
Using Reflective Logic Programming to Describe
Domain Knowledge as an Aspect�

Maja D’Hondt1, Wolfgang De Meuter2, and Roel Wuyts2

1 System and Software Engineering Laboratory
2 Programming Technology Laboratory

Brussels Free University, Pleinlaan 2, 1050 Brussels, Belgium,
mjdhondt | wdmeuter | rwuyts@vub.ac.be

Abstract. Software applications, mostly consisting of an algorithm ap-
plied to domain knowledge, are hard to maintain and to reuse as a result
of their hard coded combination. We propose to follow the principles of
aspect-oriented programming, separating the domain from the algorithm
and describing them in a logic and conventional programming language
respectively. In this paper, we report on an experiment that was con-
ducted to validate this hypothesis, and to investigate the requirements
of a programming environment for this configuration. An already exist-
ing environment that uses a logic meta-language to reason about object-
oriented systems, SOUL, is used as a starting point for this experiment.
The result is a working implementation in SOUL, which validates our
ideas, reveals mechanisms that require more research, and points to other
features that should be included.

1 Introduction

In [1] we argue that separating the domain from the algorithm in software
applications, would solve a lot of maintainance and reuse problems. Applying
aspect-oriented programming or short AOP [2] to model the domain as an as-
pect program and the algorithm as the base program, allows them to evolve
independently from one another. Note that in this paper, by algorithm we mean
the functionality of a software application or in general any program, whereas a
domain or domain knowledge denotes concepts and constraints that model the
real world and which an algorithm can be applied to 1.

Hence, following the AOP paradigm, we propose to express domain knowl-
edge in an appropriate environment acting as an aspect language. When in-
vestigating techniques available in (amongst others) the artificial intelligence
community for representing knowledge, we come across a number of languages
and formalisms based on first-order predicate logic. The algorithm, on the other

� This work is partly sponsored by the Vlaams Instituut voor de Bevordering van het
Wetenschappelijk-Technologisch Onderzoek in de Industrie.

1 Note that, in some cases, an algorithm can also be viewed as being part of domain
knowledge.

2

hand, is the base program and can be implemented in any conventional pro-
gramming language such as C, Java and Smalltalk.

In order to conduct initial experiments investigating our hypothesis that
software applications would benefit from separating the domain and the algo-
rithm, we require a programming environment that is a symbiosis between a
domain aspect language and a conventional programming language. A suitable
candidate is the Smalltalk Open Unification Language or SOUL [3] [4], a declar-
ative framework that uses Prolog to reason about the structure of Smalltalk
programs. SOUL was originally developed as a validation for the use of logic
meta-languages for expressing relationships in object-oriented systems. In this
paper we take advantage of this construction to represent domain knowledge in
the Prolog layer and algorithms in Smalltalk. Therefore, Prolog is no longer used
as meta-language for reasoning about Smalltalk programs, rather it serves as an
aspect language for describing aspect programs on the same level as the base
programs in Smalltalk.

In the rest of this paper, we describe an experiment involving an example
inspired by a real-world geographic information system (GIS). Although not
originally designed for this purpose, we use SOUL and Smalltalk to turn our
example into a working aspect-oriented program, thereby providing proof of
concept of our ideas. In addition to this, the experiment reveals features that
should be incorporated in a programming environment for AOP with domain
knowledge as an aspect. Some of these features are not yet implemented in
SOUL, but present a mere technical issue. Other features, however, require more
investigation.

In the remainder of this text, the slanted type style is used to denote concepts
from the domain knowledge, whereas algorithms are written in typewriter type
style.

2 An Example

A GIS, for example a car navigation system, is applied to a vast amount of
geographic data, modelled as a planar graph. The nodes, edges and areas of
this graph have properties attached to them such as a hotel, a street name or
an industrial area respectively. These geographic data are actually the domain
knowledge of a GIS. Our example concerns roads, cities and prohibited manoeu-
vres (Fig. 1). The latter is modelled on two cities, signifying that it is prohibited
to take the road from the first city to the last.

To this sub domain a shortest path algorithm is applied, more specifically
the branch and bound algorithm below:

branchAndBoundFrom: start to: stop
|bound|
bound := 999999999.
self traverseBlock: [:city :sum|
city free ifTrue: [sum < bound ifTrue: [city = stop

3

Bonheiden

Keerbergen

Haacht
Rijmenam

Boortmeerbeek

7

5

3

6

7

5

9

4

Fig. 1. A planar graph representation of the domain knowledge. The circles denote
cities, whereas the lines indicate roads that connect two cities. To each road the distance
between the two connected cities is attached. A prohibited manoeuvre is shown from
the city Rijmenam to the city Bonheiden.

ifTrue: [bound := sum]
ifFalse: [self branch: city sum: sum]]]].

self traverseBlock value: start value: 0.
^bound

branch: node sum: sum
city free: false.
city roads do: [:road|
(self isProhibiedFrom: city by: road) ifFalse:

[self traverseBlock value: road next
value: sum + road distance].

city free: true.

By way of introducing the example, we presented it programmed in a conven-
tional way: the domain knowledge and the algorithm are both implemented in
Smalltalk. Note that the algorithm implicitly selects the shortest road first, be-
cause the instance variable roads of a city is a sorted collection. Figure 2 shows
a UML diagram of the domain and the algorithm.

This branch and bound program illustrates that the domain and the algo-
rithm cannot evolve independently from each other: the domain knowledge con-
cerning prohibited manoeuvres cross-cuts the implementation of the algorithm.

4

ProhibitedManoeuvre

first
last

first

last
next
distance

Road City

name
roads
free

1
1..n
roads

next

Fig. 2. An UML diagram of the branch and bound algorithm. We assume that accessors
and mutators are implemented for the instance variables, which are used in the branch
and bound program.

3 A First Experiment

The example, which was described in the previous section as a single Smalltalk
program, is now transformed into an aspect-oriented program in SOUL. Using
the Prolog layer to describe the domain knowledge, we get the following result:

Fact city (Rijmenam)
Fact city (Boortmeerbeek)
...
Fact road (city (Rijmenam), city (Boortmeerbeek), [3])
Fact road (city (Keerbergen), city (Rijmenam), [4])
...
Fact prohibitedManoeuvre (city (Rijmenam), city (Bonheiden))
Rule roads (?current, ?newResult) if

findall (road (?current, ?next, ?distance),
road (?current, ?next, ?distance), ?result)
privateRoads (?current, ?result, ?newResult).

Rule privateRoads (?current, ?result, ?newResult) if
prohibitedManoeuvre (?current, ?next),
removeRoad (?result, road (?current, ?next, ?distance), ?newResult)

Fact privateRoads (?current, ?result, ?result)

The base program in Smalltalk looks like this:

branchAndBoundFrom: start to: stop
|bound|
bound := 999999999.
self traverseBlock: [:node :sum|
node free ifTrue: [sum < bound ifTrue: [node = stop

ifTrue: [bound := sum]
ifFalse: [self branch: node sum: sum]]]].

self traverseBlock value: start value: 0.
^bound

branch: node sum: sum
node free: false.

5

node edges do: [:edge|
self traverseBlock value: edge next value: sum + edge distance].
node free: true.

Note that it is basically the same as the first version of the algorithm presented
in the previous section. We have changed the variables and methods city to
node and road(s) to edge(s), to stress that domain knowledge concerning
cities and roads is no longer part of the algorithm. There are still nodes and
edges in this otherwise domain independent algorithm, because a branch and
bound algorithm is graph-based and thus requires the use of these concepts.
This imposes a constraint on the domain this algorithm can be applied to, but
also indicates the join points between the two: cities map to nodes and roads
map to edges.

Another difference with the previous conventional implementation, is that
the base program is no longer responsible for the selection of the next roads to
be visited: in the domain layer, the rule roads unifies with ?newResult a list of
next roads omitting prohibited manoeuvres. This delegation to the Prolog layer
is possible, because Prolog queries can be explicitly launched from Smalltalk
code. Thus, when the message edges is sent to the variable node in the base
program, this is translated to a query, for example:

q Query roads (city (Rijmenam), ?newResult)2

This brings us to another point: the value at run-time of the variables node
and edge in the base program. The algorithm works with placeholder objects,
instances of the classes Node and Edge, which do nothing more than wrap cor-
responding Prolog facts, city and road respectively, thus transforming them to
Smalltalk objects. Accessing these objects is delegated to the domain layer as
a query (see previous example), since these objects do not actually store any
values other than a Prolog fact. The mechanism of manipulating Prolog objects
in Smalltalk and vice versa, necessary for fixing the join points of the aspect-
oriented program, is referred to as the linguistic symbiosis of those two languages
[5]. The idea is the following:

up(s) = p if s = down(p)
= smalltalkFact(s)

down(p) = s if p = up(s)
= Prologobject new with: p

where Prolog is the up layer and Smalltalk is the down layer, and where s is a
Smalltalk object and p is a Prolog fact. Upping a downed Prolog object returns
the original unwrapped Prolog object. Upping a Smalltalk object means wrap-
ping it in a Prolog fact smalltalkFact. Vice versa, downing an upped Smalltalk

2 The prefix q Query is required by SOUL syntax.

6

object returns the Smalltalk object whereas downing a Prolog fact wraps it in
an instance of the PrologObject class from Smalltalk. When Smalltalk sends a
message to a Prolog fact, for example to retrieve edges (roads) from city(Haacht),
the fact is implicitly downed and the result is upped again [6]. This linguistic
symbiosis is not yet implemented in SOUL and is therefore explicitly and not
very elegantly programmed in this experiment, which nevertheless provides a
proof of concept. Further work certainly includes embedding this mechanism in
SOUL, thus making it implicit and invisible to the programmer.

However, the linguistic symbiosis to enable AOP with the domain aspect
requires the downed Prolog facts to have a state, as the messages free and free:
in the base program indicate. These messages are used to let the algorithm know
if a node has already been visited in order to avoid cycles. This property attached
to nodes is purely algorithmic and should not be incorporated in the domain
knowledge about cities. Therefore, when a Prolog fact is downed for the first
time, the programming environment should attach an instance variable free and
corresponding accessor and mutator to the instance of the class PrologObject in
Smalltalk that wraps it. This wrapper should be recycled when the same Prolog
fact is downed again, so that the value of free, in other words the state of the
wrapper, is not lost.

4 A Second Experiment

For the next experiment, we strip the domain knowledge of prohibited manoeu-
vres and add a new concept: the priority manoeuvre as explained in figure 3.

Bonheiden

Keerbergen

Haacht
Rijmenam

Boortmeerbeek

7

5

3

6

7

5

9

4

Fig. 3. The priority manoeuvre that concerns the cities Haacht, Boortmeerbeek and
Bonheiden. When in Boortmeerbeek and coming from Haacht, the road to Bonheiden
is preferred over any other road, even when that road is shorter.

7

The domain knowledge is extended and replaced with the following:

Fact priorityManoeuvre (city(Haacht), city(Boortmeerbeek), city(Bonheiden))
Rule roads (?current, ?previous, ?newResult) if

findall (road (?current, ?next, ?distance),
road (?current, ?next, ?distance), ?result),
privateRoads (?current, ?previous, ?result, ?newResult)

Rule privateRoads (?current, ?previous, ?result,<road (?current, ?next, ?dis-
tance) | ?newResult>) if

priorityManoeuvre (?previous, ?current, ?next),
removeRoad (?result, road (?current, ?next, ?distance), ?newResult)

Fact privateRoads (?current, ?previous, ?result, ?result)

If we would implement the branch and bound algorithm applied to this do-
main in a conventional program, the algorithm would require the passing of an
extra parameter previous in order to find priority manoeuvres, as shown below:

branchAndBoundFrom: start to: stop
...
self traverseBlock: [:previous :node :sum |

...
ifFalse: [self branchFrom: previous to: node sum: sum]]]].

self traverseBlock value: nil value: start value: 0.
^bound

branchFrom: previous to: node sum: sum
...

As with the free instance variable in the previous section, the domain knowl-
edge cannot be burdened with this algorithmic information. But neither should
the algorithm be tangled with an extra parameter that is needed to test a do-
main constraint concerning priority manoeuvres. In our working implementation,
we use the domain knowledge described above and the same algorithm as was
presented in the previous section. This shows that the domain can evolve inde-
pendently from the algorithm. In order to achieve this, we created an object that
runs in background in parallel with the algorithm, secretly remembering the pre-
viously visited node. Although not very elegant, our temporary solution again
hints at what kind of mechanism should be incorporated in an environment for
AOP with domain knowledge as en aspect.

5 Conclusion

This paper reports on an experiment on aspect-oriented programming with do-
main knowledge as an aspect, using a reflective logic language as the aspect
language. On the one hand this experiment was conducted to show that the do-
main and the algorithm of a program can evolve independently from one another

8

when using the AOP paradigm and regarding domain knowledge as an aspect.
We validated this hypothesis on a small scale, since the experiment involved
limited domain knowledge and a relatively simple algorithm. On the other hand,
despite this small scale, the experiment immediately revealed some properties
that a programming environment which supports this programming style should
have. First of all, it should incorporate a language based on first-order predicate
logic for representing the aspect, such as Prolog, and a more conventional pro-
gramming language for the algorithm. Moreover, the programming environment
should provide a language symbiosis between the aspect language and the base
language, to allow transparent manipulation of objects from one language in the
other. This mechanism is required in order to express the join points between
objects in the aspect language (up) and objects in the base language (down). In
addition to this, the algorithm should be able to attach algorithmic properties
to domain knowledge objects. More precisely, the base program should have the
possibility to add instance variables and methods to a downed domain object.
Finally, this experiment showed that some kind of memory manager should be
conceived that runs in the background and that passes otherwise lost information
to either the algorithm or the domain layer.

References

1. D’Hondt, M., D’Hondt, T.: Is domain knowledge an aspect? ECOOP99, Aspect-
Oriented Programming Workshop (1999)

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin,
J.: Aspect-oriented programming. In Proceedings of ECOOP (1997)

3. Wuyts, R.: Declarative reasoning about the structure of object-oriented systems. In
Proceedings of TOOLS USA (1998)

4. Wuyts, R.: Declaratively codifying software architectures using virtual software clas-
sifications. Submitted to TOOLS Europe (1999)

5. Steyaert, S.: Open design of object-oriented languages, a foundation for specialisable
reflective language frameworks. PhD thesis, Brussels Free University (1994)

6. De Meuter, W.: The story of the simplest MOP in the world, or, the scheme of
object-orientation. In Prototype-Based Programming (1998)

