

[MIN 97] N.MINSKY et all, Regulated Coordination in Open Distributed Systems,
COORDINATION’97, LNCS 1282, Springer-Verlag, 1997, pp. 81-97.

[MOS 81] J.E.B MOSS, Nested Transactions and Reliable Distributed Computing. Ph.D
Thesis, MIT, 1981

[PAP 95] M.PAPATHOMAS, Concurrency in O.O. Programming Languages, Object
Oriented Software Composition, P. Hall.

[RAC 92] R.GUERRAOUI, et all, Nesting Actions thorough Asynchronous Message Passing:
the ACS protocol, ECOOP 92.

[OMG 95] OMG, The Common Object Request Broker: Architecture and Specification,1995.

[WAL 90] E. WALKER, et all, Asynchronous Remote Operation Execution in Distributed
Systems, Proc. IEEE Conf. on Distributed Computing Systems, May 1990

