
The LAN-simulation: A Refactoring Teaching Example
International Workshop on Principles of Software Evolution (IWPSE 2005)

Serge Demeyer, Filip Van Rysselberghe, Tudor Gı̂rba, Jacek Ratzinger, Radu Marinescu,
Tom Mens, Bart Du Bois, Dirk Janssens, Stéphane Ducasse, Michele Lanza,

Matthias Rieger, Harald Gall, Mohammad El-Ramly

Abstract

The notion of refactoring —transforming the source-
code of an object-oriented program without changing its
external behaviour — has been studied intensively within
the last decade. This diversity has created a plethora of
toy-examples, cases and code snippets, which make it hard
to assess the current state-of-the-art. Moreover, due to this
diversity, there is currently no accepted way of teaching
good refactoring practices, despite the acknowledgment in
the software engineering body of knowledge. Therefore, this
paper presents a common example —the LAN simulation—
which has been used by a number of European Universities
for both research and teaching purposes.

1 Introduction

Numerous scientific studies of large-scale software sys-
tems have shown that the bulk of the total software-
development cost is devoted to software maintenance. What
may seem surprising at first is that this percentage is in-
creasing: “the more modern methods you use in build-
ing software, the more time you spend maintaining the
resulting product” [9]. The explanation for this observa-
tion is that modern software systems —more than their tra-
ditional counterparts— must cope with changing require-
ments, hence must continue to evolve.

Refactoring is widely recognized as one of the principal
techniques applied when evolving object-oriented software
systems. The key idea is to redistribute instance variables
and methods across the class hierarchy in order to prepare
the software for future extensions [16, 17]. If applied well,
refactorings improve the design of software, make software
easier to understand, help to find bugs, and help to program
faster [7]. As such, refactoring has received widespread at-
tention within both academic and industrial circles, and is
mentioned as a recommended practice in the software engi-
neering body of knowledge [21].

The success of refactoring implies that the topic has been

approached from various angles. This has as the unfortu-
nate consequence that refactoring research is scattered over
different software engineering fields, among others object-
orientation, language engineering, modeling, formal meth-
ods, software evolution and reengineering (see [15] for an
overview of refactoring research). Therefore, it has been
very difficult to compare research which in turn will ham-
per future progress. Also for teaching purposes this has se-
rious consequences, because the current diversity implies a
lack of standardization which goes against the very idea of
a standard body of knowledge [21].

This problem has been recognized by a number of Eu-
ropean Universities and Research Institutes which have
founded a research network —named RELEASE— ad-
dressing this problem. During four years they have ex-
changed tools and cases in order to reach a consensus on
what represents a typical refactoring scenario to be used for
both teaching and research. We aimed for a small yet re-
alistic situation which (a) illustrates some typical steps in
a refactoring sequence and (b) demonstrates the applicabil-
ity of available tools and tool prototypes. Thus, the goal of
the example is not to serve as a benchmark for finding “the
best” tool, but rather illustrating how tools may complement
one another. Moreover, the example should be applicable in
a classroom setting where we teach some basic refactoring
principles, yet allow students to experiment with a series
of tools and tool prototypes. This paper argues the pros
and cons of the selected example — a simulation of a local
area network (LAN-simulation for short)— by comparing
the applicability of a selection of representative tools.

The remainder of this paper is organized as follows. In
section 2 we provide the necessary details about the LAN-
simulation to allow teachers and researchers to reuse and
replicate the example. Then, section 3 lists the tools and
tool prototypes we apply on the LAN-simulation, organiz-
ing them into three categories (predictive, curative and ret-
rospective). Next, section 4 discusses the suitability of the
LAN-simulation by evaluating the applicability of each of
the different tools and investigating whether tools do com-
plement one another. We conclude the paper with a call for

arms to use the LAN-simulation as a common refactoring
example in both research and teaching (section 5).

2 The LAN-Simulation

This paper proposes to use a simulation of a Local Area
Network (LAN) as the basis for a typical refactoring se-
quence. The example starts from a requirement specifica-
tion (a set of use cases — see Table 1) and with five it-
erations (1.0 — 1.4) delivers a first increment to the cus-
tomer. The system is written in Java and iteration 1.4 con-
sists of 4 classes totaling 677 lines of code (see Figure 1).
The implementation comes with a set of automated regres-
sion tests written with the JUnit testing framework and con-
taining one extra class with 280 lines of code. The use
cases, design and code plus the lab assignments for the
students can be downloaded from the “Artefacts” page at
HTTP://WWW.LORE.UA.AC.BE/.

lanSimulation

Network

LANSimulation

lanSimulation.internals

Packet

Node

DefaultExample(): Network
isInitialized(): boolean
hasWorkstation(nm: String):

boolean
consistentNetwork(): Boolean
requestWorkstationPrintsDocument (

ws: String, doc: String, prntr:
String, report: Writer)

requestBroadcast(report: Writer)
printOn (buffer: StringBuffer)
printHTMLOn (buffer: StringBuffer)
printXMLOn (buffer: StringBuffer)

message_: String
origin_: String
destination_: String

type_: byte
name_: String
nextNode_: Node

Figure 1. The UML Class Diagram at the end of
the first increment — the god class NETWORK
should be refactored

To illustrate a realistic refactoring situation, the 1.4 re-
lease is done in a procedural style. Most of the function-
ality is implemented in a single class NETWORK and the
other classes mainly serve as data-holders – in refactoring
parlance such a single class monopolizing control is called
a “god class”. Obviously, this class shows some typical
code-smells (duplicated code, nested conditionals, naviga-
tion code) that warrant attention. Moreover, the use-cases
we are expected to add in the second release will even en-
large the god class, so it is is best to refactor it now be-
fore starting increment 2.0. The JUnit tests should be used
to demonstrate that the system does not regress during the
refactoring process. However, students must make an as-
sessment whether the provided tests are adequate (i.e. suf-
ficient coverage of use cases 1.0 — 1.4) to serve as a safety
net during refactoring.

Of course there are several paths a software engineer can

follow when refactoring this design; the following is just
one possibility based on some reengineering patterns [2]:
(a) EXTRACT METHOD to remove some duplicated code
(release 1.5) (b) MOVE BEHAVIOUR, to move methods
close to the data they operate upon (release 1.6), (c) ELIM-
INATE NAVIGATION CODE to reduce the coupling between
some classes, and finally (release 1.7) (d) TRANSFORM
SELF TYPE CHECKS to change switch statements into poly-
morphism (release 1.8). After those refactorings, a lot of the
code in NETWORK will be moved onto the class NODE and
its newly created subclasses PRINTER and WORKSTATION;
some code will be moved onto PACKET as well.

2.1 Teaching Experience

The LAN simulation was originally used by consultants
as a way to teach programmers trained in procedural style
programming the principles of good object-oriented de-
sign. Back then, the simulation was mainly used in CRC-
card sessions. Afterwards, the LAN simulation has been
picked up by some universities to be used in several intro-
ductory programming courses to illustrate and teach good
object-oriented design. This is mainly because the exam-
ple is sufficiently simple for illustrative purposes, yet cov-
ers most of the interesting constructs of the object-oriented
programming paradigm (inheritance, late binding, super
calls, method overriding), hence we used it in prior occa-
sions [3, 14].

Yet, when trying the LAN in an advanced software
reengineering course, we found that students trained in
object-oriented principles found the sequence of refactor-
ing steps too artificial. Hence, we completely revised the
example to reflect a more realistic refactoring situation and
this is the one we propose here. This version has been used
as assignment for a refactoring lab session, where students
are given the requirements specification, the code up until
release 1.4 and the request to refactor it in order to accomo-
date use-cases 2.0 — 3.0 (see Table 1). The main goal of
the lab is to have a practical hands-on experience with refac-
toring tools and relate it with other software reengineering
skills, such as redesign (redistribute responsibalities), prob-
lem detection, regression testing. The lab requires students
with good knowledge of object-oriented design principles
(inheritance, polymorphism, encapsulation) and which are
able to evaluate several design alternatives.

The lab has been used with students from the University
of Antwerp — Belgium(12 students in 2004, 9 students in
2005), the University of Mons-Hainaut — Belgium (29 stu-
dents in 2005), the University of Groningen — The Nether-
lands (3 students 2005). Moreover, the lab has been used
in training sessions with professionals as well. We did not
conduct any formal questionnaires, yet many students spon-
taneously told us that they enjoyed the session and that it

2

changed the way they think about reengineering in general
and refactoring in particular.

3 Selected Tools and Techniques

Of course, there is a vast number of techniques and as-
sociated tools that are applicable in a refactoring context,
and it is not feasible to have students experiment with all of
them. Therefore, teachers should necessarily restrict them-
selves to a few representative ones. We argue that to be
sufficiently representative, the selected tools should cover
three main categories of software evolution tools, namely
predictive, curative and retrospective [4].
(a) Predictive (= before evolution). This category covers
all techniques and tools that allow maintainers to make de-
cisions concerning the parts of the software that should be
improved. In refactoring terms, this means tools that are
able to detect the so-called code smells, i.e. symptoms for
code that should be refactored. We selected three tools that
allow a software engineer to identify those parts of the soft-
ware that need to be evolved due to a lack of quality.

• DUPLOC [5] Duplicated code is one of the most com-
monly cited code-smells, hence the inclusion of a
clone detection tool.

• CODECRAWLER [1, 11] Visualisation tools are often
used to inspect class hierarchies and detect potential
cases of abusive inheritance, god classes, etc.

• INSIDER [13] Quality metrics are also often used to
identify potential design problems. At this point we se-
lected INSIDER (part of the IPLASMA toolkit for qual-
ity assurance), because of its explicit support for a list
of typical object-oriented design flaws. Additionally
INSIDER does also provide support for the detection
of code duplication, and allows an easy correlation of
detected clones with additional structural information
(e.g., duplication detected between sibling classes).

(b) Curative (= during evolution). This category concerns
techniques and tools that support the actual changes to the
software system. Here we selected a passive (i.e., infras-
tructure that allows to keep track of the changes) and two
active tools (i.e. tools that support the actual change pro-
cess).

• CVS was selected to keep track of the different ver-
sions, mainly because it is the de facto standard which
is well integrated with other tools.

• ECLIPSE is currently the most popular refactoring en-
gine, hence is an obvious inclusion.

• JUNIT —also very popular— is used as the regression
testing harness that is used to verify whether the refac-
torings did preserve the behavior of the system.

(c) Retrospective (= after evolution). This category in-
cludes techniques and tools that allow to analyze where,
how and why a software system has evolved in the past.
Here we selected four tools that analyze the changes by in-
specting the change log.

• CVS CHANGE SCATTERPLOT [19] The scatterplot vi-
sualisation is used to get a first overview of which files
changed most frequently.

• CLASS EVOLUTION MATRIX [10] Next, we study the
class evolution matrix to see when and how the classes
have changed.

• HIERARCHY EVOLUTION [8] Then, the hierarchy
evolution is used to assess the stability of the inheri-
tance hierarchy.

• EVOLENS [18] Finally, the Lens-View provides in-
sight into the evolution of classes and their relation-
ships.

4 Evaluation

This section reports the results produced by the tools se-
lected in Section 3. Note that we used the order in which
students would normally apply the tools.

4.1 Predictive tools

4.1.1 Duploc

As a first problem detection tool, we used Duploc, a sim-
ple line-based clone detection tool [5]. Duploc removes
white space from all lines of code and then compares all
lines against all other lines using exact string matching. It
reports matches in a so-called dot-plot — therein, a dupli-
cated line of code appears as a dot and duplicated state-
ment sequences appear as little diagonals. Figure 2 zooms
in on the file showing the most duplication, which is in this
case NETWORK. The segments of duplicated code concern
the logging of messages (use case 1.1), the print accounting
(use case 1.3) and the various reports describing the network
status in ASCII, HTML and XML (use case 1.1). Note that
the try-catch block surrounding sequences of Java write
statements, causes small disruptions in duplicated lines, so
clone detection tools should be able to deal with those.

Since we knew beforehand where pieces of duplicated
code occur, we could verify whether the tool missed any
clones. We did not discover any false negatives although
one had to take care to also inspect diagonals where little

3

Table 1. Overview of the use cases for the LAN-simulation.
1.0 BASIC DOCUMENT PRINTING A workstation requests token ring network to deliver document to a printer.

REPORT NETWORK STATUS Print a report of the network status as ASCII, HTML or XML
1.1 LOG PACKET SENDING Each time a node sends a packet to the next one, log it on a log file.
1.2 POSTSCRIPT PRINTING A packet may start with “!PS” to invoke a postscript printing job.
1.3 PRINT ACCOUNTING Printers register author and title of document being printed for accounting.
1.4 BROADCAST PACKET A special type of packet “BROADCAST‘” is accepted by all nodes.
2.0 READ FROM FILE Read network configuration and network actions from a file.
2.1 GATEWAY NODE Introduce a special “gateway” node, which can defer packets with an addressee outside the

current subnetwork.
2.1 COMPILE LIST OF NODES Gateway uses BROADCAST PACKET to periodically collect all addresses on the subnetwork.
3.0 SHOW ANIMATION Have a GUI showing an animation while the simulation is running.

Figure 2. Duploc dotplot, showing that the
class NETWORK contains various clones.

holes appear as those were the ones caused by the surround-
ing try-catch blocks. Duploc did also detect quite a lot of
duplicated code in the tests and in the main class, which stu-
dents are not supposed to refactor. This illustrates a major
weakness of Duploc (and many other clone detection tools),
i.e. they cannot prioritize the detected clones.

4.1.2 CodeCrawler

Next we tried CodeCrawler which provides various ways
of identifying potential design problems in class hierarchies
[1, 11]. Figure 3 shows an overview of the inheritance tree,

where each rectangle represents a class. The width of a class
corresponds to the number of attributes, the height to the
number of methods and the gray value to the number of
lines of code.

Figure 3. CodeCrawler system complexity
view, illustrating that the class NETWORK —
the tall black rectangle in the middle of the
picture— shows the symptoms of a god class.

This view illustrates the procedural style of the 1.4 re-
lease; almost no inheritance and a single class containing
most of the code — NETWORK, which is the tall black rect-
angle in the middle. The second tallest class is the one to the
left in the diagram — it contains all unit tests and is there-
fore less problematic. The two light rectangles are PACKET
and NODE; there square shape indicates that there are ap-
proximately as many attributes as methods, which suggests
that they are mere data holders. Thus, we may conclude that

4

the CodeCrawler visualization indeed detects the expected
problematic class. Nevertheless, one of the advantages of
the LAN-simulation shows up as a major weakness here: it
is too small. Indeed, the difference in size between the god
class and the data holders is small, thus the god class does
not look as bad as it actually is.

4.1.3 Insider

Finally, we applied a tool specifically designed to de-
tect design flaws in object oriented systems, named
INSIDER[13]. The tool allows us to automatically apply de-
tection strategies[12], metrics-based rules for detecting de-
sign fragments (e.g., classes, methods, hierarchies) which
are likely affected by design problems, and which conse-
quently might require refactorings. For instance, the tool
is able to recognize a “Brain Method” (a method that is
long, with many branches, deep nesting level, and using
many variables), a “Data Class” (a class which exposes its
attributes and defines almost no functionality) and “Intra-
class Duplication” (the duplication between methods of the
same class). We first applied INSIDER on version 1.4 to see
whether the tool actually detects the design flaws planted in
the code, and then applied it on version 1.8 to see whether
the tool confirms that the design has been improved.

On Version 1.4, the tool rightfully detected one “Brain
Method” (PRINTDOCUMENT of class NETWORK), two
“Data Classes” (NODE and PACKET) and three cases of
“Intraclass Duplication” involving 5 methods. Thus, the
tool confirms that NETWORK is centralizing a lot of intel-
ligence (especially the PRINTDOCUMENT method), while
NODE and PACKET are simple data providers, with reduced
functionality.

On version 1.8 , the tool reports that the “Brain Method”,
the two “Data Classes” and all of the duplication from class
NETWORK has disappeared and that no new design flaws
were introduced. The only aspect that remained untouched
in version 1.8 is the duplication inside the method SIM-
ULATE. By comparing the measurements of the classes
NETWORK, NODE and PACKET the tool also confirmed
that there was a transfer of intelligence from NETWORK to
PACKET and NODE and the two subclasses of NODE.

4.2 Curative

4.2.1 Eclipse

To execute the sequence of refactoring steps we relied
on the refactoring engine integrated into the Eclipse Inte-
grated Development environment. We used version 3.0 and
learned that most of the refactorings work smoothly, yet no-
ticed some small drawbacks with the execution of some of
them. Also, the whole refactoring process itself involves
some manual recoding, which stresses again the need to also

rely on regression tests for demonstrating the preservation
of behavior.

4.2.2 CVS

CVS was used to store the 9 releases of the system. It
was more than adequate for this refactoring scenario, but
this is not a surprise due to the small scale of the system.
The main observation to make here was that CVS has the
extra bonus of being well integrated with other tools, but
other versioning systems could serve here just as well. See
HTTP://BETTER-SCM.BERLIOS.DE/ for an overview of re-
cent version control systems.

4.2.3 JUnit

A refactoring tool must verify the preconditions of a refac-
toring transformation to avoid the introduction of errors.
However, programming languages typically have ways to
circumvent normal compiler verification —for instance, the
reflection mechanism in java— so no refactoring tool can
provide an absolute guarantee. Moreover, most refactorings
are combined with manual code transformations, which
risks to introduce errors as well. Therefore, regression tests
are necessary to verify whether the refactorings did preserve
the behavior.

Using JUnit has the obvious advantage of being well-
integrated with the Eclipse IDE. While refactoring the
LAN-simulation, the regression tests where able to catch
a few minor mistakes during the manual coding part. How-
ever to teach the importance of the quality of the tests, they
were deliberately designed poorly, i.e. as simple input-
output tests verifying whether the generated report is ex-
actly the same as a previously generated and manually ver-
ified “correct” report. This is a cheap and reliable way to
cover all use cases (or all code for that matter). Unfortu-
nately, if a test fails this only shows up as a difference in
output from one test-run to another, which makes it very
inefficient to locate the source of the error.

4.3 Retrospective

4.3.1 CVS Change Scatterplot

To get a first overview of which files received most changes,
we use the scatterplot described in [19]. In this plot, the hor-
izontal axis shows all files and the vertical axis represents
time. Each time a file is changed when committed on a
particular time, a dot is plotted. Figure 4 shows that NET-
WORK is indeed changed in every release; combined with
the fact that it is probably a god class this makes it a prime
refactoring candidate. Note that the visualization does not
show the distinction between adding functionality (the first
5 horizontal lines; releases 1.0 — 1.4) and the refactoring

5

steps (the next 4 horizontal lines; releases 1.5 - 1.8. Here as
well, the smallness of the case (only 8 releases) becomes a
weakness as the scatterplot is really aimed for large systems
where many files have been committed over a long period
of time.

N
et

w
or

k.
ja

va

Pa
ck

et
.ja

va

Pr
in

te
r.

ja
va

W
or

ks
ta

tio
n.

ja
va

L
an

T
es

ts
.ja

va

L
an

Si
m

ul
at

io
n.

ja
va

1.0

1.1

1.2

N
od

e.
ja

va

1.4

1.5

1.6

1.7

1.8

ve
rs

io
n

1.3

Figure 4. CVS Scatterplot, showing that the
class NETWORK is changed in every release,
i.e. the second vertical line shows a change
(a dot) for every commit.

4.3.2 Class Evolution Matrix

The class evolution matrix shows a complete overview of all
the releases and all the classes of a system. Every column
in the matrix represents a release of a system, and every
row shows the evolution of one class. Classes are shown as
little rectangles where the width corresponds to the number
of methods, the height to the number of attributes and the
color to the number of lines of code.

In Figure 5, we see that NETWORK and LANTESTS are
the largest classes. However, NETWORK becomes smaller
in the last three releases (the color becomes lighter, thus
the number of lines of code shrinks) and classes Packet and
Node grow correspondingly. This suggests that functional-
ity is moved from NETWORK class onto the others, which
is indeed what happened. The visualisation also shows that
in the very last release two classes are added. Note that
this visualisation introduces one class PRECONDITIONVI-
OLATIONTESTCASE which does not appear in some other
reports (most noteworthy Figure 3 and Figure 7). This is
caused by the fact that PreconditionViolationTestCase is a
nested class, and not all tools are able to represent them.

Figure 5. The class evolution matrix confirms
that the class NETWORK starts of as a god
class (i.e. wide dark rectangle in the first
column), grows to reach a maximum size in
release 1.4 (completely black in the fifth col-
umn) but shrinks towards the end (i.e. light
gray in the last column).

4.3.3 Hierarchy Evolution

The Hierarchy Evolution Complexity View [8] is inspired
by the System Complexity View from Figure 3 but now em-
phasizes the evolution. Thus, the width of a node shows the
evolution in number of methods, i.e. the sum of the absolute
differences between the number of methods in each release.
Similarly, the height of a node represents the evolution in
number of statements. The color of the node represents the
age of the class. Both the thickness and the color of the in-
heritance relationship indicates how old and how often this
has been changed. A removed class or inheritance would
appear in cyan.

Figure 6 shows that all classes except WORKSTATION
and PRINTER are in the system from the beginning (be-
cause they appear black). It also shows that the inheritance
hierarchy is almost left unchanged during the refactoring
steps and only the classes WORKSTATION and PRINTER
are added in a later release (because both the classes and
the inheritances appear light gray). Furthermore, the class
NETWORK appears as being tall. This reveals that in that
class many statements were added or removed in its evo-
lution. This view shows that the NETWORK class suffered
the largest overall changes. Combined with the Evolution
Matrix we can see that first, the code was added and then
removed from the NETWORK class.

4.3.4 EvoLens

The next technique called EvoLens [18] describes how
classes evolved together. In Figure 7 the Evolution through
all nine releases is visualized. The nested graph describes
the containment hierarchy of the entire case study. Within
the rectangles describing packages classes are depicted as
ellipses. The color of the classes indicates their growth met-

6

LANTests$Precondition
ViolationTestCase

Network

Object

Packet

Node

Test
Case

Exception
TestCase

LA
NS
im
ul
at
io
n

LANTests

Workstation Printer

Figure 6. The hierarchy evolution shows that
we deal with a very stable inheritance hier-
archy, where only WORKSTATION and PRINTER
are introduced as new subclasses.

rics. Light yellow represents low growth, measured based
on lines of code added within the releases, while dark red
represents high growth values.

Figure 7 demonstrates that PRINTER and WORKSTA-
TION where once introduced into the system, but where not
enriched with much functionality. Also worthwhile to re-
port is that during the development in release 1.0 through
1.4 tests were changed heavily together with NETWORK,
but afterwards not changed very much. This confirms the
test design based on input-output tests. After the develop-
ment and the refactoring phases NETWORK remains quite
large, which is indicated through the overall high to mod-
erate growth value. Edges connecting ellipses within the
nested graph shown in Figure 7 describe common changes
to the classes. The striking outlier is NETWORK, which is
changed in half of the releases together with LANSIMULA-

Figure 7. EvoLens shows that Packet and
Node typically grow together (indeed, they
are the main targets of behaviour removed
from the god class) and that LANTests and
LANSimulation change together but do not
grow in size.

TION, LANTESTS, and NODE. The mitigation of the god
class is an important step in the design of the case study. Al-
though NODE and PACKET have the highest growth values
within the example, only NODE had to be often changed to-
gether with NETWORK. The refactoring seemed to be more
focused on these two classes. The movement of the func-
tionality that had to be done from NETWORK to PACKET
could be fulfilled within a small number of releases. The al-
most complete graph of couplings is not a good sign for the
structure of the LANSIMULATION. Every class of the ex-
ample was changed together with almost every other class.
The ideal of separating functional units with clean inter-
faces seems to be missed. However, reliable statements are
difficult because of the small size of the case study. When
inspecting large industrial case studies the threshold for co-
change couplings is set to a higher level to obtain only
strong couplings that influence the evolution of the entire
system.

4.4 Lessons Learned

A first observation that can be made is that all tools were
applicable in the context of this refactoring scenario. That
is, (a) the predictive tools have been able to detect the code-
smells that lead to the identification of the god class, (b) the
curative tools have been able to support the stepwise refac-
toring process, (c) the retrospective tools have been able
to report where, how and to some degree why the LAN-
simulation has been refactored. Obviously, some tools did

7

not perform that well, but this was mainly due to the small
scale of the LAN-simulation — some tools have difficulties
to scale down.

Secondly, the tools are indeed complementary. For in-
stance, the predictive tools identified some common code-
smells, but none of the tools discovered all of the code-
smells. Similarly, the retrospective tools have all been able
to analyze the release history, but all offered different in-
sights that were all equally valid.

Thirdly, —and most importantly— the experiment
showed the benefits for research groups to work on com-
mon examples. By comparing the results obtained by the
tools, each participating research group gained a better un-
derstanding of the strengths and weaknesses. Moreover,
discussing the refactoring scenario itself, we also gained
a better understanding of what is a typical refactoring sce-
nario. Of course, such results can only be obtained when the
necessary resources are in place. We have obtained funding
from the European Science Foundation to create a research
network and used it to organize numerous workshops and
research visits between the participating labs over the past
three years. The results are encouraging, however to make
real progress we should continue to convince funding agen-
cies to support this kind of research.

5 Conclusion

We proposed the LAN-simulation as an example of a
typical refactoring scenario that mimics realistic circum-
stances. The example has been used in several lab sessions
within different universities and students have responded
positively about this approach to teach the do’s and don’ts
of refactoring. In this paper, we went one step further and
illustrated the applicability of the example by applying vari-
ous tools supporting different aspects of the refactoring pro-
cess. Thus, (a) we searched for code-smells (i.e. symp-
toms of poorly designed code that could be refactored), (b)
we refactored the problematic code, and (c) we studied the
release history. We learned that the tools under study do
support parts of the refactoring process, yet that none of
the tools is able to cover the whole. Thus, the example is
capable of demonstrating how tools may complement one
another. Based on this experiment, we conclude that the
LAN-simulation is a good example to demonstrate where a
certain tool may be used in the refactoring process. As such
the LAN-simulation is ideally suited to achieve a better un-
derstanding between different research groups, and —more
importantly— to serve as a common example for teaching
students the necessary skills that are needed when refactor-
ing.

Note that it is accepted practice for researchers to use
small “exemplars” to illustrate a particular aspect of a cer-
tain technique. Such an exemplar must be small, otherwise

it can’t fit in a single research paper, yet is intended to be
representative for real-world tasks. Requirement Engineer-
ing as a research field for instance frequently makes use
of such exemplars and Feather et al. argue that their pri-
mary purposes are “(a) advancing a single research effort
(that of an individual, or single research group); (b) promot-
ing research and understanding among multiple researchers
or research groups; (c) contributing to the advancement of
software development practices” [6]. The LAN-simulation
described here started out as a an effort to advance a sin-
gle research effort (see [3, 14]), but now has achieved the
status of being used within several research groups. As
such, the LAN-simulation may serve as a first step in the
necessary community building that is required to establish
a common benchmark [20, 4]. Therefore, we encourage
teachers and researchers all over the world to consider the
LAN-simulations as a common example. Not only will it
help us to demonstrate the subtle craft of evolving existing
software; in the long run it will also help us understand and
improve our research.

References

[1] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering platform combining metrics and program visu-
alization. In F. Balmas, M. Blaha, and S. Rugaber, editors,
Proceedings WCRE’99 (6th Working Conference on Reverse
Engineering). IEEE, Oct. 1999.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

[3] S. Demeyer, D. Janssens, and T. Mens. Simulation of a
LAN. Electronic Notes in Theoretical Computer Science,
72(4), 2002.

[4] S. Demeyer, T. Mens, and M. Wermelinger. Towards a soft-
ware evolution benchmark. In T. Tamai, M. Aoyama, and
K. Bennett, editors, Proceedings IWPSE’2001 (4th Interna-
tional Workshop on Principles of Software Evolution), pages
147–177. ACM Press, Sept. 2001.

[5] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code. In
H. Yang and L. White, editors, Proceedings ICSM’99 (Inter-
national Conference on Software Maintenance), pages 109–
118. IEEE, Sept. 1999.

[6] M. Feather, S. Fickas, A. Finkelstein, and A. van Lam-
sweerde. Requirements and specification exemplars. Au-
tomated Software Engineering, 4(4), 1997.

[7] M. Fowler. Refactoring: Improving the Design of Existing
Programs. Addison-Wesley, 1999.

[8] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. In Proceedings of European
Conference on Software Maintenance (CSMR 2005), pages
2–11, 2005.

[9] R. L. Glass. Maintenance: Less is not more. IEEE Software,
July/August 1989.

8

[10] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. In Proceed-
ings IWPSE 2001 (International Workshop on Principles of
Software Evolution), pages 37–42, 2001.

[11] M. Lanza and S. Ducasse. Codecrawler - an extensible
and language independent 2d and 3d software visualization
tool. In Tools for Software Maintenance and Reengineer-
ing, RCOST / Software Technology Series, pages 74 – 94.
Franco Angeli, 2005.

[12] R. Marinescu. Measurement and Quality in Object-Oriented
Design. PhD thesis, Department of Computer Science, ”Po-
litehnica” University of Timişoara, Oct. 2002.

[13] R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In Proceedings of ICSM ’04 (Inter-
national Conference on Software Maintenance), pages 350–
359. IEEE Computer Society Press, 2004.

[14] T. Mens, S. Demeyer, and D. Janssens. Formalising be-
haviour preserving program transformations. In A. Corra-
dini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proceedings ICGT2002 (First International Conference on
Graph Transformation), volume 2505 of Lecture Notes in
Computer Science, pages 286–301. Springer-Verlag, 2002.
[Acceptance ratio: 26/45 = 57%].

[15] T. Mens and T. Tourwé. A survey of software refactoring.
Transactions on Software Engineering, 30(2), 2004.

[16] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[17] W. Opdyke and R. Johnson. Creating abstract superclasses
by refactoring. In Proc. ACM Computer Science Conference,
pages 66–73. ACM Press, 1993.

[18] J. Ratzinger, M. Fischer, and H. Gall. Evolens: Lens-view
visualizations of evolution data. Technical Report TUV-
1841-2004-26, Vienna University of Technology, December
2004.

[19] F. V. Rysselberghe and S. Demeyer. Studying software evo-
lution information by visualizing the change history. In Pro-
ceedings ICSM’04 (International Conference on Software
Maintenance), pages 328–337. IEEE Press, 2004.

[20] S. E. Sim, S. Easterbrook, and R. C. Holt. Using bench-
marking to advance research: a challenge to software engi-
neering. In ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, pages 74–83, 2003.

[21] P. P. C. I. C. Society. Guide to the Software Engineering
Body of Knowledge — 2004 version. IEEE Computer Soci-
ety, 2003.

Acknowledgements

This work has been sponsored by the European Science
Foundation by means of the project ”Research Links to Ex-
plore and Advance Software Evolution (RELEASE)” and
by the European Union via the Research Training Network
“SegraVis”. Other sponsoring was provided by the Belgian
National Fund for Scientific Research (FWO) under grants
“Foundations of Software Evolution” and “A Formal Foun-
dation for Software Refactoring”.

9

